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The research described in the first volume of Computers as Cognitire 

Tools reflected the premise that computer power can be harnessed in mul­

tifarious ways to enhance student learning. The editors described this 

research as falling along a dichotomy between two camps-modelers and 

nonmodelers-with a third camp bridging the two. Regarding this 

dichotomy, then and now, our tent is pitched in the modelers' camp. This 

view holds that modeling the learner renders computer-based instruction 

more intelligent, and thus more effective (Anderson, 1 Shute & 

Psotka, 1996). However, whereas the previous volume used modeling to 

denote the process of representing students' knowledge structures, we 

expand the term to include the process of representing the domain or task 

being instructed. Modeling in this context allows the computer to know 

what to teach, as well as when and how to teach it. 

There are three agreed-on components that serve to make computer­

assisted instruction intelligent: an expert model, a student model, and an 

instructor model (Lajoie & Derry, 1993; Polson & Richardson, 1988; Psotka, 

Massey, & Mutter, 1988; Shute & Psotka, 1996; Sleeman & Brown, 1982). 

Basically, the expert model represents the material that is to be instructed 

the ideal representation of the domain or task. In essence, it is a blueprint of 
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the knowledge clements and their associated structure and interdependen­

cies. The student model represents the student\ knowledge and progress in 

relation to this blueprint. Finally, the instructor model customizes the instruc­

tional experience for each learner based on discrepancies between the stu­

dent and expert models. This is achieved by embodying theories of learning 

that guide the course of instruction in the program. 

This chapter describes the new computer program Decompose, Net­

work, Assess (DNA). We discuss it in conjunction with another system, 

called Student Modeling Approach for Responsive Tutoring (SMART; 

Shute, 1995). because both attempt to render computeriLcd instructional 

programs intelligent. The programs work in concert, such that DNA 

extracts and organizes knowledge and skills from subject matter experts 

and SMART uses the resulting structured curriculum clements as the basis 

for assessment, cognitive diagnosis, and instruction. In other words, DNA 

provides the blueprint for instruction, obtaining curriculum clements 

directly from the responses and actions of multiple subject matter experts, 

who answer structured queries posed by the computer (Shute, Willis, & 

Torreano, 1998). The student modeling paradigm (SMART) assesses per­

formance on each curriculum clement hy way or a series of regression 

equations that are based on the level of' assistance the computer each 

person per clement (Shute, 1995). Thus, DNA relates to the "'what" to 

teach. and SMART addresses the '·when" and "how" to teach it. 

Historically, specifying what to teach has hampered efforts to develop 

intelligent instructional software efficiently. In fact, due to its time and 

resource costs, it has often been referred to as the bottleneck in the devel­

opment process (Durkin, 1994; Gordon, Schmierer, & Gill. 1993: Hayes­

Roth, Waterman, & Lenat, 1983 ). That is. the processes of eliciting and 

hierarchically organizing the necessary elements for an expert model 

involve exorbitant amounts of time to accomplish, and even then are rnore 

art than science. Despite the fact that the expert model is difficult to 

develop. it is often characterized as the backbone of any intelligent 

instructional system (Anderson, 1988). Therefore, our aim with DNA is to 

attempt to open up this bottleneck. We wish to increase the efficiency of 

developing the expert model by automating the bulk of' the knowledge 

elicitation and organization processes. This automated approach to creat­

ing the expert model is embodied in DNA. 

FOUNDATIONS OF DNA 

We begin this section with an overview of the SMART framework . 

presented lo highlight the content and structure requirements for the DNA 

program. Relevant cognitive analysis techniques arc discussed. 
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The SMART Framework: Precursor to DNA 

Three basic features of SM!\RT directly influenced DNA design decisions. 

First, SMART requires the categoriLation of each bit of knowledge or skill, 

comprising some domain, into one of three different learning outcome cat­

egories: symbolic knowledge (SK), procedural skill (PS), and conceptual 

knowledge (CK). Before DNA was developed, several independent raters 

achieved this categorization or elements by applying well-defined opera­

tional definitions. The simplilied operational definitions are: SK: knowledge 

of any symbol, formula, basic definition, or rule: PS: the application of a 

formula or rule, or performing a specific action within the tutor: and CK: the 

definitions of, and relations among, various concepts. Basically, this repre­

sents a slight extension of the well-established declarative-procedural 

knowledge distinction Anderson. 1983, 1993). 

Second, SMART differentially instructs curriculum elements (CEs) 

based on these outcome types. For instance, symbolic knowledge is 

instructed by means of drill and practice. Procedural skill is instructed by 

presenting problems to solve that are specifically related to either the CEs 

that are currently being instructed or the CEs that were inferred as the 

in the learner's knowledge and therefore require remediation. Finally, 

conceptual knowledge is instructed by carefully designed analogies 

(Shute, 1994, 1995). This attempts to capitalize on the best of a 

variety of theoretically grounded student rnodcling approaches by pairing 

each approach (drill and practice, problem solving, or analogies) with the 

most appropriate knowledge or skill type (Shute & Catrambone, 1996). 

Thus, instruction methods arc applied differentially to distinct knowledge 

types to optimize learning. 

Third, SMART relics on the inheritance relationship of a hierarchical 

structure of CEs for managing assessment and instruction. That is, the 

underlying knowledge base consists of CEs arrayed such that their rela­

tionships are clarified. The hierarchical structure denotes elements that are 

basic or prerequisite to more complex bits of knowledge. This influences 

instruction and assessment in that more basic. prerequisite knowledge ele­

ments are instructed prior to more complex dependent ones. and deficien­

cies in learner performance are inferred based on these dependency 

relations. For instance, one must know the individual symbols of l, X, and 

N before understanding the formula for the mean: (lX)/N. Therefore, 

these symbols would be instructed prior to the formula for the mean. In 

addition. if the learner's knowledge of the formula for the mean is defi­

cient, then the hierarchical structure of CEs indicates which knowledge 

elements may be the source or the deficiency and therefore deserve 
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remediation. Structurally and functionally, this knowledge structure con­
stitutes a learning hierarchy (Gagne & Hriggs, 1965). 

These three basic features provide the instructional framework of 
SMART and define the parameters and criteria for DNA\ design. Relying 
on SMART's framework is justified because the efficacy of this approach 

has been empirically validated. That is. a controlled evaluation examined 

learning gains between participants using one of two versions of the same 

tutor: with and without SMART enabled. Findings showed that learners in 
the non-SMART version showed impressive learning outcome scores 

standard deviation pretest to post-test improvement). Their final post-test 
scores were 74.9% on average. Learners in the SMART version showed 

even higher gain scores: average post-test scores of 82.1 %. An analysis of 

covariance was computed on the post-test data with pretest as a covariate 

and version as a between-subjects variable. Results showed a significant 
difference in learning outcome due to version: F (I, 199) = 4.16; p < .05, 

with superior outcome performance evidenced by participants in the 
SMART-enabled condition (Shute, 1995). 

ln summary, the empirical success with SMART has motivated key 
DNA design decisions. Specifically, we decided to require DNA to elicit 

and structure information so that it fits SMART's database requirements 
of three outcome types: SK, PS, 1 and CK. This categorization scheme 
allows for the analysis of a wide array of domains or tasks, rendering 

DNA a general-purpose tool for specifying curriculum. To accomplish 

this, DNA asks subject matter experts a semistructured series of what, 
how, and why questions-the analogues to symbolic, procedural, and con­

ceptual knowledge. In addition, the success of the hierarchical structure of 

SMART's underlying knowledge base resulted in our decision to include 

a separate module in ON A to obtain the spatial and conceptual organiza­
tion of elements needed for a sound curriculum. 

Know ledge Elicitation 
and Organization Tuchniques 

What is demanded of the methods used to conduct a cognitive task analy­

(CTA) is jointly determined by the purpose of doing the analysis and 

the type of domain or topic that is to he analyzed. These two critical fac-

1 Procedural knowledge (PK) is another outcome type. but it is subsumed under symbolic �now­

le<lge (SK). which can be divided into simple and complex components (!'or more on these knowledge 

types. sec Shute. 1995). 
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tors determine what is required of a useful and appropriate knowledge 
structure. Traditionally the primary purpose for conducting a CTA has 
been to delineate an expert's performance in relation to some task, down 

to a fairly small grain size clen1cntary cognitive processes). How­

ever, given our specific interest in developing curriculum for intelligent 
instructional systems across a broad spectrum of topics. the analysis tech­

niques we include in DNA must he able to apply to both domains that 

involve performance of a task and those that do not. These requirements 
guided the choice of which techniques would be appropriate to embed in 

DNA. Due to our goal of broad applicability of the tool, we use .. cognitive 
task analysis" to denote any systematic decomposition of a domain in 
terms of constituent knowledge and skill elements. 

Knowledge Elicitation. Interviews constitute a fundamental method 
for eliciting information from experts. The nature of the interview is typi­
cally based on a theory of expertise and is designed to lit the framework of 

the purpose for which the cognitive task analysis is being conducted 

(Ryder & Redding, 1993). ln other words, the form the questions take and 

the order in which they are posed can vary according to the information 
one wishes to elicit. Interview methods can be structured or unstructured 

and can be concurrent or retrospective with the performance of a task 

being analyzed. 
Our purpose for conducting cognitive task analysis is to obtain ample 

data on some topic or task for instructional purposes. The virtue of inter­

view techniques lies in their flexibility and directness; thus, they can be 

used to analyze a wide range of topics which suit our particular goals. To 
obtain such data, appropriate questions embodied within the interview 

should probe the expert for as much information as possible per curricu­
lum element. For instance, for procedural topics. experts should be asked 
to specify what actions and steps are relevant, how they are best accom­

plished, and why those steps are taken instead of alternative ones. For 
more conceptual issues. experts should he asked to specify what defining 
traits and examples arc important, how they arc related to the concept and 
why they are consequential. 

Knowledge Organization. After information from an expert is 
obtained, how is it optimally represented or arrayed? Conceptual graphs 
arc one popular means of representing hierarchically-structured know­
ledge. As the name implies, conceptual graphs are the graphical represen­

tation of concepts showing, at various grain sizes, relevant concepts 
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)ear [Name of ExpertJ, [roday\ Dacel 

!We're writing today to gel your help in designing a course on Microsoft Exehangc (vcr. 4.0) 
efore you begin working with the enclo�ed DNA program, please sit do ..... n and think about the 
ritical things that make you g(xxt at u!.ing the MS Exchange software package, 

s you go through DNA and re;pond to our questions, try to respond in tcnns of how you 
urrently perform the job or think about the parlicular task. Please do not respond with how you 
riginally learned Micro�ofi Exchange; you have probably dcvclopct.l much bctlcr W3)''i or 
erforming this lask since then. 

he ultimate goals of the cour�e are for our �tudents to: 
1) Know ho...,. to create a new email message 
2) Know how to address email 
3) Know how to �end email 

IHow specific should you gel? You can presume thal our students will have the following 
now ledge and skills: 

I) Knowledge and skills with Window� 95 
2) Basie word procL-ssing skills 

I'hcrcfore, you will not need lo define knowledge or skills at a dcta1k"CI level in relation to these: 

lemenls. 

When answering questions during the program, please adjust your responses to fit the following 
uidelint--s: 

Whal box· l 0% 
How box: 85% 
lwt,y ho.: 5% 

hanks very much for your time. 

1,iinccrely, 

FIG. 11.1. 

mate learning goal of the tutor to be developed, prerequisite knowledge 

and skills of the learners, and the desired instructional emphasis or flavor 

(e.g., primarily procedural). This information provides the SME with the 

superordinate goal of the analysis and the lowest level subordinate goal, at 

which point the SME should stop decomposing the domain. Using the 

information provided by the instructional designer, the Customize module 

generates a personalized letter explaining the purpose of the project 

(which the ID can edit) and a set of floppy diskettes that will be mailed to 

prospective SMEs. The diskettes contain tiles for a SME to install on the 

computer that DNA needs to elicit and store knowledge structures. 

For example, Fig. 11. I shows a letter that was generated by the Cus­

tomize module and used in a formative evaluation of the system and some 

in-house SMEs analyzing the domain of Microsoft Exchange (mail soft­

ware). Upon receipt of the letter and installation of the software, the SME 

goes through a short (IO minutes) orientation program that provides an 

overview of DNA and transitions directly into the Decompose module. 
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Decompose. The Decompose module consists of a semistructured. 

interactive dialogue between the computer and the SME. It was designed to 
elicit most of the explicit knowledge associated with the domain or topic of 

analysis. DNA uses a series of three interrogation branches to elicit know­

ledge from experts. The symbolic (or "what'') branch elicits SK by asking 

experts to provide definitions of terms used in his field of expertise. The 

procedural (or "how") branch elicits PS by asking experts to outline spe­

cific steps, conditionals, relational connections, and subprocedures of a 

procedure. While responding to questions in the procedural branch, experts 

may also provide SK clements by defining ambiguous terms and attaching 

multimedia files, such as pictures, movies, and sounds. The conceptual (or 

"why") branch elicits CK by asking experts to delineate the important 

components in their domain and explain how these components arc func­

tionally related. Additional CK is derived from experts who arc asked to 

specify their understanding of why these components are important in rela­

tion to the overall learning goal. In general, DNA utilizes the ''what, how, 

and why" questioning procedure that has been shown to elicit knowledge 

from experts successfully (Gordon et al., 1993). 

The questioning sequence is left to some degree to the discretion of the 

SME, who is allowed to decide which main question to answer. This 

enables the expert to decompose the domain in a breadth- or depth-first 

manner. For instance, an expert can begin by generating a number of 

higher-level goals, then proceed to describe these goals at a more specific 

level across the topics (breadth first). Alternatively, the expert can start by 

identifying a single high-level goal and then delineate its lineage (depth 

first). Low-level, or terminal. nodes are determined by the description of 

learners' incoming knowledge and skills, specified in the customized let­

ter. This flexibility differs from more rigid cognitive task analysis 

approaches, like GOMS, which force an expert to decompose a domain in 

a breadth-first manner (Williams, 1993). 

During the Decompose module, all information about evolving curricu­

lum elements is stored in a Microsoft Access 7.0 database. Each CE 

receives a unique number (assigned by DNA), as well as a name and 

description (provided by the SME). The numbering system reflects the 

order in which the CEs were specified by the SME and inherently contains 

information about higher order relations. That is, each element is given a 

unique number that designates it as a main element, a step within a proce­

dure (or subprocedure), or a definition associated with either a step or a 

main element. Main CEs are given a unique integer, and steps within a 
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was then returned to the Main Question Queue, where she had the option 
to answer the remaining procedural queries, describe an alternative way of 

the procedure she had just delineated, or define some other 

aspect of Microsoft Exchange. She selected the third option 
11 embodied by the large rectangular button at the bottom of the 

screen, ''What arc general issues related to Microsoft This 

choice invoked a new screen, shown in Fig. 11.7, that asks for additional 

symbolic, procedural, and conceptual knowledge using the "l know how 

to," "I can identify," and ''I understand" template structures. El chose to 

describe her understanding of the importance of creating a good subject 

header, illustrated in Fig. 11.7. In contrast to the procedural questions she 

had previously encountered, this selection generated a new path of con­

ceptually-based questions (CK). 

The first CK screen that appeared asked about the components involved 

with choosing a good subject header. As shown in Fig. 11.8, El replied 

with two elements: relevance and brevity. The example on the right side of 

11.8 shows the elements that are important to the area of photography 

conceptualizing how a picture gets onto some film. 

After clicking on Next, the screen displayed in Fig. 11.9 appeared. E 1 's 

list of important items is shown, along with a question that requires her 

Type ti,e ''THEM" port of your cond,t,on here Press 
OK when you are f,n,shed 

1tpr.,; 

.;ti 

�'il;t>I � 
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FIG.11.6. 
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