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Validity of Measures of Cognitive Processes and General Ability for
Learning and Performance on Highly Complex Computerized Tutors:

Is the g Factor of Intelligence Even More General?
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Theoretical arguments and analyses from 2 studies provide compelling evidence that computerized
measures of information-processing skills and abilities are highly useful supplements to more traditional,
paper-based measures of general mental ability for predicting individuals' capacity to learn from and
perform on highly challenging, multifaceted tutors. These tutors were designed to emulate learning and
performance in complex, real-world settings. Hierarchical confirmatory factor analysis provided evi-
dence that a general, higher order factor model with general ability at the apex could quite adequately and
singularly account for the individual-differences data, both traditional and cognitive-process measures.
Results are interpreted in light of the utility and generality of human cognitive abilities.

The measurement of human cognitive abilities has evolved
dramatically in the past century of research on individual differ-
ences, yet in some ways it has remained remarkably stable. Many
of our present day measures appear highly similar to the first
measures introduced during Alfred Binet's and J. McKeen Cat-
tell's day, for instance. However, part of this stability may merely
be an accidental byproduct of technological limitations such as a
reliance on paper-based measures. Another cause of, or at least a
contributor to, the consistency has been psychometricians' close
adherence to factor analytic frameworks and methodologies to
guide test construction. The coupling of these considerations has
perhaps resulted in somewhat limited movement and may have
curtailed advancement in the measurement of critical latent traits
such as human intellectual ability and other cognitive attributes.
However, in recent years, owing both to rapid advancements in
computer-assessment technologies and to developments in cogni-
tive psychology and other disciplines, novel measures have been
introduced that may serve to promote movement in the testing of
important individual differences (see Mead & Drasgow, 1993).

Another critical strain of thinking and research is relevant here.
Recent work by Schmidt and Hunter (1998) summarizing 85 years
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of personnel selection research indicates that although many indi-
vidual qualities and attributes are important, general intellectual
ability remains the single best predictor of job and training per-
formance. The combination of measures of general ability and
other assessments or selection procedures yields mean validities in
the impressive range of .63-.6S, most of which is attributable to
variance due to general ability differences among candidates.
These authors also reiterated the fact that even small incremental
validity gains translate directly into utility benefits for
organizations.

Indeed, we have considerable cumulative evidence of the utility
of measures of general ability for predicting both training and job
performance. Furthermore, Schmidt and Hunter (1998) pointed to
the impressive conceptual and historical foundations forged
around the general ability construct. A critical question becomes
obvious, however: How well do current measures, although effec-
tive in a predictive sense, actually reflect or mirror the construct
space identified in this vast body of conceptual thinking? It be-
comes useful, then, to touch briefly on aspects of this theoretical
foundation for general ability as it relates to the purposes of the
present study and the vital question of construct coverage. The
current article attempts to answer the question implied here. That
is, is there additional construct variance that might be culled to
improve the measures commonly used in the field as well as the
predictability of critical criterion space?

We realize that we are at risk of committing reification errors
and reopening long-standing debates concerning the reality status
of constructs (Allport, 1937, 1966; Meehl, 1986). However, a
discussion of the conceptual nature of the general factor of intel-
ligence and how well and extensively the field's current measures
reflect that hypothetical factor is critical. Almost a century ago,
Spearman (1904) stated that a primary "part of intelligence is
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played by [one's] ability to handle, not merely abstract ideas, but
above all symbols" (p. 211). In another early definition of general
mental ability, Pintner (1921) included the "ability of the individ-
ual to adapt. .. adequately to relatively new situations in life" (p.
129). As we discuss later, both of these notions, symbolic repre-
sentation and adaptability, are critical to the conceptual nature of
general intelligence and are central to the measures tested herein.
Furthermore, and also critical, one of the primary elemental pro-
cesses of intelligence Spearman (1923) elucidated is the education
of correlates—that is, the attributes of stimuli that are seen as
identical to or similar to each other or are compared or related in
some way (see Jensen, 1998).

In his early, classic writing, Spearman (1904) stated that all tests
of an intellectual nature index a single underlying factor and do so
to varying degrees. This seemingly simple notion is critical and
forms the basis for the current research. Spearman (1904, 1927)
was also first to point out that tests have differing levels of
intercorrelation with other tests. An ordering of variables on the
basis of their levels of intercorrelation can be said to signify that
each variable can be accounted for, to some quantifiable extent, by
a single factor common to all the variables (Spearman, 1904). This
factor is the ubiquitous g, and, in Spearman's (1904) words, tests
have different levels of saturation with this g factor. Indeed,
Spearman (1927) indicated that certain cognitive tasks better as-
sess or reflect g than others do, and those that best measure the
hierarchical factor indexing g are tests that require heavy use of
reasoning and language understanding and an ability to deal with
quantitative relationships.

Relevant to the current thread from both a measurement and a
theoretical perspective, Humphreys (1971) has long discussed the
need for breadth and heterogeneity in the measurement of intelli-
gence. This is necessary in part to spread out unwanted bias factors
or contaminants but also to increase construct-relevant variance in
measures and batteries. Such breadth is needed to build up mea-
surement of the factor space of interest, which in the case of
general ability is believed to be quite broad, diverse, and very rich
(see also Jensen, 1998).

Along these lines, Cronbach (1989) stated that current tests may
perhaps be overly academic, neglecting problem solving and the
gamut of potential intellective activities that are available. He
pointed to the need, also articulated by Humphreys (1984), for
assessing widely divergent kinds of activities, all of an intellectual
nature. Indeed, Humphreys and Parsons (1979) have indicated that
tests could indeed be more broadly constructed than they currently
are. For instance, Humphreys and Parsons have shown convinc-
ingly how traditional Piagetian tasks (conservation of substances,
rotation of squares, etc.) might be used to improve current ability
measures designed for youthful populations. Cronbach (1989) has
also raised a very compelling question: "Has the historical process
located [the] center [of the intelligence construct] where it should
be?" (p. 151). He has indicated that for the test to be an uncon-
taminated estimate of the underlying trait, a measure must point to
the locus in the construct space that matches a proposed conceptual
foundation. This, of course, is the classic construct validity prob-
lem, as defined and discussed by Campbell and Fiske (1959; Fiske
& Campbell, 1992), Cronbach (1989; Meehl & Cronbach, 1955),
Messick (1995), and many others.

Notwithstanding Boring's (1923, 1950) early reductionistic
view that intelligence is simply and only what intelligence tests

measure, it is important to begin to revisit the question aimed at
determining whether general intelligence is indeed not much more
than what our current tests measure. To wit, Humphreys (1971)
has stated that intelligence is best viewed as the entire repertoire of
intellectual information, knowledge, and skills available to a per-
son at a particular point in time. Repertoire is indeed a very apt
metaphor for the broad construct space of intelligence. Further-
more, all tests of an intellectual or cognitive nature sample this
repertoire and do so to varying degrees. Humphreys (1985) has
also indicated that some behavioral acts are simply more central to
the repertoire than others are. For example, knowing word mean-
ings is likely more central to the repertoire than is rote memory of
nonsense syllables or recognition of figural content. Thus, one's
goal in measuring intelligence is best met by systematically sam-
pling this repertoire and by doing so with tests that attempt to
sample as large and diverse a segment of the construct space as
possible. Intelligence is also said to affect the development of
many different types of skills and knowledge. Thus, the more such
different types of skills and knowledge a measure taps, the more
complete and construct valid the measure is (see Brody, 1992;
Jensen, 1998).

It is critical, then, to ask whether important elements of human
cognitive abilities have been "left out" because of various techno-
logical limitations, tradition, or other factors. For instance, were
Lubinski and Dawis (1992) correct in stating that there may simply
be more to general ability than typically surfaces in traditional
measures such as the Armed Services Vocational Aptitude Battery
(ASVAB; see Dunnette, 1976)? Also relevant is the fact that
Embretson (1983) has stated that test design should be carried out
by "specifying the aspects of individual differences that a test
measures by constructing and/or selecting items according to their
substantive properties" (p. 3). One way to achieve these various
goals is to measure in a highly systematic way the array of
cognitive elements and processes that theoretically might reflect,
and thus are reflectors of, cognitive ability. Accordingly, for sev-
eral years, a major research effort involved in developing and
evaluating novel and efficient ways of measuring human cognitive
abilities and skills has been the Air Force's Learning Abilities
Measurement Program (LAMP; see Kyllonen et al., 1990). LAMP
researchers made extensive use of computer administration of a
unique collection of cognitive tasks to measure a broad range of
cognitive skills and abilities, including information-processing
speed and working-memory capacity. From its inception, the pro-
gram attempted to maintain the dual goals of modeling cognitive
learning and developing improved tests for selection and classifi-
cation (Kyllonen & Christal, 1989).'

The primary purpose of the current study is to assess the
tenability of building highly trait-relevant breadth into measures,
thereby better capturing or reflecting the relevant factor space of
human mental abilities (see also Lubinski & Dawis, 1992). We

' During the time period this research was carried out, the LAMP
research group included Patrick Kyllonen, Raymond Christal, Scott
Chaiken, Lisa Gawlick, Carmen Pena, Valerie Shute, Bill Tirre, and Dan
Woltz, as well as the programming staff: Henry Clark, Trace Cribbs, Rich
Walker, Cindi Garcia, Jo Ann Hall, Janice Hereford, Terri Purdue, and
Karen Raouf. Our sincere appreciation and regard goes to each of these
individuals.
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attempt to do this by evaluating measures developed as part of
LAMP'S efforts, as well as by examining the predictive validities
of scores from a subset of measures from LAMP'S Cognitive
Abilities Measurement (CAM) test battery (Kyllonen et ah, 1990)
and comparing the scores with traditional, paper-based measures
of general ability (g). Thus, part of our overall goal is to under-
stand individual differences in cognitive ability better by assessing
a broad range of information-processing components. Indeed, re-
searchers are now able, using microcomputer technology, to study
abilities that were simply not amenable to research in prior times
using traditional assessments. Furthermore, we make an attempt at
determining whether g is indeed configured more broadly than
traditional conceptualizations and current operationalizations indi-
cate. The battery of diverse, novel cognitive-process measures
analyzed here enables us to begin to address this critically impor-
tant measurement, psychometric, and theoretical issue.

As part of this work, we needed criteria that would allow
important predictive and construct validity questions to be an-
swered. Because of the dependence in modern organizations on
measures of individual cognitive attributes for selection and place-
ment, as well as the utility of general ability measures, we chose
the context of technical performance as a criterion domain in
which to evaluate the cognitive-process measures. We sought
criteria that emulated as much as possible the technical perfor-
mance and learning environments present in modern organizations.
Such criteria both allowed for assessment of the utility of the
cognitive-process measures for applied purposes and served as an
aid in answering several construct-validation questions regarding
both traditional and experimental measures. Criteria meeting these
necessities were performance scores from two highly complex,
computerized tutors that assess learning of electricity concepts
(Study 1; see Shute, 1993a) and flight engineering knowledge and
skills (Study 2; see Shute, 1993b). Because training and work
activities in today's organizations have both begun to move in-
creasingly toward information technology and computer modali-
ties, and given the increased information-processing demands of
jobs, we believe that such diverse and individualized tutors reflect
the training and performance environments found in many job
settings. They also enable researchers to measure with consider-
able experimental precision the acquisition of knowledge, skills,
and abilities that are relevant to many real-world work situations
(Campbell, 1990; Christal, 1991).

Mastery on the tutors was part of the criterion definition for our
study and was defined as examinees correctly solving several
consecutive problems on a given principle or module. Thus, par-
ticipants could not complete the study without actually reaching a
criterion of proficiency on the studied material. After they com-
pleted the tutors, participants were given a comprehensive test on
the principles that they had learned, and their overall accuracy was
recorded. The total time it took individuals to complete the elec-
tricity concepts tutor (Study 1) was also recorded. The final accu-
racy tests contained both true-false and multiple-choice items.
Content of both qualitative and quantitative natures was also
assessed. Tutor scores were thus believed to reflect individual
differences in learning ability and understanding of novel knowl-
edge domains. They were clearly emulations of the everyday
demands of many workplace environments.

The LAMP researchers used a detailed taxonomy for designing
and selecting tests for the cognitive-process battery. Kyllonen

(1991) compiled a very useful description of the basic principles
that are commonly followed in creating computerized test batter-
ies. The LAMP researchers used an information-processing per-
spective rather than a traditional factor analytic framework to
guide test development, item writing, and test selection. In the
work described here, a "radex" model guided the theory-based test
development; this allowed novel connections between the experi-
mental and differential literatures (Snow, Kyllonen, & Marshalek,
1984). A taxonomy (Kyllonen, 1994) resulting from this two-
dimensional radex modeling of abilities contained six information-
processing components, each with three stimulus or content do-
mains. This resulted in 18 potential test types. The six cognitive
processing factors assessed were working memory (WM), general
knowledge (GK), processing speed (PS), fact learning (PL), skill
learning (SL), and induction (IN). Three classic content-stimulus
domains were used for the tests: verbal, quantitative, and spatial.
These content domains were fully crossed with the six processing
factors, yielding the 18 test types, which included, for instance,
skill learning-verbal and skill learning-quantitative. As Kyllonen
(1991) has pointed out, traditional taxonomies and measures do not
effectively and completely cross content factors with process fac-
tors, a fact that was accomplished with the CAM battery. For
instance, verbal and quantitative induction (both assessed here) are
rarely present in traditional measures. All potential test types with
the exception of two were examined in our research. Similarly,
Lubinski and Dawis (1992) pointed out that tests such as the
formerly widely used General Aptitude Test Battery (GATE; see
Dunnette, 1976) or the ASVAB do not uniformly or adequately
measure all regions of the radex dimensional space that reflects the
purported organization of human abilities. Indeed, Humphreys
(1979) has stated compellingly that the wide variety of human
behaviors that can be labeled as cognitive or intellectual should be
sampled, if possible, in the tests used by the field. It indeed may be
true that the construct representation scope of the field's measures
have been limited, in part because of technological and method-
ological limitations as mentioned previously.

In addition to representing cells in this taxonomy, the tests in our
battery correspond closely to current paradigms in the experimen-
tal psychology and cognitive-science literatures. For instance,
long-term episodic memory (Loftus, 1983; tested here with fact
learning), working memory (Anderson, 1983; Baddeley, 1986;
Woltz, 1988), skill learning and acquisition (Anderson, 1983), and
induction and inference learning (Holland, Holyoak, Nisbett, &
Thagard, 1986) are measured by the various tests. Item "faceting"
is incorporated, such that aspects of difficulty and complexity are
varied in a systematic fashion within tests (see Irvine, Anderson, &
Dann, 1990). For instance, when one incorporates negation, com-
plexity and item-trial difficulty levels and test error rates are
increased in a predictable way, whereas proportion correct is
typically decreased. (An example of negation would be "X is not
a member of Set A or Set B.") Brief descriptions of the six
cognitive component-process types and the three stimulus do-
mains follow.

General Knowledge

General knowledge refers to a set of measures of the common
information knowledge accessible to individuals. This domain is
intended to assess the depth and breadth of individuals' declarative
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knowledge base and their ability to answer general knowledge
questions. Example domains include information regarding mea-
surements and U.S. geography.

Processing Speed

This domain assesses the speed it takes individuals to retrieve,
transform, and respond to stimuli. In our battery, participants
decided whether two presented stimulus words conformed to a
sequence specified in a sentence at the top of the computer display.
Faceting and difficulty were incorporated into items with the use
of minus signs indicating, for instance, that a reversal of a pre-
sented ordering was required.

Working Memory

This domain assesses temporary storage of information being
processed during a cognitive task. Working memory is believed to
include a general representation of a given situation "without
necessarily containing an exact record of all details of the infor-
mation that has been presented" (Hunt & Pellegrino, 1985, pp.
220-221). Such measures should require "simultaneous process-
ing and storage of information" (Baddeley, 1986, pp. 34-35).
Working-memory capacity has been shown to be a good predictor
of learning across varied performance environments (Ackerman,
1988; Shute, 1991). In this paradigm, individuals store old in-
formation while simultaneously processing new stimulus
information.

The WM tasks in our battery required examinees to relate what
was described in three statements to the order of four key words
subsequently presented. For instance, one of the three statements
might use category names (animals, furniture), whereas the other
statements would use exemplars within those categories (cow,
chair). Content complexity was incorporated through the use of
faceting. An example of faceting in the WM-quantitative domain
is the use of minus signs, which required participants to reverse
mentally a given ordering of numbers. Multiple minus signs were
also used, and these required several reversals.

Fact Learning

This domain was designed to assess declarative learning skills—
that is, the ability to acquire new fact knowledge and commit that
knowledge to memory. One test requires word pairs to be learned
and then recalled after 10 pairs have been given. After they have
been learned, one pair element is presented to prompt recall of the
second element. In the quantitative domain, participants learned
digit pairs. Another test required participants to learn 36 words.
Participants then determined whether individually presented words
were from the list. Complexity was incorporated through the use of
limited-time learning. For example, only 4 s of learning time per
pair might be permitted before participants were required to
respond.

Skill Learning

This set of measures required procedural learning, the ability to
acquire and use new rules and skills. For the verbal protocol,
participants were shown a sentence consisting of three words, a
noun, a verb, and an adverb. The participants were required to

determine whether a displayed sentence conformed to one of two
sentence patterns (that is, noun-verb-adverb or adverb-noun-
verb). Inference was required in that only two of the three words
were presented.

Induction

The IN measures involved the use of procedural knowledge and
were an attempt to assess the depth and breadth of examinees'
rule-centered knowledge base—that is, the ordering or unifying
patterning of their learning. For example, in the verbal protocol,
participants were shown three lists containing three nouns each.
The participant then determined which of the three lists did not
belong. For example, two lists might contain names of cities, and
the third ("orphan") grouping might contain state names. In the
spatial protocol, participants were shown a series of shapes and
chose the next shape occurring in the series. Faceting was incor-
porated in that participants had to learn various themes to complete
each trial successfully. One theme concerned additions being made
to the initial figure, another involved rotation of figures.

The three stimulus domains that were crossed with the process
factors are as follows: The spatial domain involves the rotation of
objects, physical matching, and synthesizing of pictorial content.
The verbal domain uses verbal operations such as linguistic trans-
formations, category judgments, and part-of-speech classifications
performed on words, sentences, and phrases. The quantitative
domain uses quantitative operations such as arithmetic, sign rever-
sals, and odd-even and high-low judgments on digits and
numbers.

It is true that traditional, paper-based measures have somewhat
of a limited scope because of their clearly restrictive ("low-tech")
nature. According to Guilford's (1967, 1985) structure-of-intellect
terms, an effective measure of intelligence might contain a variety
of contents, require numerous distinct operations, and incorporate
diverse end products. Furthermore, Humphreys (1981, 1984) has
described the possibility of incorporating additional dimensions or
facets in the measurement of ability, such as timing requirements
and sensory modality. Accordingly, a primary advantage of the
measures described here is that many different types of test stimuli
and content are amenable to presentation. Finally, response pro-
duction (i.e., through the use of partially open-ended questions
requiring response generation) is required on several of the mea-
sures, which has only recently begun to be a realized possibility
with traditional measures.

Data obtained from the intelligent tutoring systems (see Shute &
Psotka, 1996; also Anderson, Boyle, & Reiser, 1985) both pro-
vided realistic performance environments and made available
comprehensive outcome measures. Both tutors incorporated real-
time information processing and mimicked the rapid decision
making and problem solving required in many job situations,
where performance environments are cognitively demanding. A
wide range of job-relevant skills and knowledge was required on
the tutors in content-integrated scenarios. Indeed, the tutors as-
sessed many of the skills necessary in today's complex job situa-
tions, incorporating such knowledge facets as reasoning, declara-
tive and procedural learning (Anderson, 1983), and skill
acquisition. A brief description of the tutors follows, and more
detail is given in a later section.
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The electricity tutor teaches Ohm's and Kirchhoff s laws re-
garding current and voltage using electrical circuits.2 Students are
allowed to work on circuits to learn critical principles of electric-
ity. The flight engineering tutor instructs participants in the use of
tables, scales, and graphs, with the goal of making the calculations
necessary for completing a take-off and landing data (TOLD)
sheet.

Finally, the ASVAB, which is used to measure general ability,
consists of the following subtests: General Science (GS), Word
Knowledge (WK), Paragraph Comprehension (PC), Arithmetic
Reasoning (AR), Math Knowledge (MK), Numerical Operations
(NO), Coding Speed (CS), Auto and Shop Knowledge (AS),
Mechanical Comprehension (MC), and Electronics Knowledge
(EM). Armed Forces Qualification Test (AFQT; see Dunnette,
1976) scores, also used, were based on a linear combination of AR,
MK, PC, and WK.

Study 1

Method

Participants. We obtained data for 344 participants who completed the
ASVAB, the battery of computerized measures of cognitive information
processing, and the computerized tutor designed to teach Ohm's law and
other principles of electricity. The participants were employees from a
local temporary service agency and were paid for their participation in the
study. Fifteen percent of the participants were female, 39% were Cauca-
sian, and 53% were members of minority groups.

Instructions were tailored to the specific tests. Sample items were given
in each test with the instructions. Numbers of test items ranged from 20 in
the induction tests to 192 in the SL-quantitative tests. The participants
were given feedback as to the correctness of completed trials in each test,
following individual responses or sets of responses. Finally, we established
response goals for motivation and instructional purposes. For the process-
ing speed tests, examinees were told that speed and accuracy were equally
important for their scores. For the remaining tests, the participants were
told that their scores would be dependent on the number they got correct
but that they would have only a certain number of seconds to respond.

We used the cognitive process measures and the AFQT (a composite
based on a subset of tests from the ASVAB) to predict learning proficiency
and performance on the tutors. Because the tests of cognitive processing
were timed examinations and were administered by computer, two sum-
mary scores were available for analysis: overall accuracy on test items
(ACC) and median response time (RT) on items or trials averaged within
the test. Response time latencies are believed to reflect, in part, the time
required to retrieve critical information from long-term storage. Thus, the
computerized cognitive-process measures were scored for both accuracy
and latency at the item or trial level. Percentage of correct and median
latencies, respectively, were used as test-level scores for analyses involving
these measures.

We controlled speed-accuracy tradeoffs as much as possible. However,
evidence of such was found, and, indeed, they are unlikely to be avoidable
in the speeded-test domain. Some degree of control was afforded by our
use of fixed item-time limits and by the feedback we gave on time to
respond, as well as by our use of correct-incorrect error messages. Also,
where appropriate, accuracy and latency feedback were given at the block
level. Several tests used "timeouts" (limited times for problem solving or
answer entry). Finally, motivation and debriefing screens were given when
appropriate.

Participants were paid by the hour for their participation, which con-
sisted of a number of hours of both testing and learning, the majority of
which was spent using the tutor. The average time spent using the tutor
was 11.5 hr (SD = 3.85). The influence of individual differences is clearly

obvious as one examines the range of values for time to mastery—that
is, 5.2-25.6 hr. Individuals were not told that their temporary employment
as study participants would be a function of the time they spent on the tutor
and would be hastened by their finishing the tutor. Thus, examinees were
not differentially motivated to spend unnecessary time on the tutor. The
cognitive-process measures required approximately 3 hr to complete; this
included two 5-min breaks. Participants also spent approximately 3 hr on
the ASVAB. Finally, we spread testing sessions out over a number of days
to reduce measurement error from fatigue effects.

The participants were tested in groups of approximately 20 persons. The
cognitive-process tests were administered on microcomputers with stan-
dard keyboards and monitors. The tutors were administered on Xerox 1186
computers with standard keyboards and high-resolution, monochromatic
displays on 19 in. (48.26 cm) monitors. The participants viewed items on
the display and responded by selecting a key on a standard computer
keyboard.

The electricity curriculum consisted of 15 principles. Examinees were
allowed to move to the next principle only after they solved three problems
correctly on a given principle. Also, response histories were taken into
account in determining types of problems to be presented; thus, an adaptive
testing element was incorporated. Given the lengthy amount of training
participants were given on the tutor, it can be said to be quite effective at
replicating and emulating the complex learning and performance environ-
ments present in many job settings.

Participants were paid only after completing the entire study, which
required mastery of the tutor knowledge and skills. Thus, we believed
participants were motivated to finish the tutors in a timely and conscien-
tious fashion. Given the importance of high levels of motivation in the
maximum performance testing domain, such attention to detail clearly pays
off in terms of low levels of measurement error.

Analyses. In addition to correlational analyses and covariance structure
modeling, we performed regression analyses to examine the validity of the
cognitive-process measures, as well as the unique contributions of the
available measures beyond that provided by traditionally defined and
assessed g. The dependent variables were time spent achieving mastery on
the tutor and accuracy on the test of overall knowledge acquired from the
tutor. The first criterion assessed how long participants took to acquire and
master a thorough understanding of the principles of electricity. The second
criterion measured the number of correct solutions and therefore assessed
the participants' actual percentage correct on the final test rather than their
discrete mastery alone.

To keep the number of variables in regression equations to a minimum
to avoid unnecessary capitalization on chance, we used AFQT scores to
represent the general factor of intelligence. Given that the AFQT has long
been used for selection and placement decisions in the military and has
received considerable psychometric, measurement, and validation attention
and that AFQT scores correlated .94 with a linear composite of the ASVAB
scores in the current data, this decision seemed to be well justified (see also
Wigdor & Green, 1991). Furthermore, it is important to note that sample
means and standard deviations for all of the ASVAB subtests were quite
close to the means and standard deviations of the ASVAB normative
sample—that is, means of approximately 50 and standard deviations of
approximately 10.3 Thus, the sample had at least 90% of the variability of
the normative sample. This finding indicates minimal restriction of range
on relevant score distributions and also points to the very adequate and

2 Ohm (O) refers to Georg Simon Ohm (1787-1854), a German phys-
icist who showed that an ohm (a meter-kilogram-second unit of resis-
tance) is equal to the electric resistance in a conductor in which one volt of
potential difference produces a current of one ampere. Ohm's law states
that voltage = current x resistance.

3 AFQT has been calibrated on a national probability sample of 18- to
23-year-olds (i.e., those who are eligible for service).
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even excellent motivation levels present for nonoperational testing. Finally,
we carried out analyses using individual ASVAB scores in place of AFQT
or ASVAB composite scores. Highly consistent results were obtained.

Because of the large number of tests in the cognitive-process battery, the
number of variables in regression equations was further minimized. First,
the tests were grouped into composites on the basis of the six cognitive-
process factors measured in the battery: PS, WM, FL, SL, IN, and GK. We
formed composites by adding together, using unit weighting, scores from
the quantitative, verbal, and spatial domains within each of the factors.
Thus, six composites were formed from the mean accuracy scores, which
were essentially percentage-correct scores. These six composites were
entered simultaneously into regression equations.

Because participants were to answer individual test items quickly and
also had item time limits, a second set of composites used RT scores. We
again formed composites on the basis of the six factors, in the same manner
we used to form the ACC composites.

Results and Discussion

Table 1 contains reliabilities and correlations among cognitive-
task latency scores and accuracy scores (within score type only).
Because both studies used the same cognitive tests, it was possible
to compute correlations and reliabilities on the basis of the com-
bined data (N = 746) to estimate values in the most stable fashion.
We believed this decision was reasonable, because samples were
similar in terms of make up, and performance was similar across
samples. It is important to note that correlations are almost entirely
nonzero and positive. The average intercorrelation for RT scores
(above the diagonal) was .20, and the average correlation for ACC
scores was .29. Alphas were mostly quite high, with the exception
of those for the GK-quantitative domain ACC scores. It is relevant
to note that the consistency in the correlations provides initial
evidence for a general latent factor driving the multiplicity of
responses.

Table 2 contains correlations between tests of the two score
types. It is important to note that these correlations were quite a bit
lower overall than the within-score correlations were. They seem
to reveal some, albeit a limited, degree of commonality among
accuracy scores and speed of responding.

Table 3 contains correlations between the cognitive task scores
and the two electricity criterion scores, as well as the overall
AFQT scores. It is important to note the direction of the accuracy
score-total time correlations; the direction indicates that longer
times were associated with lower accuracy scores and vice versa.
In general, accuracy scores appear to perform better in a correla-
tional sense than do the latencies (as Humphreys, 1989, anticipated
some time ago). These results are in keeping with Kyllonen's
(1994) work, which reported correlations between ASVAB test
scores and various cognitive process accuracy scores in the range
of .56-.96.

Table 4 contains zero-order correlations between the general
ability measure and the two tutor-performance scores. Also, unit-
weighted composites of all cognitive-task scores (separately for
latencies and accuracies) were correlated with the various criteria
and other relevant scores. The correlation between the two tutor
criterion scores is —.65. It is important to note the considerable
degrees of commonality between cognitive measure accuracy
scores and AFQT and tutor criterion scores.

Next, we performed a hierarchical confirmatory factor analysis
(HCFA) to examine the theoretical common factor structure of the

various test batteries. We hypothesized a model positing three
higher order (second-order) factors, one for each of the three types
of measures assessed here (traditional g, cognitive-process accu-
racy g, and cognitive-process latency g). Then we specified three
first-order factors for the ASVAB test scores. We used the entire
ASVAB battery (10 subtest scores), because this allowed estima-
tion of latent structure, whereas using a single AFQT score would
not. Ree and Carretta (1994) factor analyzed the ASVAB using
confirmatory factor analysis and found support for a hierarchical
structure resembling Vernon's (1969) theoretical specifications.
The same grouping of tests that Ree and colleagues employed was
used here (Ree & Carretta, 1994; Stauffer, Ree, & Carretta, 1996).
That is, we hypothesized a verbal-mathematical factor (V-M)
consisting of the AR, WK, PC, and MK subtests. We also posited
a speed factor (SPD; derived from NO and CS) and a technical
knowledge factor (TK; derived from GS, AS, MC, and EM). We
posited that these three first-order factors would load on the first of
the 3 second-order factors (gA) representing traditionally consti-
tuted general ability.

Next, we grouped the cognitive process measures by test domain
(PS, WM, FL, SL, IN, GK) and score type (accuracy and latency),
yielding 12 first-order factors. (We also carried out grouping by
content domain, which yielded a highly comparable fit.) Six fac-
tors were allowed to load on each of the two higher order factors,
one general factor for the accuracy score (gACC) and one general
factor for the latency scores (gRT). Also, as Humphreys (1989)
noted, variables that negatively correlate cannot by definition load
on a general factor. Accordingly, latency scores were reflected for
the factor analytic work. Finally, the three general (second-order)
factors (gA, gACC, gRT) were allowed to load on a single, general
(third-order) factor representing general intelligence (g).

Figure 1 shows the hierarchical factor model along with path
loadings for the first-order factors loading on the 3 second-order
factors and for these factors loading on the third-order g factor.
Loadings of observed variables on the first-order factors (not
shown) were as follows; ASVAB tests (.723-.916), ACC scores
(.143-.827, with PSV—the compilation of processing speed and
the verbal domain—showing an outlying value of .143 and the
next lowest value being .309), and RT scores (.226-926). All
loadings were significant atp < .001. Root mean square error of
approximation (RMSEA; Browne & Cudeck, 1993) was .069 for
this model (with a confidence interval of .067-.072), indicating
very good to excellent fit. It is important to note the generally high
levels of loadings of first-order factors on the second-order g
factors (gA, gRT, and gACC). Also relevant is the fact that the path
estimates between the second-order factors and the third-order
general factor are indicative of considerable commonality among
the three latent general factors. The somewhat disappointing path
for gRT may be due to speed-accuracy trade offs and other psy-
chometric concerns that would affect the latency metric unfavor-
ably. These results point to additional confirmation of the notion of
a theoretical general factor that is even more broadly constituted
than we previously believed.

We used Marsh and Hocevar's (1985) target coefficient to
compare the hierarchical (third-order general factor) model ana-
lyzed here with other possible models. We analyzed a full first-
order model wherein the 15 first-order factors were allowed to load
on a single second-order factor. The RMSEA for this model was
.073 (.071-.076). The favored hierarchical model, being much
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Table 3
Correlations Between Cognitive-Process Scores and Electricity Concepts
Tutor and AFQT Scores

Accuracy scores Latency scores

Measure

PSV
PSQ
PSS
WMV
WMQ
WMS
FLV
FLQ
FLS
SLV
SLQ
INV
INQ
INS
GKQ1
GKQ2
GKQ3
GKQ4
GKS

Total time
on tutor

-.09
-.40
-.47
-.56
-.45
-.54
-.26
-.23
-.43
-.43
-.51
-.38
-.41
-.54

.04
-.14
-.43
-.13
-.53

Posttutor
accuracy

.09

.35

.47

.49

.46

.51

.35

.30

.55

.41

.54

.43

.47

.52

.04

.08

.49

.18

.53

AFQT

.12

.51

.48

.65

.59

.59

.37

.33

.59

.49

.64

.57

.56

.61

.06

.18

.53

.30

.64

Total time
on tutor

.36

.12

.08

.36

.42

.19

.34

.11

.17

.13
-.01
-.03
-.06

.09

.08

.04

.01

.13

.04

Posttutor
accuracy

-.33
-.06

.00
-.24
-.30
-.12
-.34

.04
-.05
-.03

.09

.08

.14
-.04
-.05

.05

.02
-.06

.06

AFQT

-.38
-.06

.01
-.33
-.41
-.16
-.36
-.03
-.13
-.12

.06

.04

.10
-.09
-.13
-.03
-.04
-.18

.05

Note. N = 292. rs > .14 are significant at/j < .01. Latency and accuracy measures (and the abbreviations for
these measures) are composites of the following factors and domains: PS = processing speed; WM = working
memory; FL = fact learning; SL = skill learning; IN = induction; GK = general knowledge; V = verbal; Q =
quantitative; S = spatial domain. AFQT = Armed Forces Qualification Test.

simpler, had 87 fewer parameters than the full second-order factor
model did. In terms of parsimony, the hierarchical model has much
to recommend it. The target coefficient, whose upper limit is 1.0,
was .81, indicating that a substantial proportion (81%) of the
relations among the first-order factors was accounted by the higher
order factors (Marsh & Hocevar, 1985).

Another main rival model was one with 3 second-order corre-
lated factors representing the same general factors analyzed in the
favored model; an RMSEA of .068 (.066-.070) was derived for
this rival model. The favored model had a slightly worse fit but
was much more appealing theoretically. The higher order factor
explains the correlations among the lower order factors in a more
parsimonious and appealing way (Marsh & Hocevar, 1985). In-
deed, Browne and Cudeck (1993) stated, "Model selection has to
be a subjective process involving the use of judgment" (p. 57). Fit
indices tell us little about a model's plausibility (Browne & Cu-
deck, 1993). It is also important to note that this "model" is
inadequate in that it does not explain the correlations among the 3
second-order factors.

Correlations among the 15 first-order factors for the favored
third-order hierarchical model (these are not shown) ranged from
.114 to .996, with the majority of correlations falling much closer
to the higher value. Furthermore, as Stauffer, Ree, and Carretta
(1996) have also reported, the largest correlations between first-
order factors defining cognitive-process scores and traditionally
defined g measures (gA measures) occurred for V-M (the verbal-
mathematical factor), which the authors noted is an excellent
"avatar of 'g' " (p. 199). Alternatively, the largest correlations
involving cognitive-process scores and other factors were found

for PSACC (and also for INACC). Indeed, the correlation between
V-M and PSACC was .913 (r = .909 for INACC). We carried out
multigroup analyses comparing factor structure for men and
women and for Whites and minority group members. RMSEAs
were .05 (.050-.053) for both analyses, indicating excellent levels
of fit and high degrees of comparability for the general latent
factor structure across gender and race.

Lastly, we carried out analyses to estimate the strength of the
theoretical relationship between the newly constituted general
(third-order) factor from the HCFA and a factor defining criterion
scores. Comparisons can be made between the path estimate for
traditional gA alone (the ASVAB-AFQT factor) and the general
factor made up of all three types of scores from the HCFA reported
previously (g). For the tutor accuracy criterion, the path from
traditionally constituted gA was .823, and that from the newly

Table 4
Correlations Among Tutor Scores, AFQT Scores, and
Composites of Cognitive-Process Scores

Measure 1

1. AFQT
2. Tutor accuracy
3. Tutor time
4. Process accuracy
5. Process latency

.73
-.69

.78
-.21

—
-.65

.85
-.OS,

—
-.68 —

.22 .05U —

Note. N = 322. All correlations/; < .01 except as indicated by subscripts.
AFQT = Armed Forces Qualification Test.



MEASURES OF COGNITIVE PROCESSES 949

Figure 1. Third-order factor model with maximum likelihood estimates of path loadings. Working memory
(WM), general knowledge (GK), processing speed (PS), fact learning (FL), skill learning (SL), and induction
(IN) represent the cognitive-process measures. RT represents reaction time, and ACC refers to accuracy. V/M
(verbal/mathematical), SPD (speed), and TK (technical knowledge) are factors from the Armed Forces Quali-
fication Test (AFQT), a composite based on a subset of tests from the Armed Services Vocational Aptitude
Battery (see Dunnette, 1976). gA = the second-order factor reflecting AFQT scores; gACC

 = the second-order
factor reflecting ACC scores; gRT = the second-order factor reflecting latencies; g = the third-order, general
factor.
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Table 5
Validity and Incremental Validity ofAFQT, Accuracy (ACC), and Latency (RT) Composites
for Accuracy on Electricity Concepts Tutor Posttest

Correlation

R
R2

Adjusted R2

A Adjusted R*

AFQT

.73*

.53*

ACC

.74*

.55*

.54*

RT

.38*

.15*

.13*

ACC added
toRT

.74*

.55*

.53*

.38*

RT added
to ACC

.74*

.55*

.53*

.00

Added to AFQT

ACC

.76*

.58*

.57*

.05*

RT

.74*

.54*

.53*

.00

RT and ACC

.77*

.59*

.57*

.04*

Note. N = 322. AFQT = Armed Forces Qualification Test.
*p < .01.

constituted g was .913. These paths were -.766 and -.772,
respectively, for the time-to-mastery criterion. Both analyses rep-
resent improvements for the addition of the factor space represent-
ing cognitive-process scores.

Next, we carried out regression analyses to determine the com-
parative utility of the various test and score batteries, as well as the
incremental value of the cognitive-process test scores. Table 5
presents results of regression analyses using the RT and ACC
composites and AFQT scores to predict performance on the post-
tutor accuracy measure. Table 5 reports validities for these scores
for posttutor accuracy, as well as the incremental validities ob-
tained when a cognitive-process composite type was added to the
other cognitive composite type or to the AFQT in the regression
equation. All regression tables include squared multiple correla-
tions adjusted for the differing numbers of predictors representing
the accuracy, latency, and traditional g scores. The shrinkage
formula producing the best estimators of squared multiple corre-
lations for the population determined by the computed sample
estimates was used to provide as complete and accurate a com-
parison with sample results as possible (Cattin, 1980).

The ACC composite resulted in the largest squared multiple
correlation for predicting posttutor accuracy (54% of the variance),
followed by the AFQT (53%), and then RT scores (13%). Cogni-
tive test ACC scores added unique variance to both RT and AFQT
scores (38% and 5%, respectively). Moreover, ACC scores made
a unique contribution to the predictability of criterion variance
beyond both of these latter scores combined (5%; not shown in
Table 5). Clearly, the cognitive-process error rate (ACC) scores
resulted in highly useful measures, both on their own and as an
addition to the traditionally defined and measured assessment of

general ability. It is noteworthy, however, that the traditional g
composite measure also showed incremental validity over the
cognitive-process measures, adding unique variance beyond the
ACC and RT composites combined (4%; not shown in Table 5).
Thus, both classes of measures appear to be useful. On the other
hand, RT on the computerized information-processing measures is
not particularly effective on its own in predicting variance over
that accounted for by ACC scores or scores from traditional
measures. However, the linear combination of latency and ACC
scores clearly provides additional variance beyond traditional g
(4% total).

We carried out similar analyses for the time-to-mastery crite-
rion. Table 6 presents the results of regression analyses using total
time to complete the tutor program as the dependent variable. As
we observed for the first criterion, ACC had the largest overall
squared multiple correlation (adjusted .48; R = .70). That is,
accuracy alone explained 48% of the variance in the total time to
achieve mastery on the tutor program. AFQT explained 46% of the
variance in time spent on the tutor, and RT alone accounted for
24%. It is important to note that RT and ACC added 8% to the
AFQT scores. Given that RT is essentially a time-based measure,
one might expect that it would account for unique variance in time
spent on the tutor. Indeed, RT added 4% unique variance to ACC
and AFQT combined (not shown in Table 6). On the other hand,
ACC again added the most unique variance beyond the others
combined (6%; not shown).

As in the analyses with the posttutor accuracy criterion, AFQT
scores also contributed unique variance beyond ACC and RT in
predicting the time-to-mastery criterion, though the variance added
was small (1%). Thus, in both analyses, the cognitive-process tests

Table 6
Validity and Incremental Validity of Accuracy (ACC) and Latency (RT) Composites
for Total Time on Electricity Concepts Tutor

Correlation

R
R2

Adjusted R2

A Adjusted R2

AFQT

.68*

.46*

ACC

.70*

.49*

.48*

RT

.50*

.25*

.24*

ACC added
to RT

.74*

.55*

.53*

.28*

RT added
to ACC

.74*

.55*

.53*

.04

Added to AFQT

ACC

.72*

.52*

.51*

.05*

RT

.72*

.51*

.50*

.04*

RT and ACC

.75*

.57*

.55*

.08*

Note. N = 322. AFQT = Armed Forces Qualification Test.
*p < .01.
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added more unique variance to AFQT than AFQT added to them
in predicting the criteria of interest, and accuracy on the cognitive
process measures was the best overall predictor, though by only a
small margin. How might one interpret these results? Simply, the
cognitive-process measures alone contained more useful variance
in predicting the criterion than did the AFQT scores.

A means of keeping the number of variables in the regression
equations at a reasonable level was to select only the very best of
the information-processing tests for analysis. We performed this
analysis to determine whether comparable validity and construct
space coverage was achievable using fewer tests. Tests were
selected on the basis of their measurement and psychometric
properties, including reliabilities, correlations with measures of
ability, and item difficulty distributions. The majority of the CAM
tests were chosen for the ACC-based scores (only General Knowl-
edge Quantitative 1 and 2 and Processing Speed Verbal were
eliminated from analyses). However, only six latency-based scores
were chosen (Processing Speed Verbal, Working Memory Verbal,
Working Memory Spatial, Working Memory Quantitative, Fact
Learning Verbal, and Induction Quantitative). It is important to
note that all of the working memory tests were "tagged" as highly
useful from a psychometric standpoint.

Results were similar to those using composites of all scores. The
squared multiple correlations for these analyses were found to be
of a greater overall magnitude for the ACC and RT scores for the
selected tests (most gains were around 2% beyond the R2 gains
presented previously). The notable exception was the RT scores,
which performed much better under the selection method than
using composites (R2 = .25 vs. .15). In addition, although the R2s
or ACC, RT, and AFQT were somewhat larger when the best tests
were used, we found the trends among them to be highly compa-
rable with those reported for the overall composites.

Regression analyses using scores from the selected tests were
also carried out for the time-to-skill mastery criterion. Improve-
ments were realized and were similar to those for the final accu-
racy test. The tests showed an increase in squared multiple corre-
lation for time to mastery, usually of around 4%, when the
psychometric selection method was used instead of overall com-
posites. Similar trends were observed for the time criterion. That
is, ACC had the largest squared multiple correlation, followed by
AFQT and then RT.

Study 2

Method

In Study 2, 402 participants completed the ASVAB battery, the com-
puterized cognitive measures, and a tutor designed to teach flight engi-
neering knowledge and skills. As in the first study, participants were
temporary service employees. Approximately 25% of the participants were
female, 35% were Caucasian, and 61% were members of minority groups.

The flight engineering tutor was originally developed by researchers at
the University of Pittsburgh (Lesgold, Busszo, McGinnis, & Eastman,
1989) and was subsequently modified at the Air Force's Armstrong Lab-
oratory (Shute, 1993b). The tutor was designed to simulate the learning of
skills and knowledge associated with a flight engineer's job. Relevant
components included collecting and analyzing information about a pending
flight and determining whether various factors (e.g., type of plane, current
weather) would allow a safe flight. The tutor had two main parts: reading
graphs and completing a TOLD sheet. Problem sets were included for both

parts of the tutor. All problem sets involved the learning of procedural and
declarative knowledge and contained problems pertaining to scale conver-
sions, linear relationships, and interpreting polar and Cartesian coordinate
charts.4

An example of procedural knowledge requirements for the tutor is
computing relative wind direction. Other requirements called for partici-
pants to figure out the maximum allowable crosswind given the gross
weight of an aircraft and runway conditions. In a step-by-step manner, the
tutor demonstrated how to determine allowable crosswind before problems
were presented.

The vast majority of the material in the tutor curriculum constituted new
knowledge and skills for the examinees. Graph reading, for instance,
consisted of 14 problem sets that required reading and understanding
graphs, beginning with simpler graphs and progressing to complex ones.
TOLD requirements consisted of 9 problem sets and involved learning and
using graph reading skills to fill out the final TOLD worksheet. Participants
were required to integrate procedures with the given information to deter-
mine whether conditions were acceptable for a safe takeoff or landing. For
the work sheets, some information was given and other information had to
be computed by the examinees. The procedure to determine headwind and
crosswind was a detailed eight-step procedure. Computerized help was
available to assist examinees. Finally, all learning was self-paced, which
allowed the participants as much time as needed to master the material.

We again conducted regression analyses, using the overall amount of
information learned from the tutor as the dependent variable. This criterion
was a measure of the percentage correct on a comprehensive mastery test
given following tutor completion.

Results and Discussion

Table 7 contains correlations between both types of cognitive-
task scores and the posttutor accuracy measure, as well as AFQT
scores. The zero-order correlation between the single tutor crite-
rion score and the AFQT was .83. It is important to note the
generally high level of commonality for ACC measures with both
criterion and AFQT scores. Latencies again fared less favorably
overall. Exceptions are the PS, WM, and FLV tests, as was the
case in the first study.

Tables 8 summarizes the results of regression analyses, again
using the ACC and RT composites. The same tests used for
composites in Study 1 were used for these analyses. Here, the
AFQT and the processing tests accounted for considerably more
variance than they did in Study 1 (83% of posttutor mastery in
Study 2, vs. 57% of posttutor mastery and 55% of time to mastery
in Study 1).

Although there is a difference in overall magnitudes of the
squared multiple correlations, the incremental-variance-accounted-
for results indicate trends that are highly similar to those we
observed for the composites in Study 1. In both cases, ACC had
the highest squared multiple correlation; followed by AFQT and
then the RT composite. Both ACC and RT scores showed incre-
mental validity over each other and over AFQT, as in the analysis
with the total time criterion in the first study. It is important to note
that ACC contributed 9% unique variance beyond AFQT and that
RT and ACC added 11% unique variance over AFQT. Results
indicate that the variance added by RT over the percentage correct
and AFQT combined was small but significant (2%; not shown in

4 Cartesian coordinates are a system of coordinates for locating a point
on a plane by the length of its radius vector and the angle this vector makes
with a fixed line.
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Table 7
Correlations Between Cognitive-Task Scores and Flight
Engineering Tutor and AFQT Scores

Accuracy Latency

Measure

PSV
PSQ
PSS
WMV
WMQ
WMS
FLV
FLQ
FLS
SLV
SLQ
INV
INQ
INS
GKQ1
GKQ2
GKQ3
GKQ4
GKS

Posttutor
accuracy

.02

.41

.52

.60

.59

.71

.34

.45

.58

.47

.59

.53

.59

.62

.20

.15

.55

.35

.68

AFQT

.00

.36

.45

.56

.53

.60

.23

.40

.53

.38

.51

.51

.51

.57

.24

.18

.57

.36

.68

Posttutor
accuracy

-.42
-.27
-.18
-.32
-.44
-.10
-.36

.02

.06
-.24
-.03

.24

.15
-.19

.06

.19

.12
-.05

.15

AFQT

-.38
-.33
-.25
-.32
-.51
-.23
-.35
-.01
-.07
-.27
-.10

.16

.05
-.25
-.00

.14

.07
-.11

.44

Note. N = 402. rs > .14 are significant at p < .01. The correlation
between AFQT and posttutor accuracy is .83. AFQT = Armed Forces
Qualification Test. Accuracy and latency measures (and the abbreviations
for these measures) are composites of the following factors and domains:
PS = processing speed; WM = working memory; FL = fact learning;
SL = skill learning; IN = induction; GK = general knowledge; V =
verbal; Q = quantitative; S = spatial domain.

Table 8). ACC scores again added the largest amount of unique
variance over RT and AFQT combined (approximately 8%; not
shown in Table 8), whereas AFQT added 6% unique variance over
the others.

Finally, covariance structure modeling was again carried out to
compare the size of the path estimate for the newly constituted
general factor (g) and that for the traditionally composed factor
(gA). These path estimates were .98 and .91, respectively, predict-
ing the theoretical estimate of the criterion of tutor accuracy. Thus,
the construct defined by the cognitive process tests along with the
traditional measures again represents an improvement in measure-
ment of the latent factor space and predictability of the criterion
factor space.

General Discussion

This research has succeeded in accomplishing several things.
Results indicate that both accuracy- and reaction time-based scores
from cognitive-process measures are highly useful for predicting
learning and performance on complex tutors. Furthermore, these
test scores contributed unique variance beyond that provided by a
standardized measure of general ability. In two studies, regression
analyses indicate that cognitive-process accuracy scores accounted
for significantly more overall variance in criterion scores than that
accounted for by traditionally defined and constituted general
intelligence measures. Response latency scores alone added unique
variance, but scores reflecting error rates from the cognitive-
process measures were consistently the most useful predictors,
whether they were used alone or in addition to scores from other
tests. Finally, and also important, the cognitive-process measures,
along with the traditional measures, appear to reflect a single
higher order factor indicating general intelligence that also does an
excellent job predicting criterion scores.

Christal (1991) carried out similar research, predicting the per-
formance of military recruits on a computerized tutor designed to
teach knowledge and skills on "logic gates" using a similar battery
of experimental cognitive tasks and the ASVAB. He found that the
cognitive-process battery added as much as 22% unique variance
over ASVAB scores. The present study found up to 11 % unique
variance of experimental measures over traditionally constituted g.
However, it is important to note that in the current research, less
variance remained after the g measure had been entered into the
regression equation than remained in Christal's study after test
scores had been entered. The correlation between the general
ability measure and a composite of the accuracy measures from the
computer battery was much lower in Christal's study (e.g., .48 vs.
.78 in the present research), thus allowing potentially more pre-
dictable variance to remain. Thus, it is noteworthy that incremental
validities were obtained for the ACC scores in this research, in
spite of the high initial validities for the AFQT.

We now move to a discussion of the broader implications of
these results, both the regression analyses and the HCFA. The
relationship between cognitive ability and job performance is well
established and widely known (Hunter, 1986; Hunter & Hunter,
1984; Ree & Earles, 1991, 1992; Schmidt & Hunter, 1998; Wigdor
& Green, 1991). Much work has been carried out that asks how
much criterion variance is due to g versus how much is due to
other non-g factors such as personality characteristics (e.g., Hunter
& Hunter, 1984). However, we have attempted to reframe and

Table 8
Validity and Incremental Validity of Accuracy (ACC) and Latency (RT) Composites for Accuracy
on Final Test of Flight Engineering Tutor Knowledge

Correlation

R
R2

Adjusted R2

A Adjusted R2

AFQT

.85*

.72*

ACC

.87*

.76*

.75*

RT

.56*

.32*

.30*

ACC added
to RT

.88*

.77*

.76*

.45*

RT added
to ACC

.88*

.77*

.76*

.01

Added to AFQT

ACC

.91*

.82*

.81*

.09*

RT

.87*

.75*

.75*

.03*

RT and ACC

.91*

.83*

.83*

.11*

Note. N = 402. AFQT = Armed Forces Qualification Test.
* p < .01.
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redirect this question by expanding the standard definition and
operationalization of general ability. Humphreys and Lubinski
(Humphreys, 1979; Lubinski & Dawis, 1992; Lubinski & Hum-
phreys, 1990, 1992) have discussed the need for, and the possibil-
ity of, doing just that; their research indicates that the general
factor is indeed quite a bit broader and richer than is operational-
ized in most current, standardized measures. Again, Humphreys'
(1971) definition of intelligence as the repertoire of knowledge and
skills in the cognitive domain available to a person at a particular
point in time incorporates the idea that facility in acquiring new
skills and performing on tasks requiring those skills is part of the
general factor and should be contained in measures of the general
factor. Indeed, the various cognitive-process measures investigated
here can each be viewed as individual, narrow indicators or as
reflections of the broadly constituted general factor (Detterman,
1982; Humphreys, 1971). It is possible that with the studied
battery, we have achieved a different mix and thereby coverage of
the actual latent factor space defining intelligence. However, such
diverse reflections are rarely, if ever, present in standard predictor
assessments. We believe this research has effectively begun the
critically important process of more carefully and completely
mapping the relevant construct space of general ability.

The generally very high levels of predictive efficiency, along
with the theoretical path estimates for the combined batteries, are
compelling. We do very well with the combined batteries in
explaining variance on the realistic tutors. These findings are made
all the more impressive on consideration of the fact that we started
out with an established battery (the AFQT) that is of excellent
psychometric quality. Given that the tutors were designed to mirror
learning and performance environments in real-world jobs, we
believe that these results bode well for generalizations to perfor-
mance in actual workplace settings. On the tutors examined, nov-
elty precluded ceiling effects, and careful instruction and self-
pacing prevented serious floor effects. With the help of the
computerized cognitive-process measures, we clearly exceeded the
rxy = .50 prediction barrier discussed by Lubinski and Dawis
(1992). As a matter of fact, we have even handily eclipsed a
.50-variance-accounted-for barrier. It is true that our criteria are
lab-based and are thus somewhat artificial as performance mea-
sures. However, generalizations are clearly possible because of the
very high quality, complexity, and diversity of the tutor require-
ments. Indeed, the resulting tutor score distributions that reflect
performance competence and proficiency are exceptional and are
about as good as one could hope for.

In terms of real-world criterion domains, Arthur, Barrett, and
Doverspike (1990) successfully examined cognitive-process mea-
sures as predictors of the frequency of accidents among transport
drivers. Also, Ackerman and Kanfer (1993) demonstrated the
validity of a cognitive-process-based battery for predicting air
traffic controller success. The current research extends these stud-
ies and provides important information regarding the usefulness of
well-designed cognitive-process measures.

A major advantage of the cognitive measures used here is that
the various theoretical bases of the cognitive components and
abilities within the battery are clearly defined and specified. The
test battery itself is highly diverse in terms of its content, the
products required, and the operations used and represents a truly
cutting-edge test battery. Indeed, an initial goal of the CAM
research team was to measure additional components to increase

the amount of criterion variance accounted for. A better match
between test components and criterion space is critical and possi-
ble. Indeed, in 1981, Sternberg noted that "the incremental value of
information processing scores over psychometric scores has yet to
be demonstrated for interesting external criteria" (p. 1186). We
believe that this correspondence and incremental value has been
achieved with the current research and that this research stands in
stark contrast to this statement. Having used a construct-coverage
framework rather than a strict "either-or" (that is, either informa-
tion processing or general ability) approach to specifying and
evaluating measures has yielded promising results. Such a frame-
work has allowed for the possibility that additional ability variance
may be assessed by the cognitive-process measures.

Indeed, it is likely that the cognitive-process measures and the
traditional measures were successful in part because they both
contained appreciable cognitive and intellectual content (Hum-
phreys, 1989), which is relevant for many real-world performance
and learning contexts. It is also important to return to the notions
of symbolic representation and adaptability as crucial elements in
the original definitions of intelligence. We believe that the mea-
sures we studied successfully and uniquely captured this critical
content and, in so doing, enabled the strong correspondence be-
tween predictor and real-world-emulating criterion domains. In-
deed, a seemingly effortless movement into new domains on the
part of individuals appears to underlie the construct space elements
specified by early theory, as well as defining the measures and
criteria measured in this study.

A critical part of many definitions of intelligence is the ability to
acquire and use information and conceptual skills in new contexts.
It is also true that reading comprehension and arithmetic reasoning
are typically excellent measures of the general factor. These were
represented by the V-M first-order factor, as we described earlier.
Furthermore, it is important to recall that very large factor inter-
correlations were observed for this factor and several of the
cognitive-process first-order factors, specifically PS, WM, and IN
(both score types for PS and WM). It appears, therefore, that the
process measures assessing these factors are indeed excellent
markers of the general factor. Also, Kyllonen and Christal (1990)
found that WM and traditionally defined reasoning ability are
correlated in the .8-.9 range. However, additional content, pro-
cess, and operation requirements were measured with the remain-
ing assessments. As Humphreys (1989) stated, the "ability of
humans to deal with verbal, mathematical, and figural content in
complex ways is a fundamental characteristic of measures having
high loadings on the general factor in intelligence" (p. 322). Thus,
it appears that the combined batteries and therefore the construct
space underlying performance on the batteries was represented not
only by the traditional elements but by novel elements, all pointing
to the general factor.

Another point about the general factor is worth mentioning. As
Lubinski and Dawis (1992) stated, because we live in a rapidly
changing society, "familiar tasks change as they take on unfamiliar
dimensions" (p. 2). They pointed out that novel, sophisticated
behaviors must now be quickly learned and mastered. It may well
be that these developments and realities have increased the oppor-
tunities for the manifestation of ability differences in performance
on such jobs. It is highly likely that both our criteria and predictors
were highly "g-saturated," perhaps even more so than previous
studies have allowed. Such ^-saturation may have translated into a
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picture of general intelligence that is even broader and more
diverse than researchers have previously acknowledged.

The results of this research are both encouraging and compelling,
but a few caveats concerning limitations are warranted. One limitation
is the examinee population. The question of motivation arises, as it
would in any research involving nonapplicant samples completing
nonoperational measures. The participants were encouraged to per-
form to the best of their ability, but the degree to which their moti-
vation would have differed from that of an applicant sample is
uncertain. Empirical research investigating the nature and measure-
ment of participants' motivational states is obviously necessary
(Arvey, Strickland, Drauden, & Martin, 1990). However, given the
results reported earlier on the lack of range restriction on the general
factor in the studied groups, along with the generally very high level
of predictive validities, we can be fairly sure that motivation levels
were quite high. Furthermore, as stated in the Principles for the
Validation and Use of Personnel Procedures (Society for Industrial
and Organizational Psychology, 1987), validation efforts should use
samples that are "reasonably representative of the populations of
people and jobs to which the results are to be generalized" (p. 7). We
believe there was significant individual-differences-relevant diversity
in the sample that translated into ability and performance differences.
Furthermore, given that selection (direct, indirect, or self-selection;
see Roznowski, 1998) and concomitant range restriction were not an
issue here, generalizability to typical applicant populations can be
made.

Additionally, careful psychometric work may very likely further
improve such batteries as the one studied here. Indeed, standard
paper-based batteries have benefited from years of close measure-
ment. For instance, item analyses performed on the current battery
revealed that the WM tests that performed very well overall had
excellent item difficulty distributions. Results also indicate that the
useful speed-of-processing variance can likely be assessed with a
smaller number of tests overall. On the other hand, part of the
problem with the latency scores may have been psychometric in
nature. We know considerably less about distributions of latencies
for individuals than we do about error rate measures, at least from
a psychometric, individual-differences perspective. Furthermore,
although acceptable coefficient alphas were found for the latency
measures, other research has shown that latency measures typically
have less-than-desirable stabilities (test-retest reliabilities; e.g.,
Roznowski, 1993). Indeed, as Stauffer, Ree, and Carretta (1996)
have stated before, such "measures can be expected to be valid
predictors of occupational criteria in proportion to their reliable
measurement of 'g' " (p. 199). We now know that these measures
assess g but hope that even greater reliability and construct cov-
erage can indeed be achieved in future batteries.
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