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It has long been known that differences among individuals have an effect on learning. Dick
Snow’s research on aptitude—treatment interactions (ATIs) was designed to investigate and
quantify these effects, and more recent research in this vein has clearly established that these ef-
fects can be quantified and predicted. Technology has now reached a point where we have the
opportunity to capitalize on these effects to the benefit of learners. In this article, we review
some of the demonstrated effects of ATIs, describe how ATIresearch naturally leads to adaptive
e-learning, and describe one way in which an adaptive e-learning system might be implemented

to take advantage of these effects.

It is usually and rightly esteemed an excellent thing in a
teacher that he should be careful to mark diversity of gifts in
those whose education he has undertaken, and to know in
what direction nature inclines each one most. For in this re-
spect there is an unbelievable variety, and types of mind are
not less numerous than types of body. (Quintilian, ca. 90
AD.)

Acknowledging the important relation between individual
differences and education has a very long history. However,
simply acknowledging versus systematically testing this rela-
tion are two quite different things. Together with Lee
Cronbach, Dick Snow formalized this interaction, conse-
quently revolutionizing the thinking and researching of hu-
man abilities in the 1970s. Snow’s primary research agenda
focused on how individual differences in aptitudes played out
in different educational settings. This received worldwide at-
tention in the classic book on aptitude—treatment interactions
(ATIs; Cronbach & Snow, 1977).

Snow was steadfast in his belief that the psychology of hu-
man differences is fundamental to education. He also ac-
knowledged that designers of policy and practice often ignore
the lessons of differential psychology by trying to impose a
“one-size-fits-all” solution even though individuals are dif-
ferent. His work sought to change that fact—to promote edu-
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cational improvement for all. This quest, across the years, has
been joined by scores of supporters who have been motivated
by him, either directly—as students and colleagues—or indi-
rectly—through his writings. The first author of this article
was fortunate to have had both direct and indirect Snow influ-
ences for almost 2 decades. And his influence continues, cur-
rently manifest in a research and development stream called
adaptive e-learning.

As e-learning matures as an industry and a research
stream, the focus is shifting from developing infrastructures
and delivering information online to improving learning
and performance. The challenge of improving learning and
performance largely depends on correctly identifying char-
acteristics of a particular learner. Examples of relevant
characteristics include incoming knowledge and skills, cog-
nitive abilities, personality traits, learning styles, interests,
and so on (Shute, 1994; Snow, 1989, 1994). For instruction
to be maximally effective, it should capitalize on these
learner characteristics when delivering content. Instruction
can be further improved by including embedded assess-
ments, delivered to the student during the course of learn-
ing. Such assessments can provide the basis for diagnosis
and subsequent instruction (i.e., presenting more of the
same topic, remediating the current topic, or introducing a
new topic). In short, enhancing learning and performance is
a function of adapting instruction and content to suit the
learner (for an overview on this topic, see Shute, Lajoie, &
Gluck, 2000).
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The effectiveness of e-learning may be gauged by the de-
gree to which a learner actually acquires the relevant knowl-
edge or skill presented online.! This acquisition is generally
regarded as a constructive activity where the construction can
assume many forms; thus e-learning environments should be
flexible enough to accommodate various constructive activi-
ties (see Shute, 1994, for more on this topic). Moreover, indi-
viduals differ in how they learn as well as what they learn, and
different outcomes of learning (e.g., conceptual understand-
ing) reflect differences in general learning processes (e.g., in-
ductive reasoning skill), specific learning processes (e.g.,
attention allocation), and incoming knowledge and skill. The
definition of learning used here is that learning is a process of
constructing relations. These relations become more com-
plex, and at the same time more automatic, with increased ex-
perience and practice. Accurate evaluation of e-learning is a
nontrivial task because it requires both correct measurement
of learning processes and outcomes.

Technology has now advanced to the point where we can
begin to implement laboratory-based adaptive instructional
techniques on the Internet (e.g., differential sequencing of
knowledge and skill learning objects depending on learners’
perceived needs). That is, concurrent advances in cognitive
science, psychometrics, and technology are beginning to
make it possible to assess higher level skills (Hambleton,
1996; Mislevy, Steinberg, & Almond, 1999) and to do so ef-
fectively and efficiently. Furthermore, in contrast with pa-
per-and-pencil multiple-choice tests, new assessments for
complex cognitive skills involve embedding assessments di-
rectly within interactive, problem-solving, or open-ended
tasks (e.g., Bennett & Persky, 2002; Minstrell, 2000;
Mislevy, Steinberg, Almond, Haertel, & Penuel, 2001). This
information can then be used to build and enhance models of
cognition and learning that can further inform and guide the
assessment and instructional design processes.

The story we convey in this article illustrates the natural
evolution of Snow’s research, embodied in adaptive e-learn-
ing environments. We begin laying the foundation by describ-
ing ATI research. This is followed by an overview of specific
components that go into adaptive e-learning systems. We con-
clude with our thoughts on the future of education and training.

APTITUDE-TREATMENT INTERACTION
RESEARCH

Theoretical Basis

Snow approached his research with the combined perspec-
tives of a differential psychologist, experimental psycholo-

lTechnically and generally, e-learning can refer to any learning activity
that largely involves technology for its presentation. We more narrowly de-
fine e-learning as that taking place in front of a computer that is connected to
the Internet.

gist, personality psychologist, and cognitive scientist. Of par-
ticular interest to Snow was the match between individual dif-
ferences and learning environments and how variation in
learning environments elicited or suited different patterns of
aptitudes. Such relations are called aptitude—treatment inter-
actions (ATIs), where aptitude is defined in the broadest
sense as a person’s incoming knowledge, skills, and personal-
ity traits. Treatment refers to the condition or environment
that supports learning (Cronbach & Snow, 1977).

The goal of ATI research is to provide information about
learner characteristics that can be used to select the best
learning environment for a particular student to optimize
learning outcome. Although hundreds of studies have been
explicitly conducted to look for ATIs (especially during the
1960s and 1970s), it has been very difficult to empirically
verify learner by treatment interactions. In the aforemen-
tioned 1977 book on this topic, Cronbach and Snow (1977)
provided an excellent review of ATI research being carried
out during that time. It is obvious from reading their book
now that a major problem with those older ATI studies con-
cerned data “noisiness.” That is, experimental data obtained
from classroom studies contained plentiful, extraneous, un-
controlled variables, such as differing teacher personalities,
instructional materials, and classroom environments. Re-
cently, however, there has been renewed interest in examin-
ing the ATI issue using computers as controlled learning
environments (e.g., Maki & Maki, 2002; Sternberg, 1999).
We now summarize one study where each part of an ATI is
described and measured in a controlled manner.

Empirical Support

Individuals come to any new learning task with (often large)
differences in prior knowledge and skill, learning style, moti-
vation, cultural background, and so on. These qualities affect
whatislearnedinaninstructional setting. For thisexample, we
focus on aparticular learning style measure described in Shute
(1993), namely exploratory behavior, as evidenced during in-
teraction with an intelligent tutoring system (ITS) instructing
principles of electricity. During the course of learning, a stu-
dent’s main goal was to solve progressively more difficult
problems with direct current circuits presented by the ITS.
However, at any given time, he or she was free to do other
things in the environment, such as read definitions of con-
cepts, take measurements on the online circuit, or change com-
ponent values (e.g., voltage source, resistors). All
explorations were optional and self-initiated. To quantify an
individual’s exploratory behavior, proportions were cre-
ated—the ratio of time spent engaged in exploratory behavior
divided by the total time on the tutor. This was necessary to
control for differential tutor completion times, which ranged
from 5 to 21 hr.

In addition to aptitude, the learning environment (i.e.,
treatment condition) may also influence learning outcome.



One way learning environments differ is in the amount of stu-
dent control supported during the learning process. This can
be viewed as a continuum ranging from minimal (e.g., rote or
didactic environments) to almost complete control (e.g., dis-
covery environments). Two opposing perspectives, repre-
senting the ends of this continuum, have arisen in response to
the issue of optimal learning environment for instructional
systems. One approach is to develop a straightforward learn-
ing environment that directly provides information to the
learner; the other requires the learner to derive concepts and
rules on his or her own. The disparity between positions be-
comes more complicated because the issue is not just which is
the better learning environment, but rather, which is the better
environment for what type or types of persons—an ATl issue.
That issue motivated this controlled experiment, and the de-
sign of two environments representing the ends of this control
continuum—rule application and rule induction.

These two environments were created from an ITS that
teaches basic principles of electricity as a complex but con-
trolled learning task. They differ only in the feedback deliv-
ered to the student. For instance, in the rule-application
environment, feedback clearly states the variables and their
relations for a given problem. This was communicated in the
form of a rule, such as “The principle involved in this kind of
problem is that current before a resistor is equal to the current
after a resistor in a parallel net.” Learners then proceeded to
apply the rule in the solution of related problems. In the
rule-induction environment, the tutor provides feedback,
which identifies the relevant variables in the problem, but the
learner must induce the relations among those variables. For
instance, the computer might give the following comment,
“What you need to know to solve this type of problem is how
current behaves, both before and after a resistor, in a parallel
net.” Learners in the rule-induction condition, therefore, gen-
erate their own interpretations of the functional relations
among variables comprising the different rules.

Four posttests measured a range of knowledge and skills
acquired from the tutor, and all tests were administered on-
line after a person finished the tutor.2 The first test mea-
sured declarative knowledge of electrical components and
devices and consisted of both true or false and multi-
ple-choice questions. The second posttest measured con-
ceptual understanding of Ohm’s and Kirchhoff’s laws. No
computations were required, and all questions related to
various circuits. The third posttest measured procedural
skill acquisition. Computations were required in the solu-
tion of problems. The student would have to know the cor-
rect formula (e.g., voltage = current X resistance), fill in the
proper numbers, and solve. Finally, the fourth test measured
a person’s ability to generalize knowledge and skills be-
yond what was taught by the tutor. These problems required

2 . .
We also used four matched pretests that served as covariates in the subse-
quent data analysis.
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both conceptual understanding of the principles as well as
computations.

The experiment involved over 300 paid participants,
mostly men, all high school graduates, 18 to 28 years old, and
with no prior electronics instruction or training. On their ar-
rival, they were randomly assigned to one of the two environ-
ments (rule-application vs. rule-induction), and both versions
permitted learners to engage in the optional, exploratory be-
haviors described previously. Exploratory behaviors were
monitored by the computer and later quantified for post hoc
ATI analysis. Although we hypothesized that the inductive
environment would support (if not actively promote) the use
of exploratory behaviors, results showed no differences
among environments for exploratory behavior. Within each
environment, however, there were wide individual differ-
ences on the exploratory learning dimension.

Learning outcome was defined as the percentage of cor-
rect scores on the four tests, combined into a single “out-
come” factor score. An interaction was hypothesized—that
learners evidencing greater exploratory behavior would learn
better if they had been assigned to the inductive environment,
and less exploratory learners would benefit from the more
structured application environment. Results supported this
hypothesis, showing a significant ATI (see Figure 1).

Implications

What are the ramifications of these findings? If we were able
to map the variety of aptitudes or trait complexes (e.g.,
Ackerman, 1996, 2003) to associated learning environments
or sequences of instructional components, we would be able
to adapt and hence customize instruction for any given
learner. For instance, Ackerman (1996; Ackerman &
Heggstad, 1997) compiled ability—interest, ability—personal-
ity, and interest—personality correlates to support his more
general process, personality, interests, and knowledge the-
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FIGURE 1 Exploratory behavior by learning environment.
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ory. Analysis has refined four cross-attribute (ability—in-
terest—personality) trait complexes: social, clerical-con-
ventional, science—math, and intellectual—cultural. The
psychological importance of these trait complexes is simi-
lar to Snow’s (1991) aptitude complexes (i.e., ability and
interest constellations for classifying educational treat-
ments). In general, the result, subject to empirical verifica-
tion, would undoubtedly be to enhance the effectiveness,
efficiency, and enjoyment of the learning experience. This
is the premise underlying adaptive e-learning, which we
now discuss.

ADAPTIVE E-LEARNING

The key idea to keep in mind is that the true power of educa-
tional technology comes not from replicating things that can
be done in other ways, but when it is used to do things that
couldn’t be done without it. (Thornburg, as cited in National
Association of State Boards of Education Study Group
[NASBE], 2001)

Examples of e-learning on the Internet today are, too often,
little more than lecture notes and some associated links
posted in HTML format. However, as noted in the previous
quote, the true power of e-learning comes from the exploita-
tion of the wide range of capabilities that technologies afford.
One of the most obvious is to provide assessments and in-
structional content that adapt to learners’ needs or desires.
This would comprise an online, real-time application of ATI
research. Other effective technology uses include providing
simulations of dynamic events, opportunities for extra prac-
tice on emergent skills, as well as the presentation of multi-
media options.

The goal of adaptive e-learning is aligned with exem-
plary instruction: delivering the right content, to the right
person, at the proper time, in the most appropriate
way—any time, any place, any path, any pace (NASBE,
2001). We now focus our attention on what would be
needed to accomplish this lofty goal in an e-learning con-
text. Following are the necessary ingredients in an e-learn-
ing system. Each model is briefly introduced, then followed
by a more in-depth description per module.

Components of E-Learning

The content model houses domain-related bits of knowledge
and skill, as well as their associated structure or interdepen-
dencies. This may be thought of as a knowledge map of what
is to be instructed and assessed, and it is intended to capture
and prescribe important aspects of course content, including
instructions for authors on how to design content for the
model. A content model provides the basis for assessment, di-
agnosis, instruction, and remediation. In relation to the ATI

study described earlier, the content model may be likened to
the hierarchical array of knowledge and skills associated with
Ohm’s and Kirchhoff’s laws.

The learner model represents the individual’s knowledge
and progress in relation to the knowledge map, and it may in-
clude other characteristics of the learner as a learner. As such,
it captures important aspects of a learner for purposes of indi-
vidualizing instruction. This includes assessment measures
that determine where a learner stands on those aspects.

The instructional model manages the presentation of ma-
terial and ascertains (if not ensures) learner mastery by
monitoring the student model in relation to the content
model, addressing discrepancies in a principled manner,
and prescribing an optimal learning path for that particular
learner. Information in this model provides the basis for de-
ciding how to present content to a given learner and when
and how to intervene.

Finally, the adaptive engine integrates and uses informa-
tion obtained from the preceding models to drive presentation
of adaptive learning content.

Content Model

The requirements for any content model fall into two catego-
ries: requirements of the delivery system and requirements of
the learning content that is to be delivered. On the delivery
side of the equation, we need a system that is content inde-
pendent, robust, flexible, and scalable. Content independent
means that the system can serve any content that is designed
within the content requirements detailed later in this article.
Robust means that it lives on the Internet and should be capa-
ble of delivering instruction to multiple users concurrently.
Flexible implies adaptivity, requiring different types and se-
quences of content. And scalable means the system can adjust
to increased demands, such as accommodating more compo-
nents, more users, and so on.

On the content side of the equation, the content must be
composed in such a way that the delivery system can adapt
it to the needs of the particular learner. Each content aggre-
gation will need to be composed of predictable pieces, so
that the delivery system can know what to expect. This
means that all of the content served by this delivery system
will have to be built to the same specification. Issues such
as grain size will vary, depending on the purpose or use of
the content.

Learning objects.  Fortunately, the need for content to
be built to the same specifications dovetails nicely with cur-
rent industry research and development associated with
learning objects (e.g., see IEEE LTSC, 2003; IMS Global
Learning Consortium, 2001). What are learning objects? Like
Lego blocks, learning objects (LOs) are small, reusable com-
ponents—yvideo demonstrations, tutorials, procedures, sto-



ries, assessments, simulations, or case studies. However, rather
than use them to build castles, they are used to build larger col-
lections of learning material. LOs may be selectively applied,
either alone or in combination, by computer software, learning
facilitators, or learners themselves, to meet individual needs
for learning or performance support. For example, all of
Thomson NETg’s currently delivered educational content
takes the form of LOs that have been assembled into courses,
where each LO addresses a coherent subset of the educational
objectives of the course.

In current industry practice, LOs are assembled into
courses before the time that they are delivered. The arrange-
ment of these LOs to achieve instructional goals is done during
this assembly. These collections can be specified using the
Sharable Content Object Reference Model (SCORM; Ad-
vanced Distributed Learning, 2001) specification for defining
courses. Among other things, this specification defines a way
to define the structure of a course in a simple, easy-to-author
manner. Because SCORM is agnostic to the nature of the con-
tent, we can easily define the collections described previously.

Although current practice is to assemble the LOs before
the collection is delivered, there is no reason why the LOs
could not be assembled into a structure that would allow an
intelligent adaptive system to reassemble them on the fly to
meet the needs of the particular learner. The rest of this sec-
tion will describe how an LO collection could be specified
such that an adaptive system could present it according to
the needs of the learner. The basic idea involves dividing
the LO collection such that it contains subcollections, each
of which teaches a particular skill or knowledge type. Each
of the subcollections thus contains all of the instructional
components necessary to teach that skill. Using this hierar-
chy, the adaptive system can first decide what needs to be
taught and then decide how to teach it, as we describe in the
following pages.

Knowledge structures. The purpose of establishing a
knowledge structure as part of the content model in any
e-learning system is that it allows for dependency relations to
be established. These, in turn, provide the basis for the follow-
ing: assessment (What’s the current status of a particular topic
or LO?), cognitive diagnosis (What’s the source of the prob-
lem, if any?), and instruction or remediation (Which LOs need
to be taught next to fix a problem area or present a new topic?).

Each element (or node) in the knowledge structure may be
classified in terms of different types of knowledge, skill, or
ability. Some example knowledge types include

* Basic knowledge (BK): This includes definitions, exam-
ples, supplemental links (jpgs, avis, wavs), formulas, and so
on, and addresses the What part of content.

* Procedural knowledge (PK): This defines step-by-step
information, relations among steps, subprocedures, and so
on, and addresses the How part of content.
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e Conceptual knowledge (CK): This refers to relational
information among concepts and the explicit connections
with BK and PK elements, draws all into a “big picture” and
addresses the Why part of content.

Restricting a node in the knowledge structure (again, note
that each node has an associated collection of LOs) to a single
knowledge type helps ensure the course is broken down to an
appropriate grain size, by limiting the scope of what can be in
any single node. This restriction also suggests different strat-
egies for the authoring of instruction and assessment: Differ-
ent knowledge types require different strategies. We suggest
the following guidelines (for more on this topic, see Shute,
1995): BK instruction should involve the introduction of new
definitions and formulas in a straightforward, didactic man-
ner, whereas BK assessment relates to measuring the
learner’s ability to recognize or produce some formula, basic
definition, rule, and so on. PK instruction should occur within
the context of experiential environments where the learner
can practice doing the skill or procedure (problem solving),
whereas PK assessment relates to the learner’s ability to actu-
ally accomplish some procedure or apply a rule, not simply
recognize those things. Finally, CK instruction typically oc-
curs after the learner has been presented with relevant base in-
formation (BK-PK), and then the big picture may be
presented, either literally or via well-designed analogies, case
studies, and so on. CK assessment refers to a learner being
able to transfer BK and PK to novel areas, explain a system or
phenomenon, predict some outcome, or strategize. The out-
come tests described earlier in relation to the electricity tutor
study exemplify each of these outcome types.

A simplified network of nodes and associated knowledge
types is shown in Figure 2. Each node has an associated col-
lection of LOs that teach or assess a certain component of a
concept or skill. In summary, we posit different knowledge
types associated with their own special way of being in-
structed and assessed. So now the questions are: How do we
optimally assess and diagnose different outcome types, and
what happens after diagnosis? Before answering those ques-
tions, we now present the learner model—the repository of
information concerning the learner’s current status in relation
to the various LOs (i.e., domain-related proficiencies).

Learner Model

The learner model contains information that comes from as-
sessments and ensuing inferences of proficiencies. That in-
formation is then used by the system to decide what to do
next. In the context of adaptive e-learning, this decision re-
lates to customizing and hence optimizing the learning expe-
rience. Obviously, a critical component here is the validity
and reliability of the assessment. One idea is to employ what
is called the evidence-centered design approach (e.g.,
Mislevy, Steinberg, & Almond, 1999) to assessment. This al-
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FIGURE 2 Sample knowledge hierarchy.

lows an instructional designer (or whomever) to (a) define the
claims to be made about the students (i.e., the knowledge,
skills, abilities, and other traits to be measured), (b) delineate
what constitutes valid evidence of the claim (i.e., student per-
formance data demonstrating varying levels of proficiency),
and (c) create assessment tasks that will elicit that evidence.
Evidence is what ties the assessment tasks back to the
proficiencies, and the entire process is theory driven, as op-
posed to a more common data- or item-driven manner.

Assessing the learner.  The first issue concerns just
whatis to be assessed. There are actually two aspects of learn-
ers that have implications for adaptation: (a) domain-depend-
ent information—this refers to knowledge assessment via
pretest and performance data to allow the system to initialize
a learner model in relation to content and LOs, eliminate
those already “known,” and focus instruction or assessment
(or both) on weak areas; and (b) domain-independent infor-
mation—this relates to learner profile data (e.g., cognitive
abilities or personality traits) and allows the system to pick
and serve optimal LO sequences and formats.

Assessing specific learner traits indicates particular kinds
of content delivery in relation to either differential sequenc-
ing of topics or providing appropriate, alternative formats and
media. In relation to differential sequencing, a typical, valid
instructional system design sequence consists of these steps:
(a) Present some introductory material, (b) follow with the
presentation of a rule or concept, (c) provide a range of illus-
trative examples, (d) give liberal practice opportunities, and
(e) summarize and call for reflection. Thus, across topics, one
general sequencing rule may be to serve easier topics before
more difficult ones. And within a topic, a general rule may be
the default delivery of certain LOs: introduction, body (rule
or concept, followed by examples), interactivity (explora-
tions, practice, and explicit assessments of knowledge or
skill), and reflection (summary).

Alternatively, suppose you knew that an individual was
high on an inductive reasoning trait. The literature (e.g.,

Catrambone & Holyoak, 1989) has suggested that those
learners perform better with examples and practice preceding
the concept. On the other hand, learners with low inductive
reasoning skills perform better when the concept is presented
at the outset of the instructional sequence. This has direct im-
plications for the sequencing of elements within a given topic.

Now, consider a learner assessed as possessing low work-
ing memory capacity. One instructional prescription would
be to present this individual with smaller units of instruction
(Shute, 1991). And going back to our example at the begin-
ning of this story (depicted in Figure 1), an individual pos-
sessing an exploratory learning style suggests a less
structured learning experience compared to a person with a
less exploratory learning style (Shute, 1993).

In Figure 3, we can see how the parts come together (modi-
fied from Quinn, 2001). The bottom row of the figure shows
the typical way of serving content based on inferred gaps in a
learner’s knowledge structure. This is also known as
microadaptation, reflecting differences between the learner’s
knowledge profile and the expert knowledge structure em-
bodied in the content model. “Instructional rules” then deter-
mine which knowledge or skill element should be selected
next (i.e., selecting from the pool of nonmastered objects).
The top row shows an additional assessment, representing an-
other way to adapt instruction based on learners’ cognitive
abilities, learning styles, personality, or whatever else is
deemed relevant. This is also known as macroadaptation and
provides information about how to present the selected
knowledge or skill chunk.

Instructional Model

There are several general and specific guidelines for system-
atic approaches to instructional design, such as those de-
scribed by Robert Gagné. But how do we progress from
guidelines to determining which LOs should be selected, and
why? To answer this question, after delineating the guide-
lines presented in Gagné’s (1965) book entitled The Condi-



tions of Learning, we describe a student modeling approach
that implements some of these instructional ideas within the
context of an ITS.

The following represents an abridged version of Gagné’s
“events of instruction” (see Kruse, 2000), along with the cor-
responding cognitive processes. These events provide the
necessary conditions for learning and serve as the basis for
designing instruction and selecting appropriate media
(Gagné, Briggs, & Wager, 1992). We include them here as
they offer clear, obvious guidelines for designing good
e-learning environments.

Gain the learner’s attention (reception).

Inform the learner of the objectives (expectancy).
Stimulate recall of prior learning (retrieval).
Present the learning stimulus (selective perception).
Provide learning guidance (semantic encoding).
Elicit appropriate performance (responding).
Provide feedback (reinforcement).

Assess the learner’s performance (retrieval).
Enhance retention and transfer (generalization).

WA s W=

Applying Gagné’s (Gagné, Briggs, & Wager, 1992)
nine-step model to an e-learning program is a good way to fa-
cilitate learners’ successful acquisition of the knowledge and
skills presented therein. In contrast, an e-learning program
that is replete with bells and whistles, or provides unlimited
access to Web-based documents, is no substitute for sound in-
structional design. Although those types of programs might
be valuable as references or entertainment, they will not max-
imize the effectiveness of information processing or learning.

In addition to the specific prescriptions mentioned previ-
ously, there are a few key presumptions and principles for in-
structional design that should be considered when designing
an e-learning system. In general, these include the following:

Learner Model

Learning > Individual
Profile Learner
Profiles
——
Knowledge > Individual
Assessment Knowledge
Profiles

Tutoring Model

Adaptive
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Knowledge is actively constructed, multiple representations
for aconcept or rule are better than a single one, problem-solv-
ing tasks should be realistic and complex, and opportunities
for learners to demonstrate performance of activities promot-
ing abstraction and reflection should be provided.

In terms of the relevant features of the adaptive system,
this means several things. First, the activities presented to the
student should involve the creation and manipulation of rep-
resentations. If the student is expected to have a mental model
that corresponds to the representation, he or she needs to be
actively involved in the creation or manipulation of the repre-
sentations.

Second, the content should be designed with multiple rep-
resentations for a concept or a rule. This serves two purposes:
It allows the adaptive engine (described later) to provide the
student with the single representation that best matches the
student’s aptitude profile, while simultaneously giving the
engine additional representations to present in the event that
the student fails to master or acquire the topic the first time.
These multiple representations should include different vi-
sual representations (textual vs. graphical, or different graph-
ical representations of the same concept) as well as different
styles of conceptual explanation.

Third, the student should be provided with a final learning
activity that encourages reflection and integration of the
knowledge learned into the body of knowledge as a whole.
Finally, the system should incorporate enough support and
help so that the student can spend time learning the material
and not the system. This is simply to ensure that as much of
the student’s cognitive effort as possible goes into learning
the material being presented, and not into learning the system
that is doing the presenting.

How do we move from these general and specific guide-
lines to determining which learning object or objects should
be selected, and why? One solution is to employ something

Content Model

Adaptation

Learnin
Rules £

Object
/ Server

Engine

Knowledge
Structures

Instructional
Rules

FIGURE 3 Learning management system framework including two types of assessments.
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like Student Modeling Approach to Responsive Tutoring
(SMART; Shute, 1995), a principled approach to student
modeling. It works within an instructional system design
where low-level knowledge and skill elements are identified
and separated into the three main outcome types previously
mentioned (i.e., BK, PK, CK). As the student moves through
an instructional session, LOs (i.e., the online manifestations
of the knowledge and skill elements) are served to instruct
and assess. Those knowledge elements showing values below
a preset mastery criterion become candidates for additional
instruction, evaluation, and remediation, if necessary.
Remediation is invoked when a learner fails to achieve mas-
tery during assessment, which follows or is directly embed-
ded within the instructional sequence.

SMART includes capabilities for both micro- and
macroadaptation of content to learners, mentioned earlier,
and is based on a distinction originally made by Snow (1989).
Basically, microadaptation relates to the domain-dependent
learner model (i.e., the individual knowledge profile in Figure
3) and is the standard approach, representing emerging
knowledge and skills. In this case, the computer responds to
updated observations with a modified curriculum that is mi-
nutely adjusted, dependent on individual response histories
during instructional sessions. Macroadaptation refers to the
domain-independent learner model (i.e., the individual
learner profile in Figure 3), representing an alternative ap-
proach. This involves assessing students prior to as well as
during their use of the system, focusing mainly on general,
long-term aptitudes (e.g., working memory capacity, induc-
tive reasoning skill, exploratory behavior, impulsivity) and
their relations to different learning needs.

An alternative approach to student modeling includes us-
ing Bayesian inference networks (BINs) to generate estimates
of learner proficiencies in relation to the content (e.g.,
Mislevy, Almond, Yan, & Steinberg, 1999). Boththe SMART
and BIN approaches are intended to answer the following
questions: (a) What is the learner’s current mastery status of a
topic, and (b) what is the nature and source of the learner’s
problem, ifany? Typical ways of evaluating success (e.g., pass
or fail, or correct solution of two consecutive problems) do not
offer the degree of precision needed to go beyond assessment
into cognitive diagnosis. Both SMART and BINs provide
probabilistic mastery values associated with nodes or topics
(regardless of grain size). Withregard to the instructional deci-
sion about what should subsequently be presented, the knowl-
edge structure, along with an indication of how well alearning
objective is attained, informs the adaptive engine of the next
recommended bit or bits of content to present.

Adaptive Engine
Given the content model, the learner model, and the instruc-

tional model, the fundamentals of the adaptive engine are
fairly simple. The first step involves selecting the node (topic)

to present, based on a diagnosis of the student’s knowledge
needs. The next step involves deciding which LO or LOs
within that node to present, sequenced or flavored according
to the characteristics and needs of the particular learner. The
presentation of LOs is continued until the student has mas-
tered the topic or node, and the node selection process is then
repeated until all nodes have been mastered.

Although this is a fairly simple overview, the actual pro-
cess is obviously more complicated. We will examine each
part of the process (selecting a node, and then presenting the
content within the node) separately.

In our solution, selecting a node, in the general case, is a
fairly simple exercise; the engine can simply choose from the
pool of nodes that have not been completed and whose pre-
requisites have been mastered. However, one additional fea-
ture of our structure is that a pretest can be generated on the
fly, and assessment can incorporate a sequencing algorithm.

Recall that the LOs in each node have been categorized by
their role in the educational process, and the authoring guide-
lines have restricted each learning object to a single role only.
Because of this, for any collection of nodes, the system can
create another collection of nodes that contains only the as-
sessment tasks from the original collection. Presenting this
new collection functions as a pretest. If the student passes the
assessment without any presentation, he or she is presumed to
have already mastered the associated content.

When the engine is presenting objects relating to a particu-
lar node, it uses a set of rules to drive the selection of individ-
ual LOs for presentation to the student. These rules examine
the information contained in the student model, the student’s
interaction within the node so far, and the content model of
each individual LO contained within the node. Using this in-
formation, the rules assign a priority to each LO within the
node. Once the priority of every LO has been calculated
(which occurs almost instantly), the LO with the highest pri-
ority is delivered to the student.

As an example of how this works for instructional objects,
consider the following. An initial arbitrary weighting is as-
signed to every LO in the node. One rule states that if the stu-
dent’s interaction with the node is empty (i.e., the student is
just beginning the node), then decrease the priority of every
LO except those which fulfill the role of “introduction.” This
rule ensures that the default sequence provides for an intro-
duction-type LO to be presented at the beginning of an in-
structional sequence. On the other hand, consider a learner
who prefers a more contextualized learning experience, such
as a learner characterized as very concrete and experiential.
To handle that case, there is a rule that states that if the learner
is “highly concrete” and “highly experiential,” and if the
learner’s interaction with the node is empty, then increase the
priority of associated assessment-task LOs. If the learner is
not concrete and experiential, then the second rule has no ef-
fect; however, if he or she is, then the second rule overrides
the first, and the learner sees an assessment task at the begin-
ning of the instructional sequence.



The remaining rules work in an analogous fashion. That s,
each one examines a set of conditions that has an associated
instructional prescription and adjusts priorities on the appro-
priate LOs. Working together, all of the rules serve to provide
the instructionally correct learning object for the student at
every point of the student’s interaction with the node.

One issue that should be addressed concerns the accuracy
of the rule set: designing it such that it provides a natural and
effective learning experience regardless of learner
characteristics. One way to accomplish this is by using the
techniques of genetic programming (GP; Koza, 1992) to im-
prove the performance of the rule set. Research has shown
that this technique is applicable to the design of rules for
rule-based systems (e.g., Andre, 1994; Edmonds, Burkhardt,
& Adjei, 1995; Tunstel & Jamshidi, 1996). The general idea
is to treat each individual rule set as a single individual in the
population of algorithms; the rule sets can then be evolved ac-
cording to standard GP methods.

For our purposes, the interesting feature of GP is that it
turns a design task (create a rule set that treats learners effec-
tively) into a recognition task (determine how well a given
rule set performs at treating learners). We believe that a large
sample of learner data can be used to evaluate a learner’s po-
tential experience with a given rule set, and this can be used as
the basis of the evaluation function that drives the GP ap-
proach. Further, we believe that the combination of hu-
man-designed rules with computer-driven evolution gives us
a high likelihood of success and avoids many of the risks in-
herent in rule-based systems.

CONCLUSION

There are many reasons to pursue adaptive e-learning. The
potential payoffs of designing, developing, and employing
good e-learning solutions are great, and they include im-
proved efficiency, effectiveness, and enjoyment of the learn-
ing experience. In addition to these student-centered instruc-
tional purposes, there are other potential uses as well, such as
online assessments. Ideally, an assessment comprises an im-
portant event in the learning process, part of reflection and
understanding of progress. In reality, assessments are used to
determine placement, promotion, graduation, or retention.
We advocate pursuing the ideal via online diagnostic assess-
ments. As Snow and Jones (2001) pointed out, however, tests
alone cannot enhance educational outcomes. Rather, tests can
guide improvement—presuming they are valid and reli-
able—if they motivate adjustments to the educational system.
There are clear and important roles for good e-learning pro-
grams here.

However, and as mentioned earlier, the current state of
e-learning is often little more than online lectures, where edu-
cators create electronic versions of traditional printed student
manuals, articles, tip sheets, and reference guides. Although
these materials may be valuable and provide good resources,
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their conversion to the Web cannot be considered true teach-
ing and learning. Instead of the page-turners of yesterday, we
now have scrolling pages, which is really no improvement at
all. Adaptive e-learning provides the opportunity to dynami-
cally order the “pages” so that the learner sees the right mate-
rial at the right time.

There are currently a handful of companies attempting to
provide adaptive e-learning solutions (e.g., see
LearningBrands.com, AdaptiveTutoring.com, and Learning
Machines, Inc.). Further, adaptive e-learning has become a
rather hot topic in the literature recently (Nokelainen, Tirri,
Kurhila, Miettinen, & Silander, 2002; Sampson,
Karagiannidis, & Kinshuk, 2002). However, many of these
are not concerned with adaptive instruction at all; rather, they
are concerned with adapting the format of the content to meet
the constraints of the delivery device, or adapting the inter-
face to the content to meet the needs of disabled learners. Of
those that are concerned with adaptive instruction, most tend
to base their “adaptivity” on assessments of emergent content
knowledge or skill or adjustments of material based on
“learner styles”—Iess suitable criteria than cognitive abilities
for making adaptive instructional decisions.

We believe that the time is ripe to develop e-learning sys-
tems that can reliably deliver uniquely effective, efficient,
and engaging learning experiences, created to meet the needs
of the particular learner. The required ingredients in such a
personalized learning milieu include rich descriptions of con-
tent elements and learner information, along with robust,
valid mappings between learner characteristics and appropri-
ate content. The result is adaptive e-learning, a natural exten-
sion of Snow’s considerable contributions to the field of
educational psychology.
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