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What is the relationship between intelligence and learning ability?
This question engaged contributors to the 1965 conference on learn-

differences, and, we believe, the sophistication of the answer to

ing and individual
ghlights exactly how far our

this question, perhaps as clearly as to any other, hi
theorics have come over the last twenty years.

Certainly the prevalent position among the contributors to the 1965 con-
ference, and indeed the general opinion until recently, was that there is no
relationship between intelligence and the ability to learn or, perhaps, that the
relationship is weak at best. This position reflects conclusions drawn from the
widely cited series of studies by Woodrow (1946), who found that with ex-
tended practice on a variety of learning tests (such as canceling tasks, analogies,
addition), the performance of brighter students did not improve at a rate
substantially greater than that shown by poorer students. Woodrow’s studies are
no longer viewed as incontrovertible in addressing the intelligence-learning
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::Slillclyoprl‘irflaﬁ}lylbeca.usc of problems with the measures of learning ability he
ployed: his learning tasks may have been too simple (Humph
Campione, Brown, and Bryant, 1985 i P! pareys, 19.79;
Bryant, ), and his conception of learning as im-
{Jrovqmcnt due to practice was too simplistic. Had he sclected other lgcinds of
,::n;::]ﬁ task; and m.casul.'cd learning with other performance indices, his results
ght have been quite different, as subsequent investigation has shown (S
Kyllonen, and Marshalek, 1984). o
We may draw a general conclusion here: to address question i
l.earmng ability, such as the question of its correlates and its gimc;i:nr:ﬁg;dil: 1gs
Lr;u{;;zzt:ﬁ::gia:z: clea‘rf;dlca of_cxan.:tly.what is meant by learning ability to the
Etent that one cun sg\;;:x f carning indicators. Problems and confusions such as
thos y Woodrow could have been resolved by sclecting learning
indicators from an agrccd-upo.n taxonomy of learning skills. To clarify this
{Jomt., for -thc purposes of.t‘h}s paper we distinguish learning abilities from
carning skills. Wc define abilities as individual-difference dimensions in a factor
ax_mlysns._ of lear{ung tasks. We define skills as candidate individual-difference
dimensions which are presently only conceptually distinct. In this way, we
bche\_’c that proposing learning skills logically precedes establishing the individ-
gal dlﬁ.-crcnccs dimc:;xsions underlying learning. Proposing a taxonomy of learn-
ing _skills should assist in determining the dimensions of learning ability. (We
realize that our use of the terms abilities and skills may be somewhat
idiosyncratic.)

There are many potential benefits to having a widely accepted taxonomy of
learning skills. Consider Bloom’s Taxonomsy of Educational Objectives (1956). Its
primary purpose was to serve as an aid, especially to teachers, for considering a
wider range of potential instructional goals and for considering means of evalu-
ating student achievement consistent with those goals. Although the taxonomy
has been criticized for vagueness (what cxactly is analysis anyway?) (Ennis,
1986), it has served teachers well over the last thirty years, at lcast as demon-
strated by its continued inclusion in teacher training curricula. Its main effect
has probably been to encourage instructing and testing of higher-order thinking
skills (analysis, synthesis, cvaluation). A faxonomy of learning skills could have
a parallel cffect in encouraging the development of instructional objectives
concerned with teaching higher-order learning skills.

Fleishman and Quaintance (1984) have outlined a number of ways, both
scientifically and practically, in which a performance taxonomy in psychology
would be bencficial. The main scientific bencfit would be that results from
different studies using different methods could more casily be compared and
synthesized. Study A finds that some manipulation drastically affects perform-

ance on task X whereas study B finds that the same manipulation has no effect
on performance of task Y. Are the studies contradictory or compatible? A
taxonomy could help decide.

A Taxonomy of Learning Skills 119

The main practical benefit of having a taxonomy of learning skills is that
consumers of research findings could more easily determine the limits of gener-
alizability from current rescarch findings to an immediate practical problem.
For example, it would be convenient to be able to produce learnability metrics
for any kind of learning task, either in the classroom (for example, a particular
algebra curriculum) or outside the classroom (such as a new word-processing
system). A taxonomy of learning skills would be an important first step toward
achieving a generally useful learnability metric system.

There are also more specific motivations for the immediate development of
a taxonomy of learning skills. The National Asscssment of Educational Progress
(NAEP, “The Nation’s Report Card”) is a biennial survey of student achieve-
ment in arcas such as mathematics, science, and computer science designed to
provide information to Congress, school officials, and other policy makers
regarding the state of American education. In recent years there has been
increasing attention given to the assessment of higher-order skills in these
subject matters (Murnane and Raizen, 1988). It is likely that because of political
pressures this cffort will continue with or without a taxonomy, but a taxonomy
of lcarning skills could assist in the development of new, more refined test items
to measure learning skills relevant to math and science.

Perhaps the most conspicuous benefits of having a viable taxonomy of
learning skills, however, would be realized in the burgeoning domain of intelli-
gent computerized tutoring systems (ITS). A number of such systems have been
developed (Yazdani, 1986), and the potential for generalizing and synthesizing
results across the different systems is being seen as increasingly critical (Soloway
and Littman, 1986). Too often, rescarchers caught up in the excitement of
developing powerful, innovative instructional systems have neither the interest
nor the expertise for systematically evaluating those systems. There have been a
few small-scale cvaluation studies of global outcomes (Anderson, Boyle, and
Reiser, 1985), but the ficld could obviously benefit from an accepted taxonomy.
System developers could state what kinds of learning skills were being devel-
oped, and evaluators could determine the degree of success achieved. In this
way, a taxonomy could provide a useful metric by which to compare and
evaluate tutors as to their relative effectiveness not only in teaching the stipu-
lated subject matter, but also in promoting more general learning skills.

Intelligent tatoring systems would benefit from a learning taxonomy in a
second way. Because of the precision with which instructional objectives may
be stated, the degree of tutorial control over how thesc objectives guide instruc-
tional decisions, and the precision with which student learning may be assessed,
the ITS environment enables the examination of issues on the nature of learning
that investigators simply were unable to address in the past. Educational re-
search has been notoriously plagued with noisy data due to the very nature of
field rescarch and the inherent lack of control over the way instructional
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tr ini i
I;gt?:ﬁilzzeﬁTLﬁ:tzré‘d and 1eammg outcomes measured. The controlled
TS environment thus of ers new promise as the ideal testbed for evaluating
e et s rning. With ti‘ICSt? systems we now have the capability
of generating rich ¢c c;;lpn(;z.shoﬁ an 1nd1v1du.a1' learner’s progress during in-
rructic y should help in determining exactly what indicators of
learnin El Ez;g;tc_stsh ::'u:lt .}f:amt;r statlus we ought to be producing and examining
of the uti ity of any learning taxonomy is whether it could ac :
Eet:;:’cxi“t)o assni;rm sucii an cndeairor. The goal of this chapter is to proposenilalltiz
my. We begin by looking at what has been done thus far.

A TAXONOMY OF LEARNING TAXONOMIES

Investigators have adopted various approaches to the development of learni

taxonomies. One way of organizing these approaches, which we willamwig
here, is by the categories of (a) rational, based on a condil:ions-of-lmap'l)y
analysis, (b) correlational, based on an individual-differences analysis l':mg
model-based, from formal computer simulations of learning proccs)s(es nnd ©

Rational Taxonomies

Rational taxonomies are by far the most common. Examples of thi
taxonomies proposed by Bloom (1956), Gagné (1985),1?[enszn t(hll‘;gfeaarig
Melton (1964). Proposed taxonomies are based on a speculative, rational :inal -
sis of the domain, and frequently the analysis applied is of 2 c0nditions—of-learii—
ing nature. That is, the proposer defines task categories in terms of characteris-
tics that will foster or inhibit learning or performance.

One of the first attempts to organize the varieties of learning was Melton’s
_(1964) proposal of a simple taxonomy based primarily on clusters of tasks
investigated by groups of researchers. The categories, roughly ordered by the
complexity of the learning act, were conditioning, rote learning, probability learning
sk.iH learning, concept learning, and problem solving. This general scheme has been
given an updated trearment by Estes (1982) who examined conditions that
facilitated and inhibited these and related classes of learning, and looked for
evidence of individual differences in each class.

A task-based scheme was also the basis for learning taxonomies proposed by
Jensen (1967) and Gagné (1965, 1985). Jensen proposed a three-faceted taxon-
omy (similar in some ways to Guilford’s structure of intellect model): a learning
type facet incorporated Melton’s seven categories; a procedures facet indicated
variables such as the pacing of the task, whether the task consisted of spaced or
massed practice, stage of learning, and the like; and a content facet indicated
whether the task consisted of verbal, numerical, or spatial stimuli. Jensen
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proposed that his taxonomy could be used as an aid in interpreting some
research findings, such as why arbitrarily selected learning tasks do not inter-
correlate very highly (answer: because they do not share any facet values). He
hoped that his taxonomy would suggest a more systematic approach to selecting
learning tasks for future studies, but there is not much evidence that researchers
have subsequently followed his suggestions.

Gagné’s taxonomy (1965, 1985), on the other hand, has been widely
taught and put to use in the area of instructional design (Gagné and Briggs,
1979). Gagné proposes five major categories of learned capabilities based on a
rational analysis of common performances characteristics. Intellectual skills (pro-
cedural knowledge) reflect the ability to use rules; this capability in turn de-
pends on the ability to make discriminations and to use concepts, and rules
themselves combine to form higher-order rules and procedures. Cognitive strate-
gies (executive control processes) reflect the ability to govern one’s own learning
and performance processes. Verbal information reflects the ability to recall and use
labels, facts, and whole bodies of knowledge. Motor skills and attitudes are two
additional learned capabilities Gagné includes to round out the list.

These categories serve various purposes. During task analysis, they assist
the investigator in defining and analyzing instructional objectives and in evalu-
ating an instructional system to determine whether its objectives have been met.
For example, if the goal is to have the student acquire 2 conceptual skill, then
the objective that the student be able to discriminate one thing from another may
be indicated. In the design phase, the categories suggest different approaches for
delivering instruction, since, according to Gagné, the five capabilities differ in
the conditions most favorable for their learning. For example, with verbal
information, order is not important but providing a me:mingful context s,
whereas for motor skills, providing intensive practice on part skills is critical.

All these taxonomic systems, Gagné’s in particular, are beneficial, but it is
important to acknowledge their limitations. One problem inherent in this
approach is the degree to which it is subject to imprecision, which makes for
communication difficulties and violates one of the main motivations for devel-
oping the taxonomy in the first place. Without a strong model of learning
requirements in a task, and without a foundation of empirical relationships, task
analysis is still primarily an art rather than a technology.

A second major problem with the rational approach was apparent to Mel-
ton (1964, 1967), who, in fact, argued that it be abandoned. The problem is that

¢ based primarily on a rational analysis of task characteristics

a taxonomic schem
will only incidentally include actual psychological process dimensions. And
t important aspect

presumably the process dimensions are what govern the mos
of the taxonomy: information regarding predicted task-to-task generality. Mel-

d that while the task-based approach might be initially useful, it

ton suggeste y 1
was preferable ultimately to base the taxonomy on process characteristics rather
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than “a mish-mash of procedural and to
verbal, ‘central’) criteria” (p- 336). Althou
have actually suggested replacements to th
later how cognitive scien

pographic (ie., perceptual, motor,
gh it was preliminary at that time to
o the task-based categories, we will show
¢e now provides suggestions for what they might be.!

Correlational Taxonomies

e e oy g, T ot b domin of s il
be seen largel asyan aEt)tema ¢ 3 151’50"Y ox lndlvfdual-c!lﬂ‘ercnces research can
- pcrforman):;e cor;claﬁoﬁ t((')r hcvc Op taxonomies of intelligence tests based
attempts to develon onilis t;x ur§t011;,] 193_8). and thcrx': have been some
Unibe 30 sevel garm” 197;n;rr;:cs o carning tasks (Allison, 1960; Malmi,
1978). » s s Stake, 1961; Underwood, Boruch, and Malmi,
appr(';l;}cl LO:rsjs::zn;c}rg:éizcmh l:ias olnc criti(fa_l ;fivantagc over the rational
the transtorabilivy of Jilh amony cv}:: opment: it irectly addresses the issuc of

: skil g tasks. That is, if we know that performance
on learmng task X i1s highly correlated with performance on task Y, then a
narural proposal is that a high proportion of the skills required by task X are also
required by task Y. Further, training on task X should transfer at least somewhat
to task_ Y. 'l_‘hqs patterns of correlations among performances on learning tasks
Cj(:"ﬁd in principle be the basis for the construction of a taxonomy of learning
skills.

A very closely related idea— that individual differences investigations
could serve as acid tests in constructing general theorics of learning — was
developed by Underwood (1975). His proposal was that if a theory assumed
some mechanism, and the mechanism could be measured in a context outside
that in which it was initially developed, then the viability of the mechanism
could be tested by correlational analysis.

These ideas were applied in an ambitious investigation that cxamined the
intercorrelations among a wide variety of verbal memory tests (Underwood,
Boruch, and Malmi, 1978). The purpose was to determine whether theoretical
notions developed in the general (nomothetic) learning literature, such as the
idea that memories have imaginal and acoustic attributes, or that recognition
processes are distinct from recall processes, could be verified with an individual-
differences analysis.

Memory-task stimuli were primarily words. In some tasks words were
randomly selected, but in others words were chosen to elicit particular psycho-

"It is historically interesting that it was at Melton’s 1963 conference that Fitts (1963) proposed a
highly process-oriented ta y of psych skills which was only much later adapted by
Anderson (1983) as the basis for a cognitive learning theory.
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logical processes. For example, concrete and abstract words were mixed, under
the assumption that recall differences would reflect the degree of imagery
involvement. Words were embedded in various kinds of memory tasks (paired
associates, free recall, serial recall, memory span, frequency judgment). It was
cxpected that clear word-attribute factors would emerge, thus supporting cer-
tain theoretical notions regarding properties of memory; however Underwood
and colleagues discovered two somewhat unanticipated results. First, most of
the variance was duc to general individual differences in associative learning;
only a small percentage was due to any subject-task interaction. Second, the two
factors that did emerge were not associated with word attributes, as might have
been expected, but with type of task (free recall versus paired associates and
serial learning); but even this apparently is not a robust task division. A follow-
up study (Malmi, Underwood, and Carroll, 1979) found the same evidence fora
general associative-learning factor, but the two extracted factors split tasks in a
slightly different way (free recall and serial learning versus paired associates).

What is the implication for a taxonomy of learning skills? Association
formation rate apparently is a general and perhaps fundamental learning param-
cter. It may be that further subtle distinctions could be made among types of
association formation, but the evidence in both these studies suggests little
practical payoff in searching for such distinctions.

Underwood and colleagues were primarily interested in memory per se,
and thus their tasks represent a fairly narrow range of learning. A useful
complement to their analysis would be a study that more systematically sampled
learning tasks from somecthing like Melton’s or Gagné’s taxonomy. In this
regard we consider a pair of studies by Stake (1961) and Allison (1960), who
administered a diverse variety of learning tasks to large samples of seventh
graders and Navy recruits, respectively. Allison’s learning tasks were four
paircd-associates tasks (verbal, spatial, auditory, and haptic stimuli); four con-
cept-formation tasks (spatial and verbal stimuli); two mechanical assembly ta.sks
consisting of a short study film followed by an assembly test; a maze-tracing
task; a standard rotary-pursuit task; and a task that involved learning ho‘w to plot
quickly on a polar coordinates grid. Stake’s learning tasks were listening com-
prehension (repeated study-test trials of the same story), free recall (words,
numbers), paired associates (words, dot patterns, shapes, n.umbcrs), v_c:rbal con-
cept formation, and maze learning. In both studies a varicty of aptitude tests
were also administered. _

The original analyses of these data were somewhat problematic (see Cron-
bach and Snow, 1977), but a reanalysis conducted by Snow, Kyllonen, and
Marshalek (1984) using multidimensional scaling (MDS) n':vca]cdva nUfnber o}f
dimensions by which the learning tasks could be org'amzet%. First, 1!; bot
studies, learning tasks varied systemau'ca”y in corrfplexity, ’]'"hls was indicated by }:w}‘:
findings: the learning tasks varied substantially () in the degree to whic
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of executive control processes such as goal monitoring.

$ccond, in both analyses there was evidence for a novel ve ili
learning task dimension, which Snow and associates int q rsus famt_mr
the classical distinction between fluid d e T oy pORtE
1971), but which might also be s o CFYStal!lzcd mlfcl!lgeflcc {Carcell
inductive and rote learning. In the ;\:lcln " Suplpo'rtmg ; d.lstmctlon. Lefmesn
and some of the conce t-fg(;rmation t llscon o yS:jS, ey o o sk
configuration. The conicpt formatio;xas tS i‘(PPcarC tioned e fha scall'ng
repeatedly used the same stimuli, thus aSl_)sl'so p;:Slthncd vrets oSk which
rote strategy. On the other hand e cmbl ing lt( c s:cccssful use of a purely
which required subjects to asscn;blc asscm Ve SR HIE el plothg gk,

: new solution procedure essentially from
scratch, appeared on the opposite side of the configuration.

The MDS analysis of the Stake (1961) data (learning rate scores) similarly
suggested a fluid-inductive versus crystallized-rote dimension. Listening com-
prchension, verbal paired-associates, and verbal free-recall tasks appeared on the
crystallized side of the configuration. The verbal concept-formation task along
with the spatial and number pattern paired-associates tasks, which were partially
amenable to an inductive learning strategy (response patterns could, but did not
have to be induced), fell on the fluid-inductive learning end.

The reanalysis by Snow and colleagues thus provides a number of ideas that
could facilitate taxonomy devclopment. In particular it suggests task complexity
and learning environment (inductive-novel task versus rote-familiar task) di-
mensions. Does this suggest we ought to continue along these lines to develop a
full taxonomy? Unfortunately, we see two problems with the approach. One is
simply practicality. Because of the time and expensc involved in collecting data
on performance of learning tasks, which typically require many more subject
hours than do other cognitive measures, there have not been the same kind of
large scale empirical analyses of learning-task batterics as there have been of
intelligence-test batteries (although data sets reviewed in Glaser, 1967, and
Cronbach and Snow, 1977, could be reanalyzed along the lines of the Snow ct
al. approach). Even with the well-designed studics Snow and colleagucs rcana-
lyzed, there is considerable underdetermination of process dimensions because
not enough varicties of learning tasks were administered by Stake and Allison.
Thus, although the dimensions that are revealed in the reanalysis by Snow and
colleagues arc suggestive, they certainly do not scem a sufficient basis for

1es
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proposing a taxonomy of learning skills. It might take more like a few hundred
diverse learning tasks to be able to sce something that might serve as the basis
for a truc full-blown taxonomy. Obviously, such a study would be prohibitively
expensive.

A second problem with the correlational approach to taxonomy building is
one inherent in a purely bottom-up approach to theory development. That is,
on what basis should learning tasks be selected for inclusion in a battery that is
to be analyzed? Factor-correlational structures or categories directly reflect the
nature of the tasks included in the analysis and only those tasks, and thus the
empirical approach is inherently analytic and in some sense conscrvative. Cor-
relational analyses certainly may be uscful for initial forays or purely exploratory
work in suggesting underlying relationships among tasks that might not have
been anticipated at the outset. But it cannot be complete in any sense. One
cannot simply be carcful to “sample a broad range of tasks.” A sampling scheme
for choosing tasks already implies a taxonomy. Clearly, some means for generat-
ing original taxonomic categorics is required.

Information-processing Model-based Taxonomies

The two classes of learning taxonomics thus far discussed have their roots in
two different schools of thought— behaviorism in the case of rational taxono-
mies, psychometrics in the case of the empirical-correlational taxonomies —
that historically precede modern cognitive psychology. One unfortunate side
cffect of the cognitive revolution had been a decline of interest in learning
phenomena. Until the mid 1960s, when behaviorism was still largely predomi-
nant, learning issues held center stage. With the subsequent rise of cognitive
psychology and the information-processing perspective, theories of memory
and performance came to dominate. Only recently has there been a rather
sudden and dramatic upsurge of interest in learning from an information-pro-
cessing perspective. Although many of the same issues remain, these sccond
looks at learning through newer theories (Anderson, 1983; Rosenbloom and
Newell, 1986; Rumelhart and Norman, 1981) have resulted in a richer theoret-
ical picturc of lcarning phenomena.

Corresponding to this rise of interest in learning, there have been proposals
for model-based categories or taxonomies of learning types. These attempts
differ from the correlational taxonomies in that they have not yet been com-
pletely validated, at least not as taxonomies of lca.rning skills. However, we do
sce correspondences between some of the dimensions that have cwcrgcd in the
correlational analyses and some of the proposed learning mechanisms and cate-
gorics, which we will point out as we go along. The mod.cl-bascd taxonomics
differ also from the rational taxonomies in that they arise not simply from
speculation and rational task analysis (although they certainly incorporate such
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methods) but from systematic information-processing models of learning that
have been demonstrated to be specified to a degree of precision sufficient for
implementation as running computer programs. Thus taxonomies in this cate-
gory are those investigations that have entailed the use of computer simulation
of learning processes as a means of developing learning theory.

One model-based taxonomy is suggested by Anderson’s (1983) ACT*
(Adaptive Control of Thought) theory. The theory proposes two fundamental
forms of knowledge. Procedural knowledge (knowledge how) is represented in the
form of a production system, a sct of if-then rules presumed to control the flow
of thought. Declarative knowledge (knowledge that) is represented in the form of
a node-link network of propositions, which are presumed to embody the con-
tent of thought.

The ACT?* theory, in its most recent formulation (Andcrson, 1983; 1987a),
specifies three basic types of learning, one to accommodatc declarative (fact)
learning, one specific to procedural learning, and once applicable to both types.
Lcarning in declarative memory is accomplished solely by the probabilistic
transfer to long-term memory of any new proposition (that is, a sct of related
nodes and links) that happens to be active in working memory. It is worth
noting that the finding of Underwood and colleagues (1978) of a broad and
general associative-learning factor lends empirical support to Anderson’s claim
for a single declarative-learning mechanism.

A second learning mechanism, knowledge compilation, accounts for proce-
dural lcarning. Knowledge compilation actually consists of two related pro-
cesses. Learning by composition is the collapsing of scquentially applied produc-
tions into onc larger production. This corresponds to the transition from
step-by-step execution of some skill to one-pass (all-at-once) execution. Learn-
ing by proceduralization is a related process in which a production becomes
specialized for usc in a particular task. This corresponds to the transition from
the use of general problem-solving skills to tackle novel problems to the
employment of task-specific skills, tuned to the particular problem at hand.
Anderson’s third learning mechanism, strengthening, operates somewhat analo-
gously to the traditional learning principle of reinforcement. Both facts and
procedures are presumed to get stronger and hence more easily and more
reliably retrieved, as a function of repeated practice.

To appreciate Anderson’s theory, it is important to note that it models the
dynamics of skill transition, and is not simply a list of the different ways in

which learning can occur or a categorization of learning tasks. The basic idea is
that upon initial exposure to novel material, such as a geometry or computer-
programming lesson, the learner first engages in declarative learning, forming
traces of the various ideas presented. Then, when given problems to solve later
in the lesson, the learner employs very general methods such as analogy,
random search, or means-ends analysis, which operate on the declarative traces
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to achieve solution. Employing these very general methods is cognitively taxing
in that it severely strains working memory (to keep track of goals and the
relevant traces), and thus initial problem solving is slow and halting. But
portions of the process of using these general methods and achieving particular
outcomes (some of which actually lead closer to solution) arc automatically
compiled while they are being executed. This is the procedural learning compo-
nent. The learner cssentially remembers the sequence of steps associated with
solving a particular problem, or at least parts of the problem. Then when
confronted with the problem again at some point in the future, the learner can
simply recall that sequence from memory, rather than have to rethink the steps
from scratch. With practice on similar problems, the compiled procedure is
strengthened, which produces more reliable and faster problem solving. With
continued practice, the skill ultimately is automatized in that it becomes possi-
ble to cxccute the skill without conscious awareness and without drawing on
working memory resources.

Again therc may be a correspondence between an individual-difference
dimension and a distinction implicit in the model-based taxonomy. Snow and
collcagues’ novel learning tasks, presumed to tap fluid intelligence, may be
likened to the novel learning situations that Anderson studies, which presum-
ably tap very general problem-solving skills. On the other side, Snow and
collcagues’ familiar learning tasks, which call on crystallized skills, can be
characterized in ACT* terms as engaging the declarative learning mechanism or
involving the retrieval of already compiled procedures. It is noteworthy that
despite rather major differences in methodology inherent in the individual-dif-
ferences versus model-based approach, there is some convergence in the catego-
rics of learning skill. Although Andcrson (1983, 1987a) views the emergence of
the learning dimension as the result of the transition of skill, rather than perhaps
as an array of fundamentally different kinds of learning tasks, there is a basic
compatibility between the conclusions of the rescarch approaches.

A sccond approach to building a model-based taxonomy is based on an
integration of the literature from the artificial intelligence subspecialty of ma-
chine learning. Investigators have proposed taxonomies of research in machine
lcarning (Carbonell, Michalski, and Mitchell, 1983; Michalski, 1986; Langley,
1986; Self, 1986), and there even exists something of a consensus in the field
regarding the categorics in the taxonomy.

One dimension of machine-learning research particularly relevant to our
concerns here is learning strategy, which Michalski (1986) defines as the type of
inference employed during learning, and which he characterizes as follows:

In every learning situation, the learner transforms information provided by a
tcacher (or environment) into some new form in which it is stored for future use.
The nature of this transformation determines the type of learning strategy
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FSCd. S Thfcsc strategies are ordered by the increasing complexity of the trans-
‘;:F]at:o]n (in cht:icc?r;rom the information initially provided to the knowledge
wimately required. Their order thus reflects increasin

! : g cffort on the part of th
student and correspondingly decreasing cffort on the part of the :cachl::r (p- 14)c

4-1. (Wc have added an addit.:ional category, “learning by drill and practice,” to
the llst-bccausc we use the list as the basis for one of the proposed taxon;my
categorics, apd %t is convenicent to denote that here.) Note that while there may
be some similarity between the categorics of Carbonell et al. and Michalsk; and
those proposed by Melton, Gagné, and others, the basic difference is that in the
Carbonell-Michalski system the underlying motivation for distinctions is neces-
sarily the existence of differences in cognitive processing requirements. We will
return to a more thorough discussion of these categorics in the next section.

We believe that Anderson’s and Carbonell-Michalski’s model-based at-
tempts to propose varieties of learning represent a considerable advance beyond
cither the rational or correclational taxonomies and go a long way in abating
some of the most severe criticisms of carlier taxonomies. Yet all three ap-
proaches yicld ideas on the varieties of learning skills that might be fruitfully
synthesized. The remainder of the chapter will represent our initial attempt to
integrate these ideas.

A PROPOSED TAXONOMY OF LEARNING

Thus far we have discussed why a taxonomy of learning is important, and what
others have done in the way of proposing taxonomics. We now proceed to
propose a taxonomy based on a synthesis of some of the ideas just reviewed,
with an eye toward two major objectives. First, the taxonomy should be useful
as a learning task —analysis system. That is, it should be uscful in answering
questions like what are the component skills involved in learning to disas_scmblc
a jet engine, operate a camera, program a computer, or make economic fore-
casts? Sccond, the taxonomy should serve to focus our research. Specifying the
ways people learn may suggest where we ought to be expending more r?sparch
energy. We do not see this as dictating rescarch directions, as some critics of
psychological taxonomies have suggested (Martin, 1986), but as suggesting
potentially high-payoff research directions. For example, we all:eady know
much about declarative learning, such as what kinds of individual dlEEl:chCS to
expect and the relation of declarative learning to other cognitive skills. We
know considerably less about procedural lcarning skills. The taxonomy may
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Table 4-1 Learning Strategies from a Taxonomy of Machine-Learning Research

Rote lcarning. Learning by direct memorization of facts without generalization.

Learning from instruction (advice taking; learning by being told). The process of
transforming and integrating instructions from an external source (such as a
teacher) into an internally usable form

Learning by deduction

Knowledge compilation. Translating knowledge from a declarative form that cannot
be used directly into an effective procedural form; for example, converting the
advice “Don’t get wet”” into specific instructions that recommend how to avoid
getting wet in a given situation.

Caching. Storing the answer to frequently occurring questions (problems) in order
to avoid a replication of past efforts.

Chunking. Grouping lower-level descriptions (patterns, operators, goals) into
higher-level descriptions.

Creating macro-operators (composition). An operator composed of a sequence of more
primitive operators. Appropriatc macro-operators can simplify problem solving
by allowing a more *“coursc-grained” problem-solving scarch.

Learning by drill and practice. Refining or tuning knowledge (or skill) by repeatedly
using it in various contexts and allowing it to strengthen and become more
reliable through generalization and specialization.

Inductive learning. Learning by drawing inductive inferences (a mode of reasoning
that starts out with some assertions, e.g., specific observations, and concludes with
more general and plausible assertions, i.e., hypotheses explaining the initial
assertions) from facts and observations obtained from a teacher or an environment.

Learning by analogy. Mapping information from a known object or process to less
known but similar one.

Learning from cxamples. Inferring a general concept description from examples and
(optionally) counterexamples of that concept.

Learning from observation and discovery (learning without a teacher; unsupervised
learning). Constructing descriptions, hypotheses, or theories about a given
collection of facts or observations. In this form of learning there is no a priori
classification of observations into sets exemplifying desired concepts.

Note: All categories except “learning by deduction” are from Carbonell ct al. (1983); “learning by
deduction” is from Michalski (1986). The definitions are taken from the glossary in Michalski ct al.
(1986). Note that “learning by drill and practice” was not a category included by Carbonell ctal.
(1983) or Michalski (1986), but we included it in the taxonomy, and thus for economy we describe

it here.

pinpoint other learning skills on which research attention may productively be

focused. _ - -
We have sclected four dimensions, illustrated in Figure 4-1, as particularly
important in classifying learning skills. The two dimensions shown in Figure

4-1a2— knowledge type and instructional environment— are motivated primarily by
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(b)

Fast-processing
(Quicﬁ decisions)

® Air-traffic controller

® Sccurity police

® Flight engincer

* Pilot

Quantitative/

technical

Non-quantitative/ ® Sccretary ® Administrator
nontechnical
® Chef ® Economist
(Smithtown)
* Computer programmer
® Journalist (BIP; LISP tutor)
Slow-processing
(Quality decisions)

(©

Holistic processing «— Serial processing

Active/impulsive oricntation «— Passive/reflective orientation

Systcmatic/punctitiousapproach «— Haphazard/cxptoratory approach

Theory-driven (top-down) «—> Data-driven (bottom-up)

Spatial representation «— Verbal representation

Deep processing «— Superficial processing

Low internal motivation «—> High internal motivation

Figure 4-1 Learning skills taxonomy. a. Environment-by-knowledge type matrix: cell
entrics would be various learning tasks. b. Environment-by-knowledge type matrices
plotted in a hypothetical two-dimensional domain-space: proximal matrices should show
relatively greater transfer among parallel learning skills. c. Suggested learning styles that
might intcract with other taxonomy dimensions in determining what learning skill a

particular learning task measures.



132 PATRICK C. KYLLONEN AND VALERIE J. SHUTE

our discussion of Anderson’s and Carbon.

. 11-Michalski’s :
although Gagné’s ideas on learned b-f. . systems, respectively,
categories included in knowledge t;;sa tlities served to broaden the range of

Figure 4-1a) de i
(Fig The mo)tivagzxis f:)rsﬂi“c:co?lfegcnemfi']carm'ng ta§k5- i
domegy mony : T two dimensions, illustrated in Figure 4-1b,c
dom carning style—became apparent when we began examinin
pl_lcauons of .thc taxonomy, which we discuss in the next section of th oo,
Figure 4-'11:» _1Ilustratcs a hypothetical domain-space as the crossing of thcc dpcaPCL
of quantitativeness and the importance of quality versus speed in dccig'rcc
making. The idea is that any domain can be located in such a space, and th ts;m
set of learning skills defined by the first two taxonomy dimensions ,(Figurc:--lzs
may prove to be empirically distinct from parallel learning skills in other
fiomam.?. ‘We represent this idea in Figure 4-1b by scattering knowledge type b
11jlstruct10n31 environment matrices over the domain space, for various oecI:,u a)j
tional-training domains. The two dimensions portrayed in the domain space };rc
only suggestive, and are meant only to express how domain interacts with the
first two taxonomy dimensions. Finally, Figure 4-1c¢ lists a varicty of possible
learning styles, which, we propose, must be considered in conjunction with the
first three taxonomy dimensions in determining what skills are being tapped by
a particular learning task.

Knowledge Type

The distinction between declarative and procedural knowledge is fundamental.
Further refinements are possible: declarative knowledge can be arrayed by
complexity, from propositional knowledge to schemas (packets of related prop-
ositions). Similarly, procedural knowledge can be arrayed from simple produc-
tions, to skills (packets of productions that go together), to automatic skills
(skills executed with minimal cognitive attention). Productions and skills can
also be arrayed by generality, from a narrow (specific) to a broad (general) range
of applicability. A final knowledge type is the mental model, which requires the
concerted exercise of multiple skills applied to claborate schemata. Knowledge
types are dynamically linked: acquisition of a sct of propositions may be prereg-
uisite to acquisition of a related schema or to a procedural skill; both in turn may
be prerequisite to acquisition of some mental model.

In cognitive science circles, the declarative-procedural distinction is some-
times said to be formally problematic in that declarative knowledge can be
mimicked by procedures (Winograd, 1975). One can declaratively know that
“Washington was the first president”, alternatively, one can have the procedure
to respond “Washington” when asked *“who was the first presidcn.t?-” We
finesse the problem here by keeping close to an operational definition ‘of
knowledge type: we define knowledge in terms of how it is tested. Declarative
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knowledgc can be probed with a fact recognition test (sentence recognition,
word matching), or, in the case of schemata, with clustering and sorting tasks
(Chi, Feltovich, and Glaser, 1981). Procedural knowledge requires a demon-
stration of the ability to apply the knowledge to predict the output of some
operator (operator tracing) or to generate a set of operators to yield some output
(operator sclection). Possession of skills and automatic procedures may be oper-
ationally determined by cxamining the degree of performance decrement under
imposition of sccondary tasks (Wickens, Sandry, and Vidulich, 1983) or
through other methods of inereasing processing demands (Spelke, Hirst, and
Neisser, 1976; Schneider and Shiffrin, 1977; Shiffrin and Schneider, 1977).
Possession of an appropriate mental model might require testing performance
on a complex simulation of some target task. Table 4-2 gives an illustrative (not
exhaustive) list of tests for the various knowledge types.

Instructional Environment

Instruction delivered in a classroom sctting or even on a computer will inevita-
bly provide the student with opportunities to incorporate the material in multi-
ple ways. Real instruction occurs in a diverse environment from the standpoint
of student control versus teacher control and consequently in the kinds of
inferences students are required to make. Nevertheless, it is useful to differen-
tiate instructional environments in a local sense: it should be possible to tag a
specific instruction segment as to the form in which it is delivered and the kinds
of inference processes or learning strategics it is likely to invoke. Following
Carbonell et al. and Michalski (Table 4-1) we propose to characterize local
instructional environments according to the amount of student control in the
learning process. At one end, rote learning (such as, memorizing the multipli-
cation table) involves full teacher control, little student control. Didactic learn-

ing (by textbook or lecture), learning by doing through practice and knowledge

compilation, learning by analogy, learning from examples, and learning by

observation and discovery offer successively more student control and less

teacher control.

Note that we modify the Carbonell-Michalski list slightly by combining
their learning-by-deduction (compilation) category with a lcan_ling_-by-reﬁne-
ment category (suggested to us by W. Regian, personal communication, May 4,
1987). What we are pinpointing is the ability to refine one’s skill (by s_trength-
ening, gencralization, and discrimination) based on feedback following per-
formance. Before one is engaged in this kind of learning, we assume the skill
has already been acquired (perhaps in a rote fashiorl) and compiled, and is now at
the phase of being refined. But because c'ompil:u:lon and refinement are p_roba-
bly hopelessly intertwined in actual lcalrmng contexts, we combine them into a
single learning-by-doing (practice environment) category.
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Table 4-2 Sample Tests for the Various Knowledge Types

Knowledge type

Type of test

Sample item

Proposition

Schema

Rule

General rule

Skill

General skill

Automatic skill

Sentence verification

Stimulus matching
Paired associates

Free recall (components)
Free recall (structure)
Sorting

Classification

Sentence completion/cloze
Lexical decision

Operator tracing

Operator selection

Transfer of training

Multiple operator tracing/selection

S~

Transfer of training

Dual task \

“AND yields High if all inputs are
high, Low otherwise— True
or False?”

“AND D — Match or Mismatch?”

“Which symbol is associated with
AND?”

“What are the different types of
logic gates?”

“Reproduce the circuits you just
studied”

“Sort the circuits into
categorics”

“Pair circuit diagrams with
these devices”

“AND yiclds
are "

“XAND is a legal logic
gate — Truc or Falsc?”

Determine output of logic gate
(AND, HIGH, LOW) =?

Choosc an operator to achicve a
result (2, HIGH, LOW) =
HIGH

Learn and be tested on other
kinds of logical relations
such as those introduced in
symbolic logic

Trace through (or select) a
series of linked logic gates
in a circuit [could also use
hierarchical menus
methodology]

Learn and be tested on
constructing or verifying
logical proofs

Trace logic gates while
monitoring a sccondary
signal '

ifall
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Knowledge type  Type of test Sample item

Complexity increase Trace logic gates that become
increasingly complex
Troubleshoot a simulated target
task; “walk-through”

performance test

Mental model Process outcome prediction

Note; Sample items are tests that might be administered to a student finishing a lesson on logic gates
as part of a course in electronics troubleshooting (see, for example, Gitomer, 1984).

Domain (Subject Matter)

The inclusion of subject matter as a taxonomy dimension reflects the fact that
much of lcarning has a strong domain-specific character. One can be an expert
learner in one domain and a poor learner in another. Certainly there is some
gencrality in learning skills over domains. Glaser, Lesgold, and Lajoic (in press)
suggest that metacognitive skills might be fairly general. But even here, there is
little cvidence that metacognitive skill in mathematics (Schoenfeld, 1985) pre-
dicts metacognitive skill in writing (Hayes and Flower, 1980).

It is appropriate to ask the question of the topic range over which some
general learning skill is likely to be useful. It may be that the degree to which a
subject matter taps quantitative or technical knowledge, and the degree to
which it taps verbal knowledge captures some of the transfer relations among
academic subjects. The degree of social involvement may also play a role,
especially when considering the universe of occupational training courses rather
than simply academic training. As is suggested in Figure 4-1b, it may be that the
relative importance of speed versus quality in decision making is a critical
domain dimension. But again, the dimensions portrayed in Figure 4-1b are only
meant to be suggestive. _

More generally, we envision a complete domain-space. The underlying
dimensionality of such a space could be discovered through a study of the

similarity (cither judged or as shown in transfer of performance r.clations)
fiable universe of

among all jobs, courses, or learning experiences in any speci _
interest, and could be rcprcsemcd s a multidimensional scaling of the _!obs or
courses so rated. An empirically determined domain-space ?voul'd specify the
likelihood that (or the degree to which) a particular taxonomic skill, d.eﬁ.ncrl by
the environment and the knowledge type, would transfer to or be predictive of 2
parallel skill (that is, onc defined by the same environment an.d knowledge ryplcj
in another domain. Proximal domains, in the multidimensional space, wou
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yield high transfer among parallel skills;
mal transfer. For example, assuming the

sx(?nl, skill C;n lc:‘l::mrfg mathematics propositions through didactic instruction
lnl%gt pre 1ctbs 1111 1nicamx]1:g physics propositions through instruction; but
neither may be related to the ability to learn hi iti

: _ istory proposition
instruction. er ; through

_distal domains might yield only mini-
importance of the quantitative dimen-

Learning Style

All sorts of subject characteristics-—aptitudcs, personality traits, background
experiences — affcct what is learned in an instructional sctting. But we focus on
characteristics of the learner’s preferred mode of processing, or learning style,
bccf’msc our prim;ujy concern is characteristics over which the instructional
designer may exercise control. Because style implies a choice by subjects as to
how to orient themselves toward the learning expericnce, it should be manipul-
able through instruction.

A considerable literature on cognitive style exists (Messick, 1986). Among
those that have received the most attention are field dependence-independence
(Goodenough, 1976) and cognitive complexity (Linville, 1982), but these are
now presumed to primarily reflect ability (Cronbach and Snow, 1977; Linn and
Kyllonen, 1981). Impulsivity-reflectivity (Baron, Badgio, and Gaskins, 1986;
Meichenbaum, 1977) more clearly fits our criteria for inclusion in the taxon-
omy, in that it is malleable: subjects can be trained to be more reflective in
problem solving, and this improves performance. Other styles we consider in
our analyses of learning environments are holistic versus serial processing,
activity level, systematicity and exploratoriness, theory-driven versus data-
driven approaches, spatial versus verbal representation of relations (Perrig and
Kintsch, 1984), superficial versus deep processing, and low versus high internal
motivation. Some dimensions may affect learning outcomes quantitatively:
active students may learn more. Others may affect outcomes %Ja_li;_aﬁ:;ly:
spatial versus verbal representations will result in different rclationships earned.

Cognitive style may interact with other taxonomy dimensions in deter-
mining what learning skill is being tapped in instruction. A study by Pask and
Scott (1972) which identified holist versus serialist processing styles illustrates
this interaction. In this study, serialists, thosc who foculs on low—'order relations
and remembering information in lists, were contrastcd_;with ]1?115ts, who .focus
on high-order relations and remembering the ovcral_l organization among items
to be learned. Pask and Scott showed that presenting a learning task (that is,
learning an artificial taxonomic structure) in a way that maFchth tluf icalrncr’s
style resulted in better overall learning. A critical point for this c!1scussnon is Fhat

the presentation of material should tap different skq[s For subjects who_ differ
on this style dimension. Presenting a long list of pr}ncxplcs may k_:e a d_lﬂicult
memory task for serialists, who attempt to memorize cach relationship pre-
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sented. For }{olists. the same task may tap conceptual reorganization skill rather
than memorization skill.

Summary

The first three dimensions of the taxonomy define a space of learning tasks
(Figure 4-1a sct in the domain-space of Figure 4-1b). Each cell represents a task
that teaches a particular subject matter (such as physics principles: Newton's
second law), by a particular means (for example, by analogy), resulting in a
particular kind of knowledge outcome (for example, a schema). A particular
taxonomic lcarning skill then may be defined by performance on a particular
taxonomic learning task. There will be interactions among dimensions: some
subject matters lend themsclves more readily to certain kinds of knowledge
outcomecs. For example, propositions are emphasized in nonquantitative ficlds;
procedures are the focus in quantitative fields. And knowledge outcomes covary
with instructional method: we more commonly lcarn propositions than proce-
dures by rote.

As an illustration of some of these ideas, consider the instructional goal of
teaching the concept of electric field (Glynn et al., in press). A rote approach
might be to have students simply memorize the definition: “an electric field is a
kind of aura that extends through space.”” A didactic approach might specify thac
students read the definition embedded in the context of a larger lesson, then to
have the student demonstrate understanding by having him or her paraphrase
the definition. The difference between the two approaches could be reflected in
the way in which the knowledge was tested. The appropriate rote test would be
verbatim recognition or recall; the appropriate instruction test would be par-
aphrased recognition or recall.

The electric field concept could be taught by having students practice using
it: following a discussion of properties of force such as how an clectrical force
holds an electron in orbit around a proton, students would be given an opportu-
nity to solve problems that made use of the concept. One could also lead
students to induce the concept, by pointing out how it is aralogous to a gravita-
tional field, by providing them with examples and counterexamples, or by
having them discover it with a simulator, or in a laboratory.

Unlike the first three dimensions, the fourth dimension—learning style
—_refers to characteristics of the person rather than the environment. Inclusion
of the learning style dimension is an admission that providing a particular kir:n:l
of environment guarantees neither the kind of learning experience that will
result nor the kind of learning skill being tapped. Interactions exist between
person characteristic and instructional treatment (_Cronbach. and Snow, 1977,
especially Chapter 11), and thus, as we tried to Lilustrate_ in the cxan_aplc on
holist versus serialist processing, the style cngagcc! at the time of learning and
testing will partly determine what learning skill is being measured.
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APPLYING THE TAXONOMY: THREE CASE STUDIES

In this section of the chapter we want to consider
might facilitate the development of indicators of
tice. We consider this a kind of test run for the
taxonomy, we will now demonstrate how it mi

‘ngi:;x;i 1n‘swnl'luitn;:u"‘xla}l1 programs, cach of v:rhich includes some capability
s g wha and how st}ldcnts are learmng. We suggest ways in which
additional learning indicators might be gencrated in light of our taxonomy.

We see the- taxonomy playing two roles here. One, although not the focus
of the chapter, is to help us classify
s:r_mlar programs are ones that reach. the same type of knowledge (propositions,
skills, and so on), provide the same instructional environment (rote, discovery),
teach the same domain material such as computer programming, economics),
and encourage the same kind (style) of lcarner interaction (reflectivity, holistic
processing, and 5o on). Programs are dissimilar to the degree that they mismatch
on these dimensions. An important part of our discussion of the three tutoring
systems then is to indicate at least informally what learning skills are being
exercised, and to what degree.

The second and, for current purposes, more important role for the taxon-
omy is to assist us in thinking more broadly about learning skills and outcomes.
The taxonomy with its specified methods and tests can pinpoint what poten-
tially important learning events are simply not being measured by existing
instructional programs. We can imagine generating alternative instructional
programs by varying the degree to which different kinds of learning skills are
exercised.

The three programs we discuss in this section are intelligent tutoring
systems, and so we begin by providing a few preliminary remarks on their
general organization.

how the learning taxonomy
learning skill in actual prac-

ght be applied. We discuss three

General Comments on Intelligent Tutoring Systems

Figure 4-2 illustrates the components of a hypothetical and ‘somcwha_t generic
intelligent tutoring system. In this system, the student learns by solving prob-
lems, and a key system task is to generate or select problep{s that will serve as
good learning experiences.

The system begins by considering what the student already knows— the
student model — what the student needs to know-—the curriculum —and what
curriculum element (lesson or skill) ought to be instructed next—the teaching
strategy. From these considerations the system selects (or g_cneratcs‘) a problem,
then cither works out a solution to the problem (with its demain expert), ot
simply retrieves a prepared solution. The program then compares its solution to

taxonomy. Having proposed a_

instructional programs. By our taxonomy,

o
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Teaching
strategy

- ! START
Generate a problem

Domain cxpert
_Prcscnt a problem

Compute solution

Student solution

Compare solutions

(diagnosc)
|

Present feedback

Update Updare
student skills learning progress
model indices

Figure 4-2 Components of a generic intelligent tutoring system. (Boxes represent
decisions the program makes; ellipses represent knowledge bases the program consults.)

one the student has prepared and performs a diagnosis based on the differences
between the solutions. ) )

The program provides feedback based on student-advisor considerations
such as how long it has been since feedback was last provided, whcthc_:r the
student was already given a particular bit of advice, and so forth. After this, the
program updates both the student skills model (2 record of what the student
knows and docs not know) and increments learning progress index counters.
These updating activities modify the stude.nr model, and the entire cycle is
repeated, starting with selecting or gencrating a new problem.
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Not all ITSs ;
B st adcl;ﬂ;::r a]lhthesc €omponents, and the problem-test-feedback
ceribes e adeq ]T)S(sc a:{-actcnzc all systems. But this system fairly de-
pibes 1 cxaminationgof h can perhaps most 'teractions with human tutors,
ideas on o rtion. r1 components of the generic tutor should yield some
indicared, apomi ixgnp (})1grcfss ]:'nd' the current status of the learner may be
radens o o uch of this 1nf9rmatlon Is contained in the dynamic
¢l. We now discuss three Instantiations of this gencric tutor

BIP: Tutoring Basic Programming

G}fm;::'al System_ Descr_fplfo!'r The Basic Instruction Program (BIP) was one of
the hirst operational intelligent tutoring systems (Barr, Beard and Atkinso
1976; Wescourt et al. 1977).2 BIP teaches students how to wr’itc i

:;;’:iﬁ;n;:;jxsﬂi(g:;:a'l;};c systtem ;clccts problcn}s acccrrdir_ag to.what the student
taught next, and its und::i‘:tsanfj:ﬁ;Orc:?'g‘t?lCC)!kYIVIhICh skills it believes ought to be
problem bank. & ¢ skills required by the problems in its
Inﬁr::?ofﬁrg:rh}:tccturc is C(;?s:ircnt‘ with the generic tutor. Its Curriculum
e S represents all the skills to be taught and E!lc r_clations among

m. Sk s a“rc .reprcsc_ntcd quite narrowly, for example, “initialize a counter
variable” or “print a I_ltcra] string.” The relations specify whether skills are
aflalogous to other skills, whether they arc easier or harder or at the same
dxﬂﬁculty level as other skills, and whether there are any prerequisite skills. As
examples, (a) printing a numeric literal (or constant) is considered conceptually
analogous to, (b) but also casicr than, printing a string literal; (c) both are
considered easier than printing a numeric variable; (d) printing a numeric literal
is considered a prerequisite to printing the sum of two numbers.

A programming task is represented in terms of its component skill require-
ments. For example, a BIP task might ask the student to compute and print out
the number of gifts sent on the twelfth day of Christmas, given that on the first
day 1 gift was sent, on the second day 1+ 2 gifts were sent, on the third day, 1
+ 2 + 3 were sent, and so on. The student is cxpected to write a program that
computes the sumof 1 +2+4 . . . + 12. Based on a task analysis conducted by
BIP’s authors, BIP knows that the component skills required for solving this
particular problem are initialize numeric variable, use for-next loop with literal as
Jinal value, and so forth. Each task is assumed to tap a number of skills.

The BIP student model is a list of the student’s status with respect to cach
of nincty-three skills in the curriculum. There are five discrete status levels:

unseen (not yet scen a problem that required the skill), trouble (seen but has not

Barr et al. developed BIP-I; Wescourt et al. developed its successor BIP-II. The two systems are
fairly similar, but we assume the newer system where there are discrepancies.
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solved a problem that required the skill), marginal (learned to a marginal de-
gree), casy (not yet seen but an casy skill to learn), and learned (to a sufficient
degree). After cach problem, skill status is updated as a result of the student’s
sclf-cvaluation and through two domain-cxpert—like components to BIP: a
BASIC interpreter that catches syntax errors, and a solution evaluator that
determines whether the program is producing correct output. Finally, BIP also
provides a number of aids to the student. The student may request help (sugges-
tions as to how to solve the problem), a model solution (such as, a flowchart), or
a series of partial hints.

BIP selects problems by first identifying skills the student is ready for (ones
that do not have any unlearned prerequisites) but that need work, which means
(in order of priority) (a) skills students have had trouble with (from tasks they
have quit), (b) skills analogous to learned skills, or (c) skills postrequisite to
learned skills. It calls skills so identificd needed skills. BIP then identifics a task
with needed skills but no unlearned prerequisites.

If the student successfully solves the selected task, BIP updates the student
model by crediting the associated task skills. If the student fails the problem or
gives up (that is, requests a new task), BIP determines which skills to blame
according to criteria such as the student’s self-evaluation, whether the student
already lcarned some of the skills or analogous ones, and whether any task skills
or analogous ones are in an unlearned state.

There are a number of ways in which aptitude information guides problem
selection. For the fast learner, if two skills are linked by difficulty (one is harder
than the other), the system assumes that the easier one is not a needed skill; BIP
also will sclect tasks with multiple needed skills. If the student is consistently
having trouble, BIP opts for a slow moving approach and minimizes the
number of needed skills introduced in a single task.

Learning Indicators  Snow, Wescourt, and Collins (1986) collected aptitude
and other personal data from twenty-nine subjects who had used BIP and
performed a number of analyses on the relationships between those data and
BIP variables. Table 4-3 shows the list of learning indicators used by Snow ctal.
We have divided the list into three categories: learning summary indices,
learning activity variables, and time allocation .variablcs. ) )

The sample was too small to draw definitive conclusions about r-elan.on-
ships, but there were some suggestive findings worthy of further pursmtt.- F[ir]slt,
the best learning progress index seemed to be thc‘slop{: of the number of skills
acquired over the number of skills possible — that is, skills slope. Determlr_mtmr}
of best is based on two considerations: skills slqpc was most r_cprcscntaluv_c os
other learning progress indices in that it had higher average 1lntfrcorrc_ :]:I?;?,_.
with those indices (centrality), and it had higher average correlations wi fhe
learning activity variables (a validity of sorts). Particularly mtng}l;limfgllw:hmd
skills slope, along with a global achicvement posttest, was more highly



142 PATRICK C. KYLLONEN AND VALERIE J, SHUTE
Table 4-3 Learning Indicators from BIP, the Programming Tutor
Learning summary indices

1. Number of problems scen
2. Mean time per problem
3. Number of skills acquired
4. Sk}lls acqu%rcd per p‘robh:m (slope, intercept, standard error)
5. Sk&lls acqufred per time on task (slope, intercept, standard error)
6. Skills acquired per skills possible (slope, intercept, standard error)
Learning activity variables
(counts of activities, to be divided by number of problems secn)
1. Student produces correct solution
2. Student has difficulty on the task (according to BIP)
3. Student admits not understanding the task
4. Student disagrees with solution evaluator
5. Student requests solution model
6. Student requests solution flow chart
7. Student requests model program
8. Student starts problem over
9. Student requests at least 1 hint before starting
10. Student requests at least 1 but not all hints
11. Student requests all hints (0-5 on a problem)
12. Student quits the problem
13. Student quits the problem after sceing all the hints
14. Student quits the problem without secing any hints
15. Student tests different input cases after successful solution
16. Srudent tests different input cases after failed solution
17. Student uses BIP inpur data after failed solution
18. Student runs program parts rather than complete program
19. Student requests aid (model, help, hint) after an error
Time allocation variables*
21. Planning: Proportion of time spent before coding
22. Implementing: Proportion of time spent wrin_ng code
23. Decbugging: Proportion of time spent debugging code

*Time on the tutor must fall into one and only one of the three time allocation portions.

to the activity variables than was the raw number of skills acquired. Snow and
colleagues suggested this may have bccn due to skills slope capturing more
ress of learning over time. ) ) )
abou'};ieszzgﬁd major ﬁndingg concerned the role of the activity variables in
predicting learning outcome. As it turned out, most of th(': tool-use mdu:a-mrii
such as requests for demonstrations, hints, and model solutions, were ass:)ic;:te
with poor posttest performance. Poor performers also spent more time debug-
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different cascs after a successful run of their program (indicator 15). This may
have reflected good students’ desire to perform additional tests of their know]-
cldgc, perhaps to probe the boundaries of thejr understanding, cven after passing
the test.

Applying the Taxonomy In evaluating the BIP tutor with respect to the
taxonomy, we ask two questions: (a) what learning skills does BIP exercise (that
is, how can BIP be classified), and (b) how comprehensive are the indicators
used by Wescourt et al. and Snow et al. in measuring students’ learning skills
and their learning progress?

To address the first question, consider a distinction between what is tested
for and what is taught. BIP primarily tests for fairly specific skills in that
virtually all its tests are of the multiple operator selection variety, meaning that
students write programs. The posttest also undoubtedly taps some propositional
schematic knowledge, but not extensively. Other knowledge outcomes could be
tested for but they are not. BIP teaches skills by having students first read a text
(learning from instruction, in taxonomy terminology), then apply the studied skills
in a problem-solving context (learning through compilation and learning by drill and
practice). Some students also request help and thereby engage in learning from
examples. The good students also tend to invoke observational learning when they
perform additional tests of their programs.

Figure 4-3a summarizes our assessment of (a) what skills are being exer-
cised by BIP, indicated as the solid bar, and (b) what skills are being tested for,
indicated as the striped bar. Bar size represents the proportion of time spent
cither engaging the learning skill (solid) or having the ability tested (striped),
relative to engaging or testing other skills. It is important to keep in mind that
this analysis is rather informal. We made some rough computations of the times
engaged in the various activities, based on a review of the data on the learning
indicators of Snow et al., and on the report of Wescourt et al. of some other
summary statistics. Our analysis is meant to be merely suggestive. A more
rigorous, systematic analysis of BIP could produce a precise breakdown, sepa-
rately for each student, of the time spent exercising and testing various learning
skills. Also note that Figure 4-3 indicates only the knowledge type and instruc-
tional environment dimensions. Domain is indicated in Figure 4-1b (computer
programming is highly quantitative and technical, and the quality of decisions is
emphasized). Learning style is not directly assessed in BIP. )

An approach to the second question, concerning mc%xcator cm:nprchcx&slvc-
ness, is suggested by Figure 4-3a: which skills are bC{ng exercised and not
tested? First, we can see that although students are learning rules, they are not
tested for them. This could be remedied by including operator tracing or
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Figure 4-3 Learning activitics profiles for (a) BIP, (b) the LISP tutor, and (c) Smith-
town; solid bars represent the proportion of time the particular skill (defined by the
environment-by-knowledge type cell task) is exercised by the tutor, relative to other skills;
striped bars represent the proportion of time the skill is tested, rclative to other skills.

sclection tests. Second, students also are probably acquiring some general rules
and skills regarding program-writing strategies, but BIP does not directly test
for these. Transfer of training tests inserted into the program (as part of the
curriculum) would help determine the generality of the skills learned in BIP.
Third, students read text, and get tested on their knowledge during the posttest,
but it would be possible to more directly test the propositional and schematic
knowledge resulting from reading the text by administering sentence verifica-
tion tests, sorting tasks, and the like (scc Table 4-2). Finally, the task of writing
programs is an operator sclection task and thus is more difficult than a task that
would require students merely to understand the workings of a program (an
operator tracing task). Students may understand a program they are unable to
write. The inclusion of a program understanding task would tap knowledge that
would be missed otherwise and thus should enhance the accuracy of the student

model.
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In sum, BIP gencrates many indicators of student status and learning

progress. Application of the taxonomy suggests a number of additional ways in
which students’ knowledge and learning skill could be assessed. Expandin ythc
breadth of' learning-skill probes should affect the overall quality of any in%clli-
gent tutoring system both in its role as a training device and as a rescarch tool
The performance of an ITS with a student-modeling component is highl);
dependent on the quality of the student model insofar as the system’s main job is
to sclect problems that are of an appropriate level. Thus an ITS should improve
with a better student model, and we made suggestions here for refining a
student model. As a research tool, an ITS can serve as an environment in which
to examine the interrelationships among learning skills and learning activitics.
Snow ct al.’s analysis of BIP relied on a rich set of learning indicators. However

we think that the taxonomy can be used to provide an additional psychological
basis for expressing those indicators.

Anderson’s LISP Tutor

General System Description  Anderson and his research group have developed
intelligent tutoring systems for geometry, algebra, and the programming lan-
guage LISP. We focus here on the LISP tutor. Descriptions of the tutor are
available (Anderson, Boyle, and Reiser, 1985), and thus we only summarize
some of the main features of the system especially as they contrast with BIP.

The LISP tutor follows the generic architecture fairly closely. Students
rcad some material in a textbook, but then go on to spend most of their time
interacting with the program. The program sclects problems, gives the student
help or advice when asked, and interrupts if the student is floundering.

An innovation of the LISP tutor is its use of what Reiser, Anderson, and
Farrell (1985) call the model-tracing methodology, the process by which the
tutor understands what the student is trying to do while the student attempts to
solve a problem. Whenever the student types in an expression (as part of a
solution attempt) the tutor evaluates the expression as to whether it is the same
as what the ideal student would type in, or whether it indicates a misconception
(or bug). 1f a misconception is indicated, the tutor intervencs with advice.

For a tutor to analyze the student’s response so microscopically, it has to
know essentially every correct step and every plausible wrong step in every
problem. The LISP tutor does not incorporate enough donfnm knowledge to be
able to interpret every action a student might take, but it does have enough

knowledge to be able to interpret all correct solutions and approximately 45 to
80 percent of students’ errors (Reiser et al., 1985). (In cases where the tutor
cannot interpret a student’s behavior it typically probes the stu_dcnt with a
multiple choice question.) When the LISP tutor poscs a problem, it gocs about
trying to solve the problem itself, simultancously with the studc‘nt. It solves th.c
posed problem with its own production system, which consists of approxi-

matcly 400 production rules for correctly writing programs (Anderson, 1987b).
It also solves the problem in various plausible incorrect ways, through the action
of about 600 incorrect (“buggy”) production rules. Determining what the
student is doing is a matter of comparing student input with its internal
production system results.

Learning Indicators The LISP tutor keeps a record of the student’s status with
respect to cach skill being taught, where skills are the 400 correct production
rules. An indicator of how well the student knows a rule is incremented when
the student uses the rule correctly, and decremented when the student makes an
crror. Remedial problems may be selected to give a student experience in using a
troublesome rule.
Unfortunately, studies have not been done on the relationships among

learning indicators and outcomes. Most of the evaluation studies have simply
compared LISP-tutored students with classroom or human-tutored students on a
standard achievement test administered at the end of the course. However, one
study did investigate individual differences in acquisition and retention of
individual productions over a series of ten lesson sessions (reported by Anderson,
in press). In this analysis, cach production was scored for the number of times it
was uscd incorrectly in problem solving, separately for each session. A series of
factor analyses were performed on these data to determine whether production
factors would emerge. For example, it could be that productions associated with
onc kind of learning (such as lcarning to trace functions or planning) would
form a factor separate from some other kind of learning (such as learning to
select functions or coding). Or lesson-specific factors could have emerged. In
fact, Anderson found evidence for two broad factors: an acquisition factor cap-
tured individual differences in speed of production acquisition and a retention
factor captured individual differences in the likelihood that acquired productions
were retained in a later session.

Applying the Taxonomy Consider first how we might classify the LISP tutor.
Students spend most of their time learning specific production rules and skills
and arc continually tested for their ability to apply them in writing LISP
functions. Every student action can be viewed as a test responsc because the
system is interpreting that response as an indication of whcther. t_h.c st.udcnt
knows a particular production rule. Thus, learning and testing activitics in the
LISP tutor arc almost completely integrated. _ _
Although students arc learning skills, insofar as writing functions is a
multiple operator sclection task, the LISP tutor is testing for students’ knowl-
cdge of the rules underlying those skills. But this merely reflects the fact that
skills in the LISP tutor are defined precisely in terms of their consut.ucnt'rulcs.
Interestingly, the fact that the LISP tutor can represent students’ skill without
dircctly cvaluating that skill (in other words, the system never cvaluates



———

whether the function works, per se) is evidence against the taxonomy’s supposi-

nstr . dents learn initiall
through brief instruction (a pamphlet or a textbook), but then go on to commilz
and refine thét knowledge by engaging in extende .

Note that_m addl.tlon to indicating that students are learning declarative
l.mov?'lcdgc by instruction, and procedural knowledge by compiling and practic-
ing it, we have indicated other lcaming products and sources. The other
products are the general rules and skills probably being taught by the LISP tutor
cven though that is not a goal for the tutor. The other sources have to do with'
the LISP tutor’s capability of delivering context-sensitive tutorial advice, and
through its coaching capabilities can readily change the nature of the instruc-
tional environment. On one occasion it might correct a student’s attempt
through direct instruction, but then it might later suggest an analogy to a
student, or provide examples of a concept.

Now consider the testing comprehensiveness issue. As can be seen in
Figure 4-3b, we consider all of the LISP tutor’s testing to be for rule knowledge
cither in the compilation or the drill and practice environments. (We could also
consider automatic skills to be tested, but that would require a rather detailed
analysis of the LISP tutor’s entire production collection of how big, compiled
productions subsume their smaller precursors.) Note that first, as with BIP,
students’ success at propositional learning and their ability to acquire general
rules and skills is not tested. This situation could be remedied with the insertion
of sentence verification and transfer-of-training tests. But a more intriguing
suggestion from the standpoint of rescarch arises from the LISP tutor’s multi-

faceted coaching capability, which offers various kinds of tuto.rlal re.mcdx:mon,
to greatly expand the range of learning events that may be investigated. For
example, it would be possible (and interesting) to.kcc;.y track .of produc.:non
strength modification separately for each of the various instructional environ-
ments. That is, one could trace the growth in rule mdxcators. over time as a
function of whether those rules were taught (or remediated) with instructional
advice, analogies, examples, and so on. One could ask, ff’f example, whether
instruction using analogies results in greater subsequent ability to use the rule(s)
so instructed. ) ,
In summary, because of the way in which it mc.)dcls stu.dcnts knowledge as
production rules, and carefully controls the learning environment, the LISP
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tutor is ideally suited for measurin
prod.uctxons are composed, or the probability of compiling a sequence of pro.-
ductions as a function of exposure to tha P

Smithtown: Discovery World for Economic Principles

Genet:al System Description  Unlike the other two systems, Smithtown's main
gqal is to enhance students’ general problem-solving and inductive-learning
skills. It does this in the substantive context of microeconomics in teaching the
laws of supply and demand (Shute and Glaser, in press). Smithtown is highly
interactive. Students pose questions and conduct experiments within the com-
puter cnvironment, testing and cnriching their knowledge of functional rela-
tionships by manipulating various cconomic factors,

As a discovery environment, Smithtown is quite different from BIP and the
LISP tutor in that there is no fixed curriculum. The student— not the system
— generates problems and hypotheses. After generating a hypothesis such as
“Docs increasing the price of coffee affect the supply or demand of tca?” the
student tests it by executing a series of actions, such as changing the values of
two variables and observing the bivariate plot. This scries of actions, or behaviors,
for creating, executing, and following up a given experiment, define a student
solution.

Despite having no curriculum, Smithtown does have the instructional goal
of teaching general problem-solving rules and skills (called good critics) such as
“collect bascline data before altering a variable” or “generalize a concept across
two unrelated goods.” Instcad of a curriculum guiding instructional decisions,
Smithtown relics on a process of constantly monitoring student actions, looking
for evidence of good and poor behavior, then coaching students to become more
cffective problem solvers. The system keeps a detailed history list of all student
actions, grouping them into (that is, interpreting them as) behaviors and solu-
tions. Smithtown diagnoses solution quality in two ways. It looks for overt
crrors by comparing student solutions with its buggy critics, which are sets of
actions (or nonactions) that constitute nonoptimal behaviors (for example, “fail
to record relevant data in the online notcbook”). It also compares student
solutions with its own good critics (expert solutions). Discrepancies between the
two arc collected into a list of potential problem areas and passed on to the
coach for possible remediation. To illustrate, if the student had failed to enter
data into the online notebook for several time frames and had made some
changes to variables, the system would recognize this as a dc.:ﬁcicnt pattern and
prompt the student to start using the notebook more consistently.
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Smithtown’s student model is based on two statistics: (
the student demonstrates a buggy critic (errors of commi
(‘f :;h: m;;llzflr of times the Stl.ldf:n[ uses a go‘od critic over the numbef‘ of times it

s pp - céerrorsboiomlssmn). Coaching is based on the heuristic of first
advising about bu chavior isi issi
Advicegis always ggs?:zcn in tl(:cs::iiz;dzlfs?gigc?:ﬁf?:m‘ermm OfOIif}ll(S  the
LISP tutor, it is context sensitive. For example, tl D o Y fhe

: - Fo ple, the coach might say, “You

haven’t graphc.d any data yet and I think you should try it out. This is often a
good way of viewing data. It lets you plot variables together and some surpris-
ing relationships may become apparent.” However, the coach is fairly unobtru-
sive: after advice is given, there is no further coaching for some time.

Smithtown also knows about variable relationships that constitute eco-

nomics principles, such as “Price is inverscly related to quantity demanded.” If a

student uses the system’s hypothesis menu and states this relationship (for
example, “As price increases, quantity demanded decreases™), the student is
congratulated and told the name of the law just discovered (**Congratulations!

You have just discovered what economists refer to as the Law of Demand”).

a) the number of times
ssion), and (b) the ratio

Learning Indicators Shute, Glaser, and Raghavan (Chapter 8 of this volume)
conducted an extensive evaluation of differences among students in what they
learned and how they interacted with Smithtown. Two data sources were used:
a list of all student actions and a set of verbal protocols in which students
justified their actions and predicted outcomes of the actions.

Table 4-4 shows a set of twenty-nine lcarning indicators constructed for
analyzing individuals’ performance. Indicators are clustered into three general
behavior categories: (a) activity exploratory level (indicators relating to activity
level and exploratory behaviors), (b) data management level (indicators for data
recording, efficient tool use, and use of evidence), and (c) thinking and planning
level (indicators for consistent behaviors, effective generalization, and cffective
experimental behaviors).

Shute et al.’s sample (N = 10) was too small to analyze formally, but the
indicators were examined to determine which ones discriminated successful
from unsuccessful learners. Two subjects, one who performed poorly on the
pretest but well on the posttest (a successful learner) and one who who did
poorly on both tests (an unsuccessful learner) were selected for more careful

scrutiny. ] o )

The two subjects differed mostly on indicators of tl‘unku}g and planning
skills, in other words, effective cxpcrimcntal behaviors. In part_lcular, the chtcr
subject collected and organized data from a more thcory—finvcn perspective,

which contrasted with a more superficial and less theory-driven approach u'scd
by the poorer subject. The better subject generalized concepts across melt_lplc
markets (which the poorer subject did not do), engaged in more investigations
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Table 4-4 Learning Indicators from Smithtown, the Economics Tutor

Activity and exploratory level skills
I. Activity level
1. Total number of actions
2. Total number of cxperiments
3. Number of changes to the price of the goods
II. Exploratory behaviors (counts; i.c., number of . . .)
4. Markets investigated
5. Independent variables changed
6. Computer-adjusted prices
7. Times market sales information was viewed
8. Bascline data observations of market in equilibrium
Data-management level skills
I1I. Data recording
9. Total number of notcbook entries
10. Number of bascline data entries of market in equilibrium
11. Entry of changed independent variables
IV. Efficient tool usage (ratios of number of effective uses over number of uses)
12. Number of relevant notcbook entries + total number of notebook entries
13. Number of correct uses of table package <+ number of times table used
14. Number of correct uses of graph package + number of times graph used
V. Use of evidence
15. Number of specific predictions + number of general hypotheses
16. Number of correct hypotheses < number of hypotheses
Thinking and planning level skills
V1. Consistent behaviors (counts; i.c., number of . . .)
17. Notcbook cntrics of planning menu items
18. Notcbook entries of planning menu items + planning opportunities
19. Number of times variables were changed that had been specified beforehand
in the planning menu
VII. Effective generalization (event counts; i.e., number of times . . J)
20. An experiment was replicated
21. A concept was gencralized across unrelated goods
22. A concept was generalized across related goods
23. The student had sufficient data for a generalization
VIII. Effcctive experimental behaviors (event counts; i.c., number of times . . .)
24. A change to an independent variable was sufficiently large
25. One of the experimental frames was sclected
26. The prediction menu was used to specify an event outcome
27. A variable was changed (per experiment)
28. An action was taken (per experiment)
29. An cconomic concept was learned (per session)




poorer subjcct.. The better subject also made large changes to variables so that
any repercussions could be detected. This contrasted with typically small
changes made by the poorer subject, who justified these choices by claiming
they were more “realistic.” Replicating cxperiments to test the validity of
results is an important scientific behavior and similar to BIP’s indicator 15. The
'b(.:ttcr subject conscientiously replicated experiments whercas the poorer subject
did not. One other indicator, data management skills, distinguished the two
subjects. The better subject recorded more notchook entrics, and the ones that
were recorded consistently included relevant variables from the planning menu.
The poorer subject used the notebook sporadically and often failed to record
important information.

Applying the Taxonomy Again, we first consider the classification of Smith-
town. Knowledge types taught are primarily general skills (that is, cfective
inquiry strategies for a new domain), domain-specific skills pertaining to eco-
nomics knowledge, and domain-specific mental models of the functional rela-
tionships among microcconomic factors. Students also are presumed to acquire
some declarative knowledge and rules about cconomics while interacting with
the environment. The instructional environment is a discovery microworld, and
thus most of the learning that occurs results from students inducing knowledge
and skills through observation and discovery, then perhaps compiling those
skills by practicing them in the conduct of experiments. There is tutorial
assistance if a student is judged to be floundering in discovery mode, however;
we indicate this in Figure 4-3c as learning propositions and skills by direct
instruction. Figure 4-3c shows that in overall emphasis, Smithtown is quite
distinct in both goals and approach from BIP and the LISP tutor.
Regarding the issue of testing comprehensiveness in Smithtown, we con-
sider two kinds of tests: (a) the on-line indicators used by the system in diag-
nosis, and (b) the scparate posttest that measured cconomics knowledge gained
during the tutorial. For the purpose of filling out Figure 4-3c, we considered
half the total testing to be on-line and the other half to be the posttest; the
striped bars are marked as to the testing source. Figure 4-3¢ shows that as in the
LISP tutor, the on-line indicators primarily reflect rule and skill knowledge, but
in Smithtown the testing context is the discovery environment. Another key
difference is that the rule and skill knowledge is not related to the cconomics
domain, but rather to the subject’s ability to manipulate the environment and
use its tools to test hypotheses. The posttest did tap domain knowledge. One
part of the posttest battery was a multiple choice test that measured declarative
knowledge. A second part was a scenarios test that had subjects reason through
various cconomics scenarios. The scenarios test illustrates a means for assessing
mental models: it was designed to get at students’ ability to run mental simula-
tions of complex economics scenarios (see Shute and Glaser, in press, for a
detailed discussion of the test).

Figure 4-3c suggests that perhaps the greatest mismatch between learning
skills that were exercised and those that were tested occurs in the general rule
and skill cells. A shortcoming of the Smithtown evaluation is that one of its
stated primary goals is to help students become more effective in conducting
cxperiments in a microworld environment, acquiring general skills as a result of
their investigations. But this instructional goal was measured only indircctly on
the posttest, which relied on declarative tests of economics knowledge. A more
dircct assessment of the degree to which the stated goals could be reached would
require a transfer of skills in a system structured similarly to Smithtown but
containing different domain knowledge. (Interestingly, there is such a system,
but the transfer experiment has not yet been conducted.) Truly genceral inquiry
skills developed in Smithtown would presumably transfer to the new
environment.

Another smaller mismatch is that declarative knowledge of basic economic
principles was tested at posttest, but not while students were interacting with
the tutor. It scems reasonable from both a research standpoint and the stand-
point of cnhancing the student model to integrate declarative knowledge tests
with tutoring.

A major factor missing here and throughout our discussion of the three
tutors is the style dimension. Inspection of Table 4-4 shows that the set of
indicators Smithtown collects and monitors are really not direct indicators of
learning skill per s, but rather are style indicators in the sense that they reveal
how an individual organizes his or her learning environment. From this per-
spective, key questions addressed in the Shute et al. analysis had to do with style
interrclationships (the question of dimensionality of style) and the relationship
between style and learning outcome (the question of validity). In one sense, this
is cxactly the study needed to understand learning skills in the most natural,
ccologically valid context. It is also a preliminary question to onc of the goals
we arc pushing for here: to be able to assess basic learning skills, controlling for
learning style. Smithtown may be best suited for analysis of the style issuc. But
before style variables are better understood, more structured environments such
as BIP and the LISP tutor, which by forcibly directing learning activities
designate a less important role for individual variability in learning style, may be
more conducive to research on basic learning skills.

LEARNING INDICATORS FOR VALIDATION STUDIES

To this point, we have discussed how the taxonomy might be applied so as to
cnable a more thorough evaluation of student learning skills and outcomes. The
applications discussed above might have the flavor of suggestions for improving
the tutors. That is not the intention. We see the main function of the taxonomy
as primarily a rescarch one. By more thoroughly examining what students learn
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::: ln‘-;slg_::::::; lll;l s{::citrx:l?nl;e gzis:‘l:l:ttﬁ conduct ::lxore refined studies on individ-
indicators, Anderson did a.simiia.r al. g'cner:itc _anfl analyzcc? L Of wearning
Smithtow‘n Qur claim is th analysis, and a similar analysis » ':mdcrway for

‘ - Our claim is that the taxonomy should suggest additional ways in
whlch-to ‘rccord learning skills, and this should result in a psychologically rich
and principled set of additional learning indicators. Each cell in the full four-di-
mcns'{onal taxonomy defines a proposed learning skill. An important next
question, open to empirical investigation, concerns the true reduced-space di-
mensionality of learning skills. From an individual differences perspective, how
many learning abilities must we posit, and at what level of detail, to characterize
skill differences among learners over all taxonomy cell tasks?

There is also a second, related application. The taxonomy should help us
develop learning indicators for instructional programs that can serve as criteria
against which other individual difference measures, such as aptitude and basic
abilities tests, might be validated. That is, our taxonomy-derived indicators can
scrve as supplements or even replacements for the conventional criteria of
post-course achievement tests, course grade point average, on-the-job perform-
ance tests, and supervisor or teacher ratings in the conduct of construct valida-
tion studies. Indeed, it was this goal of creating more cxtensive criteria against
which new aptitude tests might be validated that led us into the taxonomy
project in the first place.

Learning Abilities Measurement Program (LAMP)

Over the past several years, the Air Force has supported a basic prograrf-n‘of
research designed to explore the possibility of using contcmporary cognitive
theory as the basis for a new systcm of ability measurement (Kyllonen, 1986;
Kyllonen and Christal, in press). Currently, the Air Force, as well as the oth(fr
services, sclects and assigns applicants at least partly on the basis of their
performance on a conventional aptitude battery, which includes tests of reading
comprehension, arithmetic reasoning, numerical operations, ar_Ld 50 forth. The
goal of the Learning Abilities Measurement Program (LAMP) is to provide the
research base that might lead to supplementing or even Feplam?g those conven-
tional tests with new measures more closely aligned with an information-pro-
cessing perspective. ) )

What might these new tests be? The project
measures of working-memory capacity, n?for_n?aﬂon—p 3 4
and depth of declarative knowledge, availability of strategic knowledge, "
other such abilities. It would go beyond the scope of this chapter to review the
project’s research (sce Kyllonen, 1986; l{yllc.mcn :.md Chnstal,l in pr;sis. 521.-
current reviews), but the prototypical study investigates the relationship

has thus far investigated
rocessing speed, breadth
and

e

tween various kinds of cognitive measures (such as working-memory capacity)
and learning-outcome measures (list recall) under various instructional condi-
tions (such as variations in study time).

A major focus of the rescarch is examining the relationships between
ability measures and learning outcomes. But the range of learning outcomes
investigated thus far, not only on our project but on others as well, has been
quite limited in two ways. First, the range of lcarning skills examined has been
rather narrow: this is especially apparent given the breadth of potential learning
skills suggested by the taxonomy. But second, and perhaps even more impor-
tant, lcarning tasks employed have not been truly representative of real-world
lcarning activitics. Tasks tend to be short-term laboratory tasks, which afford
more control, but also leave bigger validity gaps with the kind of operational
learning to which we eventually wish to generalize. This inhibits the transition
of rescarch to application, insofar as generalization from narrow laboratory tasks
to real-world learning tasks is tcnuous. And as Greeno (1980) has argued, usc of
ccologically valid learning tasks is defensible from the standpoint of leading to
better basic research as well.

Thus, for both applicd and theoretical reasons, a decision was made re-
cently to expand the range of learning criteria employed. A recently completed
laboratory at Lackland Air Force Base accommodates thirty work stations capa-
ble of administering intelligent computerized instruction like that reviewed
previously. Intelligent tutoring systems in the domains of computer program-
ming, electronic troubleshooting, and flight engineering have been developed
or are currently underway. Over the next several years we will investigate
learning on these tutors and conduct studics that examine the relationship
between basic cognitive abilitics and various learning skills and outcomes. We
cxpect the taxonomy as described here to assist us in developing learning
indicators for the tutorial environments.

Applying the Taxonomy: A Practical Guide

Thus, we are employing a two-pronged approach in gencrating learning skill
indicators for LAMP validation studics. We design instructional programs capa-
ble of producing rich traces of learner activities, then we intend to analyze ;!nd
catcgorize those activitics so as produce psychologically meaningful learning
indicators. Tables 4-5 and 4-6 present the general outline for our approach.
Note that we have written the design and analysis steps in such a way as to be
broadly uscful. Although our application is in the design and (especially) analy-
sis of intelligent tutoring systems, the steps suggested could be adapted to any
kind of instructional system, computerizcd or even classroom.
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Table 4-5 Applicati
pplications of the Taxonomy: Instructional System Design Steps
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1. Determine desired kﬂowlcd’ge outcomes
a. State the instructional goals
propositions, a set of skills).

b. Specify the particular facts, skills, or mental mod.

¢. Determine tests to be i ol Koo Eht
ooy used for assessing particular knowledge outcomes (Table

(e.g., acquisition of a mental model, a set of

2. DC:;I‘ITH.HC environment for achieving knowledge outcomes
A - . .
: Cz::f:gcr t}llc kmc'l of learning strategy desirable to invoke (Table 4-1)
X rcmc;i::i:l:t;:na:wc means folr achieving knowledge outcome (could be used as a
rategy, or simply as a variation t id i i )
0 avoid instructional

L ‘ : al monotony).

ccord student learning success with respect to the knowlcdgc-outcomc-by-}r)

mstructlonal—cn ironment matrix. Thi 15C & ents of th
v IX his allows morc p i

€ preccisc statem ¢
CECCtI\'Cﬂ(‘.ES of the instruction.

3. Consider learning style issucs

a. Comid?r whether to encourage particular types (styles) of interaction

b. If lcarmpg style is left free, make provisions to record the manner in \-Nhich th
student interacts with the instructional environment (for suggestions sce Tablci
4-3 :md_ 4-4). This also allows more precise statements of the cffectiveness of the
instruction.

c. If pa{ticu]ar learning styles arc encouraged through feedback and suggestions
consider varying the kinds of styles encouraged so as to allow experimental '
comparisons of the relative effectiveness of various styles.

SUMMARY AND DISCUSSION

We have presented a taxonomy of learning based on previous rescarch and on
contemporary cognitive theory. We have also proposed how the taxonomy can
be applied to generate indicators of what a student in an instructional situation is
learning, and how well he or she is learning it. But just how well does our
proposed taxonomy-indicator system work?

Consider four major uses for the system (these and a fifth rescarch applica-
tion are listed in Table 4-7). First, the taxonomy can suggest what kinds of skills
are being exercised and tested in an instructional setting. In this capacity the
taxonomy serves in much the same way Bloom's or Gagné's taxonomies do.
The advantage of our proposal is that it is more closcly tied to current cognitive
theory, which we hope will enable us to apply thc system more casily in
analyzing learning in somewhat naturalistic instructional scttings. & second use
for the system concerns primarily the environment dimension. The specifica-
tion of multiple instructional environments provides a way to think about a
range of means for achieving particular knowledge outcomes. If an instructor’s

Table 4-6 Applications of the Taxonomy: Learning Task Analysis Steps

1. Dectermine the knowledge outcome goals for the instruction

a. Determine the nature of the stated instructional goals (c.g., acquisition of a
mental model, a set of propositions, a set of skills).

b. Determine what kinds of tests are embedded within the instruction (consulting
Table 4-2).

¢. Determine the match between the tests used and the knowledge outcomes
intended (as in Figure 4-3).

2. Determine the nature of the instructional environment

a. For cvery instructional exchange (every student-instructor interaction episode),
consider what learning strategy is invoked (consulting Table 4-1) during the
exchange. Generate learning activities profiles for the entire instructional
program (as in Figure 4-3).

b. Organizc records of student learning success with respect to the knowledge-
outcomc-by-instructicnal-cnvironmcnt (KO X IE) matrix. That is, devise a
means for assigning cach student a scparate learning success score for cach cell in
the KO X IE matrix. Scores would be based on tests following particular
instructional exchanges.

3. Consider learning style issues

a. Consider whether particular types (styles) of interaction are encouraged.

b. If learning style is lcft free, and there is between-student style variability, but no
within-student style variability, then separate students by style before conducting
any analyscs of the KO X 1E matrix.

c. If learning style is left free, and there is within-student style variability (e.g-,
students engage in holistic processing some times, serial processing at others),
create separate KO X 1E profiles for the various style orientations.

4. Considerations for transfer studies

a. Degree of transfer should be a function of the similarity of the learning activitics
profiles for two lcarning tasks.

b. Similarity is computed over the KO X 1E matrices (possibly for separate styles)
and domain.

5. Considerations for optimizing or predicting global outcomes

a. Expected global outcome for a particular student will depend on the mzltch
between the student’s personal lcarning-skill profile and the learning skills the
instruction exerciscs (the learning activies profile, Figure 4-3).

b. Optimizing global outcomes for a particular StU-dCTlt can be scen a5 linear '
programming problem. Instruction shoufld maximize exercising the sm_dent s

mental model of some system, the instructor can simply
instruct it, usc an analogy, have the student discover the model throl!Bc:‘ OE’SF"
vation of the system, or cmploy another instructional app‘roach. A thu'1 1:;:“:[
the system is to make prcdi.ctions about transfer rclatlo'r:; | lamc::f) lz;rning
experiences. We would predict that the closer, taxonomucally,

goal is to tcach a
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Table 4-7 Applications of the Taxonomy: What It Can Be Used For

Instructional system evaluators (tcachers and administrators)

1. Facilitates analysis of the kinds i i
I : of learning skills th i i
in an inseructional sting (s o s 4-3;; s that are being excrcised and tested

Instructional system designers

2. Suggests a range of possible instructional environments for achi
knowledge outcomes (see Table 4-1/Figure 4-1)

3. Specifies techniques (tests) for probing a wide fk i i
onccomes (e T ) p g range of knowledge and learning skill

Cognitive rescarchers
4. Suggests predictions about transfer relations among learning cxperiences (sce Figure

4-1/Table 4-6)
5. Suggests indicators (dependent variables) of what and ho 1 i i
PR Py RN w well a student is learning

eving particular

situations are, the more likely that whatever is learned in one will transfer to the
other. Of course this is an open empirical question. A benefit of the taxonomy is
that it suggests a straightforward rescarch program for addressing this kind of
qucstlon.

While all three of these applications may be useful, we believe that the
most important role of the taxonomy is in establishing the means for probing a
much wider range of knowledge and learning-skill outcomes. This capability is
obviously important for research purposes, but it also is important for evaluating
educational systems. Consider a general problem in evaluating innovative edu-
cational programs (discussed by Nickerson, Perkins, and Smith, 1985). Over the
years many such programs, such as ones for teaching creative thinking or ones
for teaching general thinking skills, have been developed. All too often, casual
obscrvation suggests that such programs are having desirable effects on students,
but such effects do not show up under the scrutiny of carefully conducted
evaluation studies. Creators of such programs typically complain that the scien-
tific model of evaluation is inappropriate because the true gains students experi-
ence are somehow missed. One role for the taxonomy might be to suggest how
additional learning outcomes and skills can be assessed in order to enable a more
thorough evaluation.

Even among the three instructional programs we reviewed here, a rather
conservative approach to assessing the impact of the tutoring system was taken.
To some extent, the LISP tutor, BIP, and Smithtown all depended on standard
achievement outcome tests as a means for their validation. While it is important
to establish that these tutors do affect overall achievement, it is not sufhcient.
While interacting with a tutor, or in any instructional environment, students
can be learning many different things. A major role for the taxonomy is to
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suggest a richer festing system for cvaluating a broader range of student
outcomes. :

Finally, the taxonomy-indicator system should facilitate pursuit of both
applied and basic research questions. Our major practical application for the
taxonomy is to have it assist in the specification of variables that indicate what
and how well a subject is learning as the subject interacts with a tutor over a
lengthy scrics of lessons. These variables then will serve as criteria against
which newly developed measures of cognitive ability will be validated. In
addition, a wide range of basic rescarch issues is opened up. Are the different
knowledge types affected by the same variables? Are fast propositional learners
also fast production-rule learners? Are there interactions between knowledge
type and the instructional environment? Are individual differences in learning
more dependent on the knowledge type or the environment? Our rescarch
programs are only at the very beginning stages in addressing these kinds of
fundamental questions about the nature of learning and individual differences
therein.
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