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INTRODUCTION

The purpose of this chapter is to provide a survey of the current
state of knowledge regarding human- and computer-based
instruction within . individualized and group approaches to
training. A few of the questions we address include: What is
individualized training?; what are some of the ways it is
achieved by humans and, by computers?; and how does com-
puterized instruction affect learning outcome and efficiency in
relation to traditional classroom approaches? Also, what does
group training refer .to, what are some of the effective ap-
proaches and Vanables and how can it be done better?

Tolend a sense of coherence to this endeavor, and to make
the chapter more useful to those with an applied orientation to
training, we have mcluded 'summary tables at the end of each
major section. These tables provide the most specific training
recommendations - we can offer, given the literature that was
reviewed and included. herein. The reader should keep in
mind, however, that all such recommendations are constrained
by the fact that each study was based on empirical research
conducted within:a_specific context, involving a distinct do-
main, and using particular materials, technologies, and tech-
niques. Thus, generahzauons of ﬁndmgs to new settings should
be made with caunon We _ felt. obhged to_provide explicit
Suggestions, but they should be viewed as handy gmdelmes
rather than umversally apphcable laws of trammg. More gen:
enal decision rules are currently 1mp0551ble there a sxmply

100 many variables that have not yet been systematxcally exam-,

SR

ined, either singly or interactively.”
Many of the subsections in this chapter could easily have

been expanded into stand-alone chapters. In attempting to
cover the most significant topics related to individualized and
group training within our space limitations, we made an ex-
plicit decision to strive for breadth of coverage, occasionally at
the expense of depth. Where this is the case, we provide
appropriate references, so that readers can readily obtain more
detailed. information. about- technical terrnmology, constructs,
studies, theories, or training approaches. We have, neverthe-
less, clearly noted in the body of this chapter certain key areas
that cry out foran mvesngauve mmd or two to travel down their
paths.

OUTLINE OF THE CHAPTER

We begin with a brief section devoted to defining a few impor-
tant terms. The remainder of the chapter is organized into four
major sections. The first section provides an overview of issues
related to adaptive instruction. The discussion includes two
specific types of instructional adaptation and three different
approaches to adaptive training. We review the relevant litera-
ture on each approach and provide illustrative studies, where
appropriate. The second section of the chapter covers individ-
ualized training. It begins with a subsection describing indi-
vidual-differences research, as it relates to the major compo-
nents of contemporarylearning and instructional theory. We
also compare the relative effects of human- and computer-
delivered instruction on individualized training. The third
major section in- thls chapter, reviews issues and approaches
surroundmg group training (e.g., collaborative training envi-
onments, Social’ constructmsm) It includes a review of the

literature related to group dynamxcs the identification of vari-
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ables influencing how well a group interacts, as well as the
relationships among those variables. We conclude this section
with a discussion of computer-delivered instructional systems
for groups of trainees. A fourth section presents important
issues that should be considered when designing a training
curriculum. Some of the topics found there address relation-
ships among the task, training goals, and training approach, as
well as the role of the teacher or trainer. We end with some
concluding thoughts and sample attempts at using the re-
search presented within this chapter to make informed deci-
stons about maximizing training.

DEFINITION OF KEY CONCEPTS

Researchers and practitioners in different fields (and occasion-
ally those in the same field) use terms that can have more than
one meaning. For instance, within the field of psychology, a
psychometrician construes the concept of “individual differ-
ences” as persistent and measurable aptitudes that distinguish
groups of people. These aptitudes may then be used to predict
performance on some learning task, with the focus on the
differences. But for a designer of computer-assisted instruction,
“individual differences” refers to the degree and rate to which
an individual transforms from a novice to an expert. Here, the
focus is on the individual. Finally, to an experimental psychol-
ogist, "individual differences” are often construed as noise, and
the goal is to attenuate them. To standardize terms used in this
chapter that are potentially subject to multiple interpretations,
we begin by specifying exactly how we define important con-
cepts, including education and training, instruction, individual
differences, and learning.

Education and Training

These two terms are sometimes used interchangeably, but most
teachers and trainers would agree that a distirction is important
when speaking precisely. Although Tobias and Frase have al-
ready addressed this distinction in the introductory chapter, we
feel it is beneficial to share our own working definitions of the
two terms as they relate to this particular chapter. We define
education as a systematic program of instruction with the goal
of instilling knowledge about some domain(s) in an individual
or group. Training, on the other hand, refers to a systematic
program of instruction with the goal of enhancing the profi-
cieney of an individual or group in relation to some skilled
endeavor. Although education and training both impart knowl-
edge and skill, the proportion of imparted knowledge is higher
for education, and the proportion of imparted skill is higher for
training. Thus, the difference between the two should be con-
sidered a continuum, rather than a dichotomy. One way to
make the distinction more concrete is to answer the following
question: Would you prefer that your child participated in sex
education or sex training courses at school?

Instruction

The astute reader is likely to have noted that the term “instruc-
tion” was used, seemingly synonymously, in the definitions of
both education and training. This reflects the nature of the term
itself, in that we consider it to be universally applicable within

any systematic attempt to impart skill or knowledge to another
person. The particular “flavor” of a given instructional effor
determines whether it is education or training that is taking
place.

Individual Differences

You will see occasional references throughout this chapterto
two different aspects of the individual differences construct:
“petween” (inter) and “within” (intra). Interindividual differ
ences relate to aptitude disparities among persons (e.g, in
intelligence, spatial skills, perceptual abilities), as well as other
differences related to demographic variables, such as differ
ences in prior experience or education. When the term “indi
vidual differences” is used by itself, it is this definition thatis
typically meant. For instance, “There were great individul
differences among trainees’ educational and socioeconomic
backgrounds.” Intraindividual differences research examines
changes that transpire within a person as he or she progresses
from novice to expert in acquiring some knowledge or skil.
Issues here relate to an individual’s learning ability—his or her
personal learning curve. Intraindividual changes may refer ©
the progression of one’s conceptual understanding or proce-
dural skill over time, as well as to fluctuations in performance
related to diurnal variations in motivation, affect, and so on.
Later in this chapter, we argue that both inter- and ir
traindividual differences should be considered when designing
instruction for training purposes.

Learning

The effectiveness of education or training may be gauged by
the degree to which a learner acquires relevant knowledge of
skill. This acquisition is generally regarded as a constructive
activity where the construction can assume many forms. Indi
viduals differ in how they leam (processes) as well as what
they leamn (outcomes). Bower and Hilgard (1981) have sum
marized the process/outcome relationship “as a process is ©0
its result, as acquiring is to a possession, as painting is 104
picture” (p. 1). But painters differ—they have diverse expef-
ences, use different painting techniques and, given the same
canvas and palette, will produce quite different pictures. The
same is true for learners; different outcomes of learning (e8:
declarative knowledge) reflect differences in general leaming
processes (e.g., associative learning skills), specific leaming
processes (e.g., attention allocation), and incoming knowl-
edge and skill. Thus, the operational definition of leaming
used in this chapter is that learning is a process of construct
ing relations, and these relations become progressively mor
complex, and at the same time more automatic, with i
creased experience and practice.

The processes of learning may be viewed from either of
the two perspectives discussed above, namely, inter- of i
traindividual differences. The perspective depends 0f
whether one is interested in group differences (e.g., for pr&
diction and classification purposes) or in individual develop
ment (e.g., for mastery learning and adaptive instruction):
The nature of learning also has different perspectives, repr
sented by situated cognition and the traditional informatiot
processing model. Greeno (1998) contends that learning o¢
curs within systems in which people interact with each othet




and with material, informational, and conceptual resources in
their environments. The basic premise is that learning in-
volves socially-organized activities. In contrast, Anderson, Re-
der, & Simon (1996,.1998) represent the information-process-

ing view and rebut this situated notion of learning:.

“Presumably, the Sitﬁated view would correspondingly not
deny that there are individuals interacting in all situations,
that these individuals have minds, that much of their individ-
ulity comes from the' (socially and individually acquired)
knowledge contained in those minds, and that they are not
just cogs in a social wheel” (1996, p. 20). From Anderson et
als perspective, progress in understanding the social aspects
of leamning can be made by analyzing the social situation into
relations among a-number of individuals and to study the

mind of each 1nd1v1dual and how it contributes to the interac-
tion.

The position on learning adopted in this chapter is interme-
diate between the two perspectives just described. We see at
least three main elements in a unified theory of learning and
instruction: (1) analysis of the initial state of knowledge and
skill; (2) description of the desired or end state of knowledge
and skill (learning oiitcome) and (3) explanation of the learn-

ing processes that serve to transition-a leamer from- mmal to

desired state accomphshed in an instructional setting (see Fig-
ure 7-1). A fourth component, the specific collection of tech-

niques and materials used in any particular mstructxonal treat-»
ment, is sometimes included in such models (Glaser, 1976 :

Glaser & Bassok, 1989; Snow 1989) It is not found in Frgure 7-1

because the figure is meant to represent only the characteristics a

of, and changes within, the learner, Intenndmdual differences
inlearning arise from dlsparmes among leamers on any one of
the initial knowledge and-skill components, whereas in-
traindividual differences address how a person makes the tran-

sition from the initial to the final state. A more detailed explana-»
tion of this figure can be found ina subsequent sectlon of thrs?

chapter, “Individualized Trammg "y

ADAPT]\'fé" INSTRUCTION -

Asimple and mtultlvely plausrble precept that has been around"
for many years is that’ some learners beneﬁt from 1nstruct10n‘

provided one way while others learn more if mstructed a differ
ent way. Adaptive instruction refers to the real-tl e modrﬁca
tion of the mstructronal curnculum learnmg envrronment or

training regimen to suit d1fferent student characteristics. This -

has been a persistent goal ‘among educators (Bloom, 1968;

Como & Snow, 1986; Cronbach & Snow, 1977; Regian & Shute,”
1992a; Tobias, 1989). In fact, the idea that teaching is best
accomplished by tarlonng mstructlon to student traits is quite

ancient. The idea is described in the fourth-century B.c. Chinese
XueJi, in the ancient Hebrew Haggadah of Passover, and in the
first century Roman De Institutione Oratoria (Snow & Yalow,
1982). Instruction may be altered macroadaptively or mi-
Croadaptively, or both, depending on whether the decision is

ing made in response to unique characteristics of a single
leamer (e.g., unfamiliarity with a particular component skill) or
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to trait characteristics that are known to interact with certain
instructional techniques to influence training outcomes.

-Macroadaptive instructional decisions occur before training
actually begins (see Shute, 1993a and Snow, 1992 for more on
this .topic). Macroadaptation involves first collecting trait data
(e.g., cognitive ability data) on the target learner(s), then using
that information to make an informed decision regarding the
type of instructional environment best suited to those charac-
teristics. For instance, a common empirical finding is that high-
cognitive-ability learners thrive in an exploratory environment,
whereas low-ability learners need the structure of a more
didactic environment to facilitate the acquisition of knowledge
and skills. If you know where a trainee or group of trainees falls
along the cognitive-ability continuum, you can place themina
more appropriate environment from the start. Virtually any
stable characteristic of a learner can be used as the basis for
such informed decisions, provided the empirical data are avail-
able regarding how that characteristic is likely to impact learn-
ing in particular types of environments.

Microadaptive instruction occurs during the training pro-
cess. Microadaptation typically involves alterations in what is

presented in the curriculum, as opposed to how it is presented. .

These decisions are made based on assessments of students’
current states of knowledge and skills acquisition, compared

with' the level they should have achieved when training is -

complete. Where the student is lacking knowledge, the material
"1s instructed, or perhaps it is instructed again. Material on
Y hrch the student has an adequate level of expertise is either
... not instructed at all; or the student is allowed to move on past
that information to a new part of the curriculum. Note that, like
macroadaptanon" . ‘m1croadaptanon can be employed with
groups of tramees as well as with individuals.

These two mstructronal adaptatton approaches can be used

" singly, together, or not at all in any given training effort. They

>are not inherently a part of either group or individualized

instruction. However, one would expect to lose the potential

" benefits of individualized tutoring if the training were not tai-

" lored in some way to the characteristics of the learner. Instruc-

“tional adaptations are also not necessarily part of a human

tutor’s training regimen, but most experienced human: tutors
_ perform both almost instinctively.

-Three specific and interrelated streams of research have
‘addressed the instructional adaptation issue: aptitude-treatment
interactions (ATD), mastery learning (ML), and intelligent tu-
toring systems (ITS). The main idea underlying all three ap-
: proaches is that teaching is best accomphshed when instruction
is tailored to individual learnérs, and each approach has empiri-
cal support indicating that carefully adapted instruction is supe-
rior to conventional instruction. The first of the three individual-
ized training approaches to be discussed will be ATI research,
which focuses on stable interindividual differences, and may be
employed in the context of “macroadaptive modeling.” This
involves assessing students’ knowledge and skill prior to train-
ing and relates to general, long-term aptitudes. The point of ATI
research is to derive decisions about what kinds of learner
aptitudes are better suited to which kinds of training environ-
ments. Next, we will define and discuss mastery learning. The
presumption is that anyone can be elevated to “mastery” of
some knowledge or skill given personalized instruction, where
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source: Adapted from “Learning processes and learning outcomes,” by V.]. Shute, 1994, in T. Husen and T. N. Postlethwaite (Eds.),
International encyclopedia of education (2nd Ed.) (pp. 3315-3325). New York: Pergamon.

instruction is dependent on one’s individual response history
demonstrated during the training session. Third, ITS research,
like mastery learning, usually examines intraindividual differ-
ences, and these systems typically employ “microadaptive
modeling” techniques. Microadaptive modeling focuses pri-
marily on evolving student knowledge and skill acquisition that
is specific to the task domain.

We deliberately covered approaches to adaptive instruction
as a section separate from the discussion of individualized and
group approaches, since ATI, ML, and ITS approaches can be
applied in either setting. Additionally, it is possible to combine
these approaches during group training. For instance, one
could pull a particular trainee out of a small group to interact
one-on-one with an ITS in order to hone a particular skill or
expand a deficient knowledge base, then return him or her to
the group as a more able learner and valued participant.
Whether the specific application of these techniques is occur-

ring at the group or individual level is determined by the level at
which assessment and remediation take place.

APTITUDE-TREATMENT INTERACTIONS

ATI research reflects the notion that many kinds of leamer
characteristics (e.g., incoming knowledge, skills, and affective
measures) affect what is learned in an instructional setting. The
question of the optimal training environment for different kinds
of persons is a classic aptitude-treatment interaction issue
(Cronbach & Snow, 1977).

To employ ATI methods, one must make certain critical
decisions. For instance, what aptitudes should be measured
before training, which treatment variables should be manipu-
lated, what learning indicators should be recorded to measure
learning progress, and what learning outcome and efficiency
measures should be used? The learning skills taxonomy devel-
oped by Kyllonen and Shute (1989) can assist in rendering
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principled answers to some of these questions. This taxonomy
is defined by four dimensions: the subject matter, learning/
inining environment, desired knowledge outcome, and learner
atributes. Interactions among these dimensions are believed to
influence outcome performance, so that no single type of train-
ing environment is best for all persons. Rather, certain learner
characteristics are better suited to specific kinds of environ-
ments to achieve optimal outcome performance (see Shute,
19923, 1993a, 1993b, Shute & Glaser, 1990; Tobias, 1989, 1994).
In addition, some domains lend themselves more readily to
certain kinds of outcomes than to others. For instance, non-
quantitative fields such as history emphasize propositions,
whereas quantitative fields such as calculus focus on proce-
dures. And finally, knowledge outcomes covary with instruc-
tional method: propositions are more commonly learned by
note and procedures are more commonly learned by practice
(Kyllonen & Shute, 1989). We will now illustrate ATI findings
fom two studies, both of which resulted in decision rules
concerning placement of various kinds of learners within differ-
ent kinds of training environments.

ATl Example 1

The first study (Shute, 1993a) investigated learning from a flight
engineering tutor and the potential impact of two different
raining environments (abbreviated versus extended practice
conditions or few versus many practice problems) to solve per
arriculum element. Approximately 370 subjects participated in
the study, randomly assigned to one of the two practice condi-
tions. All subjects were obtained from a temporary employment
agency, and were paid for completing the study. None of the
subjects had any formal training or experience with the subject
matter instructed by the tutor. There was no main effect on
leaming outcome due to training environment, but a significant
dptitude-treatment interaction was reported between an apti-
ude profile and treatment condition (see Figure 7-2). The
iptitudes assessed within this study were measured with the
CAM 4.0 battery of on-line cognitive ability tests (Kyllonen et
4., 1990). These tests measure working-memory capacity, in-
i[f)rmalion-processing speed, inductive reasoning, associative
leaming, procedural learning, and general knowledge in ver-
bal, Quantitative, and spatial domains.

Subjects with a lot of general knowledge (GK) but low
working-memory (WM) capacity learned significantly more if
#ssigned to the abbreviated rather than the extended training
fondition. Their broad GK provided a foundation that allowed
o the extraction and interweaving of information from rela-
lively few exemplars, and their low WM capacities were not
txed within the abbreviated environment. However, these
“me subjects, assigned to the extended practice condition,
performed poorly, probably due to boredom, fatigue, and/or
Working memory overload. The other type of subject was char-
“erized by high WM and low GK. These subjects learned
fore from the extended than the abbreviated practice condi-
“on. That is, they had the capacity as well as the knowledge
teeded 10 profit from the extra practice afforded by the ex-
nded condition. The abbreviated condition appeared to be
:’;‘uumdent for these learners to learn the relevant principles.

biects who were characterized as being (1) high WM, high
6K and (2) low WM, low GK performed well and poorly on the
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source: Adapted from “A macroadaptive approach to tutoring” by
V.. Shute, 1993, Journal of Artificial Intelligence and Education, 4(1),
61-93.

outcome measures, respectively, and regardless of treatment
condition.) This finding suggests that individuals characterized
by specific aptitude profiles are differentially suited to specific
training environments. In practical terms, one use of the
macroadaptive approach involves a priori assessment of
learners’ WM and GK, then subsequent placement into the
appropriate environment. This type of modeling complements
the more common microadaptive approach, which bases in-
structional choices only on student knowledge and perform-
ance within the training domain, and ignores information about
students’ more general abilities.

ATI Example 2

Swanson (1990) investigated an ATI that involved human tutors
instructing a basic optics lesson on how lenses work. Two
expert tutors taught identical curricula under three different
treatment conditions: (1) discovery, where students were fully
responsible for their own learning and were given only high-
level verbal instruction and positive or negative feedback; (2)
lecture, where the tutor controlled all instruction (similar to the
instructional method still used in most schools); and (3) contin-
gency, in which the degree of tutor involvement in the instruc-
tional process was contingent on the needs of each individual
learner. Specifically, subjects were encouraged to do as much
as possible on their own, but the tutor increased and decreased
the level of control and intervention as necessary. In addition,
there was a control, or baseline, condition involving no tutor;
rather, learning was from a written text. The instructional con-
tent in this condition was identical to the three treatment condi-
tions. The sample consisted of college students enrolled in an
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elementary algebra course, and their combined SAT scores
served as the measure of aptitude,

Results from this study indicated a main effect of aptitude,
but more relevant to the current discussion was a significant
ATI (see Figure 7-3). In the discovery condition, outcome was
highly predicted by ability level: low-ability subjects experi-
enced great difficulty in that environment, while high-ability
subjects performed at a much superior level. Subjects in the
lecture condition showed the same trend, but not to such an
extreme degree. Outcome differences between high- and low-
ability learners were greatly attenuated in the contingency con-
dition, where instruction was adapted to the needs of the
individual students, The baseline group showed an interaction
pattern similar to those learning from the lecture. Swanson
(1990) concluded that her results provide further support for
the advantages of adaptive instruction, and noted that ITS can
provide a means of enabling teachers to create such environ-
ments in their classrooms.

Both of these ATI findings have implications for the design
of adaptive training. Different types of individuals appear to
perform better under different training conditions. That is,
learning outcome is optimized when student characteristics are
matched to treatment or training condition. In the first study,
the explicit decision rule is: If learners have high working-
memory capacity and low general knowledge, then place them
in an extended training condition, otherwise the abbreviated
condition is indicated. Trainers can avoid unnecessary time and
effort in providing too many (or too few) practice opportunities
by applying this decision rule. Such a policy would avoid
investing too much of the trainees’ time in surplus practice
opportunities. Moreover, undue tedium during training almost
certainly has other negative consequences as well, such as
generalized loss of motivation, reduced time for other training
needs, and increased attrition rates. In the second study, the
decision rule can be reduced to the following: If learners are
high ability, then place them in a discovery environment, other-
wise place them in the'more supportive (adaptive) contingent
environment,

One way to take advantage of ATI methodologies and find-
ings is to administer a battery of aptitude tests. For example, the
Cognitive Abilities Measurement (CAM 4.0) battery (Kyllonen et
al., 1990) is a collection of computerized tests measuring six
different aptitudes (svorking-memory capacity, inductive rea-
soning skills, information processing speed, associative leam-
ing skills, procedural learning skills, and general knowledge) in
each of three domains (quantitative, verbal, and spatial). In
addition, computing a factor analysis on the test data produces
a measure of general ability (or “g™), the first and strongest
factor extracted. This particular battery has been widely tested
and validated across thousands of subjects and multiple criteria.
Furthermore, the test-retest and split-half reliabilities are both
very high. Finally, individual tests can be extracted for different
purposes and time frames. For instance, if you wanted to
predict outcome performance on an air traffic control task, you
could administer only a subset of the battery: tests assessing
working-memory capacity and information-processing speed,
within the spatial domain. We will now examine the second
major approach to individualized training: mastery learning.

Relation of Combined SAT
to Posttest by Condition
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FIGURE 7-3

source: Adapted from The effectiveness of tutorial strategies: An
experimental evaluation, by }. H. Swanson (1990, April). Paper
presented the American Educational Research Association, Boston
MA.

MASTERY LEARNING

Mastery learning is the notion that, given clear instructiond
objectives, periodic diagnostic evaluations, and sufficient time.
any learner can acquire the knowledge and skill being taught.
The main defining characteristics of ML methods are “the estab-
lishment of a criterion level of performance held to represent
'mastery’ of a given skill or concept, frequent assessment of
student progress toward the mastery criterion, and provision of
corrective instruction to enable students who do not initialy
meet the mastery criterion to do so on later paralle] asses
ments” (Slavin, 1987, p. 175). Research into mastery leaming
took off in earnest in the late 1960s and continues today (Block.
1993; Bloom, 1968; Kulik, Kulik, & Bangert-Drowns, 1990; Stalk
ings & Stipek, 1985). The basic idea underlying ML is that
though individuals do differ in terms of incoming knowledge
and skills, if you permit everyone to learn at their own pa¢
(i.e., allow instructional time to vary), then all can achiev
mastery of educational and training objectives when achiev®
ment, or outcome, is held constant. This contrasts with typin11
pedagogy in traditional classrooms, which holds instructiond!
time constant and allows achievement to vary.

Bloom (1984) identified problems associated with conver
tional teaching methods (e.g., a teacher presenting material
front of 30 people). He asserted that this format provides oneof
the least effective techniques for teaching and leaming &5
teaching becomes more focused and individualized, leamings
enhanced. For example, when a teacher supplements a lectur®
with diagnostic tests to determine where students are having
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problems, then adjusts the lecture accordingly, this is called this computer-resident knowledge of the curriculum, the

“mastery teaching.” Bloom reported that students learning un- learner, and teaching strategies marks a radical shift from earlier
der this condition typically generate test results around the 84™ “knowledge-free” CAI/CBT routines (Shute & Psotka, 1996),
percentile, compared to test results around the 50™ percentile which typically possessed neither the capacity for student diag-
for those in conventional classroom settings. Furthermore, stu- nosis nor the ability to change the curriculum in response to
dents involved in one-to-one tutoring with human tutors per- that diagnosis. These abilities represent key differences be-
formed at around the 98" percentile (2 standard deviation  tween intelligent and non-intelligent computer-assisted train-
increase) as compared with traditionally trained students. Fig- ing. Figure 7-5 illustrates these knowledge components and
ure 7-4 shows these differences in outcome, with teacherto-  their relations within a generic ITS. Each of these ITS compo-

student ratios listed under each instructional approach. These nents will be discussed in turn.
results were replicated four times with three different age
groups across two different domains. Bloom thus provides evi-
dence that individualized tutoring can be an extremely effective
educational delivery method. It was on the basis of these find-
ings that Bloom issued his now famous “2-sigma challenge” to
educators.

A student learns from an ITS primarily by solving problems
that are appropriately selected or tailor-made, and that serve as
optimal learning experiences for that student. The system starts
by assessing what the student already knows. This is called the
student model. The system must also consider what the student
needs to know; this information is embodied in the curriculum
(also known as the domain expert). Finally, the system must
decide what curriculum element (unit of instruction) ought to
be instructed next and how it should be presented. This is
achieved by the inherent teaching strategy, or tutfor. From all of
these considerations, the system selects or generates a problem,
then either works out a solution to the problem (via the domain
expert) or retrieves a prepared solution. The ITS then compares -
its solution, in real-time, to the one the student has prepared,
and performs a diagnosis based on differences between the
two. Feedback is offered by the ITS based on student adviser

considerations such as how long it has been since feedback
was last provided, whether the student already received some
particular advice, and so on. After thts the program updates the
student model, the record of what the student knows and does

< not know, mcrementmg any,; leamrng progress indicators.

"’ Thesé’ updating actrvrtres modrfy the’ student model, and the -
* ‘entire’ cycle is repeated starting with selecting or generating a
'new problem ‘or- perhaps movmg on to a new part of the

Slavin (1987) took issue with the claims made by Bloom
(1984). In a comprehensive review of the ML literature, using a
variation of meta-analysis called “best-evidence synthesis,” he
concluded that both the 2-standard deviation challenge and the
1-standard deviation claim for mastery approaches were “based
onbrief, small, artificial studies that provided additional instruc-
tional time to the experimental classes . .. [and the] 2-sigma
challenge (or 1-sigma claim) is misleading, out of context and
potentially damaging to educational research both within and
outside of the mastery learning traditions” (Slavin, 1987, p.
207). In a follow-up, Slavin’(1990b) responded to conclusions
drawn from a large fmetaianalysis-performed by Kulik ‘et al.
(190). The key issue concerned the mixture of ML assessment
measures that were used in the studies analyzed by Kulik etal.
(1990). That is, if outcome is measured by a special test (* exper-
imenter made”), and the curriculum differs between the experi-
mental and control groups, then there will be a definite bias in
favor of ML. On the other hand, employmg an ob]ectrve stan-“
dardized test provrdes a valid'basis for making comparisons *"
between different groups on 'the dependent measure and} :
shows no srgmﬁcant effects of ML:  © ‘

In conclusion, Whrle there is some debate over the” degree of
ML effects, the challenge remains. Mastery learnmg m general,’
and the 2-sigma challenge in partrcular can serve as goals for,

o L

e components and it is possible to
’ 1nclude other components as well Moreover, the problem-test-
feedback cycle does not adequately characterize all systems,
butt thrs generic deprctron does describe the majority of current
researchers and practmoners in the quest to achreve the pOten- stTSs (see Goettl Halff, Redfield, & Shute, 1998). Alternative
tial of ML methodologies i in practical settings. We' now examine ati 1S exrst representmg conceptual as well as prac-
the third major approach to md1v1dualrzed trarnmg mtellrgent ttcal drfferences m desrgn For example the standard approach
tutoring systems (ITS) (also see Chapter 16) st burldmg a student model involves’ representing emerging
E knowledge ‘and skills of the learner. The computer responds to
7 updated observations with a modified curriculum that is min-
‘utely adjusted. Instruction, therefore, is very much dependent
on individual response histories.” But many have argued that -
coming knowledge is the single‘most important determinant - -
of subsequent learning (e. g , Alexander & Judy, 1988; Dochy,
1992; Glaser, 1984) Thus, an alternative approach to designing
‘more tesponsive training rnvolves assessing incoming knowl-

B

INTELLIGENT TUTORING SYSTEMS S

TS evolved from computer—assrsted instruction (CAI) and com-
puter-based training (CBT), both of which evolved from “intel-,
ligeny” teaching machines (see Pressey, 1926; Shute & Psotka,
1996). An early outline of ITS requirements was presented by
Hartley & Sleeman (1973), who argued that ITS must possess =
(l)knowledge of the domain (expert model), (2) knowledge of edge and skills, either instead of, or in addition to, emerging
the leamer (student model), and (3) knowledge of teaching or knowledge and skills. This enables the curriculum to adapt to .
training strategies (tutor). It is interesting to note that this simple both persistent and/or momentary performance information as
list has not changed in more than 20 years (see Lajoie & Derry, well as their interaction (see Shute, 19932). Two examples of
1993; Polson & Richardson, 1988; Psotka, Massey, & Mutter, individualized training systems, along with associated evalu-
1988; Regian & Shute, 1992b; Sleeman & Brown, 1982). All of  ation results, are provided next.
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Percentiles: Summative Achievement Scores
According to Teacher-Student Ratio

1:30

Conventional
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50th

Mastery Teaching
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Tutoring
1:1

84th i 98th ;

FIGURE 7-4

source: Adapted from “The 2-sigma problem: The search for methods of group instruction as effective as one-to-one tutoring” by B.S.

Bloom (1984). Educational Researcher, 13(6), 4-16.

ITS Example |

One of the longest-running and most successful ITS research
groups is the Advanced Computer Tutoring Group at Carnegie
Mellon. Since the early 1980s various members of that group
have been developing, evaluating, and improving on intelligent
tutors for computer programming, algebra, and geometry. Al-
though the domains for which the ACT group develops tutors
are cleatly of the sort that would be covered in 2 high school or
college education, the emphasis of their tutors is on procedural
skill training. Therefore, their work seems germane to this
chapter.

Anderson, Corbett, Koedinger, and Pelletier (1995) summa-
rized the history of the work by this research group and the
lessons they have leamed. One of the tutors described in that
paper is The Geometry Tutor (Anderson, Boyle, & Yost, 1985),
which provides an environment for students to prove geometry

theorems. The system monitors student performance and inter-
venes as soon as a mistake is made. The skill this system impartsis
how to prove geometry theorems that someone else has pro-
vided, and the tutor has been shown to accelerate learning of the
subject matter (Anderson et al., 1985) compared to control
conditions. Schofield and Evans-Rhodes (1989) conducted 4
large-scale evaluation of the tutor in an urban high school. $ix
geometry classes were instructed by the computer tutor it
conjunction with trained teachers, and three control classes
learned geometry in the traditional manner. The researchers
closely observed the classes for more than 100 hours. The vast
majority of students within the treatment groups evidenced great
interest in the material, contrasting with the control groups
moderate interest level as ascertained via post-leaming inter-
views. Consequently, the treatment groups expended more time
and cognitive effort in their learning sessions with the computer
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Generic Depiction of ITS Control Structure
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Tutor
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problem’
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Shaded Elllgse = Core ITS components

FIGURE 7-5

SOURCE: Source: Adapted from “lntellrgent tutormg systems Past, present and future" byV . shute and I. Psotka. 1996, in D. Jonassen
(Ed.), Handbook of research for educatronal commumcatwns and technology (pp 570 600). New York Macmillan.”

wtors. However, one of he most mmgumg results of the
Schofield and Evans- Rhodes evaluauon was the countermturtrve

reversal of its effects. Although The' Geometry Tutor was de-
signed to individualize instruction, one of its pragmatic and,

unintended side effects was to encourage students to share thei

experiences and cooperatively solve problems. Because their,

experiences with The Geometry Tutor were so carefully con
trolledby the immediate feedback principles of its operations, th
tutor guaranteed that students’ experiences were much mor

uniform and similar than those in traditional classrooms. As a *

result, students could more easily share experiences and make
use of each other’s experiences and problem-solving strategies.
The practical result was a great deal of cooperative problem-
solving that translated into significantly better outcome perfor-
mances compared to those in the control condition.

TS Example 2

'Sherlock is the name of a tutor (hat provides a coached pracuce
env1ronment “for: tmmmg an’ electromcs troubleshooting task
(Lesgold La;oxe Bunzo, and Eggan 1992). It serves as a stunn-
ing example of the increases in training efficiency that can be
achreved when one moves from an inefficient training ap-
proélch to the use of a well desrgned ITS. The tutor teaches
troubleshootmg procedures for dealmg with problems associ-
ed with an F-15 manual (not automanc) avionics test station. .
The curriculum consists of 34 troubleshootmg scenarios with
associated hints. A study was conducted evaluating Sherlock’s
effectiveness using 32 trainees from two separate Air Force
bases (Nichols, Pokomy, Jones, Gott, & Alley, in preparation).
Pre- and post-tutoring assessment was done using verbal trou-
bleshooting techniques as well as a paper-and-pencil test
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groups of subjects per Air Force base were tested: one group of
subjects received 20 hours of instruction on Sherlock, and a
control group received on-the-job training over the same pe-
riod of time. Statistical analyses indicated that there were no
differences between the treatment and the control groups on
the pre-test (means = 56.9 and 53.4, respectively). However,
on the verbal post-test as well as the paper-and-pencil test, the
treatment group (mean = 79.0) performed significantly better
than the control group (mean = 58.9) and equivalent to experi-
enced technicians having several years of on-the-job experi-
ence (mean = 82.2). That is, the average gain score for the
group using Sherlock was equivalent to almost four years of
experience,

The ATI, ML, and ITS approaches need not be viewed as
mutitally exclusive. It may be in fact more beneficial to combine
micro- and macroadaptive modeling techniques in the person-
alization of training (Shute, 1995). Attending to both lower-
level (micro) acquisition of knowledge and skills as well as
higher-level (macro) characteristics of the learner means that
instruction becomes more tailored to the individual. This is
something that human tutors do automatically, or they at least
can learn to do. Computers can be programmed to exhibit the
same sort of flexible, adaptive behaviors.

INDIVIDUALIZED TRAINING

As the name implies, individualized training means to teach a
single leamer some knowledge or skill. Training may be de-
livered by a human instructor (e.g., tutor-to-student, master-to-
apprentice) or computer program (e.g., computer-based train-
ing or intelligent tutoring system). It may take place in a class-
room, laboratory, or workshop. Regardless of instructional me-
dium or locale, in order to personalize training, it is critical to
accurately assess, or “model,” the learer/trainee in terms of his
or her current state of knowledge and skill. That is, a valid
determination should be made of what the learner knows (e.g.,
general aptitudes and domain-specific knowledge), to what
degree, and what remains to be instructed or trained. This
diagnostic process may generically be called student, or cogni-
tive, modeling. A good teacher/trainer does this instinctively,
and a good computer system does this by way of overlay
mexlels (i.e., comparing novice and expert solutions), heuris-
tics, or probabilistic assessments. These techniques collectively
characterize intraindividual differences in the leaming process
(individuals’ progress through the training regime or curricu-
lum). On the other hand, research examining interindividual
differences provides information about knowledge and skills
that influence outcome performance. Information derived from
both of these research streams can be used to tailor training to
the particular needs of a trainee within a specific domain, focus-
ing on knowledge and skills known to impact learning out-
come.

This section begins with a general overview of individual-
differences research. Then we present three main approaches
to individualized training, followed by a comparison of human-
and computer-delivered instruction, evaluating the advantages
and disadvantages of both methods.

SYSTEMS ANALYSIS, INDIVIDUAL DIFFERENCES, AND TRAINING

INDIVIDUAL DIFFERENCES

Training is effective to the degree that trainees actually acquire
the desired knowledge or skill. Thus, training issues are int-
mately tied to learning. During training, individuals differ signif-
icantly in terms of what they learn and how fast they leam it
From the time of Plato to the present, cognitive, conative, and
affective factors have been considered major determinants of
learning and performance (Ackerman & Kyllonen, 1991; Snow,
1992; Thurstone, 1947). In Snow’s words: “Each person’s men-
tal bank contains not only bits and pieces of knowledge and
skill, but also wishes, wants, needs, intentions, interests, atti-
tudes, etc.” (1992, pp. 28-29).

Cognitive

Cognitive factors are mental processes and structures associ
ated with knowledge and skill acquisition, such as working-
memory capacity and general knowledge (Anderson, 1983).
Kyllonen and Christal (1989) differentiated factors into two
main categories: “enablers” and “mediators” of learning. En-
ablers are what one already knows and can transfer to new
situations (i.e., the depth, breadth, accessibility, and organiza-
tion of knowledge possessed by a learner). Both the degree o
which an individual’s knowledge structure is well organized
and the accessibility of the information in that framework affect
the speed and accuracy with which new knowledge and skills
are acquired and retrieved (see arrow in Figure 7-1 from cogni-
tive factors to learning processes).

Prior knowledge (and especially domain-specific knowl
edge) is an enabler that has garnered a great deal of attention
among the individual-differences community. Part of the rea-
son for this is that domain-specific knowledge can be relatively
straightforwardly assessed. A well-managed cognitive task
analysis sheds light on the types of skills and knowledge unis
required by a particular task or set of activities, and this can be
used to devise a valid and reliable pretest performance mes
sure. One then has to simply administer the test to trainees t0
ascertain how much each one already knows about a particulit
topic or how well each trainee can perform a given task before
training begins. Convenient assessment is not the only reason
prior knowledge receives so much attention from the research
community. It has also been found to be an extremely reliable
predictor of depth, breadth, and efficiency of training (Tobias,
1989). Those who already have a declarative and procedurd
foundation on which to build when beginning to learn some-
thing new are likely to learn it faster, remember it longer, and
transfer what they have learned to new situations (Chi, Glasef,
& Rees, 1982; Shute, 1992b; White & Frederiksen, 1986).

Mediators represent /imits on the maintenance, storage, and
retrieval of information, thus governing the quality and rate of
knowledge and skill acquisition. Some typical and powerful
mediators include working-memory capacity, information-pro-
cessing speed, inductive reasoning, general knowledge, assoc
ative learning, and procedural learning. Assessing these “hard-
wired” cognitive abilities is more complex than measuring priof
knowledge (see Kyllonen & Christal, 1989). Those interested i
assessing these characteristics could spend years developing:
evaluating/validating, and revising an acceptable battery of
tests, but we recommend the use of a valid, reliable, preexisting

i
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Adaptive Instruction
Summary Statements and Recommendations for Trainers

Human tutors tend to automatically adapt the content and delivery of a course of instruction to the needs
and abilities of the trainees. One of the only instances in which this might not be the case would be if the
tutor were delivering the material in a didactic lecture fashion. Tutoring via ITS should consider incorporat-
ing both macro- and microadaptive instructional changes, to minimize training time and optimize outcome.
These adaptational decision rules should be derived minimally from well-established theoretical founda-
tions, and ideally from the results of empirical research. e

Adaptive
Instruction

ATi research has gone through a relatively checkered history of uncontrolied experimental designs, incon-
sistent results, and misinterpretation of conclusions. Despite these shortcomings, a careful review of the .
seminal research completed in this area demonstrates that ATI are ubiquitous in training, especially when
cognitive ability and/or prior achievement serve as the basis for the aptitude portion of the interaction.
Current research, conducted within the controlled environments offered by ITS, allows for more disciplined,
direct tests of ATI. We recommend that trainers begin to look toward this growing body of empirical data to
inform macroadaptive instructional decisions. - L :

Aptitude-Treatmentz
Interactions '

The ML approach to training leads to substantial increases in outcome, because therein lies the focus.
Trainees must continue to study and practice until they reach a level of competence deemed acceptable by
the tutor. This is in direct contrast to traditional classroom approaches, which hold instruction time constant,
with little or no regard to individual differences in skills acquisition. We strongly recommend application of -
the ML approach to training whenever time constraints are flexible enough to make it possible.

Mastery Learning

ITS are effective instructional media to the extent that they are able to accurately assess trainees’ incoming

aptitudes, knowledge, and skills, diagnose deficiencies in performance during training, and use some or all

of that information to tailor the learning experience appropriately. Objective evaluations of well-designed iTS

have shown that they consistently allow for impressive knowledge and skill gains across widely disparate -

'domains. Developers of ITS with training applications should be aware of existing cognitive psychology and

ATl research results and use those data in designing their systems. In addition, they should allow for the
“possibility of taking a ML approach to interaction with the system, to maximize training outcome.

Intelligent Tutoring
Systems T

TABLE 7-1

3

<ognitive battery, such as the Cognitive Abilities Measurement gbéls typical of computer-based tutors. (See Vicente and Pain

(CAM) battery, described gégrlief.

Conative

Conative Jactors are mental conditions (e. g., motivation, com-

L;etltiveness) or behaviors directed toward some event (Kanfer, ;.
98)). Leamers need to focus their attention and.persist in a.-

new learning task, despite difficulties they may encounter, and

conative attributes influence one’s ability and/or willingness to

perseyere. Teachers have long known of the great influence of
conative states on learning: For instance, students characterized
as bej . . .

s being anxious, depressed, or angry fail to learn as informa-

?;;18;8 neither absorbed nor processed efficiently (Goleman,

‘ Knowing 5 person’s motivational state, in conjunction with
2‘:{2; her cognitive abilities, can éha‘ble oneto 'pre.dic.t lea'm‘ing
o (f:ﬂoe (e.g., Lepper, 1988). What influences intrinsic motiva-
rdova and Lepper (1996) discuss various factors, such
20§3nt§malization, personalization, and choice that affect
ational level. Lepper, Woolverton, Mumme, and Gurtner

3) discuss expert human tutors and their allocation of at
;a;t;S ﬂ}ucl_l time and attention to the ac.hievement of affective
Otivational goals as to the cognitive and informational

11998 and Chapter 4 for a discussion of research and findings
“about motivation.) -
" Another heavily researched conative measure is reflectivity

impulsivity, the tendency towards accuracy at the expense of

speed, or vice-versa, in learning or problem-solving situations.
« Slower, more accurate, and thoughtful processing is equated
ith a reflectivestyle, whereas faster, less accurate processing is '
associated with an impulsive style. Messer (1976) found a nega-
‘tive correlation between impulsivity and 1Q, and when IQ was’
eld constant, an inverse relationship still held between impul-
sivity and school performance. Impulsive individuals may not
allocate sufficient time for processing information during learn-
ing, thereby negatively impacting outcome.

. Lajoie & Shore (1986, 1987) found that the speed/accuracy
" tradeoff, as implied by the impulsivity/reflection literature, was

not a given phenomenon when examining high-ability individ-

uals. There were no significant differences in high-ability indi-
viduals who were slow and accurate (reflective), slow and
inaccurate, fast and accurate, or fast and inaccurate (impulsive)
(Lajoie & Shore, 1987). Furthermore, when examining the rela-
tive contributions of mental speed and accuracy to Primary
Mental Abilities IQ measures were examined, both speed and
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accuracy independently predicted 1Q but not speed over and
above accuracy (Lajoie & Shore, 1986).

Interest is another conative attribute that influences learning
(Tobias, 1994). Common sense dictates that those who are
interested in training in a particular domain are also more likely
to be motivated and attentive during the learning process; the
result will be increased outcome. Moving beyond common
sense, however, Schiefele, Krapp, and Winteler's (1992) meta-
analysis concluded that interest accounts for 12 percent of
achievement variance in males and 6 percent in females. Admit-
tedly, that study focused on academic achievement rather than
training success, but we contend that it serves as sufficient
rationale for future research in this area. At the very least,
interest and other conative variables hold promise for their
incremental predictive power in accounting for training suc-
cess, when used in conjunction with cognitive data.

Affective

Affective factors relate to feelings and personality (Ackerman &
Kytlonen, 1991), like being happy, enthusiastic, conscientious,
or neurotic. Individual differences in regard to conative factors
are closely related to affective factors. To illustrate, if a person
was unhappy and fatigued (two affective characteristics), then
his or her motivation level (conative attribute) would most
likely be depressed compared to that of someone else who was
happy and alert, or even in relation to him/herself in a more
clevated state. Consequently, learning processes, and hence,
learning outcomes could be differentially affected by these affil-
iated states,

Cognitive factors tend to be more stable than conative vari-
ables, and both tend to be more stable than affective states,
which are more transitory (for more on this topic, see Shute,
199-b). In other words, cognition implies internal limits on learn-
ing, conation implies a preferred orientation towards learning,
and affective states reflect environmental influences on leam-
ing that can be manipulated through instruction or other situa-
tional influences. In general, any “aspect of a person that can
predict his or her response to instruction ought to be examined
as relevant to important personal and instructional goals”
(Snow, 1992, p. 9). Snow also mentions that we must exercise
caution in reducing human learners to mere lists of variables
and traits. Despite the fact that such reductionism is less than
ideal, the current state of individual-differences research typi-
cally makes that approach unavoidable. Furthermore, the rela-
tively simple method of categorizing learners along different
variable and trait lines has often led to important advances in
the field.

The “Initial State” column of Figure 7-1 represents three
broad sources of individual differences among trainees. Al-
though we do provide some specific examples to help in-
stantiate this description, we have not attempted to furnish a
comprehensive taxonomy of trainee characteristics or to elabo-
rate on the many specific sub-characteristics within the realms
of cognition, conation, and affect. For more in-depth coverage
of these interesting topics, we recommend Snow’s (1994) chap-
ter on abilities, Ackerman and Kyllonen's (1991) chapter on
cognitive characteristics of trainees, Kanfer's (1990) review of
motivation and Chapter 4 (this volume), and Gough’s (1983)
review of temperament (personality/affect).

Learning processes may be globally defined as any series of
mental actions directly responsible for learning outcomes. This
definition encompasses a wide range of mental actions, differ-
ing in nature as well as scope of application. To organize and
simplify the varied processes cited in the literature, Figure 7-1
shows four processing components, each with its own constitu-
ent processes. Three categories are arrayed along a dimension
of increasing complexity, from basic associative learning pro-
cesses (constructing simple relations) to procedural learning
processes (constructing rules from the simpler relations) and
ending with the more complex processes of inductive rea-
soning (organizing a coherent structure around the lower-level
relationships). These three categories of learning are believed
to be influenced by a fourth category, metacognition, which is
personal knowledge of one’s learning abilities and limitations,
including skills that enable the acquisition and application of
knowledge and skills. The specific processes included under
this construct have been assembled from the voluminous re-
search in this area (Baron, 1985; Brown, 1978; Collins & Ste-
vens, 1982; Flavell, Friedricks, & Hoyt, 1970; Glaser & Bassok,
1989; Kanfer & Ackerman, 1989; Kuhl & Kraska, 1989
Schmeck, 1988).

Metacognitive processes monitor the efficacy of the three
learning processes and, if necessary, invoke different processes
during the solution of a particular problem. But the three
learning processes (associative, procedural, and inductive) ulti
mately impact what is learned. An analogy can be made be-
tween a conductor and musicians performing during a sym-
phony. A conductor directs the musicians, but does not actually
play any music. The quality of the conducting affects the musi-
cians, and thus the musical outcome. Thus, individual differ-
ences in the application of the processes constitute a major
determinant of learning outcome.

The outcome of learning refers to any change within an
individual’s knowledge structure or skill level that results from
training. Outcomes of learning can be quite diverse, differing in
magnitude (e.g., learning a simple rule versus a complex tech-
nical skill) as well as content area (e.g., affective and social
skills, motor skills, procedural knowledge). Figure 7-1 shows
one way to characterize the assortment of learning outcomes.
The declarative-procedural distinction is fundamental (declar-
ative knowledge is knowledge about something, whereas pro-
cedural processes are the ability to do something), and refine-
ments are possible within each of these two categories. That is,
declarative knowledge and procedural skills can be arrayed by
complexity. (For more on this topic, see Kyllonen & Shute,
1989; Shute, 1994.) Also, newly acquired knowledge and skl
outcomes can be stored in long-term memory for use in subse-
quent acquisition of declarative knowledge or procedural skil,
which would alter the content and structure of one’s “initil
state” and constitute a feedback loop between outcomes and
initial states. Finally, a temporal element is involved in individ-
ual differences among abilities and processes; they are not
static. Instead, aptitudes and learning processes are differer-
tially important at various points in time across knowledge/ skill
acquisition. For instance, working-memory capacity and asso-
ciative learning skills play an important role early in the lear-
ing process in determining the degree of new knowledge and
skills acquisition. But over time, these become less important
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and other factors gain importance, such as perceptual speed
and perceptual/motor abilities (Ackerman, 1988, 1992; Woliz,
1988). This notion of a correlated time dimension has direct
implications for developing adaptive instructional or training
programs. Some skills may be taught early in the training pro-
gram, and then the training focus can. be switched to other
critical skills once proficiency is achieved. Alternatively, intelli-
gentinstructional programs may adapt to individual differences
inskill level. It may be beneficial, for instance, to switch instruc-
tional approaches during training, as changes occur in (1) the
knowledge and skill levels of the trainees and (2) the cognitive
requirements of the training regimen.

The main issues and approaches relevant to individualized
training have now been outlined. Next, we discuss the advan-
tages and disadvantages of the instructional medium in deliver-
ing training material, of human- versus computer-delivered
training.

COMPARISON OF HUMAN- AND COMPUTER-
DELIVERED TRAINING FOR INDIVIDUALS

As discussed above, significant advantages are associated with
the individualized  training approach, especially compared to
traditional classroom _instruction (Bloom, 1984). Though the
‘master and apprentice” approach to vocational training has
existed for hundreds, perhaps even thousands, of years (see
Chapters 2 and 11); only during the last several decades has the
brocess of learning come under serious scrutiny in relatxon to
individualized tralnmg environments. The question 1s not
whether human tutors are, effective, but rather how they : are 50

effective. More specxﬁcally, what is it about the pedagogxcal‘

Strategies of exper1enced human tutors that makes it possible

for them to train learners so effectively? Funhermore how do
these strategies compare ‘with those employed by current ITS, *
and how can we create future ITS that are on par w1th oreven

Surpass, the tutorial efﬁcacy of a human?

How Do Humans Do It” )

The specific research approaches that have attempted anan-

Swer to this question represent variations on the same theme.

Basically, the idea is to:observe (and often, vxdeotape) the i
entire interaction between teacher and pupil during the course . . -
of some pre-determined cumculum This gives the researcher“
an pportunity to watch the tutorial interaction in real-time, and "
feview the whole recordmg later to analyze the discourse at a ,
more fine-grained level:.In, the most fundamental’ sense one"{f\ :
3 information specifying” what the two participants ‘said to
€ach other, However, this is just the tip of the 1ceberg The
“ealth of data resulting from this investigative approach pro- =
Vides information about what was said, how and when it was '
%2id, and in what context (x e., what the pupil and Iutor were

doing at the time) the commumcanon took place. *

D’“K"OSls In this chapter, “diagnosis” and “student model-
ng” are ysed interchangeably, as both mean the process of
:?kmg an assessment of the learner’s current state of knowl-
8e/skill, and use a variety of techniques to achieve this end.
More restrictive definition of “diagnosis” includes the ability
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to make inferences about why a learner performs in a certain
manner. We prefer the less restrictive definition.

The human tutor’s primary responsibility is to act as a diag-
nostician of the “state” (i.e., ability, interest, level of frustration,
etc.) of the learner. If a tutor does not have a good understand-
ing of the current knowledge state or ability level of the student,
it is likely that the feedback or ensuing instruction will be
inappropriate (e.g., improper type of problem or level of diffi-
culty). The advantages of consistent and accurate diagnosis
should be self-evident, but it may not be necessary to share this
information explicitly with the learner.. For ‘instance, Merrill,
Reiser, Ranney, and Trafton (1992) propose that instead of
communicating their diagnoses to students, human tutors use
that information as a basis for creating effective feedback and
making any necessary curricular changes. The risk in sharing
diagnoses lies in the potential for being wrong, thus d1rmn1sh-
ing the tutor’s credibility. C

Flexibility. Expetienced human tutors possess the important
ability to transform their “best-guess” diagnoses into real-time
changes in the tutorial session. This is precisely where individu-
alized tutoring achieves its great' educational advantage over
classroom instruction. By tailoring a session to meet the needs
of a particular individual, the tutor is able to capitalize on that
person’s strengths and structure. feedback and remediation
around particular weaknesses. A sizable research effort has
grown around the need to understand how, when, and why
human tutors offer feedback about students’ errors and miscon-
ceptions. Some researchers (Fox, 1991) have found that tutors
will employ very indirect methods, like hints and leading ques-
tlons to allow students to discover errors on their own. Alterna-
tlvely, McArthur Stasz and Zmuidzinas (1990) conducted a

: study in which human tutors used a very different approach.
‘" They not only identified students’ errors as they occurred, but
they also suggested new techniques for solving the problems.

“Such’ a 'broad range of error-remediation behavior has

o prompted the generation of some initial conclusions about the
. varying factors that influence how a human tutor would react to

different types of errors made in different contexts. For exam-
ple, Littman (1991) and Littman, Pinto, and Soloway (1990)
posit that an error’s context and criticality (errors that demon-
strated a poor understandmg of previously-learned material are

“considered more critical) determine the content and timing of

the feedback. For instance, there is often some inherent instruc-

;tlonal benefit (and little potential harm) in making an error. An
expert tutor who recognizes this may let a student continue to

commit the ¢ error until he or she corrects the mistake indepen-
dently, resultmg in a deeper | level of learning. Merrill, Reiser,
and Landes (1992) were able to offer somewhat mare specific
ratjonales for various remedlatlon behavxors by demonstrating

‘that good human tutors qunckly correct (1) errors that might be

distracting or could lead to, “ﬂoundenng,, and (2) problem
components that are more serloqsly problematic. The errors
chosen by the tutors for remediation are those that possess
some inherent instructional benefit, so that individuals can
leamn from their mistakes.

Conclusions. The general finding is that experienced human
tutors achieve a balance among the following: (1) allowing




184 o SYSTEMS ANALYSIS, INDIVIDUAL DIFFERENCES, AND TRAINING

students to do as much of the work as possible, while (2)
maintaining a sense of control over the learning process, and
concurrently (3) providing students with sufficient guidance to
avoid excessive feelings of frustration or confusion. This “bal-
ance” is truly fragile. A large body of research supports the
importance of “learning by doing,” positing that it is instruc-
tionally more effective to let students solve problems on their
own, confront and work around obstacles, and then explain to
themselves (and sometimes to others) what worked and what
did not (Anderson, 1983; Chi, Bassok, Lewis, Reimann, &
Glaser, 1989; Ohlsson & Rees, 1991; VanLehn, 1990). To give
the student such a high degree of autonomy in the learning
process, however, also means to run the risk of the student
becoming upset, frustrated, and confused. Thus, “the assistance
of a tutor enables a type of guided learning by doing, in which
the students reap the rewards of active problem solving while
the tutors minimize the dangers. In this way, tutoring has both
cognitive and motivational advantages” (Merrill et al., 1992,
p. 280).

How Do Computers Do It?

At the level of computer-based training (CBT) systems, design-
ers specify the tutor’s curricular goals (what it should teach) and
decide on certain interface issues (what it will look like, what
Kinds of tools will be available to the user, whether students
will use the keyboard or mouse, etc.) before beginning devel-
opment. The end product is a “lock-step” series of instructional
segments that proceed one after the other. These systems can
teach certain knowledge and skills, and may differ in the degree
to which they are interesting and challenging to the learner. A
standard CBT does not diagnose the ability or affective states of
the learner, and has a fairly inflexible curriculum. Therefore,
everyone learning from that CBT is exposed to approximately
the same thing (see Chapter 10).

Upgrading from a CBT system to an intelligent tutoring sys-
tem (ITS) typically involves the addition of diagnostic and
adaptive capacity. This is essentially an effort to make a com-
puter program capable of modeling (diagnosing) the learner as
accurately as an expert human tutor, and also to give the pro-
gram the “intelligence” necessary to use that information in
adapting instruction. As a detailed description of the framework
of a generic ITS has already been covered, the salient issue now
is: How do current ITS fall short of their goal? In what ways are
their capacities inferior to those of human tutors?

Shortcomings of ITS.  One salient difference concerns flexibil-
ity in both the curriculum and error remediation process. The
strategy for responding to errors is fixed in most current ITS,
whereas human tutors strategically moderate their responses,
sometimes intervening immediately and other times letting the
student wander down the wrong path for a while, depending
on potential instructional value. A related difference has to do
with flexibility in terms of presenting the curriculum. “Human
wtors clearly adapt the curriculum for pedagogical advantage”
(Merrill etal., 1992, p. 299), maximizing leamning efficiency and
outcome. Adaptation at that level is rare, if it exists at all, even in
some of the most advanced ITS available.

A second major difference between human and computer
tutors is that feedback from the human tutor tends to include

fewer of the specific components of the error recovery process,
thereby making the student responsible for most of the prob-
lem-solving effort. Most ITS researchers, however, have spent
considerable time and effort on designing feedback that is so
detailed and directive that it even relays diagnostic information
to the learner (see Clancey, 1986, for a review). This is true
despite evidence that human tutors typically do not provide
diagnoses (Lepper & Chabay, 1988; Merrill et al., 1992; Putnam,
1987). Furthermore, it has been reported that explicitly pro-
viding diagnostic information does not improve students’ per-
formance more than simply leading the students through the
correct procedure over again (Sleeman, Kelly, Martinak, Ward,
& Moore, 1989). Thus, designers of ITS may attain more effec-
tive systems if the focus is shifted away from methods that
attempt to convey diagnostic information to learners, and
toward attempts to mimic and improve on the various ways
human tutors actually use their diagnoses in structuring feed-
back.

Finally, owing to the wide array of communication avenues
that can exist between two people—verbal information (-
cluding intonation), facial expressions, eye contact, body lan-
guage, etc.—human tutors are capable of feedback that is sub-
stantially more subtle than that x{vhich occurs within existing
ITS. The extraordinary subtlety of the feedback provided by the
tutors in Fox’s (1991) study, for example, is evident in the
finding that even a very brief hesitation (often less than one
second) in supplying positive feedback indicated to students
that something was wrong with the step they had just taken.
Students then usually found and corrected the mistake. Thus,
communication between a human tutor and student is both
highly interactive and often quite subtle. .

Advantages of ITS. Despite the many shortcomings of pres-
ent-day ITS, computerized tutorial environments do offer defi-
nite advantages over human tutors. Humans have limited wotk-
ing-memory capacity, but computers do not. For instance, they
would not “forget” to cover a topic or emphasize a point (35
long as they are programmed correctly). Furthermore, comput-
ers do not have any “patience” or “tempers” to lose, as humans
sometimes do. A learner can struggle all day with a particular
problem, and the computer will continue to reteach and offer
feedback and encouragement. Another important advantage of
computers over human instructors is that they are not proneto
subjective influences: they do not “play favorites” or have
“pets.” Every learner is special. Finally, computers are invar-
ably attentive. You are not likely to find one ignoring you while
it attends to the needs of others.

How Could Computers Do It Better?

Despite these demonstrated advantages, there are numerous
research opportunities for those looking for ways to enhance
the tutorial capabilities of ITSs. This research is going on al
over the world, at academic institutions, in private industry, and
on military bases. For example, Moore (1994) and her col
leagues at the University of Pittsburgh examined different way’
to make ITS feedback more natural. On the basis of their study
of human-human reflective dialogs, they are developing a tas0-
nomy for types of contextual effects that occur in their di2
according to the explanatory functions they serve. So far, they




have identified four main categories: (1) explicit reference to a
previous explanation (or portion of one) in order to highlight
similarities and differences; (2) omission of previously-ex-
plained material to avoid distraction from what is new; (3)
explicit marking of repeated material to distinguish it from new
material; and (4) elaboration of previous material in the form of
generalizations, detail, or justifications. They have already
made progress toward building a system that takes prior utter-
ances into account when planning explanations.

Another area of research involves enhancing student models
tomake them more adaptive and, hence, effective. To illustrate,
SMART (Student Modeling Approach for Responsive Tutoring,
Shute, 1995) represents a type of student modeling that is both
broad and powerful, and operates by applying a series of re-
gression equations’to’ learners’ actions to predict knowledge
and skill level. The resulting diagnosis determines the tutorial
action, or curricular flow, for a particular learner, such as re-
ceiving instruction on a new section of the curriculum, remedial
instruction on a problematic element, or continuing to solve
problems that embody a set of related curricular elements.
SMART not only models evolving knowledge and skills (do-
main specific) for purposes of microadaptation, it assesses in-
coming abilities (general and specific cognitive aptitudes)-as
predictors of subsequent learning and indicators of suitable
instructional environments for macroadaptation. Moreover,
whereas most other approaches focus on single outcome types
(6.8, model tracing for procedural skill acquisition), SMART

(CK).

3

SMART has been inCGfporated into an experiential learning
environment called Stat Lady (Shute & Gluck; 1994) and is

currently undergoing a series of controlled evaluation studies

where the main components (diagnostic updating routines and
Mastery/remediation control structures) are being systemati-

cally evaluated. Two studies have recently been completed and ...

are discussed in more detail in Shute (1995). Results show

dramatic (2.2 standard deviations) learning gains in the normal -
Stat Lady environment and even greater ‘improvement with

SMART actively selecting the curriculum.

2

‘GROUP TRAINING
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ndividualized training can often be quite resource-intensive.’ A

?lme economical alternative is group training. The presump
‘onunderlying group training is that students/trainees working

9gether in groups can learn more than or at least as much as « ©
they can by themselves, especially when they bring comple-
Mentary rather than identical contributions to the joint enter-

Prise (Cumming & Self, 1989). Group training approaches mayL

ZZ‘:: tO.enhancc learning by providing.an avenue for conversa-
gmungmh othgr people who have differing opinions, back-
can o kS or Sklll'S; who know more about some topic; or who

5K perceptive, thought-provoking questions. Two basic
ggzztfﬂs relevant to this section are: (1) Under what condi-
bty sre two (or more) heads better than one? (2) Can com-

Ystems support collaborative learning endeavors as well

models a range of outcome types, including: symbolic knowl-"
¢dge (SK), procedural ‘skill (PS), and conceptual knowledge -
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as humans? Recent research is beginning to shed light on both
of these questions. Many, researchers have shown impressive
student gains in knowledge and skill acquisition from collabo-
rative learning environments (Brown & Palincsar, 1989;
Lampert, 19806; Palincsar & Brown, 1984; Scardamalia, Bereiter,
McLean, Swallow, & Woodruff, 1989; Schoenfeld, 1985). Fur-
thermore; several studies investigating the effectiveness of col-
laborative learning from computer-based environments have
also been positive (]déteh, Waldrop, & Adams, 1990; Katz &
Lesgold, 1993; Papert, 1980).
We will begin this portion of the chapter with a look at a
popular technique sometimes used in academic, industrial, and
military settings for training large groups of people simulta-
neously: the workshop. We argue that one should be cautious
‘in relying too heavily on workshops'for training, as they. are
rarely subjected to objective, evaluative study. Then we distin-
guish among. some of the main types of small-group training
environments (collaborative, cooperative, and competitive),
and discuss three separate approaches to small-group training
(social constructivism, cognitive apprenticeship, and situated
learing). Following that, we examine some of the variables
that impact group dynamics, such as gender and aptitude, and
- conclude this section with a review of some current computer
“ systems ‘that’have'been designed for small-group learning,

showing the strengths and problems associated with this en-
« deavor. e e

\LARGE-GROUP TRAINING

e . L % ; ;
- Seminars, conferences, and workshops have become very pop-
; u-ulag“large—g\rqup instructional approaches. These three terms
" are often used interchangeably, but one particular characteristic
of the workshop separates it from its counterparts. Mayo and
- ... DuBois (1987) note that the overarching purpose of a work-
"shop is generally to aid trainees in the acquisition of skill(s),

whereas seminars and conferences have a more theoretical,
_conceptual, knowledge-based orientation. Given that we de--
fined training earlier as being more on the skill end of the
knowledge-skill instructional continuum, we will focus only
the workshop approach to large-group training here. ‘

*Workshops : g
' Generally speaking, all workshops are designed in response to
- a perceived need for skills training‘in some ‘area.’ They may
* ‘require anywhere from one 65 two hours up to two full daYé for
*completion} as”dictated by the  nature and number of skills
being taught, but are usually not longer than that. Workshops
- typically begin with a relatively formal introduction of the goals

.. the skill to be imparted. Participants thexi work individually or

tutor/leader circulates among the groups, reviewing their ef-
forts and offering constructive commentary (Jaques, 1992). Fi-

nally, everyone reconvenes in the large group to share experi-

ences, show products, ask questions, and close the session.
This pattern sometimes repeats itself several times within the
same workshop.

Workshop participants are assumed to be persons who have

and content of the workshop, followed by a demonstration of -

» in small-groups to facilitate acquisition. During this period, the
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Individualized Training

Summary Statements and Recommendations for Trainers

lndividual Diﬂerences

Cognitive Factors  Cognitive factors (both general cognitive ability and more specmc variables like prior knowledge, working memory, or
academic achievement) can and should be used to predict training success, in terms of depth, breadth, efficiency,
retention, and transfer. This general conclusion remains true across virtually all domains, and those interested in
improving the training process are remiss in ignoring them. We recommend that trainers administer either a single
test or a battery of tests before instruction and then use those data to make pedagogically appropnate deC|S|ons
before and during training. s P

Conative and
AHectlve Factors

These variables do not account for as much success in trammg as cognitive components. Conative and aﬂectwe data
may be valuable, however, from the standpoint of incremental predictive validity (when used in conjunction with cog-
nitive information). These variables are also important to consider during the design of instruction, regardless of
approach taken (e.g., experiential learning opportunities render learning more motivating and hence memorable so
should be included in the interface between learner and learning environment). .
Summary Looking back at Figure 7-1, the trainee’s initial states influence learning processes (associative, procedural, and
inductive), and the learning processes lmpact what the tra:nee ulnmately acqu:res during instruction.

Human— and Computer—Based Trainmg
Human Tutors The most advanced ITS available are not nearly as sensitive to the many verbal and nonverbal communication paths
that relay information about a trainee’s learning experience, even when compared to many novice human tutors.
Current ITS are also generally not as flexible as human tutors in terms of pedagogical, curricular, and remediational
decisions, as ITS are constrained by the approach(es) implemented within their design. Nevertheless, interactions
with ITS tend to result in significant knowledge and skill acquisition, and can be a very cost effective way to train
large numbers of people. In addition, ITS make it possible to avoid some of the pitfalls inherent in human tutonng,
such as forgetting to emphasize an important pomt loss of patlence and dlwded attentlon

Although the skill and knowledge lmprovements evidenced by tramees worklng on ITS are generally S|gn|f|cant and
encouraging, ITS are unlikely to raise trainee performance to the level achieved by human tutors. We suspect that
this is primarily due to the still limited diagnostic capacities of modern computer systems, as well as a deficient
theory of pedagogy. From a purely practical point of view, if the decision has been made that individualized tutoring
is the approach needed, trainers should probably employ human tutors, unless the cost efficiency of the ITS approach
(as a function of the number of trainees involved) warrants accepting slightly inferior outcome scores. As psycho-
logists interested in this pursuit, however, we selfishly hope that more people become invoived in continuing basic
and applied research on improvements and refinements in the areas in which ITS have inferior capabmtues so that
they may begin to more closely approximate true intelligence.

Intelligent
Tutoring
Systems

Summary Individualized human tutoring achieves such extraordinary results primarily due to the tutor’s finely-honed ability to

diagnose a trainee's strengths and weaknesses, and then tailor the ensuing instruction, feedback, and remediation
appropriately. Human tutors employ a diverse array of error recovery, feedback, and remediation techniques in
tailoring instruction, taking into account characteristics of the learner, the domain, and the training environment, the
context and criticality of errors that are made, and how the learner has responded to various interventions in the
past. Computer tutors, while not yet at the same level as humans regard/ng these abilities, offer some advantages
over humans (see above), and the field of automated instruction is silll in its infancy.

TABLE 7-2 o N

an immediate use for whatever skill(s) will be instructed, and so assumption that the leader has developéd the curriculum and

issues of motivation and interest are generally not a concem. In
fact, Mayo and DuBois (1987) suggest that “it is best not to
encourage individuals who do not have an immediate need for
the skill to attend a workshop. Such individuals tend to view the
workshop as a waste of time and as irrelevant to their job
assignments or interests” (p. 77). Since workshops are inten-
tionally designed to impart very specific skills, one must be
careful to confirm beforehand that the goals of the workshop
trainer match those of the trainee, Along the same lines, we
caution the use of workshops for training purposes. One
should not commit to a training workshop under the naive

pedagogy with careful regard to the latest empirical research
results, or that the techniques and materials to be used are valid
and that the workshop itself has undergone rigorous evaluative
development. Though the more effective and efficient work-
shops will likely be properly developed, we know from ouf
own personal experiences and from those of our friends and
colleagues that the workshop approach often simply does not
manage to impart a level of skill consistent with the needs and
expectations of the participants. This could be due to any num-
ber of factors (e.g., lack of preparation on the part of the
workshop leader, mismatch between training objectives and
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the particular pedagogy employed), but one issue that is espe-
cially striking is what we perceive to be a general lack of
evaluation.

Assessments of the short- and long-term performance im-
provements by workshop attendees, as well as evaluations of
the degree of actual skill transfer from the workshop to novel
workplace environments are, for the most part, nonexistent.
We encourage those considering the workshop as a training
alternative to be aware of this and to inquire about any existing
evaluations of a workshop before committing to it. On the other
hand, if the design of the workshop appears to have a strong
foundation in theory and empirical research, as well as positive
evaluation results, then it may be a cost-effective means to learn
or hone a skill.

It is hardly coincidental that even within a broadly used
“large-group” training approach like the workshop, there is
such a strong focus on breaking the group down into smaller
study, practice, and discussion groups. Rather, this reflects a
growing realization of the instructional power of the small-
group, which is where we now turn our attention.

SMALL-GROUP TRAINING

Some researchers who examine small-group learning phenom—
ena use the terms “collaboration” and “cooperation” inter-
changeably (Noreen Webb, personal communication, February
1%5). However, we:have:chosen to make: a-distinction: be- -
tveen these two kinds of small-group training environments. >
Collaboration is defined as a process-by which “individuals
negotiate and share meanings relevant to the problem-solvmg
tskathand” (Teasley & Roschelle, 1993, p. 229). This is distinct *
from cooperation, which involves the d1v1sron of labor requrred

proach to training, competztzon where the focus’ is:
competing against rather than workmg wrth others i
group,

ore 01’1 :

Interaction in SmalI-Gro'upS‘
Collaboratiye Leaming Collabomtwe leammg refers to

2ged to share their knowledge and skrlls with their peers as |
they work together on a common task orina shared leammg/

case that collaborative learning has numerous cogmtlve social,”
and monvanonal beneﬁts mcludmg greater 1eammg, 1mproved

1989 Rysavy & Sales, 1991; Sharan, 1980 slavin, 1990a, 199ob)
Ideally, collaborative group work provrdes opponunmes for..
E3posure to multiple points of view, thereby allowmg learners
o consider issues that would not have emerged had they been
Working independently. The hope is that when students con-
Siuct and communicate their thoughts verbally, group prob-
“m-solving activities will encourage learners to explain, justify,
2d negotiate meanings, strategies, and skills. Small-groups can
s provide the means for greater communication and the
development of higher-order thinking skills such as problem

INDIVIDUALIZED AND GROUP APPROACHES TO TRAINING

W achieve some task. We also revrew a thrrd small- group ap- =

small-group learning 51tuatrons where individuals are encour— 2

uining environment. Proponents of this approach make the

“.{ Competitive Learning.
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solving and inductive reasoning (Lajoie, 1991). In addition,

collaborative learning typically results in increased persistence

within a problem-solving task, consideration of alternative

problem-solving strategies, peer feedback, and the application

of a learned strategy in other situations (Duren & Cherrington, :
1992). Although peer collaboration is more effective than indi-

vidualized training for makmg shifts in perspective, the mere

presence of a peer is not sufficient for effective learning. Joint

decision making, on the other hand, isa necessary component

of collaborative learning (Rogoff, 1991).

Another stream of research, reported by Greer et al (1998)
describes the researchers’.efforts in developing peer help sys-
tems for university students. This consists of “help resources” at
both the'institutional and the course level."The two programs
discussed -in’ their paper: provide tools for students helping
students, either electronically or in person. This is accom-
plished by modeling the student knowledge ‘of the person
requesting assistance and also the relevant subject matter.

‘There are some potennal problems associated with collabo- -
rative learning. Work that'is conducted collaboratrvely ‘can’
sometimes result in a reliance of some members on other.
members of the group, which may (1) reduce personal respon- -
sibility' and (2) -decrease independent thmklng (Blumenfeld,
Soloway, Marx; Krajcik, Guzdral & Pahncsar 1991; Como & ..
Mandinach, 1983). One must therefore be careful in the imple-
mentation and execuuon of,a collaboratrve learnmg situation.

rty nd work on it separately Students then come together in
the’ group ‘to'discuss their ﬁndmgs Though this is often a more
efficient group approach than collaborative learning, it some-
trmes results in less interaction among members of the group. -

EDesprte this problem, several studies have reported that stu-
dents working cooperatively in small-groups produce equal or

hlgher achievement than students working alone (Johnson &

: ﬂjohnson, 1989; Wamng,]ohnson Maruyama, & Johnson, 1985;

ager, Johnson, & Johnson, 1985). The optimal size of the
ollaborative group appears to be two or three individuals (Cox
& Berger, 1985; Webb, 1987). Recent CBT research also sup-.
ports this contention that cooperative, small-group envifon-.
.ments, especrally dyads or triads, yield greater achievement
than individualized training (Carrier & Sales, 1987; Dalton, .

-1900 Johnson, Johnson, & Stanne 1985; Shull, 1990; Steph- -

nson, 1992). The effects of this type of trammg condition on

~outcome measures (especially in respect to the subtasks that -

tudents did not complete themselves), offers an area rich with
esearch possibilities. k

In competmve learning, individuals’
within or between groups compete with each other to produce
superior performance. The two most common forms of this *
type of environment are (1) military training settings using
simulators to create various military scenarios that require train-
ees to practice tactics and strategies against each other and (2)
entertainment settings, where video action games provide the
forum for players to compete against each other (typically on a
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network) within artificial worlds. Though competition has been
employed with varying degrees of success within educational
settings, we will not review that literature in this chapter (see
Johnson & Johnson, 1975, 1989, for more extensive coverage of
this topic).

The best-known example of a competitive training environ-
ment is SIMNET, a group of simulators in common use through-
out the Army for both training and development work. SIMNET
stands for “simulation network,” and represents a joint DARPA/
Army program for demonstrating local and large scale net-
working of military based weapons simulators. This program,
in operation since the early 1990s, makes it possible to conduct
regular and intensive practice of combat skills by numerous
large military teams in widespread locations. In addition, it
provides the capability to conduct evaluations of new, emerg-
ing tactics, doctrine, and weapons systems. Preliminary insight
based on the SIMNET experience (Psotka, 1993) provides both
personal testimonials to the motivating and stimulating effects
of the social and vehicle-based immersion of synthetic environ-
ments, and preliminary effectiveness data on its potency for
learning and training. Even though SIMNET provides an impov-
erished perceptual simulation of a tank in action, the cues from
active social engagement of crew members’ communications,
as well as the auditory and visual cues of the simulated sights,
provide believability. Moreover, the evidence clearly shows
training effectiveness (even without a curriculum) that is supe-
rior to many other classroom and simulation-based efforts (Bes-
semer, 1991). Research is continuing to assess how to make this
training more effective by including surrogate crew members
and intelligent semiautomated forces in the environments. The
need to involve infantry, not just tanks and vehicles, is creating
a research base for better computational models of agents and
coaches (Badler, Phillips, & Webber, 1992).

Three Specific Group-Learning Approaches

Current theories of learning and training are increasingly cen-
tered on the learning process as it occurs within “situations,” or
meaningful contexts (Brown, Collins, & Duguid, 1989; Collins,
Brown, & Newman, 1989; Eisner, 1993; Greeno, 1989; Resnick,
1987, Shuell, 1993). Often in both the laboratory and the “real
world,” these situations consist of small-groups of individuals
working together on a common task, either collaboratively or
cooperatively (for more on team training, see Chapter 12).
Thus, group training must be considered within these new
theories or frameworks for leaming. For instance, constructivist
(Vygotsky, 1978) and situated learning theories (Greeno, 1989,
1998) emphasize the importance of social interactions for pro-
moting thinking and the development of problem solving skills,
The assumption is that learning is enhanced when one shares
cognitions with capable peers (Vygotsky, 1978). According to
Collins et al. (1989), these shared cognitions liberate knowl-
edge from specific contexts and encourage transfer to new
problems and new domains. When learning takes place in
“psychologically safe” leaming environments, individuals can
leam from each other’s mistakes and reduce their own anxiety
(Duren & Cherrington, 1992). Similarly, cognitive apprentice-
ship models of instruction (see Collins et al., 1989) suggest that
small-group leaming situations provide opportunities for
leamers to see others at various stages of development, thus

providing benchmarks for learners’ progress, resulting in the
observation that learning is an incremental process. Social con-
structivism, cognitive apprenticeship models, and situated
learning theories all have potential applications in both individ-
ualized and group training environments. The examples used
here are all cases where they are employed in small-group
training, so the theory and research results from each will be
reviewed in this section. ‘

Social Constructivism. The theoretical basis of this approach
is that learning is a social activity, actively constructed during
the process of sharing cognition with others (Vygotsky, 1978).
Part of this sharing process involves recognizing and resolving
cognitive conflicts that are embedded in social situations where
opposing viewpoints are voiced (Doise & Mugny, 1984; Piage!,
1932). Because learning takes place in a social context, learners
interact with and internalize modes of thinking and knowing
with others (Toulmin, 1972). In fact, “our daily lives are filled
with instances in which we influence each other’s constructive
processes by providing information, pointing things out to one
another, asking questions, and arguing with and elaborating on
each other’s ideas” (Resnick, 1991, p. 2). Other literature sup-
ports the notion that students learn more by articulating their
knowledge to others, particularly during self-explanation (Chi
& VanLehn, 1991). When situating instruction in meaningful
contexts, the social group is part of that context.

The social constructivist theory has found support in many
subject-matter domains, such as reading, writing, and mathe-
matics, as well as in the professions; such as medicine, law, and
avionics. A few examples of knowledge construction in group
situations are subsequently provided.

Matbematics. Recently, several researchers have been ex-
amining the construction of mathematical meaning using small-
group environments (e.g., Cobb, Wood, & Yackel, 19
Lampert, 1990; Resnick, 1988; Schoenfeld, 1985). The group
facilitates reasoning about mathematics and can also foster re-
flection or metacognitive skills necessary to evaluate mathemat-
ical problems (Schoenfeld, 1985). Lampert (1990) discusses the
importance of finding a common mathematical language for
learners to use when communicating ideas, since language
facilitates learning in social situations. One goal of this research
is to determine effective ways to foster dialogs among partici-
pants. Dialogs are important for facilitating access to multiple,
as opposed to single, problem representations (Resnick, 1988),
Part of this communication involves group discussion of prob-
lem representations that can be argued before mathematical
procedures are employed. Resnick has been particularly clear
on the necessity of having a common core of knowledge in
order to promote the types of dialogs that Lampert refers toin
her work.

Law. In law, a prevailing form of instruction is the “case
method.” Students individually read assigned legal cases and
prepare summaries that they present to the class. The professor
typically asks questions about the student summaries to ensure
that each case is completely covered. One goal of the case
method is to allow students opportunities to actively explore
problems with help from the professor (Harno, 1953). In princi-
ple, this seems conducive to the social constructivist philoso-
phy whereby individuals learn from the multiple perspectives




in the class. In practice, however, it appears that only a handful
of students participate in the ensuing discussions (Cavers, 1943;
Stevens, 1973). More recently, Williams (1992) has examined
this instructional/training process within natural settings and
found, similarly, that not all students are active in the case
method. Consequently, the conclusion that everyone learns the
same things from case presentations is erroneous (see also
Bryden, 1984; Ogden, .1984; Chapter 17).

Medicine. Medical students also engage in problem-based
learning situations. They work in small tutorial groups to diag-
nose patients’ problems and understand the causes. Williams
(1992) suggests that a-more guided approach is necessary in
both the case-based and problem-based learning situations to
ensure the benefits of the social constructivist model. She sug-
gests that the frustration of trial-and-error learning could be
reduced if an approach were developed to model expert prob-
lem solving in these areas. These models should include exam-
ples from the entire problem-solving cycle, such as planning,
executing, evaluating; and revising all of the various potential
solutions. (See Chapter 17 for further discussion.)

Avionics. Katz and Lesgold (1993) have investigated how a
computer tutor can be desrgned to facilitate learning in collabo-
rative learning srtuatrons for teaching avionics troubleshootrng
This approach embodres the social constructivist theory as the
small-group learning situations are assisted by computers,
which support the review of expert and novice problem-
solving traces. Katz and Lesgold have linked the benefits of a
computer tutor with the human resources of the small group,
which can provide explanations in the context “of problem

solving, They accomphsh this goal by using the" computer to
Jostergroup discussions and by critiquing problem—solvrng per— ‘
formances. The opportumty for learning through peer negotia- -

tion is scaffolded by the® computers coach module, which

generates expert feedback on the group’s hypotheses or trou-
bleshooting plans. (The term “scaffolding” isa metaphor forthe
construction of knowledge The computer provides a scaffold -
for learning by offering helpful feedback, directed questioning,
feminders, and suggestions for discussions with other learners.) !

The same caveats that apply to cooperative learning situa-
tions also apply to the application of the social constructivist

theory. Namely, not all peer-learning situations are successful
(Johnson & Johnson, 1985; Slavin, 1985, 1990b). The effective-
ness of small-group trammg environments depends on the 4
nature of the task, abilities represented by each member in the .
group, and individuals’ abilities to monitor their. own under-
standing and compare their views with those of other group

members (Blumenfeld et al,, 1991). Social experiences can
dramatically shape an individual’s interpretations (Mead, 1934),
and the main goal of training is to make those interpretations
(or knowledge and skill constructions) as valid as possible.

Cognitive Apprenticeship. The cognitive apprenticeship
model (Collins et al., 1989) is an attempt to anchor instruction
within meaningfu! situations where the learning of knowledge
and skills becomes embedded in the social and functional
tontext of their use. The conceptual foundation of this ap-
proach is the traditional vocational apprenticeship, where a
novice learns a trade from a master. The masters share their
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knowledge with novices, assisting them in developing some
skill or product (see Chapter 16 for more information).

Some of the general traditional apprenticeship methods are
applicable today. These include-pbservation (of the master),
coaching (by the master), practice (by the apprentice), and a
fading out of support (by the master), so the apprentice eventu-
ally performs the task alone. By remaining actively involved in
the learning process (“scaffolding” the acquisition of knowl-
edge and skill), the master ensures that the learner acquires the
proper technical knowledge and procedural skills necessary to
complete the task:"Once the novice/trainee begins to demon-
strate proficiency,-the master reduces partrcrpatlon (fadmg)
providing only limited hints.* o

A potential problem with'the cognmve ‘apprenticeship ap-
proach'is that masters of domam-specrﬁc cognitive skills may
have difficulty articulating their skills to the novice learner,

‘making it hard,"if not'impossible, for novices to understand.

Cognitive reseéarch can help in expltcatlng these skills through

“knowledge engineering techniques. ‘For example, using a
‘probed form-of protocol analysis, tacit- knowledge of experts

can be made explicit (Collins et al., 1989). Once this knowledge
is extemnalized, novxces have an opportumty to share in the
culture of expertrse

In theory, the main benefit of the cognitive apprenticeship
approach. is that it forms the basis for deciding which skills

“should be modeled for or demonstrated to the learner/trainee,

how best to provrde scaffoldmg to-less-skilled learners; and
when to fade such assistance when learners demonstrate they

¢ can construct their own meanings and products. Technically,

however, the theory does not provide specific guidelines to

" determine when feedback should be offered, what it should

say, or how to determine the’optimal level of performance at
which fading should begin. Thus, these areas are ripe for em-
pirical research. Three examples (described in greater detail in
Collins, Brown, & Newman, 1989) of the cognitive apprentice-
ship approach are now offered, within the domains of reading,
writing, and mathematics.

Readmg Palincsar and Brown (1984) developed a small-
group training approach for’ reading called “reciprocal teach-
ing"—*“reciprocal” because leamers take on two roles, the
producer and the critiquer of knowledge. By reversing roles,

students have opportunities to generate and evaluate their own

‘comprehension and that of others This approach has all of the

_components of cogmtwe apprentrceshrp in that expert skills are
modeled to novices, novices are given hints for improving their

performance, and assistance is faded once learning has been
demonstrated. Some of the relevant expert skills that are dem-
onstrated include formulating thought-provoking questions,
summarizing the gist of what has been read, clarifying material,
and predicting events (see Palincsar & Brown, 1984, for more
detailed information about thrs trarnrng approach, including the
role of the instructor). -

Writing. Another example of cognitive apprenticeship is the
“procedural facilitation approach” to writing (Scardamalia &
Bereiter, 1985). In general, novice writers tend to list one idea
after another in a “knowledge tell” fashion, while experts orga-
nize their writing around emerging goals. Scardamalia and
Bereiter decomposed the expert writing processes and devel-

mw_mm.w
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oped prompts to facilitate writing plans and procedurgs for
novices. This process includes five general goals: generating a
new idea, improving an idea, elaborating an idea, identifying
goals, and putting goals into a cohesive whole. Revision is also
encouraged. Similar to the reciprocal teaching method, this
process involves modeling, coaching, scaffolding, and fading.

Mathematics. The cognitive apprenticeship framework has
also been used in mathematical problem solving (Schoenfeld,
1985). In this application, experts use heuristics as well as
control strategies and productive belief systems. Schoenfeld
describes the selection of heuristics for those problems where a
particular heuristic might be relevant, focusing on the use and
management of specific heuristics. The expert heuristics are
modeled, and students are required to come up with alternative
wilys to solve the problem. Together, they discuss the useful-
ness of cach heuristic for solving various problems. So students
are taught first how to apply the heuristic, then to recognize
situations in which it applies. Schoenfeld’s method also in-
cludes what is called a “postmortem analysis” (also known as
an “abstracted replay™) where a recapitulation of the student’s
process is provided, highlighting the critical decisions or ac-
tions. Both expert and novice postmortems are discussed in
small-groups, enabling students to make explicit comparisons
and incremental adjustients to their own performance.

Sitnated Learning.  “Situated learning,” or situated cognition,
reters to learning in the specific context in which one plans to
use the knowledge and/or skill. Problems must be realistic or
authentic in the sense that the applications of knowledge and
skill are readily apparent to learners during the acquisition
process. This contrasts with the more typical means of teach-
ing/training where concepts and skills are removed from the
context in which they may be used. In fact, a very common
criticism of contemporary education is that skills and knowl-
edge taught in schools have become abstracted from their uses
in the world (Collins et al., 1989; Resnick, 1987). Resnick exam-
ined how leaming in school differs from the skills one requires
outside school. Schools place a strong emphasis on factual
learning, but typically at the expense of more pragmatic prob-
lem-solving skills. To supporters of the situated learning ap-
proach, this is not just a trend, but a radically new perspective
or philosophy that allows for the integration of “psychological
theodies of physical and cognitive skills, uniting emotions,
reasoning, and development, in a neurobiologically grounded
way” (Clancey, 1993, p. 98).

The theoretical foundation of this approach is the premise
that feamers actively construct new knowledge and skills from
the world around them (Banlett, 1932; Collins et al.,, 1989,
Drescher, 1991; Edelman, 1987; Piaget, 1954). Indeed, there is
ample evidence that learning is enhanced when instruction is
situated in real-world problem-solving scenarios, and where
groups of students work out problems together (Brooks, 1991;
Brown et al., 1989; Clancey, 1992; Cognition & Technology
Group at Vanderbilt, 1992; Collins et al., 1989; Lave & Wenger,
1991; Suchman, 1987). The situated-cognition perspective on
the question of where knowledge resides can be seen in the
following: “Rather than thinking that knowledge is in the minds
of individuals, we could alternatively think of knowledge as the
potential for situated activity. In this view, knowledge would be

understood as a relation between an individual and a social or
physical situation, rather than as a property of an individual"
(Greeno, 1989, p. 280). :

The Cognition and Technology Group at Vanderbilt Univer-
sity (1992) have been developing a pedagogical approach to
situated cognition called “anchored instruction,” which a-
tempts to actively engage students in the learning process by
situating instruction in interesting and real world problem-
solving environments. Rather than teaching students how to
solve particular problems, these systems teach generalizable
skills, applicable across a variety of problem-solving situations.
and designed to be solved by group effort. The major goal of
this type of training is to create authentic-feeling environments
that allow groups of learners to explore and understand prob-
lems and opportunities experienced by experts in 2 domain.
and learn about the tools these experts use. The Vanderbil
group has also developed a series of videodisc adventures for
middle-school students, the “Adventures of Jasper Woodbury"
series, focusing on math problem formulation and problem
solving (Barron et al., 1994). The goal of the project is ©
facilitate broad transfer to other domains, embodying sever!
design principles: (1) video-based presentation; (2) narrative
format; (3) generative learning; (4) embedded data design; ()
problem complexity; (6) pairs of related adventures; and ()
links across the curriculum (for more on this project, see Gold-
man, Pellegrino, & Bransford, 1994).

One major problem with situated cognition, especially in
relation to traditional information processing models, is that i
simply has not yet tested the underlying hypotheses that
knowledge is better construed as being external to an individ
ual—context-dependent—than as a property of the person. 08
the other hand, information-processing paradigms have had

"the benefit of decades of solid research. Vera and Simon (1%3)
rebutting Clancey’s (1993) support paper(s) for situated leam-
ing, stated, “Clancey leaves us with philosophy (whether cor
rect or not is another matter), but with precious little science”
(p. 118). Because cognitive psychology is an empirical science.
studies need to be conducted that address claims made by an¥
new position.

We now highlight a few of the main points from this section
(see Table 7-3), then turn our attention to specific variables thit
influence the way group members interact with one another.
and how that can affect learning.

Group Dynamics: Identifying Relevant Variables

We define “group dynamics” as the pattern of group processes
such as communication and social control that occurs while 3
group is interacting in the solution of a problem or task. Various
social, psychological, and physical factors have been shown 0
strongly affect group dynamics, influencing how members of
group interact with one another. For example, communicatot
skills, ability level, gender, and personality all influence group
dynamics in specific, and occasionally interactive, ways (Webb.
1991). These factors, and a few others, will be discussed in tis
section.

The dynamics that transpire within particular groups ult-
mately impact how well the group as a whole will leam. If daa
on leamer characteristics are available, the structure of a group
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Group Training
Summary Statements and Recommendations for Trainers

Large-Group Training B

Workshops When the curriculum is designed around competent task analysis, and pedagogical decisions are based
on empirical research and cognitive/instructional theory, AND there is a match between the goals of the -
workshop and needs of the trainee, then a workshop can be a very effective way to acquure new skills.
We advise caution, however, because often these criteria are not met. ,

Small-Group Training -~

Fostering Interaction Research indicates that there are a variety of benefits (cognitive, social, motivational) to be garnered from
encouraging people to work collaboratively or cooperatively in small group environments. The emphasis
here is on maintaining a high and equal leve! of interaction among group members, thereby giving all
participants an opportunity to negotiate meanings, acquire new strateg;es and skrlls and develop higher-
order thinking abilities.

Specific Pedagogies Social constructivism, cognitive apprenticeship, and situated learning approaches all provide empirical
evidence that the techniques involved in training with these methods result in deep, meaningful learning
and an enjoyable training experience. Some question remains, however, as to whether these results are
generally more deep, more meaningful, and more enjoyable than those experienced by trainees working
alone. Nevertheless, if the task involved is clearly definable as a group task, we recommend that trainers
consider organizing instruction around one or more of these approaches. At the very least, there can be
no harm, and it is likely to be the case that training outcome and efficiency will improve. -

TABLE 7-3

can be mampulated in order to take advantage of drfferent‘ group leammg than prosocral or basrc communication skills.
leamer characteristics that would help optimize lezmmg That She con51stently found that helpful responses are those which
is, after identifying the varrables that mﬂuence group dynamrcs -elaborate on problem-solvmg strategres and the rationale be-
research can systematlcally mampulate these variables to'see. hind actions. Unhelpful responses, known as “terminal re-
what the best combmat1ons are to.promote leammg, for the’ sponses » are those that tell the questioner what to do without
group and individual.- Basic research in cognitive and‘social _ _saying why or how. “Terminal responses hence fail to em-
psychology continues to seek answers to questions regardmg " -power the questioner to reconstruct the process of finding an
the optimal composrtrons of learner groups. Is it better to mix - .answer or solving a similar problem in the future” (Webb, 1993,
genders, or have' same-sex- groupmgs9 -When - estabhshmg, ‘p 11). So successful learners in group settings know how to ask
groups based on aptitude, is it better to match’ or mismatch” « “the right questions (those that evoke elaborative, rather than
abilities? What are the optlmal coordmatrons of personahtyj ~ terminal, responses). Questions that ask for specific informa-
traits (such as introverted and ‘extroverted)? Andwhat other tion are more likely to result in specific, helpful responses than
Cognitive/social considerations:should be made (e. g.; letting general or indirectly phrased, questions (Webb, 1991). Further-
individuals self-select therr group versus bemg assrgned)? more, it is possible to teach students to ask good questions.
- e 7 B " "King (1989b, 1990) reported positive effects on the level of
Communication Skzlls One way to investigate group -dy-* ’ elaboratron in group discussion and on students’ comprehen-
EWHIC factors is to study peer- -learning groups in school settings . #sion"and recall usmg a recrprocal-questlonmg strategy.
aﬁ?gl:o]ifg(igg)ebb 1985, 1987, 1991). For’ example, Bamnes- | 1 addmon to the aforemermoned communication SklllS
recorded the conversations of students en-
82ged in various problem-solving tasks. Detailed analysis of
these conversations resulted in the identification of (1) the
Nature of understanding that emerges from the group, (2) the:
kinds of social and cognitive skills required of students for
effective i interaction, and (3) the effects on interaction of varia-
tions in the type of task given to ‘the group. Groups that tended
1o solicit opinions from all members, encourage precise articu-
lations, ascertain differences among various inputs, and inte-
8te perspectives received the greatest benefits from their in-
teractive €xperience.

other powerful techniques that enhance learning include self-
explanations (Chi, Bassok, et al., 1989; Chi & VanLehn, 1991;

Pirolli & Bielaczyc, 1989) and other-directed explanations (e.g.,
Palthepu, Greer, & McCalla, 1991). Explaining some concept or
skill to oneself and/or to others, combined with the inherent
process of meaning negotlatron can collectively be referred to

strongest impact on learning when it occurs between peers
engaged in realistic problem-solving activities; and it signifi-
cantly contributes more to learning than other important factors
such as prior knowledge and age (Chan, Burtis, Scardamalia, &
~ Webb (1993) has suggested that giving and receiving Bereiter, 1992). Bielaczyc, Pirolli, and Brown (1993) found that

Omation is more significant in determining the success of direct training in explanation and self-regulation strategies such

* as “knowledge articulation.” Knowledge articulation has its -
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as comprehension monitoring resulted in improvements in
learning and problem-solving performance in LISP program-
ming,.

In contrast to the view that group-communication skills are
effective for social reasons, Chang and Wells (as cited in Cohen,
1994) proposed a group problem-solving model focusing on
the management of the problem-solving process through ver-
bal specification of precise goals, planning of procedures, and
generation and selection of alternatives. In their view, the
effectiveness of the group is a function of its ability to bring the
problem-solving process under conscious control. Vedder
(1985) agrees with the conceptualization of effective coopera-
tive learning as an explicit process, adding that pupils must
control and evaluate their partners’ work. He claims that
learners in groups must adopt teacher—pupil roles in relation to
cach other. However, Vedder found that, despite being taught
how to regulate one another’s solving of geometry problems,
pupils spent very little time actually verbalizing their problem-
solving strategies. This was corroborated by Webb, Ender, and
Lewis (1980), who report that small groups of students learning
BASIC programming on a computer did very little long-range
planning and performed all of their debugging at the lowest
abstract level,

One way to promote effective interaction in small-group
settings is to script a dialog for the trainees. A “script” is written
very much like a theatrical dialog. Dyads (pairs of leamers) read
from the procedural text and offer feedback to each other as
they perform the actions described in the script. One partner
acts as the planner-performer and the other as the listener-
observer, and they then switch roles and continue until the
whole procedure is complete. Dansereau and his colleagues
have studied the use of this technique in great depth (for the
rationale behind the use of scripts in collaborative learning, see
Dansereau, 1987, 1988). They provide evidence that, compared
with individuals learning procedural knowledge and skills indi-
vidually, cooperative script use in training results in (1) superior
initinl performance of the target procedure, (2) better retention
of procedural skill and knowledge of the procedure, (3) posi-
tive affective reactions to the learning experience and partners,
and (4) a superior ability to communicate orally about the pro-
cedure (O'Donnell et al., 1988; O’'Donnell, et al., 1990). Taken
together, these results highlight the paramount importance of
effective interactions in small-group training environments.

Ability Level.  According to Cohen (1994), one consistent con-
chusion that may be drawn about ability levels of group mem-
bers is that low-ability students benefit from being in a hetero-
geneous group (as opposed to a homogeneously low-
achieving group). In contrast, average achievers actually per-
form better in homogeneous groups. Several studies examining
ability groupings on achievement (e.g., Cohen, 1994; Webb,
1982), have found that average students typically do not benefit
from mixed-ability environments. Conclusions surrounding the
optimal placement of high achievers are slightly more compli-
cated. For example, Swing and Peterson (1982) reported that,
within heterogeneous groups, higher-ability students were
more likely to offer explanations (consistent with Webb’s 1991
findings) and benefit from having verbalized those explana-
tions. Hooper and Hannafin (1988) reported that heterogene-

ous grouping had no significant negative effect on high-ability
students. From these data, a logical conclusion would be that
high-ability students should always learn in mixed-ability
groups. But other data support a different verdict. Tudge (1%91)
reported that on a very difficult math task, high-ability leamers
actually regressed in their thinking from pretest to post-est
after working with a lower-ability partner. Thus, “if the task is
very challenging and ambiguous and has an ill-structured solu-
tion, and if a heterogeneous pair is left alone to agree on an
answer, then the confidence of the more developmentally ad-
vanced child can be shaken, and he or she may regresstoa
view of the matter that he or she held at a younger age” (see
Cohen, 1994, p. 11). '

Gender. As discussed in the section on communication skill,
explicit and direct requests for help are more likely to elicit
good and helpful explanations than general requests. Research
on gender differences has shown that boys are more likely to
ask direct questions than girls (e.g., Webb, 1984). Even in cases
where males and females are of equal ability, males perfom
better than females on achievement tests administered subse-
quent to their group activities. Further, in terms of gender
proportions, it seems that groups with an equal number of boys
and girls promote more explaining activity than groups with
unequal numbers of the two sexes. For example, Webb (1984)
examined how gender related to mathematics problem solving
for seventh- and eighth-grade students. She found that females
in mixed-gender groups (predominantly female) tumed to
males for assistance rather than to other females because they
perceived the males as being more competent at mathematics.
Related research has supported this contention by showing 2
relationship between the perceived status of individuals and
the type of interactions that occurred. Webb also reported that
in mixed-gender groups (predominantly male), females were
often ignored when they asked for assistance. Thus, it appears
that mixed-gender groups can occasionally be detrimental 0
learning by female mathematics students.

The relationship between gender and ability was also exam-
ined in a study on leaming statistics from a computer-based
environment (Lajoie & Lavigne, 1994). Using same-sex group-
ings of eighth graders, they found that gender plays an impor-
tant role in group problem solving. Though gender differences
did not exist on a pretest of statistical knowledge, differences
were found on post-test performance, with a female advantage
over males. Thus, providing females with an opportunity 0
work on group projects with other females (using computers 10
develop statistical projects) showed a more positive impad
than for male-only groups. This study also reported gender
differences in learning outcome measures. Journals were given
to each group, and students were required to document the%r
acquisition of statistical concepts and skills, as well as their
emerging ideas/plans for statistical projects. Female groups
tended to document their conceptual knowledge and plans
better than the males, whose journal entries were considerably
sparser in those areas. However, the male groups’ entries wer¢
much more complete in regard to answering how they woulfi
apply statistical concepts in certain situations. Bardos, Naglier,
and Prewett (1992) used a journal-writing approach for docw:
menting evolving knowledge and skills of elementary school
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students. They similarly reported a female advantage over
males in relation to the explication of planning processes. Thus,
when the instructional focus is on a particular learning out-
come, it may be:advantageous to compose heterogeneous
groupings (with an equal number of males and females, per
group). For instance, if the desired learning outcome is more
conceptual, and females show an advantage in this area, then
males may benefit from working with females. Alternatively,
when the outcome focuses more on the application of certain
skills, females may profit from working in groups with males,
especially if they receive pretraining in directed-questioning
techniques. This technique can help teachers, as well as en-
courage students to identify concepts and procedures that are
pootly understood.

Motivation and Personality. Motivational factors can exert as
great an influence on a person’s or group’s achievement as
cognitive factors (Lepper & Chabay, 1985; Slavin, 1983), and
motivation levels differ greatly among individuals and groups.
Simply placing students into groups and giving them a task is
not enough to ensure that they will interact. Individuals need to
be internally as well as externally motivated. -

Deutsch (1962) originally identified “positive goal interdé;—
pendence” as the perception on the part of group members that
they can achieve their personal goals if, and only if, the other
group members also achieve their goals. For this to work, all
members should be similarly motivated, and this interdepen-
dency has been shown to increase group-learning achievement
(g, Johnson & johnson, 1975). A related issue is “positive
reward interdependence,”: which exists when members“’of a
group receive the same reward (external motivation) for com-
pleting a cooperative task successfully. Slavin (1983) concluded
that achievement is enhanced by cooperative leatning 'Wlfen
Sudents are rewarded as a group. But he also poihféd olit’kt'hat
§tudents must be accountable for their own learﬁiné. Thus,
individual accountability is just as important as group rewards.
A third interdependency : affecting group dynamics hzisf\bteen
called “positive résourcc' interdependence,” the condition
Whereby individuals can only achieve their goals when the
needed resources (e.g., information) are provided by other
members of the group. While Johnson, johnson, and Stanne
(1990) found that neither goal nor resource interdependence
Promotes effective performance alone, they do enhance group
leaming when used in conjunction with one another.. ;-

In -addition to motivational differences among learners; per-
;Onahty differences can significantly influence group dynamics.
Orexample, students in a group can have personality conflicts
so:;:f Counter the positive” effects of small-group problem
placemdg What happens Mwyhen introverts and extroverts are
5 together in a group-learning situation? Lavigne (1994)
Und that extroverted students are more likely to receive ade-
?;?ltﬁshélp lhan. the introverted students in the group. The
fons ( \;lted earlier regarding the benefits of asking good ques-
Sl 5 ebb, 1991, 1993) and the possibility of training those
e wmg &_Peterson, 1982) suggests that for certain individ-
tion: 1flCFudmg. introverts, specific pretraining on directive ques-
- OMasking skills may counter the inequity.
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Status. Status refers to any general, agreed-upon rank order
for virtually any dimension, where it is typically better to be of a
high rather than a low rank. There are systematic and highly
predictable inequalities in - participation among members of
small-groups that are related to status differences between stu-
dents, with low-status students interacting less frequently and
having less influence than high-status students (Rosenholtz,
1985; Tammivaara, 1982). The two types of status differences
that seem to have the greatest effect on interaction are those
related to ability and popularity. In the case of ability (academic
status), it is perceived rather than actual ability that determines
differences in rates of participation. For instance, Dembo and
McAuliffe (1987) reported that higher-status students (defined
as those publicly assigned above-average scores on a fake test)
dominated group interaction, were more influential, and were
more likely to be perceived as leaders than low-status students.
Popularity (peer status) is often highly correlated with aca-
demic status. Therefore, differences in perceived attractiveness
or popularity can also be the basis for status differentiation
(Webster & Driskell, 1983).

There are several ways to counter the potentially negative
influences of status on group dynamics. One intervention is the
“multiple ability treatment.” Teachers using this technique con-
vince students that there are many different abilities relevant to
the group task, that each member of the group will have some

* of these abilities, and that no member of the group will be good
at all of the tasks..In both laboratory (Tammivaara, 1982) and

classroom (Rosenholtz, 1985) experiments, this technique has
substantially weakened, but 'rf(:)lt‘ eliminated, status effects. One
must be careful in choosing applications of this technique,
however, because even with true group tasks, it is feasible that
a single person could be good at all of the requisite tasks.
Assigning competence to low-status students is another treat-
ment option. In this case, teachers make a special effort to
publicly applaud the efforts of low-ability students whenever
they demonstrate some higher-level intellectual competence.
By pointing out what the low-ability students did well and how
it contributed to the group effort, the instructor makes it more
likely that low-ability students will be included as equal mem-
bers of the group during future tasks.

Task Characteristics. The just-described research relates to
learner characteristics that affect group dynamics and ultimately
leaming; variables related to the nature of the task, itself, can
impact group dynamics as well. For example, Webb (1983,
1991) has concluded that there is no main effect of simple
frequency-of-interaction on an individual student’s achieve-
ment. Most of these studies took place in math classes where
students were put in groups and told to help each other solve
problems, asking the teacher for help only when no one in the
group could assist. But the opposite has been reported by
Cohen and her colleagues (Cohen, Lotan, & Leechor, 1989),
who “consistently find that simple measures of frequency of
task-related interaction are related to gains in computation and
mathematical concepts and applications as well as in content-
referenced tests” (Cohen, 1994, p. 7).

These disparate results may be explained in terms of the
nature of the respective learning tasks, and how they may have
affected the working relationships among group members.
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Most of the tasks in the math and computer group studies
examined by Webb were not inherently group tasks; they could
have been completed by individuals, A group task may be
defined as “a task that requires resources (information, knowl-
vdge, heuristic problem-solving strategies, materials, and skills)
that no single individual possesses so that no single individual
is likely to solve the problem or accomplish the task objectives
without at least some input from others [Cohen & Arechevala-
Vargas, 1987]" (Cohen, 1994, p. 8). Cohen’s studies, on the
other hand, were conducted on complex instruction in multilin-
gual classrooms and did involve genuine group tasks. In partic-
ular, instruction was embedded within ill-structured, open-
ended discovery environments; the problems were conceptual
tasks that emphasized higher-order thinking skills. In addition;
students in Cohen's studies underwent a week of skill-building
activities focusing on mutual assistance. Steps were taken to
prevent large disparities in helping behavior. The studies re-
viewed by Webb included neither a system of classroom man-
agement nor special training for the small-group environment.
The nature of the work assigned to the groups varied. On the
one hand, solving math problems is a well-structured activity
with definite correct answers, while on the other hand, open-
ended discovery problems used in complex instruction could
have a variety of correct answers. Cohen’s general conclusion is
that “given an ill-structured problem and a group task, produc-
tivity will depend on interaction” (Cohen, 1994, p. 8), and the
benefits to group learning will increase in proportion to the

amount of pre-training that students receive on how to interact

with one another,

In conclusion, groups sometimes do, and sometimes do not,
work well together. The success of group leaming has been -
shown to depend on a number of variables, working indepen- -
dently orin concert with one another. Although more controlled _
research is needed to begin filling empirical holes and derive
concrete principles, it is possible to present preliminary guide- .
lines for making decisions about optimal groupings for different

leaming/training conditions, as we do next (see Table 7-4).

The foregoing reviews were not specifically bound to either
human- or computer-based training; the following subsection

specifically addresses how small-groups may leam from com-
puters.

Group Learning on Computers

There are basically three ways to implement collaborative

learning environments using computers: (1) a small-group of

leamers interict with each other on a single computer system; =

(2) the computer system itself serves as the “partner” in the
collaboration: or (3) students collaborate with each other, but
are located at sites distal to one another and to the teacher/
trainer. The first implementation—a small-group using one
computer—represents an extension of the research (just cited)
on collaborative leamning in classrooms. The main issues that
need to be addressed are that the computer system must be
able to: (1) introduce knowledge into a joint problem-solving
space; (2) monitor ongoing activities for evidence of diver-
gences in meaning; and (3) repair divergences that impede the
progress of the collaboration (see Teasley & Roschelle, 1993).
Where this list differs from the components of underlying tradi-
tional student modeling (see ITS subsection “Individualized

Training”) is that modeling a group is built on a joint, rather
than single, problem-solving space. Simply put, the ITS must
take into account the fact that there are multiple learners work-
ing together concurrently by either maintaining a separate stu-
dent model for each learner or “averaging” across their re-
sponses to create a single model for the group.:

A second way of .implementing collaboration involves
assigning the computer to be the learner’s partner. This repre-
sents an intriguing twist on the notion of collaborative learning,
To illustrate, Cumming and Self (1989) proposed a collabo-
rative Intelligent Educational System (IES) with the goal of
engaging the learner in a partnership. Here,. the:computer
serves as a collaborator, not as an authoritarian instructor. In
both cases, a student model must still be derived of an individ-
ual or a group.

. “Distance learning” represents a third way that computers
can be used in collaborative leaming (Stephenson, 1992). In
this case, students are physically separated from each other and
from any.teacher or trainer. Each student has his or her own
computer, and interactions are achieved electronically. The ef-
fects of this approach, in relation to the other kinds of collabo-

.rative environments, are not known. We know of no studies
‘explicitly testing whether electronic interaction is as beneficial,

in terms of outcorne, as the positive influences of face-to-face
interaction. Furthermore, because learners are located distally,
they\cannot point out interesting features on the shared com-
puter screen, although visual, and possibly voice, interactions
could still ensue over the network. This type of arrangement
also decreases the strength of one of the main arguments in

- support of collaborative environments, namely, that it attenu-

ates resource limitations by distributing few computers among
many leamers. On the positive side, distance learning can allow
learners to stay at-home or: some other convenient location
(saving time’ ‘and transportation costs), and connect to a net-
work of 1nformatron and training software (see also Chapter

Designing and developmg computer based group -learning
environments requrres anintegration of the social cognrm e,and

© conative factors that affect group-learning processes and out-

comes. Moreover, one must-determine- -ways to manipu late
(enhance or attenuate) these. factors with a“computer. The
specific rmplementatron dependson the nature of the interaction
(i.e.,several students around one computer, a student in collabo-
ration with a computer partner, or students using different net-
worked computers).. This_is not,a- trivial task.” Consider the
difficulties encountered in tryrng to understand how and why
groups differ in their leamrng outcomes ‘and how the tutor
influencesthat process. Thenimay gine being a software engineer.
trying to draw on that relatrvely hmrted (but growing) body of
knowledge in an effort to make 2 computer ‘seem like” anexpert
instructor, or another studentwith whomthe human will collabo-
rate. Finally, the issue of mterface design'must be addressed.
Takentogether, this whole enterprrse of designing computerized
group-learning environments is extraordinarily complex.

To illustrate some of these complexities, we cite a recent
effort by Blandford (1994), who created an IES called
WOMBAT (Weighted Objectives Method By Arguing with the
Tutor). WOMBAT is designed to teach in the domain of design
decision making and to act as a collaborator in the problem-
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Group Dynamics
Summary Statements and Recommendations for Trainers

Communication Skills The findings are very clear with respect to this variable. Trainees must communicate well with each other in
order to take advantage of all that the small-group learning environment has to offer. If they are not doing so,
they should be frained to communicate productively. Communication skill tramtng should focus especially
on (1) the development of academic help skills (e.g. asking questions that require specific information and
elaborative responses, responding to questions by elaborating on strategies and rationales), (2) encouraging
participation in knowledge articulation, and (3) learning to explicate goals, plans, and alternatives during the
problem-solving process. Dialogue scripting seems to promote effective interaction, and should be considered
a potential means to that end. :

Research shows that low-ability trainees will learn better in heterogeneous groups, while medium-ability
learners should be placed in homogeneous groups. High-ability subjects should learn within mixed-ability
groups when the task is relatively simple, but in homogeneous groups (all high- ablllty) when the knowledge
and skills to be acquired are very complex. N

Ability/Aptitude

When there are equal numbers of males and females, one should mix the groups by gender. Females ‘
should receive supplemental training in asking direct, explicit questions prior to group learning activities. .

Gender

The training experience will be more productive when learners are both internally and externally motivated.
To encourage this, trainers should do what they can to ensure that group members share a perception of
goal and resource interdependence, that all members of the group receive the same external reward for -
training performance, and that they all feel personally accountable for their own Iearnmg within the context of
the group. .

Motivation

Personality Extroverted and introverted personality types should be mixed wrthm small-groups but one should

provide some kind of pretramlng in communlcatlon skills to the lntroverts

i 4 . The perception of inability and/or unpopularity has serious negative effects on participation in small :
environments, and therefore on training outcomes as well. Potential status effects may be countered through -
the use of intervention techniques like mult|p|e abtltty treatments and assngmng competence to Iow-group- :
abthty learners/tramees ) :

Perceived Status

The greatest beneﬁts of small’ group tralntng will be realized when the tasks mvolved are true group tasks
that require resources that no one trainee possesses and that will require “at least some input from others.
Of the group tasks ill-structured tasks requ|re producttve commumcatlon among group members in order for -

Task Characteristics-

; Tra/ners should be cognlzant of person and task variables and the ways they influence group dynamics.
While making decisions about group composition, it is important to consider that these variables do not

.. exist independent of each other. That is, any given trainee will be not only male or female, high-ability or low-
" ability; rather, each individual will be a complex melange of all of these characteristics. Where possible, com-
“ < binations of decision rules can be used to maximize Iearnlng for all tra/nees ConSIderany more empmcal

j research is needed m the area of group dynam/cs

Summary

TABLE 7.4

solving process. It was desxgned to be used mdmdually,
€ computer acts as the collaboratmg learner. It ‘includes a
dizlog agent that (1) prompts users to think about and justify
their decisions, (2) discusses not only aspects of the problem,
butalso how it is to be solved, and (3) accomplishes all of this
ina non-prescriptive manner, such that the computer does not
Ve as if it knows all the answers. In a recent formative
®Valuation study, ten subject experts, all of whom tested out the
Program separately, concluded that, although this dialog agent

and) ‘

“was ar_1 tmpoxtant enhancement of the system ‘the overall inter-
“face of the tutor made it fatrly dtfﬁcult to use. Thus, not only
" what the program is designed to do but howit is implemented

on the screen must always be taken into account. A well-
designed program that is confusing to the user loses much of its -
potential educational value.

Despite the difficulty of the endeavor, CBT and ITS can be
extended for group work. Stephenson (1992) conducted a re-
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view of 30 studies that focused on comparisons of achievement

between individual and small-group CBT. He reported that in-.

no case did individual CBT produce statistically higher achieve-
ment than small-group CBT, and that there was no evidence

that pairing stucents for CBT work lowers achievement. In fact,” -

in 11 of the 30 studies, small-group CBT students performed
significantly better than individual CBT students. Of the studies

with nonsignificant results, Stephenson points out that many of - -
them involved fairly short experimental sessions (one session
of less than 60 minutes or several sessions totaling less than 120

minutes), Moreover, dependent variables were assessed only
via brief paper-and-pencil tests, or computer-based multiple-

choice exams. One lesson here is that experimental sessions -
should be fairly long and intellectually challenging, and the’
outcome measure should be difficult enough to allow for some |

variability. Another lesson is that the longer the training time,
the more likely it is that group CBT work will result in higher
oucome.

Stephenson's review establishes a strong basis for the gen- ©

eral conclusion that small-group CBT work is consistently more
effective than individualized CBT training. Why might this be
the case? There are many potential explanations, but we feel
this result is primarily a reflection of the inherent power of

small-group interiction. Two or three leamners working to- |
gether at a single computer are able to scaffold each other's
attend to the subtle response -

learning, act as surrogate tutors,
cues that the computer cannot understand or even perceive,
and then generate immediate, appropriate, helpful feedback.

Cohen's recent conclusion that “either through some kind of

motivational device or through deliberate instruction in these
soctal skills, something must be done to provoke the desired

behaviors within cooperative groups” (1994, p. 7) is as true in

the case of computer-based group training approaches as it is
for a group of humans collaborating on a problem. As guide-
lines for the development of computerized group training envi-
ronments begin to develop, the emphasis should be on maxi-
mizing the potential for productive interaction (among
humans, and between humans and the computer), just as it is in
all-human group approaches.

Katz (1993), in apparent agreement, calls for a methodology
for developing computer-supported  collaborative learning
(CSCL) environments. She posits that CSCLs should: (1) offer
direet guidance and structuring of peer interactions, in an at-
tempt to prevent problems like the “free rider” effect (some
learners not participating in the task) and the diffusion of
responsibility; (2) give students something challenging to talk
about (e.g., employ conversational tools such as menus that
prompt for components of a dynamically constructed explana-
tion and provide questioning stems) (Katz & Lesgold, 1994);
and (3) enable collaborating peers to resolve conflicts when
they arise, because it is conflict resolution, rather than the exis-
tence of conflicting viewpoints, that promotes leamning.

A lot remains unknown in the area of group approaches to
instruction. So many variables affect group dynamics in the “all-
human” leamning environments alone that it will probably be a
number of years before a fairly complete set of specific guide-
lines can be compiled. Until that time, attempts to create effec-
tive computer-based group learning environments will con-
tinue to be plagued by some of the same problems afflicting

group learning in general (as well as those unique to computer-

_delivered instruction). The problem is that we do not really

know what to tell the computer to do, or how to do it, or even
when it should be done. Modeling even one student’s ability
and skill level has proven to be very challenging. Attempting to
do the same  thing with a small group of students (even just two)
seems a bit premature. In summary, group training envion-
ments, whether delivered by a human or computer instructor,
should be designed to guide students to think for themselves
and prompt them to communicate with each other to work out
misunderstandings and impasses along the problem-solving
pathway. Without the right kind and degree of support, stu-
dents  often fail to interact fruitfully. A well-designed group-
training environiment should be capable of providing students
with doma1r1—spec1ﬁc knowledge as well as domain-indepen-
dent communication and learning skills (see Table 7-5).

DECISION TIME: INDIVIDUAL OR
GROUP APPROACH?

Before any spec1ﬁc dec151on can be rendered on whether to

employ individualized or group training methods, more con-
trolled research studies need to be conducted that exphatly test
the relative efficacy of these training approaches, within and
across domains. For a variety, of reasons (e.g., greater range of
shared knowledge, resource limitations), the notlon of group
learning environments*is appealing. However, many unan-
swered research questions need to be addressed (see Katz &
Lesgold, 1993). These mclude What parts of the curriculum
should be trained in groups, and what parts leamed individu-
ally? What teachmg methods should be used to achieve the
instructional goals, and how should* they ‘be sequenced to
optimize learning? What should be the role of the human or
computer tutor? We start by 1dent1fymg some “general training
issues, followed by a bnef dlscusswn on these three questions.

GENERAL TRAINING lSSUES

The design of any training program (mdlvxduahzed or grouped
instruction) should start with a broad cogmnve task analysis of
the targeted task or cumculum \Tasks may depend on greatet
or lesser contributions from declarauve knowledge procedural
knowledge and skill, or other performance skill determinants
such as perceptual motor Sklll These categones of cognitive
operations may be viewed as lymg along a continuum that runs
from more knowledge-based to more performance—based (for
more on this topic, see Kyllonen & Shute,1989).

Though most complex tasks are supported to some degree
by all of these categories of cogmuve operatlons many tasks
are heavily weighted toward one end of the continuum. fof
example, some tasks are very knowledge-based (e.g., elec
tronic troubleshooting or medical diagnosis) and others tend 10
be more performance-based (e.g., cutting a diamond or flying4
fighter jet). Knowledge-rich tasks tend to require associative
learning skills and elaborative processing, and are typically well
suited to small group instruction. In contrast, performance
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Computer-Based Group Training
Summary Statements and Recommendations for Trainers

Small-Group CBT - Small-group CBT occurs when two or more trainees sit down at a computer monitor (or at separate, networked
monitors) and learn from a non-intelligent software program. In other words, there is no modeling going on.
Results indicate that working in small groups with computerized training software leads to equal and often
greater outcome than individual CBT work. The implication, then, is that there is much to be gained from
having people learn together at the computer and nothing to lose. . -

ey

Small-Group ITS The addition of any sort of intelligent component to a computer-based, small-group training environment
takes us well down the path into uncharted territory. Only the very first steps are being taken in this direction,
even as this chapter reaches completion. The complexities involved in this stream of research are profound
and intimidating, but given the positive results found with standard CBT group work we ant|c1pate promlsmg
results from those creative souls at the forefront of this effort. -

4

Summary Clear communication and productive interactions are just as important here, and pefhaps more so. Whether
your small-group training will include CBT or ITS work, trainees should be prompted to ask direct, specific

questions, and to provide elaborative responses. Again, if they are not domg this, itis necessary to train them

to be better communicators.

TABLE 7-5

based tasks require an‘assimilation of the required knowledge -

and procedures to the point where conscious effort is no longer
required or may even be detrimental for superior task perform:

ance, Such assimilation;" or “automatlzanon ” (se€” Schnelder &

Shiffrin, 1977; Shiffrin &. Schnelder 1977) requxres
practice, and these kinds -of tasks may be better su1ted to

training that allows sufﬁc1ent mdmduahzed practxce of compo—
nent skills. s

TASK (OUTCOME) BY TRAlNlNG APPROACH
(INDIVIDUAL OR GROUP INSTRUCTION)

The results from a cognmve task ana1y51s represent the first step
inthe decision to adopt either individualized ¢ or group trammg,

approaches. For instance, within a given domain (e. g statls

tics), some of the primary tasks or desired outcomes may be ”

declarative or conceptual knowledge (knowing that the symbol
X means “the sum of,” or understandmg the notion of variabil

ity within a set of data). Alternatively, within the same domain, |
the desired outcome may be procedural (demonstratmg skill in
omputing the variance of a set of data)The “flavor” of the |
Cognitive task analysis is dependent on what the trainer wants

the trainee(s) to walk away with at the end of the training
session. In other words, depending on the specific desired

cutcome(s), the training program should reflect the underlying
Cognitive operations that suppon performance in the targeted - -

task or task component.

Results from the literature cited in prev1ous sections of this

chapter and elsewhere seem to indicate that task components,
Orcumiculum elements, that fall more on the knowledge end of
the continuum are amenable to group training. These elements,
or knowledge components, can be arrayed in terms of their
felative complexity, from simple propositions to schemas to
More complex mental models (see Shute, 1994 for more a more
lhorough discussion of these outcome types). Similarly, task

‘*hands-on practxce opportunmes avallable However, this re-
',mams an’ empmcal question, ripe for further research (for
Amstance one study might make an- exphat comparison of a

complex ' task instructed in a group setting compared to an

individual setting) '-F'nally, it should be noted that various parts :
of the curriculum can be mstructed differentially; certain tasks

X tramed v(mhm small groups while others (within the
ammg sessmn) can be taught individually.

“TASK (OUTCO_ME) BY TRAINING CONDITION

“Once the curriculum or task has been decomposed and a_

'pféliini'ﬁary decision” rendered about training approach (indi-
vidual or group), the teaching methods need to be selected to
accomplish the specific training goals. There is a wide range of
potential teaching methods to choose from in designing a train-

* ing program. One way to view these methods or training envi-

ronments is along a’continuum, from maximal trainer control

- (as in rote learning conditions) to very minimal control (as in

discovery worlds). Figure 7-6 illustrates such a continuum.

Suppose the instructional goal was for trainees to acquire
conceptual knowledge of the operation of a nuclear power

plant, to understand the functional relationship among the nu-".
clear reactor, steam generators, and steam turbine system to -

produce electricity. What is the optimal training environment to

~ produce this learning outcome? One possibility is to employ a

guided-discovery environment where small groups of learners

work together to understand the different parts and functions of

the power plant and then discuss the ensuing ramifications (see
Bennett, 1992). In contrast, suppose the instructional goal was
the acquisition of a specific procedural skill, such as controlling
the flow of feedwater in a power plant (manipulating the rate at
which feedwater returns to the steam generator). According to
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FIGURE 7-6

Bennett, experts can quickly recognize problems in feedwater
levels, select an appropriate strategy, then execute that strategy
in an automatic fashion. To achieve this training goal, one
could use a drill-and-practice environment to ensure proce-
duralization of component skills. This would involve present-
ing a sufficient number and variety of problems (e.g., varying
feedwater levels and related components) to promote fluid and
generalizable performance. This is not to suggest, however,
that drill-and-practice on component procedural skills would
be the only training method used, or that subjects would be left
unattended in automatizing these procedures. One must also
ensure that the procedures acquired are the correct ones, as
specified by experts in the domain.

TEACHER/TRAINER ACTIVITIES

Cohen (1994) succinctly identified one of the thorniest issues
regarding the teacher’s role within various instructional envi-

ronments, relevant to both human- and computer-delivered
instruction. She states, “Herein lies the dilemma: If teachers &
nothing to structure the level of interaction, they may well find
that students stick to a most concrete mode of interaction. I
they do too much to structure the interaction, they may prevent
the students from thinking for themselves and thus gaining the
benefits of the interaction” (p. 22). Thus, trainers walk a fin¢
line between sufficient and insufficient intervention.

Cohen, Lotan, and Leechor (1989) found a negative relation-
ship between talking and working together among students
and the rate at which the teacher used forms of direct instruc-
tion when students were working in small groups. In order for
collaborative or cooperative learning to take place, teachers
must be able to delegate authority so that more children can
talk and work for longer periods of time at multiple learning
centers in the same classroom, or even in distal locations. And
there are other roles that a teacher can adopt in small-groups,
such as lecturer, coach, facilitator, or collaborator, that may
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foster interactions and lead to conceptual gains, particularly for
problems with ill-structured solutions.

“Meta-coaching” has been suggested by Katz and Lesgold
(1993) as an appropriate role for the human or computer tutor.
This means that the coach should guide students as they learn,
either in individualized or small-group settings. Katz and
Lesgold have recommended that coaching should be highly
interactive and in the form of questions that guide students in
actively overcoming impasses instead of directing them what to
do. When employed in group-training environments, Merrill et
al. (1992) refer to this process as “collaborative error repair.”
Fox and Karen (1988) also examined effective behaviors of
human tutors and found they often engage in a process they
refer to as “collaborative cognition,” the explication of one’s
thoughts during problem solution.

The timing of this coaching activity has also been investi-
gated in relation to the learning/training process. When is the
best time for the trainer to intervene? Several researchers have
concluded that the best time to provide assistance is exactly
when an impasse occurs (Anderson, Boyle, & Reiser, 1985;
Corbett & Anderson, 1989; Kulik & Kulik, 1988; VanLehn,
1983), and students can immediately try out the advice or
information received (Vedder, 1985). Another perspective on
this timing issue is for the coach to intervene only in cases
where students are clearly floundering. This position posits that
itis better to develop an environment that contains assorted
wols where learners have the freedom to explore and learn
mostly on their own, with minimal intervention (e.g., Collins &
Brown, 1988; Shute, Glaser, & Raghavan, 1989; White &
Horowitz, 1987). But again, this disparity between perspectives
is confounded because the real issue is not which is the better
training environment; but rather, which is the better environ-
ment for what type(s) of person (Cronbach & Snow, 1977).

CONCLUSIONS AND GUIDELINES

.ﬁcross numerous studies we have seen that learning is a direct
function of effective interactions—between trainer (human or
computer) and trainee, as well as among trainees. This remains
true regardless of differing learner and task characteristics, in-
structional approaches, and training environments. Whether
instruction is delivered by a human or a computer, or in an
individualized or group setting, students’ learning is strongly
influenced by their interactions (e.g., communication pro-
cesses, assistance through impasses). Although the success of
these interactions is influenced by trainee and task characteris-
tics, the quality of the interactions is ultimately what determines
the degree of knowledge and skill acquisition.

How can one enhance the quality of the interaction? We
have reviewed various studies examining what expert teachers
and effective computer systems do. Experienced human teach-
?rsf/trainers monitor and alter interactions instinctively, taking
Into account many variables, including some that computers
currently do not have access to (e.g., facial expressions,
Paraverbal cues, prior experience teaching the subject matter).
_TO achieve a comparable degree of effectiveness, computer-
ized training systems must accurately diagnose learners’ knowl-

edge and skill status, and use this information to make curricu-
lum changes and create appropriate feedback. In addition to
tutor-specific response histories (which often form the basis for
inferences used in computer-based diagnoses), additional
trainee information could be assessed by computers (e.g., apti-
tudes, personality, learning style, gender, interests, social skills;
see, for example, Shute, 1995; Snow, 1992; Tobias, 1994), pro-
vided there is an empirically based rationale for using each
specific piece of information about a learner in making curricu-
lum or pedagogy decisions. Finally, the computer’s interface
must also be clear and easy to use in order to facilitate the
interaction process.

Group-training approaches place an even higher emphasis
on interaction, but their focus is more on interactions among
students than between students and trainer. Variables relating
to group dynamics (e.g., positive goal interdependence, gender
and ability composition) must be considered in addition to the
diagnostic and pedagogical concerns mentioned above. Be-
cause not all groups work well together, some degree of super-
vision and guidance is needed during group learning. Just as
students can be guided to discover their own errors and solu-
tions during individualized instruction, tutors (whether human
or computer) should prompt small groups of students to dis-
cuss certain topics, compare and contrast differing viewpoints,
ask specific questions, offer appropriate responses, and gener-
ally maximize the benefits inherent in their continuing interac-
tion. It is also important to minimize the impact of negative
influences on group learning, such as status effects and “social
loafing.”

Because there are too many gaps in the literature on the
interactive effects among the multitude of variables comprising
any training environment, simple and straightforward recom-
mendations cannot be made about when to use group instead
of individual training, or whether to use humans or computers
as the instructional medium. Figure 7-7 shows the factors that
should initially be considered when making training decisions.

As shown in the figure, these three variables (characteristics
of the task, learner, and resources) need to be considered
concurrently, and will constrain subsequent decisions about
which specific pedagogical approaches should be implemen-
ted. These three factors can be viewed as “givens.” For exam-
ple, if you have no computers on which to train, then you are
constrained to deliver instruction by humans or paper-and-
pencil methods. But even under this option, you are still con-
fronted with instructional decisions, such as how to structure
the learning environment (e.g., employ cognitive apprentice-
ship, provide one-to-one tutoring). If you do have computers
and software available for teaching the task or specific compo-
nents of the task, your options are even greater.

As discussed earlier, some parts of the training (procedural
skills) can be instructed by the computer, while other parts are
taught by a human tutor. If you decide on computer-based
instruction, you have further options, in terms of whether you
should employ CBT, ITS, a simulator, or a discovery world.
Before making the decision regarding individualized or group
instruction, you need to ask, is this task component amenable
to group training? Only tasks that are specifically designed for
group learning should be completed by groups; otherwise, the
exercise will seem artificial to the students. That is, you want
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Gearing up for Training: Interaction Among Variables

FIGURE 7-7

the task to determine which training approach to take, rather
than deciding on an approach and then jury-rigging the task to
fit. Following are two illustrations of how decisions can be
rendered about training, given certain constraints on the
task(s), learners, and available resources.

GUIDELINES BY ANALOGY

Scenario |

Suppose you were preparing to instruct 30 trainees on a partic-
ular task, such as air traffic control. You begin by assessing the
first of the three main variables: (1) What are the goals of the
task? At the end of training, you want your students to possess
knowledge of such information as air traffic control rules,
weather and aircraft radar, styles and fuel capacities of different
aircraft, special kinds of emergency situations, and various
runway characteristics. Also, the trainees should evidence auto-
maticity in performing the following component skills: guiding
planes in for a landing under adverse weather conditions, plott-

ing holding pattern routes for delayed aircraft, interpreting in-
formation from radar screens, and making decisions under
stressful conditions. Next, you need to assess the characteristics
of your trainee population: (2) What are the characteristics of
the trainees’ You note that the group appears to be quit
diverse in terms of background knowledge, skills, and other
aptitude measures. For instance, half of the trainees have had
some related background experience (e.g., some have worked
as pilots, flight engineers, and radar operators) while the other
half are complete novices. Should all trainees receive the same
curriculum, or can it be altered to fit their respective back-
grounds? Finally, you need to assess what is available to youin
terms of resources: (3) What resources are available to deliver
the training? Because you are subsidized by a large corpora-
tion, your resources include a sufficient number of computers
to provide individualized instruction (if appropriate), various
software packages to supplement training (e.g., simulations
and other CBT), and a period of one month to train this group.

The top-level decision that needs to be made involves speci-
fying the instructional approach(es) to train this diverse group



of students on the various knowledge and skill outcome types.
Given the constraints illustrated above, this decision specifi-
ally addresses whether training will occur in an individualized
or group setting. You note that certain portions of the training
program are better suited to individualized instruction (e.g., the
parts that are procedural in nature and that would benefit from
extended practice). For instance, students could be trained to
interpret radar data quickly and accurately by viewing and
responding to many and varied radar patterns, and then indi-
vidually performing the identification procedure repeatedly.
Other parts of the curriculum are more suitable for group ap-
proaches. For example, small groups of trainees could con-
verge to discuss differences and similarities among aircraft,
debate alternative actions to be taken under various adverse
weather conditions, and so on. In addition, trainees with more
background experience could serve as facilitators in these
small-group discussions, benefiting themselves and the other
members of the group by articulating their knowledge.

The second level of decision addresses the specific training
approach to be used, either in human or computer-delivered
mstruction. For the small-group learning tasks, you decide to
employ the cognitive apprenticeship model as you have a
range of talent in your pool of trainees to serve as facilitators
and/or coaches. For task components that you have deter-
mined should be instructed by CBT, you decide to use the drill-
and-practice software for the presentation of alternative radar
patterns, and the training-by-analogy software for teaching de-
tsion-making under stressful conditions. “Training by anal-
ogy" software is designed to present the learner with a wide
variety of analogous situations that all involve some common
theme (e.g., a particular complex cognitive task), with the goal
that enough exposure across a variety of specific scenarios will
facilitate transfer to other domains. While this scenario could
tonceivably have employed alternative decisions about train-
3, we have tried to derive decisions that are based on the
esearch cited within this chapter, making our “best guess” as to
Optimal training techniques. We have not attempted a response
©every issue that would arise in preparing a training program
like the one in this example. Rather, it is our intent to provide
”@e preliminary samples of the types of thought processes
finers should go through in designing creative new training
Programs of their own. A second scenario is now presented that

It 2 o %
caches different conclusions based on an alternative set of
Constraints,

Scenario 2

'\'.OW Suppose that you are getting ready to instruct 100 students
"0 have enrolled in your introductory microeconomics
IC:C‘;S; 3;1 thfz local university. Y‘()Llr training/ ingructional goals
Underse[a av.mg the students exit the course with a conceptual
bisih nding 9f Athe laws of supply.and demand, and how
! Operate within and across a variety of environments. In
Ez:lsc}‘:ixlar, you want learners t.o understand the functional rela-
Ps among relevant variables such as price, quantity de-
::;i‘;‘? demand, supply, equiliprium, interest rates, income,
orth as they interactively impact different markets (e.g.,

.C°f€$, tea, compact cars, gasoline). These constitute your
K" constraints, Furthermore, you are informed that these
Hudents are 4| fairly homogeneous in background in that none
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have ever had any prior economics courses or training. Also,
half of the students are male and the other half female. Finally,
you have at your disposal a computer laboratory with 50
computers and some software that you obtained from a col-
league; it is a microworld called “Smithtown” that provides a
guided-discovery learning environment for inducing principles
of microeconomics (Shute & Glaser, 1990). Finally, the duration
of the course is six weeks, with three two-hour classes per
week.

As in Scenario 1, the top-level decision addresses what parts
of the curriculum should be administered individually, and
what parts should be administered in a group setting. After
reviewing your constraints, you decide that, given (1) the na-
ture of the task (which consists of declarative knowledge as
well as procedural skills), (2) the similar background of the
learners, and (3) the exploratory software and 50 computers,
you will lecture to the group the first hour of each day, then
assign learners to mixed-gender dyads for the second hour of
class. The lecture part will be instructed by you to all 100
students, imparting your vast knowledge of microeconomic
variables and principles. The computer laboratory will allow
the learner pairs to apply their new knowledge and skills to
hypothetical situations that they create themselves. Also, be-
cause microeconomics can be viewed as an ill-structured do-
main (alternative solution paths are possible), you are confi-
dent in your decision to employ a small-group training
approach in conjunction with the lecture as it represents an
optimal blend of instructional techniques.

As can be seen in the foregoing scenarios, decisions must be
made at various levels to optimize training, given a set of
constraints under which to operate. The first-level decision
concerns individual or group approaches to training. The sec-
ond-level decision involves human or computer delivered
training, both with advantages and disadvantages. For exam-
ple, while computers can record and reproduce every action a
student makes during problem solving, they currently have
limited communication potential. Humans provide much more
subtle, complex, and flexible feedback, but they also might lose
their patience or forget to mention an important point.

Lepper and Chabay (1985) noted that computer-based train-
ing environments possess the potential to be particularly valu-
able research tools, and that they should be used to investigate
many of the assumptions currently underlying various educa-
tional theories and practices. Though this research is ongoing in
laboratories and classrooms all over the world, to date there
simply have not been enough controlled evaluations of com-
puter tutors (especially in comparison with human tutoring)
across varying domains to allow for any hard and fast guide-
lines at this level. Realistically, the determining factor is the
financial resources of the trainer(s) and/or availability of good
human tutors, rather than potential for instructional benefit.
Good human tutors are usually considered experts, and their
services are not cheap. In addition, the price of the decision to
go with a human tutor increases as time goes on, since you
have to continue to pay them for their efforts. Computer tutors,
on the other hand, initially involve a significant development
and implementation cost (purchasing the hardware, program-
ming the software), but once the product is in place, the cost of
running the program is minimal. When it is only necessary to
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train a few individuals over a relatively short period of time, a
human tutor probably makes more sense, with the current state
of technology and resource availability. But organizations that
train large numbers of people, especially over a long period of
time, will likely find the computer-based approach more cost-
effective in the long run.

More specific decisions are required in addition to the
higher-level decisions (i.e., individual or group and human or
computer training). For instance, when deciding on a group
training approach, the subsequent decision addresses whether
students should work collaboratively or cooperatively. Once
again, the specific nature of the tasks themselves, as well as
desired outcome, should influence this decision. Collaborative
work will generally result in a higher frequency of interaction
among group members, and thus a deeper level of cognitive
processing and a better conceptual understanding of the prob-
lem space. Cooperative learning is more likely to result in
individual accountability and increased efficiency, but offers
fewer opportunities for interaction among group members.
Thus, tasks that have a strong conceptual flavor and that are
fairly challenging are probably more effectively trained in a
collaborative setting than a cooperative one. We now conclude
this chapter with some ideas about the impact of individual and
group approaches for future training research and applications.

SPECULATIONS ABOUT THE FUTURE

Technology is evolving to the point where computer systems
can contain learning environments that support a high level of
social interaction. As discussed in this chapter, this is important
in facilitating effective learning, both within the classroom and
from computers. The atmospheres in classrooms containing a
connected computerized environment are similar to what
Feurzeig (1988) found in a collaborative mathematics course
that was “more like a beehive than a math class” (p. 117). In
time, these collaborative classrooms can eventually support
networked computer stations. This means that students, train-
ees, and experts can interact between schools and remote sites,
and trainees and instructors can share the same experiences.
Learners can work collaboratively on the same project or differ-
ent students can work on the same project at the same time,
without awareness of each other’s presence (but with some
invisible instructor standing over them). The number of combi-
nations is great, and their learning/training potential is un-
known.

Over the past 25 years, two parallel research streams have
changed the face of training: (1) new approaches to group
training (such as cognitive apprenticeship and situated learn-
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