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The United States has recently seen falling test scores for mathematics
problem solving in comparison to other countries. This paper reviews cur-
rent approaches to diagnosing mathematics problem solving, and then
introduces emerging technologies being developed at Educational Testing
Service that address open areas found in the review. The application of
these technologies to assessment design must be weighed against concerns
for construct validity, equity, and access. The validity question is addressed
by using evidence-centered design (ECD) methods to build an evidentiary
argument. An innovative project called Mathematics Intervention Module
(MIM) for helping students improve their mathematical problem solving
skills is described that uses ECD methods in concert with the emerging
technologies, with a focus on diagnosis, feedback, practice, and items that
integrate targeted knowledge and skills.
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If you only have a hammer, you tend to see every problem as a nail. —Abraham Maslow

THE GENERAL PROBLEM 

America’s 15-year-olds performed below the international average in
mathematics literacy and problem solving, according to the latest results



from the Program for International Student Assessment (PISA). The test,
given in the spring of 2003, assesses the ability of 15-year-old students from
various countries (including 30 of the most developed) to apply learning to
problems with a real-world context (see PISA Report, 2004). Students in the
following countries outperformed the United States in mathematics literacy
in 2003: Australia, Austria, Belgium, Canada, the Czech Republic,
Denmark, Finland, France, Germany, Hong Kong-China, Iceland, Ireland,
Japan, Korea, Liechtenstein, Luxembourg, Macao-China, Netherlands, New
Zealand, Norway, the Slovak Republic, Sweden, and Switzerland. 

These same 23 countries, plus Hungary and Poland, outperformed the
United States in mathematics problem solving. U.S. 15-year-olds scored
measurably better than their counterparts1 in only 3 of 30 nations on the new
international test of problem solving in math. Moreover, the U.S. has the
poorest outcomes per dollar spent on education. In short, U.S. students are
performing poorly on mathematics tasks that involve transfer of learning and
problem solving skills. We need to bolster our students’ problem solving
skills to compete effectively internationally, in the near future.

The purpose of this paper is to examine ways to improve math problem
solving, focusing our attention on the role of careful diagnosis. We begin by
reviewing some systems that assess math problem solving skills.

CURRENT DIAGNOSTIC APPROACHES

What features of the student, task, content, or environment are important
to analyze in order to diagnose strengths and weaknesses and thus support
learning? How are current diagnostic and tutoring systems addressing these
issues? Here are a few well-known systems that diagnose students’ mathe-
matics problem solving skills and help students acquire relevant content.
The systems differ in terms of measurement technique employed (e.g., per-
cent correct scores on 1-3 tasks vs. Bayesian inference networks), but per-
haps more importantly, on the level of the diagnosis—local (e.g., analyzing
specific problem-solving steps) or global (e.g., inferring mastery status of
general proficiencies). 
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• ALEKS is a web-based system that applies knowledge space theory
developed for K-12 math (Falmagne, Cosyn, Doignon, & Thiery, 2004).
It uses a model of precedence for mathematics concepts (problem
types), and through assessment, determines what a student knows and
what he or she is ready to learn (global diagnosis). The strength of
ALEKS is in its broad diagnostic ability. Local level diagnostics are not
quite as complete. For instance, its sensitivity to student input at the
question level is limited, although an important part of human tutoring
occurs at this level.

• Carnegie Learning’s Cognitive Tutors provide interactive environments
via problem solving and worksheet-like activities (Corbett, McLaughlin,
& Scarpinatto, 2000). For example, in algebra, students not only solve
structured problems using equations, they also fill in tables relating vari-
ables to each other, providing a concrete basis on which to construct equa-
tions. In all interactions, a cognitive model follows the students’ problem
solving efforts, providing immediate feedback if the student strays.
Students receive two types of feedback: help to keep them on track as they
solve a problem (strong focus on local level diagnosis), and a summary of
estimated mastery on relevant skills (global level diagnosis). What’s miss-
ing, however, is a model of how component skills are linked to each other
and a clear indication of what a student is ready to learn. Instead, the tutor
follows a fairly fixed curriculum upon which the problems and worksheets
are built and presented. 

• Ms. Lindquist is designed to teach students to write algebra expressions
for word problems (Heffernan & Koedinger, 2002). It asks students to
solve open-ended problems where the answer is an expression that
involves numbers, variables, and the four basic arithmetic operations.
Student modeling and problem selection strategies are rather simple—
the student has to answer three problems in a row correctly to move to
the next lesson. The problems seem to be represented internally as sub-
parts with English prose associated with each sub-part. The system tries
to recognize correct parts of the answer in order to employ different
tutoring strategies (local level diagnosis). There does not seem to be a
representation of knowledge and skills that link the problems to each
other given the linear presentation of problems. 

• ActiveMath is a web-based learning system that dynamically generates
interactive math “courses” adapted to the student’s goals, preferences,
capabilities, and knowledge (Melis & Andrés, 2002). ActiveMath keeps
track of student progress and offers advice while students interact with the
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system. The content is represented in a format that includes such elements
as types of exercises and difficulty of problems. Student model informa-
tion, navigation information, reading time, and assessed performance are
used by Suggestors to diagnose possible difficulties and provide appropri-
ate feedback (local level diagnosis). Links between underlying concepts
are not apparent, so there is no way to select appropriate next problems
for a student to solve. 

As shown above, some systems are diagnostically effective at the local
level while others focus more on global diagnosis. Only a few systems pro-
vide the basis for a range of diagnostics. For instance, AuthorIT (Scandura,
2005) diagnoses local (e.g., “atomistic” skills) and global (e.g., problem
solving skills) knowledge based on  abstract syntax tree (AST) representa-
tions of lower and higher order knowledge, respectively. This paper will
present another possible solution that attends to both levels, via application
of an evidence-centered design (ECD) approach. It accomplishes this by
providing a bridge from observables (performance data) to unobservables
(proficiencies) via evidence models—at multiple levels. 

TECHNOLOGY SOLUTIONS

To diagnose student input at local levels and infer proficiency status at glob-
al levels, we are employing a variety of technological solutions in our assess-
ments, such as: automated scoring of different constructed response types, item
generation, adaptive testing, and the capability to present or simulate “authen-
tic” problem solving contexts. Each of these must be weighed against concerns
for construct validity, equity, and access (Bennett & Bejar, 1998; Shute, Graf,
& Hansen, 2005). 

New directions in educational and psychological measurement are also allow-
ing more accurate estimations of students’ proficiencies. Consequently (albeit
slowly), assessments are evolving. Advanced technologies are permitting us to
administer embedded (stealth) assessments during the learning process, extract
ongoing, multi-faceted information from a learner, and react in immediate and
helpful ways. These new assessments can be accomplished via automated scor-
ing and machine-based reasoning techniques to infer things that would be too
hard for humans (e.g., estimating proficiencies across a network of skills). The
big question is not about collecting this rich digital data stream, but rather, how
to make sense of what can potentially become a deluge of information. 
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EVIDENCE-CENTERED DESIGN

Evidence-centered design (ECD; e.g., Mislevy, Steinberg, & Almond,
2000; 2003) is a viable solution to this quandary. It provides (a) a way of rea-
soning about assessment design, (b) a way of reasoning about examinee per-
formance, (c) a data framework of reusable assessment components, and (d)
the means to unify and extend probability-based reasoning to assessment
(whether traditional standardized tests, classroom tests/quizzes, simulations,
gaming environments, portfolios, etc.). 

How does ECD work? The key idea of ECD is to specify the structures
and supporting rationales for the evidentiary argument of an assessment. By
making the evidentiary argument more explicit, the argument becomes eas-
ier to examine, share, and refine. Argument structures encompass, among
other things, the claims (inferences) one wishes to make about a student, the
observables (performance data) that provide support for those claims, the
task performance situations that elicit the observables from the students, and
rationales for linking it all together. The three main models used in ECD are: 

• Proficiency Model: Establish claims about a particular piece of knowl-
edge, skill, or ability. The proficiency model describes what is to be
measured, conditions under which the ability is demonstrated, and the
range and relations of proficiencies in the content area. 

• Evidence Model: Define evidence needed to support claims. Evidence
models describe what is to be scored, how to score it, and how to com-
bine scores into claims. These models thus establish the boundaries of
performance and identify observable actions that are within those
boundaries. 

• Task Model: Identify tasks that are able to elicit that evidence. Task
models specify the inputs required to perform the observable actions as
well as the work products that result from performing the observable
actions. 

DIAGNOSIS

To figure out the nature and extent of a problem in a student’s problem
solving efforts, we need to design tasks such that this information can be dis-
entangled and interpreted in valid and reliable ways. A good diagnostic sys-
tem should be able to accurately infer proficiency estimates (i.e., levels of
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mastery) for a student. This process begins with the design of a reasonable
(i.e., accurate and informative) proficiency model, which provides the basis
for both local and global level diagnoses to occur. Information from stu-
dents’ interactions with tasks or problems will be analyzed to inform rele-
vant proficiencies. These task-level diagnoses provide local support (via
scoring rules and feedback) while estimates of proficiency provide the basis
for selecting the next task for the student (via selection rules or algorithms—
beyond the scope of this paper). 

Proficiency estimates can assume various forms, from percent correct
data to probabilistic estimates of mastery of knowledge or skills via either a
Bayesian network or regression equations (e.g., Mislevy, Almond, Yan, and
Steinberg, 1999; Shute, 1995). Our approach to diagnostic assessment rests
on the belief that students must actually demonstrate knowledge/skill capa-
bility within carefully crafted and contextualized tasks. Thus, a key compo-
nent in an assessment design is the provision of a rich set of activities in
which learners can practice, receive targeted feedback, and demonstrate
their level of performance. 

Learning outcomes (e.g., objectives, standards, and what needs to be
reported) can serve as a starting point for developing a proficiency model,
and there should be a rich pool of activities from which the system may draw
at any time and which can provide instruction, assistance, and feedback to
the learner in addition to “just a summary score.” In all cases, interpretation
of proficiency is a function of the goodness of the evidence collected. In a
valid proficiency model, each piece of knowledge, skill, and ability will be
linked to more than one task so that evidence of a student’s performance can
be accumulated in a number of different contexts. In a hierarchical profi-
ciency model, evidence of one skill’s mastery can also feed into a parent or
child skill’s mastery estimation. An example proficiency model is presented
later in the context of our Example Project.

EVIDENCE

Individual responses to assessment tasks, as well as patterns of respons-
es, serve as the primary basis for evidence of proficiencies—locally at the
task level, and globally at the proficiency estimation level. Information may
be culled directly from the students’ behaviors and work products as they
interact with and complete items within an assessment task (or task set).
Based on exactly what the student produces (i.e., evidence) in response to a
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given math problem-solving task, inferences can be made about the source
of the problem or strength of a set of skills. Obviously, open-ended tasks will
invoke more varied evidence than multiple-choice responses. ETS has been
developing tools to analyze various response types, discussed within the fol-
lowing section. 

EXAMPLE PROJECT

The name of the example project described in this section is MIM, for
Mathematics Intervention Module. MIM is an online application designed to help
students become proficient in the state mathematics standards. The initial focus
is on Algebra I, but it may be extended to other subjects in subsequent releases.
The module is based on a proficiency model that describes the skills that must be
mastered to be judged proficient in a standard. Each module presents students
with open-ended questions dealing with the various skills identified in the profi-
ciency model. These questions require the student to respond with (1) a number,
(2) an expression or an equation, (3) a graph, or (4) text, all of which are auto-
matically scored.

Diagnostic Feedback. All responses in the intervention module are
automatically evaluated, with immediate feedback provided to the stu-
dent. Feedback is directed at the error that the student has made, and is
not simply, “Wrong. Please try again.” Similar to a human tutor, MIM
attempts to give some indication of why the student’s answer was wrong.
The student is given three attempts to answer each question correctly,
with progressively more detailed feedback provided along the way. The
correct answer, with an associated rationale, is presented if the student
answers incorrectly three times. In addition, if the student is judged to be
in need, the module presents a short (i.e., 2-4 minute) instructional video
that covers the problematic skill. These “instructional objects” reinforce
the learning that is taking place as the student works through the ques-
tions and reads the feedback. 

Instructional Objects. A specific instructional object (IO) is presented
when students require all the three levels of feedback. There are current-
ly about 16 IOs produced for the current MIM prototype. Within an IO,
the flow of instruction proceeds as follows: (a) introduce the topic using
concrete and engaging context, (b) state a particular problem that needs
solving, (c) provide relevant definitions, (d) illustrate the concept within
different examples (both prototypical and counter-examples), (e) provide
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sufficient practice and interactivity, and (f) conclude with summary and
reflection screens.

Practice Opportunities. The teacher has the option of assigning multiple-
choice questions for additional practice on each skill. The teacher can (a)
require these practice questions of all students who seem not to have mas-
tered the skill, (b) make the practice questions optional, or (c) configure the
module so that the practice questions are not delivered.

Integrating Knowledge and Skills. The final section of each intervention
module is a set of integrated open-ended questions that deal with a common
theme or contextual situation. These questions reflect the standard as a
whole. Like the open-ended questions earlier in the module, these integrat-
ed questions involve responses that require the entry of a number, an expres-
sion or an equation, a graph, or text.

Information to the Teacher. After the student completes an intervention
module, the teacher receives a summary report. In addition, the teacher can
review the student’s entire session, viewing the student’s responses to each
question. Classroom summaries are also possible, so that teachers can see,
at a glance, how their students are progressing on the targeted standard.

Proficiency Model. As described earlier, a proficiency model generally
describes the skills that must be mastered to be judged “proficient” in rela-
tion to a specific standard, and displays the relationships between these
skills. The initial MIM prototype uses a proficiency model that analyzes the
standard, “Translate word expressions to symbolic expressions or equations
and then solve and/or graph” (see Figure 1). By working down the model,
one can see how the component skills are isolated.

In this standard, “word expressions” means information contained in a
story, a contextual description, or some other real-life situation. At a high
level, this standard can be divided into three parts, each corresponding to
a separate skill and each represented by a node (three white ovals) on the
model. The first skill is to translate the information given in the story into
an equation or graph or some other symbolic expression. The second skill
is to solve the equation, and the third is to graph the equation and obtain
useful information from the graph. For the purposes of this model, we are
assuming that the equations and graphs are linear.

The first skill (translate context to equations and/or graphs) can be fur-
ther divided into several sub-skills. To translate contextual information
into an equation or graph, one must first identify the variables, and then
identify the operations (addition, multiplication, and so on) that connect
the variables, and finally put it all together correctly to form the relevant
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equation. Each of these three skills is represented by a node within the
model, and each node is connected to its parent node, Translate context to
equations and/or graphs. In addition, dotted lines connect the third sub-
skill with the first two because the third sub-skill involves the proper
application of the first two.

In the current proficiency model, these nodes are faded. Due to con-
straints in the current project, we could not fully implement the mathe-
matical content for these skills at this time. Instead, we teased out part
of this content area and displayed it as a separate skill—entering con-
textual information into a table and then translating the table into a lin-
ear equation or graph. This skill is displayed as a gray node, indicating
that this is one of the skills implemented in the current release of the
intervention module.

A similar analysis applies to the second high-level skill (solve linear
equations). This skill can be divided into three sub-skills: (1) use the rules
of algebra to simplify expressions, (2) use the rules of algebra to simpli-
fy equations, and (3) combine the first two skills to solve equations.
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Again, each of the three skills is connected to the parent skill. In addition,
the third skill (apply algebraic properties to solve equations) is connected
by dotted lines to the first two skills as it represents a proper application
of the first two. All three of these nodes are displayed as gray because all
three are implemented in the intervention module.

The third high-level skill (graph linear equations) is subdivided into
three component sub-skills: understand intercepts, understand slope, and
use knowledge of intercepts and slope to graph equations and determine
equations from graphs. In addition, the Understand slope skill is further
divided into two parts: Understand slope geometrically and Understand
slope analytically. The “leaf nodes” (i.e., nodes with no children) are dis-
played as gray and are implemented in the intervention module.

The various elements of an intervention module—the open-ended
questions, the instructional videos, and the multiple-choice practice ques-
tions—are presented to the student according to a carefully planned
instructional design, based on principles of assessment and instruction
that have been developed by researchers at ETS (Kuntz, et al., 2005).  We
used ECD (Evidence Centered Design) to develop the underlying profi-
ciency model, scoring rules, and informative assessment tasks, and incor-
porated research-based features into MIM to support learning (e.g., time-
ly diagnostic feedback, tailored content, and multiple representations of
concepts).

In the following example, the integrated task set, as mentioned earlier,
is presented at the end of the module, and its function is to assess the con-
joined knowledge and skill elements. Finding a solution to the task
requires the student to graph a line, find the equation of the line, identify
the y-intercept and slope, state their significance in the context of the
problem, and extrapolate data. 

Music World Task. You found a new web site that claims to offer the
best deal around for buying music CDs. The web site isn’t clear about the
cost for each CD or the cost of shipping and handling (except to say ship-
ping is a flat fee), but it does give you the following information:  

Number of CDs Ordered 1          2           3 
Total Cost (with Shipping & Handling)               $9       $14       $19  

1. Plot the data in the table on the graph (provided). Draw the line that
contains the data points.  
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2. Assume that total cost is a linear function of number of CDs ordered. 
a. Write an equation of the line that contains the data points. Show your work.
b. What is the slope of the line that contains the data points?
c. What does that slope represent in the context of this problem?
d. What is the y-intercept of the line that contains the data points?
e. What does that y-intercept represent in the context of this problem?

3. Your friend says that he can get 15 CDs from the web site for $64.00.
Is your friend correct? Explain. 

In the Music World task, above, each node in the proficiency model may
be linked, via different evidence models, to a number of tasks. As the stu-
dent interacts with the system and answers questions, evidence is accu-
mulated and the student model is updated. If a student demonstrates that
she can calculate the slope using points on a graph, and interpret what it
means in the context of the problem, the corresponding nodes in the pro-
ficiency model will show higher estimates of mastery. Moreover, because
of the hierarchical nature of the proficiency model, the parent node,
“Understands slope,” may also automatically increase slightly. The con-
verse is true for failing to solve the problem correctly. In general, profi-
ciency information in the student model can highlight specific areas that
need more instructional support. 

To further facilitate the diagnosis of student performance, the system
knows about a number of common misconceptions in relation to the skills in
the proficiency model. To illustrate, in relation to the calculation and inter-
pretation of the slope, some of the salient misconceptions and errors include
inaccurate symbolic and graphical modeling of data, misunderstanding of
slope as a rate of change, misinterpretation of slope and y-intercept in real
contexts, and inability to use the equation of a line as a tool to predict linear
behavior (i.e., extrapolation). These can be used as indicators to help diag-
nose the problems with the knowledge and skills in the proficiency model.
A teacher or instructional module, armed with this information, can be con-
siderably more effective in providing a targeted intervention. 

Following are some general requirements for a student to get a maximum
score per item element in the Music World example: 

1. Graphs points correctly with respect to the axes.
2a.Writes a correct equation for the line based on an accurate reading of the

graph or correct calculations using a linear form.  
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2b.Gives the correct slope based on the graph or the equation written in part 2a. 
2c.Gives a clear and correct interpretation of slope in context. 
2d.Gives the correct y-intercept based on the graph or the equation written in

part 2a.
2e.Writes a clear and correct interpretation of y-intercept in context.
3. Writes an answer and justification that are correct, based on the equa-

tion given in question 2 or based on the graph in question 1. 

Let’s look at requirement 2c in more detail. The learning objective is that
the student can give a clear and correct interpretation of slope in the context
of the problem. The work product is a written (typed) response to an assess-
ment item. The three levels are: 

• Low: Student describes something that does not relate to the contextual
variables related to slope (i.e., something other than CD price and ship-
ping and handling)

• Medium: (a) Student describes slope in correct definitional terms
(rise/run), but with no link to the context; or (b) Student describes the
correct contextual variables, but with an incorrect relationship.

• High: Student describes the correct contextual variables with the correct
relationship (total cost of each CD including shipping and handling).

Now suppose that a student types in the response, “Slope is the rise
over the run,” which the system recognizes as correct but having no con-
text. The system displays feedback appropriate to the inferred (common)
error.2 For example: “You’ve told me the correct definition of slope, but
you need to explain it in terms of the problem. For example, what do the
rise and run in the graph have to do with the cost of CDs and shipping
and handling?” The student then tries again, and the system uses pro-
gressive levels of feedback for scaffolded support of learning. 

After each response, or some other defined interval, the system
updates the relevant nodes in the student model. Thus estimates of rele-
vant proficiencies would be updated according to the evidence model.
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The example above showcases an ETS tool called c-rater™ that can cap-
ture and analyze text input. Another ETS tool can “read” points and lines
on a graph, and compare values to scoring rules (Bennett, Morley, Quardt,
& Rock, 2000). Diagnostic feedback can similarly be embedded in xml
files for the task, and linked to different responses. See Figure 2 for an
example of graph analysis and feedback.

FIGURE 2
Graph analysis with diagnostic feedback shown superimposed on the work product.
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Additionally, the program evaluates the expressions and equations that
a student types (see Figure 3) for mathematical accuracy/equivalence. For
more information on the various automated scoring methods, see Bennett,
Morley, Quardt, & Rock (2000) and Bennett, Morley, and Quardt (2000). 

The various elements of MIM are based on sound principles of
assessment and instruction (e.g., Kuntz, et al., 2005; Shute, 1995;
Mislevy, Steinberg, & Almond, 2003). That is, we used ECD to develop
the underlying proficiency model, scoring rules, and informative
assessment tasks, and incorporated into MIM the three research-based
features to support learning discussed in this chapter:  timely diagnostic
feedback, tailored content, and multiple representations of concepts.
Finally, we plan to pilot test the first MIM module, employing three
learning conditions: Control (classroom instruction only), Practice
(classroom instruction and practice problems on relevant topics), and
Treatment (classroom instruction and the MIM prototype). This will be
administered to several hundred students in school districts in southern
California. Of interest will be the value-added of MIM over the other
two conditions in relation to student learning.  

SUMMARY AND NEXT STEPS

Evidence-based learning forms the foundation of the approach proposed
in this paper for the design and development of diagnostic assessments of
math problem solving. Our ETS tools use a variety of evidence (e.g., per-
formance data) as the basis for scores—as the data are aligned with rubrics.
Given the range of ETS tools at our disposal, data can assume a variety of
forms, such as graphs, numbers, equations, and short textual responses—
scored by c-rater (for content analysis).

Problem-solving ability develops over time, and there are general
(domain-independent) and specific (domain-dependent) kinds of problem
solving strategies that are brought to bear on a given problem. We’ve cho-
sen to focus on domain-dependent skills initially. We believe that an accu-
rate student model flows from quality evidence, which is obtained from
carefully designed assessment tasks linked to a valid proficiency model
and its constituent knowledge, skills, and abilities. The local-to-global
diagnostic approach is particularly powerful when coupled with sufficient
practice opportunities and targeted diagnostic feedback. The next steps
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will involve a series of controlled evaluations to test the contributions of
the various assessment and instructional elements in MIM to student
learning. We also plan to determine cost-efficient ways to scale up the
content to include additional mathematics concepts and skills linked to
important state and national standards. The goal is to help turnaround the
poor showing by U.S. students in relation to math problem solving skills
as compared to their international peers.
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