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Chapter 6 

FORMATIVE EVALUATION OF AN  
AUTOMATED KNOWLEDGE ELICITATION AND 

ORGANIZATION TOOL 

Abstract. This chapter serves three purposes. First, we briefly review knowledge 
representations to stress the implications of different knowledge types on 
instruction and assessment. Second, we describe a novel cognitive tool, DNA 
(Decompose, Network, Assess), designed to aid knowledge elicitation and 
organization for instruction – specifically geared to increase the efficiency of 
creating the domain model used within intelligent instructional systems. Third, we 
present an exploratory test of the tool's efficacy. Three statistical experts used DNA 
to explicate their knowledge related to measures of central tendency in statistics. 
DNA was able to effectively elicit relevant information, commensurate with a 
benchmark system, generating a starting curriculum upon which to build 
instruction, and did so in hours compared to months for conventional elicitation 
procedures. 

1. INTRODUCTION 

The face of teaching and training is changing—from classroom-based, teacher-led 
instruction to electronic learning (e-learning) with a focus on individual or small 
groups of students and their knowledge and skill acquisition. Along the same lines, 
e-learning is shifting from developing infrastructures and delivering information 
online to improving learning and performance (see Shute & Towle, in press, for 
more on this topic). One large obstacle in this envisioned path concerns obtaining 
relevant content that will underlie these new student-based systems to support 
learning and performance. In the best case, relevant content is derived from the 
results of cognitive or behavioral task analyses. The downside of these approaches 
relates to their exorbitant price tag—i.e., a very high cost in terms of both time and 
money, with no guarantees as to effectiveness.  

The aim of knowledge-elicitation tools (KETs), in general, is to increase the 
efficiency of collecting and using content; but current KETs are limited in utility, 
typically focusing on just one specific purpose (e.g., eliciting variables and their 
relations for a student model) and one type of knowledge (e.g., conceptual) (e.g., 
Chipman, Shalin, & Schraagen, 2000). Yet, education and training courses are 
substantially richer in scope. Furthermore, there is a wide range of purposes for e-
learning systems. Where do we start?  
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Anyone who has attempted to design effective instruction or training knows that 
it begins with sound curriculum. In all cases, whether instructing karate beginners, 
nuclear physicists, network administrators, or aircraft mechanics, what information 
to include in the curriculum and how to ensure learners' mastery of the material must 
be determined. Good teachers and trainers make these determinations intuitively; the 
computer’s insight, however, must be programmed. Therefore, resolving and 
specifying these “what to teach” and “how to teach” issues is critically important in 
forthcoming computer- or Internet-based instructional systems. New tools are 
needed to aid elicitation and organization of knowledge and skills for both 
assessment and instructional purposes. Specifically, KETs need to be designed to 
facilitate the development of future e-learning courses.  

To render such instructional systems intelligent—or responsibly adaptive—three 
components must be specified: (a) a domain model, (b) a student model, and (c) an 
instructor model (e.g., Lajoie & Derry, 1993; Polson & Richardson, 1988; Shute & 
Psotka, 1996; Sleeman & Brown, 1982). The domain model represents the material 
to be instructed. This includes domain-related elements of knowledge, as well as the 
associated structure or interdependencies of those elements. In essence, the domain 
model is a knowledge map of what is to be taught. The student model represents the 
student's knowledge and progress in relation to the knowledge map. Finally, the 
instructor model, also known as the "tutor," manages the course of instructional 
material based on discrepancies between the student and domain models. Thus, the 
instructor model determines how to ensure learner mastery by monitoring the 
student model in relation to the domain model and addressing discrepancies in a 
principled manner. In short, these three models jointly specify “what to teach and 
how to teach it.” 

There are three main aims of this chapter, which was originally published in a 
special issue of International Journal of Artificial Intelligence in Education (1999). 
First, we briefly overview knowledge representations, focusing on those that can 
support student and domain modeling across different types of knowledge and skill. 
Specifically, we describe three categories of knowledge: (a) declarative (what), (b) 
procedural (how), and (c) conceptual (why). Our contention is that each knowledge 
type, best captured by different representations (i.e., knowledge maps), implies 
slightly different instructional and assessment techniques. For instance, assessing a 
person’s factual knowledge of some topic requires a different approach than 
assessing how well someone can actually execute a procedure. By attending to 
knowledge type distinctions, and their representations, we hope to be better able to 
specify the component models of adaptive instructional systems for a broad range of 
content. 

Second, we describe a novel cognitive tool that has been designed to aid 
elicitation and organization of knowledge for both assessment and instructional 
purposes. Specifically, it was originally designed to facilitate the development of 
intelligent tutoring system (ITS) curricula, while maintaining sensitivity to the 
knowledge type distinctions we discuss in the representation section of the paper. 
The same tool can be used in adaptive e-learning systems. Our primary aim for this 
tool, embodied in a program called DNA (Decompose, Network, Assess), is to 
increase the efficiency of developing the domain model—often referred to as the 
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backbone of intelligent instructional systems (Anderson, 1988) and sometimes 
called a “proficiency model” in assessment circles (e.g., Almond, Steinberg, & 
Mislevy, in press; Mislevy, Almond, Yan, & Steinberg, 2000; Mislevy, Steinberg, & 
Almond, 1999; Mislevy, Steinberg, Almond, Haertel, & Penuel, 2001). The tool 
attempts to automate portions of the cognitive task analysis process, often viewed as 
a bottleneck in system development. We will summarize its interface and 
functionality, but refer the reader to a more detailed description of the program 
(Shute, Torreano, & Willis, 2000).  

The third and primary purpose of this paper is to present the results of an 
exploratory test of the tool's efficacy, or design feasibility. We outline the results 
from an empirical validation of the tool that examined how efficiently and 
effectively DNA works in the extraction of knowledge elements related to statistics. 
Specifically, we used DNA with three statistical “experts” to explicate their 
knowledge related to measures of central tendency. (Note: These were not 
technically “experts” but volunteers who were quite knowledgeable in the area of 
statistics, thus we use the term “experts” for economy).  

1.1 Knowledge Representation 

A variety of knowledge representation schemes have been developed that can be 
used to support student (and domain) modeling across diverse types of knowledge 
and skill (e.g., Merrill, 1994; 2000). For instance, Merrill (1994) presents four types 
of knowledge: facts, concepts, procedures, and principles. We simplify the issue by 
describing three broad categories of knowledge, conjoining Merrill’s first two types 
into our single knowledge type: (a) declarative (what), (b) procedural (how), and (c) 
conceptual (why). Each has implications for instruction and assessment.  

 Declarative knowledge is factual information – propositions in the form of 
relations between two or more bits of knowledge that are either true or false. A 
formal distinction is often made between declarative knowledge that is 
autobiographical (episodic), and that representing general world (semantic) 
knowledge. Episodic knowledge entails information about specific experiences or 
episodes (e.g., I inadvertently chewed a chili pepper hidden in my entrée - and it 
was hot! My mouth burned for twenty minutes and I was unable to taste the rest of 
my dinner). Semantic knowledge (i.e., the meaning of information) is not tied to 
particular events, but rather entails information that is independent of when it is 
experienced, such as category membership and properties (e.g., habañero, tabasco, 
and jalapeño are kinds of chili peppers – habañero being one of the hottest). 
Episodic knowledge is thought to precede and underlie semantic knowledge. For 
example, after the experience of biting a habañero, one would likely be able to 
recognize novel examples of the pepper as being members of the same category – 
and of being hot.  

Declarative (specifically semantic) knowledge can be functionally represented as 
a network of nodes and links, often called a semantic network (originally coined by 
Collins & Quillian, 1969). Alternatively, it may assume the form of a Bayesian 
inference network (e.g., Mislevy, et al., 2000). Although initially developed as an 
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efficient means of storing information in a computer, semantic networks have been 
shown to be cognitively plausible by studies that reveal that the hypothesized 
organization of the network structure is predictive of human performance on a 
variety of tasks. For example, response time to verify category and property 
statements (e.g., “A habañero is a chili pepper” or “Chili peppers contain 
capsaicinoids)” as well as to answer questions (e.g., “Is a habañero a pepper?”) are 
predicted by features of the structure. Some of these features include the number of 
hierarchical levels to be crossed and whether stored features must be retrieved. 
Collins and Loftus (1975) proposed more general semantic network models along 
with the concept of spreading activation. These more general models do not strictly 
entail hierarchical relations.   

For adaptive or intelligent instruction in declarative domains, semantic networks 
have been used as student models by instantiating the network with the knowledge 
to be taught, and then tagging nodes as to whether the student has learned it or not. 
These networks are an economical way to represent large amounts of interrelated 
information, are easily inspected, and support mixed-initiative dialogs between user 
and tutoring system. They are considerably less effective, however, for representing 
procedural information (i.e., knowledge or skill related to doing things). 

Procedural knowledge is the knowledge of how to do something, and procedural 
skill is the demonstrable capability of doing so. For example, one may know how to 
remove the skin of a chili before cooking by roasting, but not do it very well. Or one 
may know how to preserve chilies, and also be able to do so quite well. In the 
former case (skinning), one may be said to have procedural knowledge but not 
procedural skill. In the latter case (preserving), one would have both procedural 
knowledge and skill. While there may be some cases where it is possible to have 
skill and not knowledge (or at least be unable to articulate that knowledge, such as 
when knowledge has become automated), more commonly having the skill logically 
entails having the knowledge. 

Current theories of knowledge representation hold that procedural 
knowledge/skill can be functionally represented using a rule-based formalism, often 
called a production system (Anderson, 1993). These rules, or productions, consist of 
two parts – an action to be taken and the conditions under which to do so. An 
example might be, “if the goal is to alleviate a burning mouth that results from 
chewing a chili pepper, then drink milk.” Thus, production systems combine step-
by-step procedures (actions) with propositions (conditions), described previously as 
being represented by semantic networks. Production systems have been shown to be 
cognitively plausible by studies showing that the hypothesized structure of the rule-
base is predictive of the kinds of errors people make in solving problems. 

For intelligent instruction in procedural domains, production systems have been 
used as student models in several ways. One way is to instantiate an expert 
(production) system with the knowledge/skill to be taught, and then teach the 
knowledge/skill to the student, keeping track of what is and is not learned by tagging 
productions appropriately (e.g., Anderson, 1987). In another approach, expertise is 
modeled through negation by matching student errors to previously identified 
common patterns of errors that are associated with incorrect productions, or 
procedural “bugs” (e.g., VanLehn, 1990). Production systems are a fine-grained way 
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to represent procedural knowledge or skill, are easily implemented in most 
programming languages, and support a variety of straightforward ways to automate 
instruction because they directly represent the performance steps to be taught. They 
are sub-optimal, however, for representing declarative information. Additionally, the 
level of feedback that is most easily obtained may be too elemental for efficient 
instruction. Finally, the “bug library” approach to teaching procedural 
knowledge/skill is limited in that it is not possible to anticipate all possible 
procedural errors that students might manifest, and procedural bugs tend to be 
transient before disappearing altogether. 

Conceptual Knowledge supports qualitative reasoning and constitutes a 
specialized category of knowledge not well handled by either semantic networks or 
production systems alone. Conceptual knowledge stems from the organization, or 
structure, of one’s knowledge of a domain and the intuitive theory developed from 
what one has experienced in order to explain why things are as they are. For 
example, reasoning about principles of electricity, complex weather systems, or 
even why chili peppers are hot seems to involve internalized mental models that 
contain both declarative information (e.g., knowledge about electrical components) 
and procedural information (e.g., knowledge about how electrical systems behave). 
Conceptual knowledge allows humans to reason about how a system will behave 
under changing input conditions, either accurately or inaccurately. Regarding 
misconceptions, students who think that electricity flows through wires analogous to 
water flowing through pipes, will make predictable errors in reasoning about 
electricity. Conceptual knowledge also allows humans to generalize domain-specific 
knowledge and apply it in novel situations. In the words of Friedrich Nietzche, "He 
who has a why can endure any how." 

Conceptual knowledge can be functionally represented by mental models, which 
are representations that support imagined states of affairs reflecting one’s 
understanding of a domain. Pragmatic reasoning schemas, reflecting a generalized 
form of a specific rule, may also be used to represent conceptual knowledge. In 
general, conceptual knowledge is built on declarative and procedural knowledge, 
and thus can be partially represented by semantic networks in that certain cognitive 
processes considered “conceptual” in nature—such as similarity comparisons or 
generalization across domains—could be predicted by these formalisms. Thus, 
semantic networks account, in part, for conceptual knowledge by providing 
organization, or the structural glue, for category membership and property/feature 
information.  

These networks primarily describe storage structure of knowledge units and 
predict patterns of retrieval of information. Mental models, in contrast, apply to 
semantic representations of complex scenarios allowing for reasoning about 
situations. Consequently, one’s conceptual knowledge may be faulty either because 
it is built on unsound declarative or procedural knowledge or, when based on a 
sound foundation, because the intuitive theory is inaccurate. For example, if 
unaware of capsaicinoid compounds found in chilies, one may erroneously deduce 
from experience that color or size is the cause of a chili’s heat. Indeed, this theory 
may prevail even with the knowledge that capsaicinoids are contained in chilies if it 
is not understood how they affect nerve pain receptors (i.e., they release a molecule 
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that sits on the pain fiber of the nerve, thus sending a message of pain to the brain). 
Having a rich mental model of chilies and their compounds’ biological effects may 
lead to hypotheses about medicinal uses of peppers, such as treating chronic pain or 
mouth sores (i.e., understanding causes of pain may suggest ways to prevent or 
manage pain via related chemical processes). 

A variety of reasoning studies support the cognitive plausibility of mental 
models by showing that mental model theory can predict the types of errors that 
people are likely to make and can explain individual differences in reasoning 
capacity in that better reasoners create more complete models (Johnson-Laird, 1983; 
Minstrell, 2000). For purposes of adaptive instruction, certain kinds of qualitative 
reasoning can be modeled by matching the student’s beliefs and predictions to the 
beliefs and predictions associated with mental models that have been previously 
identified as characteristic of various levels of understanding or expertise. It is 
possible to infer what conceptualization the student currently holds, and contrive a 
way to show the student situations in which the model is wrong, thus pushing the 
student toward a more accurate conceptualization. This “progression of mental 
models” approach (White & Frederiksen, 1987) or “failure-driven learning 
environments” (Schank, 1999) teach reasoning skills that are ideal for remediating 
misconceptions, but cannot easily address other kinds of declarative knowledge or 
procedural knowledge/skill.  

Our interest in knowledge representations is that we would like to outline the 
parameters for deriving, representing, and utilizing valid knowledge and skill 
elements for automated instructional and/or assessment systems. For example, in an 
adaptive e-learning system, the design of instruction may best be driven by a clear 
understanding of the representational nature of the knowledge or skill to be taught or 
assessed, subsequently tailored to address specific knowledge/skill deficiencies per 
learner. One key to optimizing the predictive utility of an assessment instrument is a 
careful mapping between the knowledge and skill tapped by the instrument and the 
knowledge and skill required in the classroom or on the job. The knowledge 
representation and student modeling techniques being developed by the intelligent 
tutoring, e-learning, psychometric, and assessment communities provide the basis of 
a formal system for accomplishing that mapping. 

Assessment of declarative knowledge is fairly ubiquitous, particularly in 
classroom environments. Furthermore, the most common formats for such 
assessments include multiple-choice and fill in the blank items. For these item types, 
predictive validity is often limited (i.e., successful solution of these types of items 
does not guarantee successful performance on tasks that require procedural skill). 
With an understanding of the task requirements, in conjunction with the underlying 
knowledge representation, we believe probes can be designed to assess not only 
declarative knowledge, but also procedural knowledge/skills and conceptual 
understanding. The exception is certain procedural skills (especially those requiring 
specialized motor skills), which are more challenging to assess without technologies 
that provide psychomotor fidelity. 

Presenting various scenarios may be used to assess a learner’s misconception(s) 
of some phenomenon. For example, the computer could provide a series of 
questions concerning DC circuits. This would be in the form of: “What would 
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happen if …” questions (e.g., If you measure the current in each of the branches of a 
parallel net and sum those measurements, would the total be higher, lower, or equal 
to the current in the entire net?). Solutions to these types of items would provide 
information about the presence and nature of the current conceptualization (pun 
intended) of the domain.  

The program focused on in this chapter was originally designed to operate with a 
particular student modeling approach to obtain and manage the critical knowledge 
required by an intelligent instructional system. That is, DNA (Shute, et al., 2000) is 
a knowledge elicitation and organization tool that was designed to operate with 
SMART (Student Modeling Approach for Responsive Tutoring; Shute, 1995), a 
student modeling paradigm based on a series of regression equations diagnosing 
mastery at the element level (i.e., particular knowledge or skill). Furthermore, 
SMART is an instructor modeling paradigm that determines a pathway of 
instruction based on mastery diagnosis. Thus, DNA relates to the “what” to teach, 
while SMART addresses the “when” and “how” to teach it. Both programs divide 
the universe of learning outcomes into three types: basic (or declarative), procedural, 
and conceptual.  

In general, SMART engages in the following activities: (a) calculates 
probabilistic mastery levels via a set of regression equations, (b) evaluates what a 
learner knows in relation to individual bits of knowledge and skill (curriculum 
elements), (c) tailors instruction and assessment for the learner by combining both 
micro-and macro-adaptive modeling techniques (see Shute, 1995), and, (d) adapts to 
both domain-specific knowledge/skills as well as general aptitudes.  

More specifically, SMART consists of curriculum elements (CEs—units of 
instruction and assessment) that represent the complete set of knowledge and skill 
elements comprising the curriculum. These are arranged in an inheritance hierarchy. 
Each new piece of instruction introduces the next set of CE(s), which in turn are 
assessed while students solve problems in the tutor. Each question within a problem 
set posed by the tutor is associated with a specific CE, so blame assignment (and 
consequent remediation) is precise and timely.  

A value, which represents the learner’s probable mastery of the CE (p[CE]), is 
maintained for each CE. The program allows for continuous representation of the 
learner’s probable mastery values, employing regression equations to compute new 
p[CE] values. SMART’s specific regression equations are shown, below. Each of 
the four equations is linked with the level of assistance required by the learner in the 
solution of a problem involving one of more of the CEs. In other words, the equation 
invoked is tied to the actual number of hints (i.e., level of feedback) provided by the 
system to the learner, from no feedback (level 0) to most explicit (level 3).  

 
Ŷ (Level 0) = 0.3026 + 1.4377X – 0.7207X2 
Ŷ (Level 1) = 0.3316 + 0.2946X + 1.1543X2 – 0.9507X3 
Ŷ (Level 2) = -0.0117 + 0.566X + 0.3518X2 
Ŷ (Level 3) = 0.0071 - 0.6001X + 2.5574X2 – 1.4676X3 
 

SMART is initialized based on pretest performance data, where each pretest item is 
scored, in real-time, from 0 to 1, with partial credit given where appropriate (note: 
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the pretest contains items assessing all CEs, but adaptive testing is also possible). 
This provides the potential for pre-assessed abilities (per CE) which influences tutor 
delivery. A learner is thus placed in the curriculum (relative to the CE hierarchy) 
and presented with the CE(s) having a p[CE] value below some pre-established 
mastery criterion (e.g., < .70). The hints given are progressively more explicit 
(ranging from level 1, vague, to 3, specific). Moreover, the feedback is specific to 
the particular problem, and sensitive to the number of retries. It is provided in 
response to erroneous inputs, not explicitly requested by the student.  

SMART has been incorporated into an experiential learning environment called 
Stat Lady (Shute & Gluck, 1994) and has undergone a series of controlled 
evaluation studies where the main components (e.g., diagnostic updating routines, 
and mastery and remediation control structures) have been systematically evaluated. 
Two studies have been completed and are discussed in more detail in Shute (1995). 
Results show dramatic (i.e., 2.2 standard deviation) learning gains in the normal Stat 
Lady environment, and even greater improvement with SMART active. The efficacy 
of the program’s diagnostic capabilities was shown to be quite accurate, accounting 
for 54% of the unique outcome variance on the basis of just the computed student 
model values, and 67% of the outcome variance when aptitude and pretest data 
entered the equation.  

We believe that the SMART approach to student modeling, used in conjunction 
with DNA to obtain the CEs for instruction and assessment, can provide for a 
diagnostically valid system that can assist with both micro- and macroadaptation 
decisions (i.e., what to teach, as well as when and how to teach it). We now present 
an overview of DNA.   

1.2 General Description of DNA 

DNA (Decompose, Network, Assess) is a novel cognitive tool designed to help 
expedite, without sacrificing accuracy, the cognitive task analysis (CTA) phase of 
developing adaptive assessment or tutoring systems. In addition, our goal is to create 
a tool that is broadly applicable across domains. That is, our goal is for the tool to be 
able to help map out constituent knowledge and skill elements for a variety of 
potential domains. Specifically, DNA should be equally capable of analyzing task 
performance (e.g., how to interpret radar signals), as well as domains more 
conceptual in nature (e.g., understanding the factors that influence stock market 
fluctuations). For a more detailed description of the program, see Shute, et al. 
(2000).  

In short, DNA is intended to Decompose a domain, Network the knowledge into 
comprehensive structures, and employ other experts in the given domain to Assess 
the validity, completeness, and reliability of the knowledge representations. The 
program embodies a semi-structured series of questions aimed at extracting and 
organizing knowledge structures from experts. These questions, in general, map on 
to the three main types of knowledge that DNA attempts to elicit—basic (AKA 
declarative or symbolic), procedural, and conceptual knowledge. These knowledge 
types make DNA compatible with SMART, described earlier.  
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1.3 Modules of DNA 

There are four “modules” comprising DNA. In addition to the expert-centered 
modules—Decompose, Network, and Assess—there is a Customize module that is 
used by the person requiring curriculum elements and structures for training or 
assessment purposes. Each will be discussed in turn.  

Customize. The Customize module allows the instructional designer to provide 
information about the domain that is to be analyzed, characteristics of the intended 
learner population, as well as a list of the goals for the training session, assessment, 
or instructional course. Additionally, by adjusting “what, how, and why” gauges, the 
instructional designer indicates what is desired from the expert’s decomposition of 
the domain in terms of the intended relative instructional emphasis or flavor for the 
curriculum. For instance, the instructional designer may want experts to focus 
primarily on providing procedural knowledge (75%) for some training regime, with 
less basic (20%) and conceptual (5%) knowledge delineation. Altogether, the 
instructional designer’s input is intended to guide experts in their task of conveying 
knowledge so that it will be suitable for the instructor’s purposes. After obtaining all 
of this information from the instructional designer, the Customize module generates 
a brief introductory letter addressed to prospective experts and a set of floppy 
diskettes that contain all the necessary program files to execute DNA (note: the next 
version of DNA is intended to reside online). This letter may be printed, as is, or 
edited within the preferred word processing software. The introductory letter and 
diskettes are forwarded to one or more experts who will use DNA to delineate the 
curriculum. See Figure 1 for an example letter generated by the Customize module 
that requests the delineation of measures of central tendency in the field of statistics. 

Decompose. The Decompose module does the bulk of the work in eliciting the 
subject-matter expert’s explicit domain knowledge. This module functions as an 
interactive, semi-structured interview that is similar to the "What, How, Why" 
questioning procedure that has been shown in the past to successfully elicit 
knowledge from experts (e.g., Gordon, Schmierer, & Gill, 1993; Hyperknowledge, 
at http://www.hyperknowledge.com). In particular, each of these general questions 
has been transformed into a path of interrogation. The “what” path elicits basic 
knowledge, the “how” path focuses on procedural knowledge, and the “why” path is 
aimed at obtaining conceptual knowledge. These paths result in three different 
interfaces that attempt to obtain information corresponding to the different 
representations discussed earlier.  

The first screen the expert sees upon opening the Decompose module appears 
with the items (“ultimate goals”) that were articulated in the Customize letter, 
restated as questions. These comprise the general learning objectives that will be 
further fleshed out during the decomposition process. The first two queries (see 
Figure 2, below) relate to basic knowledge and thus would invoke the “what” path, 
upon selection. The third query requests procedural knowledge and relates to the 
“how” path. And the last question seeks to obtain more conceptual information from 
the expert—bringing up the “why” path when it is selected.  

 

http://www.hyperknowledge.com/
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Figure 1. An example letter generated by the Customize module requesting 
delineation of measures of central tendency. 

 

Dear [Insert Expert’s Name Here], 
 
We're writing today to get your help in designing a course teaching measures of central
tendency. Before you begin working with the enclosed program, please sit down and
think about the critical things that help you understand various measures of central
tendency. 
 
As you go through the enclosed program and respond to our questions, try to respond in
terms of how you currently think about the particular domain. Please don't respond with
your original knowledge of measures of central tendency; you have probably developed
more complex ways of thinking about the domain since then. 
 
The ultimate goals of the course are for our students to: 
 
Identify the main measures of central tendency 
Specify relevant formulas 
Know how to compute or derive each measure 
Understand the functional relationship(s) between each measure and different
underlying distributions 
 
How specific should you get? You can presume that our students will have the
following knowledge and skills: 
 
Basic math abilities (including algebra skills) 
Familiarity with PCs (e.g., Windows 98, 2000, XP environments) 
Basic reading skills 
 
Therefore, you will not need to define knowledge or skills at a detailed level in relation
to these elements. 
 
When answering questions during the program, please adjust your responses to fit the
following guidelines: 
 
What box: 55% 
How box:  35% 
Why box:  10% 
 
Thanks very much for your time. 
 
Sincerely, 
[Signature] 

Figure 1. An example letter generated by the Customize module requesting 
delineation of measures of central tendency. 
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  Figure 2. First screen of the Decompose Module 

 
Given the domain of measures of central tendency, for example, suppose an expert 
proceeded down the basic knowledge (i.e., “what”) path. The expert would select a 
question, then be guided through a series of questions that aim to elicit terms and 
definitions related to the curriculum element (CE) in focus. Further suppose that the 
expert began with the first question relating to defining the main measures of central 
tendency and elected to start with the Mean. At some point during the expert’s 
definition of the Mean, the issue of distributions of data would arise, spawning a 
new line of questions (e.g., “Define or identify a normal distribution”). The expert 
can choose to decompose an area either breadth-first (e.g., specifying Mean, 
Median, and Mode as the three main types of central tendency). Alternatively, the 
expert may decompose in a depth-first manner—specifying the Mean, then within 
that context, discussing distributions, which may give rise to normal and skewed 
distributions, and so forth. In any case, responses are typed directly into a text box 
that can hold up to 16,000 characters. Multimedia files may be explicitly associated 
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(via the “Link This” button) with a curriculum element to further embellish it. See 
Figure 3, below, for an example of the kinds of things that may be associated with a 
particular CE as part of the “Link This” option.  

 

 
 

Figure 3. Screen from the “What” path of the Decompose Module in response to choosing the 
“Link This” option.  

If a graphic were desired to supplement the definition, the expert would choose the 
“Link This” option, then either elect to draw a picture or associate the CE with an 
existing graphic. As shown in Figure 3, the expert chose to draw a picture.  

Figure 4 shows an example of some output produced using the option to draw 
and label a “normal distribution.” That file then becomes part of the particular CE 
record.  

When decomposing procedural knowledge, the expert uses the “how” path, 
which presents a series of screens that allow the expert to construct procedures in 
the “step editor.” In this process the expert delineates the steps of, and any 
conditional statements embodied within, the procedure. An expert’s procedure for 
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finding the Median in a data set with an odd number of values might be represented 
as the following:  

 
(1) Sort the data in the distribution  
(2) Determine the midpoint: (N+1)/2 
(3) Find the corresponding X value 
 

 
Figure 4. Example resulting from the option to draw and label a “normal distribution” 

 
Any of the steps in a procedure could potentially be further decomposed into a 

sub-procedure. For instance, step 1 (sort the data in the distribution) may be broken 
into a sub-procedure detailing how to sort data in either ascending or descending 
order.  

During the delineation of a procedure, the expert has a number of options to 
clarify and enrich the explanation of the task. The expert can add if-then statements, 
re-arrange steps, insert new ones, or delete any that are deemed unnecessary. In 
addition, and at any point, the expert may define terms that may otherwise be 
ambiguous to novices, thus providing additional basic knowledge. Figure 5 
illustrates the step editor interface that shows one way an expert might summarize 
the steps underlying the computation of the Mean. 

To decompose conceptual knowledge, the expert is guided through the “why” 
path, which is a series of questions that attempt to elicit as much information about 
complex concepts as possible. To illustrate using our example domain of measures 
of central tendency, suppose the expert chose to characterize the relationship 
between the Mean and its underlying distribution. The first question that DNA 
would present is: “What are the important issues that relate to the Mean and its 
underlying distribution?” This question is intended to obtain an initial listing of 
important elements associated with the Mean, such as: (a) “The Mean is affected by 
each value and its associated frequency within some distribution” and (b) “There are 
various types of distributions (e.g., normal, skewed, bimodal).” 
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Figure 5. An example of the step-editor screen, from the procedural knowledge (PK) path, 
with the steps for calculating the Mean. 

The second question in this path of inquiry is: “How are these elements 
functionally related?” This question is designed to elicit conceptual knowledge 
concerning how the important components (cited in the previous response) function 
together. A representative answer to this query might be, “The Mean is located in 
the center of a normal distribution, along with the Median and Mode. However, 
because the Mean is the only measure of central tendency affected by extreme 
scores, it will shift away from the center of skewed distributions and fall closer to 
the tail—where the extreme scores reside—than either the Median or Mode. For 
bimodal distributions, the Mean is located between the two humps.” 

The third question of the conceptual path asks: “Why is knowing about the 
relationship between the Mean and its underlying distribution important in 
understanding measures of central tendency?” This question attempts to link the 
current element being decomposed (Mean and its underlying distribution) to the 
general topic of instruction (measures of central tendency). Each of these questions, 
residing along this path, aims to provide a database of rich conceptual knowledge. A 
reasonable response would be: “Knowing the type of distribution of some data can 
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influence your decision as to which measure of central tendency to use. For a 
skewed distribution (e.g., salaries in a small business where most are in the lower 
range and one or two in the very high region), the Mean would not be as good a 
summary of the central tendency of these data as the Median. Rather, it would be 
artificially inflated.” 

Finally, the expert is asked to describe typical and atypical situations in which 
knowing or understanding the relationship(s) between the Mean and different 
underlying distributions, is useful. An exemplar response would be: “A typical 
situation related to understanding the relationship between the Mean and various 
distributions is if you need to determine which measure of central tendency you 
should use to summarize some data. An atypical situation involving use of this 
knowledge would be if you wanted to purposefully distort a conclusion. For 
instance, if you wanted to impress some friends about the average salary of the small 
business (described above), you could report the Mean, knowing that the more 
typical salary was far less.” 

A particular path (what, how, why) is completed when its series of questions has 
been answered and the expert clicks the “Finished” button to indicate that no 
elaboration or additional elements warrant explanation at that point. How does the 
expert know when the domain is finally decomposed? The instructional designer 
specified the “ultimate learning goals” of the curriculum in the letter generated by 
the Customize module. This indicates the starting point for the expert’s 
decomposition of the domain. The stopping point is also indicated in the letter by the 
statements of knowledge and skill that the learner population is presumed to possess. 
For instance, in the letter shown in Figure 1, learners are presumed to have basic 
math skills, thus the expert need not decompose the curriculum below that point. 
That is, if the expert delineated the procedure of computing the Mean (sum all 
numbers and divide by the sample size), no additional steps would have to be 
decomposed relating to the arithmetic operations embodied by those steps. In 
addition, the stopping point occurs when the expert believes that sufficient 
information has been specified for each of the ultimate learning goals indicated in 
the Customize letter.  

All information given by experts is stored in a MS Access database record of 
CEs. These CEs serve as the guidelines for developing assessment or instruction in 
the domain. Multiple fields are listed with each CE record, e.g., name, number, 
description, relationships to other CEs, learning objective tapped, format, and so on. 
By storing this type of information in each CE record, it was hoped that 
restructuring DNA’s output into teachable curriculum units would be more easily 
accomplished compared to traditional cognitive task analysis interview methods. 
Figure 6 illustrates DNA’s object model.  
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Figure 6. Object model representing DNA’s Decompose Module.  
 

Network. This module is currently under redevelopment. Ultimately, it is intended 
to transform CEs elicited during the Decompose module into graphical nodes that 
experts spatially arrange and link to form knowledge hierarchies, conceptual graphs, 
or production rules. Each node assumes the name of the CE and its contents that 
were defined during the Decompose module. To simplify viewing, only main-level 
CEs and their first-level “children” nodes appear upon the initial screen. “Pregnant” 
CEs are those that have elements embedded within them, such as sub-procedures 
within procedures. They appear in bold font. Any pregnant element can be unpacked 
to reveal its components by right clicking on the node and choosing the option 
“unpack.” 

To compose a meaningful hierarchy, nodes and their links are designed to differ 
along certain dimensions. Node shapes indicate the various knowledge types used 
by the SMART framework—rectangles reflect basic knowledge, ovals are 
procedural elements, and rounded rectangles denote conceptual knowledge. Links 
differ along three dimensions: type, direction, and strength of association. Some 
links are already in place when the subject matter expert (SME) arrives at the 
Network module. These come from information provided during the Decompose 
module (e.g., IF-THEN relationships from the step editor window). Other links must 
be created and labeled by the SME. 
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The first kind of link relationship is “type.” This denotes the specific kind of 
relationship(s) between nodes (e.g., is a, causes, fixed serial order, child of). DNA’s 
link types can relate to both semantic and procedural knowledge elements. Semantic 
links enable the SME to specify the relationships among curriculum elements, 
allowing for the conceptual structure of the domain to be specified. Procedural links 
enable the SME to specify the relationships among procedural steps and sub-steps, 
similar to a production-system representation. In addition to the semantic and 
procedural links available, there is a user-definable link that allows the SME to type 
in a label for a relationship not already defined. 

The second link-label option is “directionality.” This refers to the flow of control 
or causation between curriculum elements. Three options exist for this: uni-
directional, bi-directional, and no direction. These relationships are established via 
arrowheads that are attached to the end of a line. For instance, the formula for the 
Mean (ΣX/N) could have arrows emanating from it to the individual elements 
comprising the formula (i.e., to each of Σ, X, and N and with a “parent of” label 
assigned to each node).  

Finally, links can differ in terms of the “strength” of association. There are three 
values for this trait: weak, moderate, and strong. This indicates the degree to which 
the items are related. The information on strength is accomplished by varying the 
width of the link line (fine, medium, and bold).  

This module is intended to be functionally similar to conceptual graph analysis 
(e.g., Gordon, et al., 1993) except that with DNA experts generate the conceptual 
graphs instead of the instructional designers. We believe that the use of a graphical 
representation will make relationships among knowledge units salient, which could 
also highlight missing knowledge components. Thus, we speculate that the network 
module of DNA will enable experts to recognize gaps in the knowledge and skills 
they provided in their decomposition. Moreover, they have a chance to readily 
correct inadequacies as they can return to the Decompose module and update the 
curriculum element record by adding or editing information. 

After experts complete the Network module, data are stored on floppy diskettes 
and returned to the instructional designer who reviews the curriculum element 
record and conceptual graphs for any glaring omissions in content. If any omissions 
are present, the instructional designer can ask the expert to expand the inadequate 
curriculum elements to encompass, in full, the intended scope of instruction. 

Assess. The final module, which is actually more a process, will be used to 
validate the CE records and conceptual graphs generated by experts. This will be 
accomplished by having other experts in the domain review the data and conceptual 
graphs generated by the first expert or group of experts. That is, multiple experts 
will be employed to review and edit one another’s conceptual graphs as a method of 
validating externalized knowledge structures. 

Before describing the results from the preliminary examination of DNA’s 
efficacy, we first present DNA in the context of (a) the Field of AI and education, in 
general; followed by (b) its relation to other ITS authoring systems, specifically.  
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2. DNA’S NICHE IN THE FIELD OF AI AND EDUCATION 

We are creating DNA in response to the charge that conventional cognitive task 
analysis (CTA) methods are often inefficient, laborious to translate into usable 
instruction, limited to procedural tasks, and difficult to use (see Shraagen, et al., 
1997). These shortcomings identify areas to be improved in the intelligent tutoring, 
or adaptive e-learning system arenas. To help alleviate the impediment of the CTA 
process, we are attempting to address some of these limitations in the design of 
DNA. 

Efficiency. Traditional CTA methods typically involve extensive interviews with 
experts, transcription of ensuing protocols, and organization of knowledge and skill 
units. This process normally requires many months of work and many person-hours 
to achieve. These traditional methods often employ knowledge engineers to 
interview and observe experts, others to transcribe sessions, and cognitive 
psychologists to summarize the data into a hierarchical representation. In contrast, 
DNA attempts to streamline the bulk of the interview, transcription, and 
organization process which is intended to significantly decrease both time and 
personnel resources required for the cognitive task analysis. 

Instructional design framework. A common limitation of traditional CTA 
methods is that it is often difficult to translate the pages of interview transcriptions 
and conceptual graphs into a usable curriculum. DNA is designed such that its 
output is compatible with an existing instructional system framework (i.e., SMART; 
Shute, 1995), which should further enable efficient, adaptive systems development. 
In short, both the goal and the format of instruction are considered in the 
information sought. DNA’s database record of CEs contains rich and useful 
information at the individual CE level – the unit base for structuring usable 
curriculum. CEs are classified according to knowledge types that are compatible 
with the SMART framework (i.e., basic, procedural, or conceptual knowledge). In 
addition, each CE includes a unique number, detailed description, and hierarchical 
information relating it to other CEs in the knowledge structure of the domain. The 
hierarchical structure represents dependency relations among knowledge elements 
that inform curriculum design.  

In the near future, DNA will include expert-supplied embellishments such as: 
typical points of difficulty (impasses) in understanding the domain, good examples 
and counter-examples of concepts and procedures, along with more specific 
questions assessing conceptual and/or functional understanding of the particular 
domain or individual CE. All of this information is well suited for subsequently 
developing principled instruction. 

An additional improvement to DNA, already begun, is to align it with the 
evidence-centered design (ECD) approach (e.g., Mislevy, et al., 1999). This is 
intended to enhance its capability to aid in the design of valid assessments. ECD 
involves: (1) defining the general proficiencies and particular claims to be made 
about the students (i.e., the knowledge, skills, and abilities to be measured), (2) 
establishing and delineating relevant evidence, per claim (i.e., student performance 
data demonstrating varying levels of mastery), and (3) determining the nature and 
format of tasks that will generate or elicit that evidence. Evidence, in the center, ties 
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the tasks directly back to the underlying claims and proficiencies. As part of the 
original program, DNA already elicits the first part of the ECD requirements (i.e., 
the claims). We plan to expand it to also elicit associated evidences, per CE. 
Incorporating a content model will ensure that the associated instruction/assessment 
is tied to the desired proficiencies. Conforming to current industry standards (e.g., 
IMS, SCORM) will allow these diagnostic assessments and instructional units to be 
recycled in many different learning environments. 

Broad applicability. Another common limitation of traditional CTA methods is 
that many are only applicable to procedural domains. DNA’s specific purpose is to 
support intelligent tutoring system or adaptive e-learning development, applicable 
across a range of domain topics, both procedural and conceptual in nature. It 
attempts to achieve this broad applicability by eliciting CEs ranging in knowledge 
types compatible with the SMART framework. In addition, this applicability is to be 
achieved via its underlying hybrid representational structure of knowledge and skill 
elements, functionally a cross between a semantic net and production system (see 
Shute, et al., 2000). 

User-friendly. As indicated previously, traditional CTA methods often rely on 
several individuals trained in knowledge elicitation techniques. In contrast, DNA 
was designed to be usable by those without CTA expertise. The interface offers 
context-sensitive examples and the interview questions were written at a fifth-grade 
reading level. Thus any instructional designer who wants to develop a curriculum 
will be able to use this tool, with a variety of experts, to elicit knowledge.  

We now examine the question of how DNA fits in the field of ITS authoring 
systems.  

DNA and Other ITS Authoring Systems 

Although DNA was designed with the goal of facilitating ITS development, it is not 
an ITS authoring tool, per sé. As mentioned, DNA serves the development of 
intelligent instructional systems by attempting to streamline the process of 
interviewing subject matter experts (i.e., individuals with expertise about the domain 
to be instructed). This interview process is laborious but necessary, as the author of 
a course (or the instructional designer) does not always have the expertise of the 
domain to be taught, nor does the SME necessarily have the inclination or ability to 
instruct. Foremost a cognitive task analysis tool, DNA uses a semi-structured 
automated dialogue to elicit and structure the elements of knowledge of a domain 
from the SME that will be used by the instructional designer to create instruction. 
More precisely, rather than helping to “author” or output instruction, DNA helps to 
produce the input of the “authoring.” Thus, relative to other authoring tools, DNA is 
decidedly limited in scope to producing the elements that go into the content or 
domain model – it does not produce complete tutors.  

As is the trend for authoring tools, DNA divorces the knowledge base from the 
instructional strategy (Murray, 1998). Adherence to this divorce is intrinsic in the 
fact that DNA’s scope is limited to the content or domain model. In addition, 
although DNA was designed with SMART in mind, it is not committed to any 
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particular instructional strategy. In fact, the output of DNA would require a bit of 
transformation before being able to be used by SMART.  

First, by producing a representation of the knowledge (not the instruction) that 
underpins a domain, DNA provides for designing at the pedagogical level, not the 
media level. The content or domain model in SMART, however, encapsulates the 
actual material to be presented to the learner during an instructional session. Thus, 
there would be some transition work (wording, arranging the graphics, etc.) to take 
DNA’s output to the point of being a full domain model on which SMART can 
operate. The degree of effort required to transform DNA’s output into an 
instructional format to be presented to the learner will vary, depending on the 
SME’s direct responses and the goals of the tutor.  

Second, while DNA’s output identifies curriculum elements—the crux of the 
content—and implicitly represents the relationship among CEs (and will do so 
explicitly when the Network module is re-coded), this representation does not 
strictly specify an order of instruction. Rather, the output provides a map of the 
underlying knowledge domain, but the sequencing of instruction is left to the 
instructional designer’s choice of instructional strategies. For example, the 
relationship between a procedure, its sub-procedures, and the conceptual knowledge 
supporting decisions and reasons for the process would be mapped out in the output. 
From that representation, the instructional designer could choose to take a part or 
whole task approach, or provide conceptual support for the procedure before or after 
requiring practice. Thus, additional specifications of sequencing DNA’s output 
would be required before taking shape as a domain model for SMART, or other 
systems.  

The tradeoff of DNA’s output not being plug ’n play with SMART is that 
DNA’s output is not restricted to use with SMART; it is not committed to a 
particular ordering of instruction, nor is it committed to a particular instructional 
theory. Thus, with a narrow focus towards the content or domain model, DNA’s 
applicability is widened both in terms of content addressed and instructional 
strategies incorporated. Theoretically, with the aforementioned transitions, DNA’s 
output should be usable with any number of intelligent instructional systems—
whether the pedagogy is “learn by reading and thinking” or “learn by doing” 
simulation-basedsystems  – a distinction made by Murray (1998).  

Finally, given that DNA seeks out and identifies multiple knowledge and skills 
types (fact, process, concept), its output can be used with systems that are predicated 
on the belief that different knowledge/skill types should be instructed in different 
manners (e.g., Gagné, 1985; Merrill, 1994). Differentiation of knowledge types and 
their corresponding components, intra-relations, and inter-relations is done with 
DNA. However, facilitating the production in these types of tutors, the rules 
specifying feedback, hints, explanations, content as presented to learner, sequencing 
of instruction, and so forth is not done by DNA.  

In general, our goal for DNA is that of decreasing the overall effort for making 
intelligent instructional or assessment systems by supporting the acquisition and 
organization of the knowledge base of the domain to be assessed and/or taught. 
Although DNA is an incomplete authoring tool prototype, initial evaluation supports 
the feasibility of the approach, as will be addressed in the next section. Further 
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research remains in order to determine the full effort required to transition the 
material DNA produces to a domain model functioning in a tutor. By focusing on 
the cognitive task analyses phase of development and not specifying the pedagogical 
model, authors require instructional design skill, as they are not guided in how to 
finalize the domain model to fit whichever instructional strategy they would like to 
follow. The person actually using the system, however, needs no special training or 
knowledge base, and can use the DNA system with a minimal learning curve.  

We now turn our attention to a formative investigation testing the Decompose 
module of the DNA system. In general, the different evaluation issues relate to the 
efficiency of the system and the validity of the output. 

3. PRELIMINARY DNA EVALUATION 

3.1 Design 

DNA promises a great deal in its potential to uncork the cognitive task analysis 
(CTA) bottleneck. However, because DNA has been designed to be broadly 
applicable across domains, it is an open-ended and flexible system. The downside of 
this design feature is that the system may sometimes fail to keep SMEs grounded in 
their explication of domain expertise. Therefore, before relative benefits of DNA 
can be assessed, the more fundamental issue of whether DNA’s general design is 
functionally feasible must be determined. As a stand-alone program and with only 
minimal direction to the SME via an introductory letter, can DNA actually extract 
any knowledge that can serve as the basis for curriculum development?  

In order to address this basic feasibility question, we tested the degree to which 
our SMEs’ data agreed with a benchmark representation of a topic. Williams (1993) 
conducted a similar analysis using a production system representing cutting and 
pasting text with a word processor. We extended this evaluation technique beyond 
its previous use with a simple procedural task by using it with a more complex 
domain containing a variety of knowledge types (i.e., measures of central tendency). 
Thus, we used the curriculum from an existing tutor, the second descriptive statistics 
module (DS-2) from Stat Lady (Shute, Gawlick, & Lefort, 1996) that focuses on the 
topic “measures of central tendency,” as the benchmark. The curriculum for this 
module of Stat Lady was derived from a traditional cognitive task analysis involving 
document analysis as well as interviews with two SMEs. Although no formal 
records were kept regarding development time, we estimated that the CEs in the Stat 
Lady curriculum required approximately five months to obtain, structure, and 
outline. 

Using a domain that has already been decomposed and transposed into an 
effective curriculum provides a way to gauge DNA’s potential efficiency and 
validity. The Stat Lady curriculum provides a benchmark as to (a) the time and cost 
of eliciting the curriculum elements of the domain (i.e., an efficiency measure), and 
(b) the qualitative characteristics of curriculum elements of the domain (i.e., 
exemplar elements that constitute a valid, effective curriculum). 
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The degree to which the knowledge elements derived by DNA from experts map 
onto the elements of the Stat Lady curriculum, already embodied in an existing 
tutor, will shed light on the potential effectiveness of DNA’s output. If the obtained 
output is close to the “idealized” extant domain structure of a tutor that has already 
been shown to improve learning, we can infer that the output is valid–or that it could 
be the basis for developing an effective curriculum. 

3.2 Participants 

Three volunteer subject-matter experts participated in this preliminary study. While 
none were formally “statisticians,” all had graduate degrees in psychology and a 
minimum of 10 years experience conducting statistical analyses. Further, all 
reported that they were quite familiar with the measures of central tendency. None 
had prior, formal interactions with Stat Lady. 

To assess incoming levels of expertise, the SMEs completed a computer-based 
test of measures of central tendency that is typically used in conjunction with Stat 
Lady. The test assessed knowledge and skills related to all CEs contained within the 
Stat Lady curriculum (i.e., a total of 127 CEs). While no time limits were imposed, 
our experts required between 1-1.5 hours to complete the test. Scores ranged from 
71.3% to 87.5% (M = 79.2, SD = 8). Following the test, each expert completed the 
Decompose portion of DNA. 

Before the experts’ sessions with the program, the authors of this chapter 
completed the Customize module of DNA to produce a letter, similar to the one 
shown in Figure 1, informing the experts of the curriculum goals for some 
hypothetical students to achieve. In addition, this letter informed the SMEs of the 
intended learner population’s expected skills and abilities. This provided the SMEs 
with parameters for their decomposition of the domain. Experts interacted with 
DNA in individual sessions, during which at least one of the authors was present to 
answer only general questions. 

3.3 Benchmark 

The Stat Lady DS-2 (Shute, et al., 1996) database consists of 127 curriculum 
elements. However, of those, only a subset of 78 CEs served as the benchmark 
against the output of DNA’s Decompose module. This benchmark was used as the 
basis for assessing completeness and validity of the SMEs output. Some Stat Lady 
CEs were not included in the benchmark because they were deemed as not 
applicable, for a variety of reasons, to our current purpose. For instance, most of the 
first 37 CEs of the tutor constitute a stand-alone review module extracted from the 
first descriptive statistics module of Stat Lady. The review module included CEs 
related to organizing data (e.g., sorting data, identifying the minimum or maximum 
value, etc.) and manipulating frequency distribution tables. Since most of these 
items were not our experts’ focus, all but 7 of these CEs were excluded from 
analysis. The CEs from the review module that were judged as relevant to the 
experts’ task, and therefore kept in the benchmark, include knowing: (a) definitions 
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for distribution, frequency distribution, and variable, (b) notations for variable, 
frequency, and sample size, and (c) the steps needed to create a frequency 
distribution. 

Five additional CEs from the benchmark were removed because they were 
deemed as somewhat idiosyncratic to the Stat Lady tutor. That is, three conceptual 
knowledge (CK) elements were eliminated since they related to the instruction of 
measures of central tendency via analogy to a seesaw (not a standard practice, but 
helpful to learners, nonetheless). The remaining two CEs included basic knowledge 
(BK) elements that were concerned with identifying tutor-specific notation for the 
Median (i.e., Mdn) and the Mode (i.e., Mo). It is unrealistic to expect “experts” to 
outline these curriculum elements, given that these particular abbreviations for 
Median and Mode were specific to the Stat Lady curriculum, and not standard in 
Statistics instruction. Finally, an additional 14 Stat Lady CEs were excluded due to a 
subtle difference between procedural knowledge (PK) and procedural skill (PS). 
That is, Stat Lady CEs are coded either as BK, CK or PS elements depending upon 
how they are instructed and assessed. For instance, if a learner’s knowledge of how 
to calculate the Mean was assessed by identifying steps of the procedure from a 
multiple-choice list, the element would be coded BK (which includes “knowledge of 
rules” or PK). In contrast, if the learner’s knowledge was assessed by having them 
actually calculate the Mean of a set of data, the element would be coded PS. In 
short, coding of knowledge is context sensitive. In DNA, however, when 
decomposing their knowledge, experts describe procedures of a domain (i.e., 
knowledge of procedures – PK); they do not perform their “procedural skill” of 
these elements. Because elements coded as PS in the tutor context track the learner’s 
ability (or success) in doing various tasks or procedures, they are not appropriate to 
serve as a comparison benchmark. Therefore all of Stat Lady’s PS elements were 
excluded from the benchmark. Some of these PS elements that were removed 
include computing: the sum of values, N, cross products, midpoint, Mean, Median, 
and Mode (and doing so in a variety of contexts).  

In general, Stat Lady’s “measures of central tendency” curriculum concentrates 
on basic, procedural, and conceptual knowledge relating to the Mean, Median, and 
Mode. Basic elements include definitions, formulas, and notations for each measure 
and their components (e.g., sample size N = ∑f; Mean = ∑X/N; cross product = Xf). 
Procedural elements describe the steps of how to calculate each measure of central 
tendency from both data sets and frequency distribution tables. In addition, 
alternative methods for these calculations are detailed, where appropriate. For 
example, the curriculum includes differences in the procedure for calculating the 
Mean when all frequencies equal one (f = 1) and for when they do not (i.e., some f > 
1). Conceptual elements emphasize understanding which central tendency measures 
are appropriate within different circumstances, and why. 

For sufficient instruction of the domain, additional BK, PK, and CK elements 
cover various types of distributions (e.g., normal, flat, symmetric, bimodal, 
platykurtic, leptokurtic, mesokurtic, postively and negatively skewed), as well as 
issues of symmetry, kurtosis and skewness. To bolster concept integration, many 
elements highlight the relationship between the three measures of central tendency 
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and the underlying distribution. Specifically, they instruct and assess on each 
measure’s location, and relationship(s) to one another, within different types of 
distributions. The sum of this information supports understanding of the guidelines 
for using each of the three measures. 

In total, 78 CEs from the Stat Lady DS-2 curriculum remained as the final 
benchmark for analysis. The distribution of knowledge types in the benchmark was 
as follows: 74% BK elements, 18% PK elements, and 8% CK elements. This was 
not substantially different from the distribution of the original 127 CEs for the entire 
tutor (79% basic, 13% procedural, and 8% conceptual elements). 

4. RESULTS AND DISCUSSION 

The output from DNA exists in two forms: (a) a Microsoft Access database of CEs 
and (b) a graphical array of the hierarchical knowledge structure (future design). The 
focus of this DNA assessment was on the Decompose module therefore the CE 
databases were analyzed in this formative evaluation. 

The analysis involved assessing the content of each SME’s database relative to 
the benchmark described above. For each CE we assigned either a “1” to indicate 
that the SME included it in the decomposition, or a “0” to denote its absence. In 
some instances, we assigned partial credit if we judged that a portion of a CE was 
decomposed (e.g., .67 if 2 out of 3 steps of a procedure were listed). There were a 
couple of cases where a SME delineated a CE that was not present in the benchmark 
listing. Those instances were noted, but not included in the current analysis. For 
example, one expert delineated and defined “data” (i.e., a set of observations about 
the world; within statistics, data commonly refers to a set of numbers that are 
collected or observed). This CE was not in the original Stat Lady database as it was 
presumed to be part of incoming knowledge.  

How well do the experts capture the benchmark curriculum? Our three SMEs’ 
output captured 25%, 49% and 23% of the Stat Lady benchmark database. 
Furthermore, each required 285, 170, and 100 minutes to complete DNA, 
respectively. One expert (SME-2) was clearly more in line with Stat Lady than the 
others, producing the array of CEs most consistent with the benchmark in less than 3 
hours of decomposition time. 

When developing a curriculum for a domain, an instructional designer 
aggregates information from several sources. Likewise, we combined the outputs 
produced by all three experts, however we did not have to deal with the issue of 
potentially contradictory data from multiple SMEs in this case. This issue of 
aggregating data across SMEs, consistent and otherwise, will be examined further in 
an upcoming study by the first author. Specifically, the utility of a statistical 
approach called combinatorial data analysis (Hubert, Arabie, & Meulman, 2001) 
will be examined as a possible solution to combining potentially disparate data.  

Table 1 presents the comparison between (a) the CEs elicited by DNA from our 
three SMEs combined, and (b) the CEs that compose the benchmark. The data in the 
table show the total count of CEs, overall and by knowledge type. Results showed 
that the distribution of knowledge types derived by DNA in our combined SME data 
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(71% BK, 23% PK, and 6% CK) is similar to the distribution seen in the benchmark 
data (74% BK, 18% PK, and 8% CK). This seems to suggest that DNA addresses 
the different knowledge types adequately.  

 
 

Total BK PK CK 
Combined SMEs’ CE 
output 

48 34 11 3 

Stat Lady Benchmark CEs 78 58 14 6 

Table 1. Comparison of curriculum elements (CEs) elicited from our experts by DNA to those 
of the Stat Lady benchmark, overall and by knowledge type (basic, procedural, and 

conceptual). 

With regard to the SMEs’ collective capture of the benchmark, results show that 
62% (i.e., 48/78) of the Stat Lady CEs were delineated by at least one of our three 
experts. For this domain, DNA was relatively more successful at eliciting a match of 
the benchmark’s procedural knowledge, capturing 11/14 (79%) of the benchmark, 
than at eliciting basic 34/58 (59%) or conceptual knowledge 3/6 (50%). 

Which elements were extracted and which were not? Some benchmark CEs were 
reported by all of our experts, some by only a subset of the SMEs, while other 
elements were omitted completely. In the following paragraphs, we discuss the 
nature of the CEs produced by the decomposition and those omitted. 

Results indicated that nine (i.e., 12%) benchmark CEs were outlined by all three 
experts (5 BK and 4 PK). These included definitions of the Mean, Median, and 
Mode. To illustrate, one of the SMEs outlined the definition of the Mean shown in 
Figure 7; the other definitions were comparable. Other CEs that were reported by all 
experts included the basic steps required to determine the values of each measure of 
central tendency. For instance, each expert delineated the steps to (a) calculate the 
Mean when f = 1, (b) determine the Median when N is odd and when it is even, and 
(c) identify the Mode. See Figure 5 in the General Description of DNA section for a 
SME’s outline of the procedure to calculate the Mean. Finally, all SMEs conveyed 
that in a normal distribution, the three measures of central tendency have the same 
value. 
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      Figure 7. SME’s output defining the Mean in the basic knowledge (BK) path. 

Next, 39 (i.e., 50%) benchmark CEs were reported by a subset of our experts: 29 
BK, 7 PK, and 3 CK (Note: SME-2, who individually matched the benchmark 49%, 
provided the bulk of these elements, while the other two experts contributed only 8 
additional unique CEs). Some of these elements included: definitions of normal 
distribution, tail, and skewness, notations for sample size (N) and variable (X), and 
the formula for computing cross products (X * f). Other examples of elements 
reported by a subset of experts included the guidelines for using different measures 
of central tendency and the relationship among them within a skewed distribution 
(e.g., the Mode is used with categorical data; the Median is better for representing 
quantitative data within a skewed distribution). A number of CEs were reported that 
relate to distributions (e.g., normal, positively and negatively skewed) and their 
particular relationship(s) with the measures of central tendency. For example, the 
functional relationship of each of the three measures within a normal distribution 
was described, and the Mean was further discussed within skewed distributions. 
Figure 8 shows an excerpt of one SME’s response to DNA’s conceptual path query 
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regarding the important aspects of the relationship between a measure of central 
tendency and its underlying distribution.  

 

 

Figure 8. A response along the conceptual knowledge (CK) path representing an excerpt of a 
SME’s output on the functional relationship between measures of central tendency and 

underlying distribution types. The vertical scrollbar indicates additional text. 

Finally, there were 30 (i.e., 38%) benchmark elements omitted by all three experts 
(24 BK, 3 PK, 3 CK). Some of these omissions included low-level information that 
related to formulas (e.g., the sum of cross products, Σ[X * f]), definitions (e.g., 
variable), and notations (e.g., f for frequency). Thus, either (a) the stopping point for 
the decomposition of knowledge was not communicated well by the Customize 
letter, or (b) what was outlined as the goal of the tutor did not match exactly with the 
benchmark domain model. Additional omissions included the specification of 
alternative formulations (e.g., computing the Mean when f > 1, and use of midpoint 
formula as a step to determine the Median). Other elements not reported by any of 
our SMEs were some conceptually complex ones. For instance, no expert described 
the Median and Mode in relation to skewed or flat distributions. Finally, the last set 
of elements omitted were those fairly peripheral to the curriculum emphasized by 
the Customize module letter. Some of these included defining platykurtic, 
mesokurtic, and leptokurtic distributions.  

In sum, the agreement between the aggregate and benchmark data showed that 
DNA was able to elicit 62% of the CEs present in an existing database, and was able 
to do so in a reasonable amount of time (i.e., approximately 9 hours, the total time 
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required by all 3 experts). In relation to simple counts of CE types, our SMEs 
produced more BK elements than either PK or CK ones. But in relation to the 
benchmark, our SMEs’ output matched a greater percentage of PK elements than 
either BK or CK elements.  

Limitations 

How do we interpret these data? Why did we not see 100% overlap? We suspect 
there is an interaction of at least three factors contributing to this “less than perfect” 
capturing of the benchmark: (1) idiosyncrasy of the Stat Lady curriculum, (2) issues 
related to our specific “experts,” and (3) inadequacies within the DNA program.  

First, with regard to the Stat Lady curriculum, the elements selected for inclusion 
represent “measures of central tendency” as culled from extensive document 
analysis on the topic, as well as interviews with two subject-matter experts. Some of 
the items our current (DNA using) experts omitted included definitions of 
leptokurtic, platykurtic, and mesokurtic distributions, possibly deeming these items 
as not central to (or too esoteric for) the scope or goals of the decomposition. 
Further, other elements that were not articulated by our experts included very low-
level CEs such as defining the summation notation (Σ). Thus, the Stat Lady 
curriculum contained many items that our experts may have considered to be only 
tangentially related to the decomposition task. 

The second factor we suspect contributed to our failure to get perfect overlap 
involved the nature of our experts. As mentioned earlier, we solicited local 
participants who are not formally statisticians, but rather experimental psychologists 
who are familiar with statistics. Their knowledge structure of the field, while no 
doubt solid, may not have reflected the knowledge structures of true statisticians. 
This was further indicated by their test data; we suspect that statisticians would have 
scored in the 90th percentile on that test. Recall that the mean pretest score from our 
group was 79%. Thus, it appears that the experts participating in the current 
evaluation had areas of deficient knowledge. 

The third factor contributing to our obtained degree of overlap relates to possible 
shortcomings of the DNA program itself. The data from the present study made 
apparent several places where DNA could be enhanced. First, the data showed that 
our experts provided fewer CK elements than PK or BK elements in relation to the 
benchmark. This finding could be an indicator that the conceptual path in DNA was 
simply not effective in eliciting CK structures. We are currently addressing this 
problem by adding some follow-up questions at the end of important junctures 
within DNA. For instance, at the end of the entire Decompose module, the expert 
will be asked a series of thought-provoking questions designed to capture an 
overview of the domain/field (e.g., themes and principles). We believe that this 
information will further aid the instructional designer in generating curriculum and 
provide more illuminating conceptual knowledge to the curriculum. Some example 
global follow-up questions include: (a) What are some difficult areas you’ve 
encountered in the acquisition of [domain being decomposed]? (b) What has worked 
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for you in surmounting these obstacles? (c) Can you describe a good analogy that 
can help learners understand aspects of the domain?  

In addition, we are planning to elicit more CK information in conjunction with 
explicated procedures. That is, at the conclusion of each “how path,” the experts will 
be specifically probed to flesh out the procedures in terms of their underlying 
rationales. Thus, besides obtaining a listing of steps comprising some procedure, we 
also want to elicit the reasons why they chose to do it that particular way.  

Another important revision to the Decompose module was motivated by our 
findings. That is, on occasion, our experts would input procedural specifications that 
were ambiguous (e.g., Do A or B and C). DNA is now becoming sensitive and 
responsive to instances of ambiguity. As a result, the new version of DNA will 
require the expert to specify “groupings” to render any potentially ambiguous 
procedure or statement more precise (e.g., Do (A or B) and C). Furthermore, DNA 
will also request that the expert think about alternative methods to accomplish the 
same goal. For example, if the expert has specified some conditional statements in a 
procedure, the Decompose module will probe for additional, logical antecedents and 
consequences (e.g., When A does not hold, should one still do B? Are there other 
conditions that can trigger B?). 

In summary, these data provide preliminary information about the efficacy of 
DNA as a knowledge elicitation tool. That is, given limited direction via one 
introductory letter of expectations for the decomposition of the domain and minimal 
guidance in use of the DNA program, experts appear to be able to use the tool 
efficiently to explicate components of their knowledge structures. Moreover, the 
obtained data are, for the most part, consistent with an existing curriculum. Thus we 
are gaining confidence that our tool has potential value as an aid to ITS and adaptive 
e-learning system development. Rather than being discouraged that our overlap was 
“only 62%”, we are encouraged that the results suggest the basic design of DNA is 
feasible. 

5. SUMMARY AND CONCLUSIONS 

This paper describes an ongoing effort to develop DNA, a knowledge-elicitation 
tool to be used by subject-matter experts across a variety of domains. We also 
describe an exploratory test of the effectiveness and efficiency of the program. 
Preliminary results show that DNA can produce reasonably valid and reliable data 
within an acceptable amount of time. This has a direct implication for streamlining 
the intelligent assessment and instructional system development process, often 
viewed as a major obstacle in developing adaptive instructional systems. In addition, 
given these data were obtained from individuals who are not “statisticians” suggests 
that DNA can be used by persons varying in levels of expertise. This also suggests a 
potential avenue for DNA as a research tool investigating knowledge structures of 
people with varying levels of competence in a domain, as well as changes in those 
structures over time. 

There are several key features of DNA that, we believe, make this a viable 
alternative to current, costly knowledge-elicitation techniques. Because DNA 
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supports streamlining portions of the interview, transcription, and organization 
processes, it allowed us to obtain data simply by giving each expert the program 
along with a short letter explaining the goals of the curriculum. The program 
obviates the need for transcribing lengthy interviews. Additionally, experts are able 
to explicate and organize their knowledge within the same elicitation session, which 
translates into expected savings of time and money without sacrificing accuracy. 
This will be examined in future studies.  

DNA’s applicability is enhanced because it elicits, and then allows SMEs to 
represent graphically, a range of knowledge types. Specifically, the Decompose 
module focuses on eliciting three knowledge types: basic, procedural, and 
conceptual (what, how, and why). Additionally, the Network module will ultimately 
be able to produce a conceptual graph that incorporates information from the three 
types of representations mentioned earlier. The result is that the representational 
scheme enables DNA to obtain declarative, procedural, and conceptual information, 
promoting applicability across multiple topics. Heretofore, intelligent instructional 
systems have been built for single outcome types (e.g., production systems for 
procedural knowledge), thus varied knowledge types have been forced into a one-
scheme-fits-all representation. In contrast, typical courses or curricula contain rich 
mixtures of knowledge types. For example, one can know the formula of the 
statistical Mean (BK) but not know how to compute it (PK), or one can be 
unfamiliar with the formula, but know how to compute it. In any case, it makes 
sense to be sensitive to representation differences when initially gathering 
curriculum elements for any course (during the CTA). That is what we are 
attempting to do with DNA via the three interfaces or paths reflecting the three main 
knowledge types.  

Another design feature of DNA is its compatibility with an empirically validated 
instructional framework (i.e., SMART). SMART relies on information present in 
hierarchical-knowledge structures (e.g., parent/child relations) to manage instruction 
and remediation. DNA’s Network module provides the SME with tools to create 
such a hierarchical knowledge structure. In addition, the Decompose module’s what, 
how, and why questions map onto the instructional framework of basic, procedural, 
and conceptual knowledge types embodied by SMART, which relies on these 
knowledge types to provide differential instruction, remediation, and assessment. 
For instance, procedural knowledge is instructed within a problem-solving context, 
while conceptual knowledge may use analogies for instruction. Therefore, DNA’s 
capacity to identify different knowledge types facilitates SMART’s management of 
more customized instruction. 

Our initial question underlying DNA’s design feasibility concerned whether, 
indeed, DNA can extract comprehensive and reasonable knowledge from experts. 
Results from this preliminary evaluation are encouraging. In a relatively short 
amount of time and with minimal resource cost, the Decompose module of DNA 
was able to elicit 62% of the curriculum elements that are in place in an extant tutor. 
This suggests that the general approach implemented by DNA (with all of its 
limitations) works to produce valid data that could potentially serve as the basis for 
curriculum development. Future studies will examine DNA’s efficiency relative to 
standard knowledge elicitation techniques. Additional questions we plan to explore 
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include, among others: (a) Can DNA be used to elicit knowledge across a broad 
range of domains? (b) Is it differentially effective in eliciting basic, procedural, and 
conceptual knowledge elements? and (c) Do differing levels of expertise result in 
data structures that vary in kind, rather than quantity? In short, future research and 
development will focus on identifying where we have and have not succeeded in our 
aim to expedite development of intelligent instructional systems.  
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