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More than 400 individuals participated in an experiment involving two versions of a
computer-based tutor teaching principles of electricity. We examined the relations
among elective tool use, learning environment, outcome, and efficiency. We also
tested the influence of both individual differences and learning environment on
tool-usage behavior. The data showed no differences between the two learning
environments (rule application vs. rule induction) with regard to outcome perform-
ance or learning efficiency. In addition, neither environment significantly influenced
overall tool use. There was a main effect of tool use on learning outcome, but not on
learning time. We categorized learners into four groups, based on tool-usage patterns
and found that (a) people tended to show stable patterns across time and (b) that
patterns differed significantly in terms of learning outcome—it was most effective to
use the online tools earlier in the learning process rather than later. In terms of
individual differences, we identified the characteristics of learners who evidenced
different tool-usage patterns. They varied according to cognitive ability, domain-re-
lated interest, and gender. We propose a causal model that takes into account all of
these data sources in predicting posttest performance. The article concludes with
implications of these findings for those interested in maximizing instructional effec-
tiveness, as well as suggestions for future research directions.
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Behaviors and attitudes manifested during the learning process can influence the
quality and degree of learning that takes place, beyond that attributable to cognitive
ability (e.g., Ackerman & Kyllonen, 1991; Shute & Glaser, 1990). For instance,
interest in a topic is positively related to motivation, which in turn influences
participation in the learning process and, consequently, learning outcome (Kanfer,
1989; Shute, 1994; Tobias, 1994). Thus, active participation appears to be an
important ingredient in the successful acquisition of new knowledge and skills. But
how does that relate to specific learning behaviors?

It is our goal in this article to examine one particular learning behavior—the
voluntary usage of online tools by students learning from the Ohm tutor, which
instructs students on the principles of electricity (see Shute, 1993). This investiga-
tion entailed the identification of tool-usage behaviors and patterns of these
behaviors that are more and less likely to result in effective learning of the material.
We present evidence that particular learner characteristics are related to these
patterns. It should be possible to use this array of individual differences data to
inform real-time instructional modifications, with the goal of increasing student
motivation and (most important) learning.

The elective, online tools available in the Ohm tutor included (a) looking up
definitions in the online reference dictionary, (b) taking measurements on the online
circuit (ammeter and voltmeter readings), and (c) changing component values that
reside on the circuit (e.g., increasing the resistance). These options were available
to learners at any time, with the exception of instances in which such information
would provide the answer to a problem on which the person was working. For
instance, if a learner was working on a voltage problem, the tutor would allow an
ammeter reading, but not a voltmeter reading. After the problem, the student could
measure both. The same restriction was in place with regard to changing component
values, so the system did not give the answer away. It was possible to look up
definitions at any time during instruction or problem solving.

In addition to analyzing the effects of tool usage on learning outcome and
efficiency, we also wanted to test the influence of a feedback manipulation on these
same dependent measures. Thus, we created two learning environments: rule
application (RA) and rule induction (RI). These two environments, which varied
only in their feedback, instructed the same curriculum consisting of 20 electricity
principles. These principles are listed in the Appendix. Each principle had to be
learned before the individual could proceed to the next one, and learned was defined
in the program as correctly solving three consecutive problems. The focus of these
principles involved the interrelations among current, resistance, and voltage, and
how they do or do not differ depending on the specific location of a measurement
along series and parallel circuits. Figure 1 shows the presentation of an early
principle, just as it appeared to learners as they interacted with the tutor.
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We tested five main research issues in this study:

1. Is there a main effect of tool usage on learning outcome, efficiency, or both?
That is, do individuals with a propensity to actively engage in elective (domain-
relevant) activities acquire more knowledge and skill compared to those less
inclined? Our hypothesis was that there would be a main effect of tool-usage activity
on both measures—a positive relation with learning outcome and a negative relation
with learning efficiency. A large body of research supports the importance of
learning by doing, in which it is instructionally more effective to let students solve
problems on their own, confront and work around obstacles, and then explain to
themselves (and sometimes to others) what worked and what did not (e.g., Chi,
Bassok, Lewis, Reimann, & Glaser, 1989; Ohlsson & Rees, 1991; Shute & Glaser,
1990; VanLehn, 1990). The other part of this question concerned the cost associated
with the application of these tools.

2. What is the relation between learning environment and our dependent meas-
ures? We believed that individuals learning from the more cognitively challenging
RI environment would end up with higher outcome scores compared to those
learning from the RA environment. We made this prediction based on our postulate
that the RI condition would foster greater cognitive effort because it provided
learners with less information compared to the RA condition. However, this greater
outcome was believed to be attained at the expense of learning time.

3. Isthere an interaction between tool-usage behavior and learning environment
on learning outcome? Given findings from a similar study (Shute, 1993), we
hypothesized that learners who were “matched” to a learning environment would
perform better than would individuals who were “mismatched.” Shute reported that
individuals who spent more time using the online tools (i.e., demonstrating a more
active, exploratory learning style) learned significantly better from an inductive
environment compared to a more applied one. Conversely, learners who used the
online tools less frequently learned better from a more applied, straightforward
learning environment than from the inductive one.

4. Are these self-initiated activities subject to change (i.e., manipulable) through
the interface, or instructional influences? We hypothesized that the inductive
environment (RI) would promote greater tool usage compared to the more didactic
environment (RA). Learners in the RA environment had no tenable need to engage
in elective, exploratory activities. On the other hand, the RI environment required
active participation in the learning process because the tutor only provided learners
with parts of a principle, and they had to derive the conceptual glue (functional
relations) themselves, by any means they could. Thus, we believed that the inductive
environment would support (if not actively promote) the use of elective online tools
so that learners could obtain information needed to solve the problems.

5. What individual differences variables might be related to tool usage? We
hypothesized that aptitude and domain-related interest would show positive rela-
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tions with more active behavior (Shute & Glaser, 1990; Tobias, 1994). We further
posited that gender may be related to tool usage based on findings that men rate
themselves as more active, independent, and interested in math and science,
compared to women (Newcombe, 1982). Finally, Schiefele, Krapp, and Winteler
(1992) concluded from their meta-analysis that interest accounts for 12% of
achievement variance in men and 6% in women. Thus, in addition to cognitive
ability and gender, one’s interest in the subject matter and possibly even specific
pedagogical approaches all play some role in determining the learning outcome.

METHOD

Participants

A total of 431 persons participated in the experiment, but approximately 20 failed
to complete the entire study; thus, their data were excluded from analyses. Of the
remaining participants, 59% were men, and 41% were women. Participants had a
minimum of a high school diploma (or equivalent), and they ranged in age from 17
to 30 years, with a mean age of 22. Participants were obtained from two local
temporary employment agencies, and none had any prior electronics instruction or
training. All were paid for their participation.

Hardware

All computer-based materials were administered on Compaq 486/33 computers
with high resolution SVGA displays on 15 in. monitors, standard keyboards, and
Logitech mice.

Software

Pretest and posttest.  An online, four-section pretest was administered to
assess incoming domain-related declarative knowledge (e.g., characteristics of
resistors) and conceptual understanding of Ohm’s and Kirchhoff’s laws. The
posttest began with four sections that were identical in structure to the pretest, but
were composed of questions with slightly different content. Three additional
sections were included in the posttest. Sections 5 and 6 measured quantitative
understanding of the electricity principles. Section 7, the most difficult section,
measured the transfer of knowledge to novel situations (e.g., designing circuits to
do specific things).'

ISee Shute (1993) for more detailed information on the content of the pre- and posttests.

g T———
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Learning environments. The curriculum was identical in both versions of
the Ohm tutor, and the environments differed only in terms of the feedback, either
explicating the specific principle being taught (RA) or requiring its induction (RI).
Feedback was provided after problem solution, beginning with “Correct” or “In-
correct” and followed by the principle being instructed. For instance, in the RA
environment, feedback clearly stated the variables and their relations for a given
problem, communicated in the form of a rule. The feedback that accompanied the
problem in Figure 1 was “The principle involved in this kind of problem is that
current is the same before and after a voltage source.” Learners then proceeded to
apply the rule in the solution of related problems. In the RI environment, the tutor
provided feedback that identified the relevant variables in the problem, but the
learner had to induce the relations among those variables. For instance, the
following inductive feedback relates to the same principle embodied in Figure 1,
“In order to solve this type of problem, you need to understand the relationship
between current measured before and after a voltage source.” Participants in the RI
condition, therefore, generated their own interpretation of the functional relations
among variables comprising the different rules.

In both environments, the program was designed such that it monitored every
action made by the student. Thus, tool-usage behavior was measured by tracking
the amount of time spent in relevant activities that could result in some insight into
the principle being instructed at that time. The global tool-usage behavior index
was computed as a proportion involving the total time spent engaging the three
different online tools divided by the total time spent learning from the tutor. A
further distinction was made between declarative and procedural tool-usage be-
haviors. Declarative behaviors involved accessing the online dictionary to look up
terms and concepts, whereas procedural behaviors related to actively changing
component values and metering on parts of the circuit.

Design and Procedure

The 1st day began with the completion of the pretest, followed by an online
demographic questionnaire that asked questions about educational and scientific
background and interests. Participants then started learning from the tutor.

To familiarize learners with the Ohm interface, everyone started the tutor in the
same environment. That is, learners spent about 10 min engaged in directed
activities presented in the RA environment. Then, half the participants remained in
the RA environment for the duration of the curriculum, and the other half were
assigned to the RI environment. Participants spent the rest of Day 1 and all of Day
2 completing the curriculum and the online posttest. They returned on the 3rd day
for 8 hr of cognitive abilities testing, using a subset of the Cognitive Abilities
Measurement (CAM—4) battery (Kyllonen, in press; Kyllonen et al., 1990).
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RESULTS
Preliminary Analyses

Criterion data.  All pretest and posttest data are shown in Table 1. In general,
scores increased from pretest to posttest across the four isomorphic tests (i.e.,
Sections 1 to 4), suggesting that learning occurred. A repeated measures multivari-
ate analysis of variance (MANOVA) was computed on the four matched tests (i.c.,
the within-subjects factor = pretest—posttest gains), and the difference was signifi-
cant, F(1,402) =421.34, p < .001.

Data reduction. To simplify the outcome data, we computed a factor analysis
(principal axis factoring) on the posttest data and saved the regression scores for
each person. This resulted in the extraction of a single posttest factor score (Postfac)
with a mean of 0 and a standard deviation of 1 (part 7 of the battery was excluded
from analysis because the mean proportion correct data for these items was too
low). The percentage of Postfac variance accounted for by these six test data was
71.5%. The respective factor loadings were all high: Test 1, .86; Test 2, .82; Test
3, .80; Test 4, .86; Test 5, .86; and Test 6, .88. This factor score (Postfac) was used
as the dependent measure in subsequent analyses.

TABLE 1
Pretest and Posttest Descriptive Statistics: Proportion Correct Data
M SD Minimum Maximum N

Pretest

Part 1: T/F 64 .10 34 93 406

Part 2: MC 49 A7 07 93 406

Part 3: Qual/pix 41 15 a7 93 406

Part 4: Qual/no pix 45 A5 .00 93 406
Posttest

Part 1: T/F .70 12 39 96 406

Part 2: MC .55 21 .00 1.00 406

Part 3: Qual/pix 62 .19 13 1.00 406

Part 4: Qual/no pix .59 21 13 1.00 406

Part 5: Quan/pix A48 25 .00 1.00 404

Part 6: Quan/no pix 47 28 .00 1.00 405

Part 7: Transfer 11 A9 .00 1.00 404

Note. T/F = true/false; MC = multiple choice; Qual/pix = qualitative reasoning where items
contained pictures of circuits; Qual/no pix = qualitative reasoning where itemns contained no pictures
and only text; Quan/pix = quantitative items required computation where items had accompanying
pictures; Quan/no pix = quantitative items required computation without pictures; and Transfer =
difficult problems that required integration of all knowledge and skills, pictures of circuits presented.
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We similarly simplified the pretest data using the same procedure, that is, we
computed a principal axis factor analysis on the four pretest scores and saved the
regression scores, per person. A single pretest factor score was extracted (Prefac)
with a mean of 0 and a standard deviation of 1. The variance accounted for by the
individual tests was 49%. The factor loadings were as follows: Test 1, .81; Test 2,
.75; Test 3, .55; and Test 4, .66.

Incoming differences by learning environment. To determine whether
there were any incoming differences among learners in terms of domain-specific
knowledge between our two learning environments (RA vs. RI), we computed an
analysis of variance (ANOVA) predicting Prefac from our dummy-coded environ-
ment variable (0 for RA, 1 for RI). This was not significant, F(1, 405)=0.01. Thus,
we did not need to include pretest data as a covariate in subsequent analyses.

Tool Usage and Learning Environment (Global Analyses)

Predictors of learning outcome and efficiency. The four questions ad-
dressed in this section map onto the first three research issues presented in the
introduction. First, do people who choose to employ the online tools achieve higher
learning outcome scores compared to those not using the elective tools? This
question relates to the issue of whether active learners, in general, are more
successful compared to more passive ones. Second, is there a cost in tutor-comple-
tion time for using the tools? Third, are there differences in the dependent measures
as a function of the two learning environments? Recall that we originally hypothe-
sized that the RI environment may produce greater outcome scores, but these scores
may be at the expense of learning time. Fourth, is there an interaction between tool
usage and environment on learning outcome, efficiency, or both? We postulated
that persons tending to spontaneously use the online tools would be better suited
to the RI environment, whereas those engaging the tools to a lesser degree would
be better suited to the supportive RA environment.

We computed a MANOVA on Postfac and tutor time with the overall tool-usage
index (divided into high and low categories resulting from a median split on the
data) and learning environment as the independent variables. The results showed a
main effect of tool usage, F(2, 373) = 3.42, p < .05, and results from the univariate
tests showed this was due to a significant main effect on learning outcome (Postfac),
F(1, 385) = 6.67, p = .01 (low-usage M = —0.11 and high-usage M = 0.15, effect
size = .28), but not in relation to tutor time (RA tutor time M = 3.11 hr, RI tutor
time M = 3.30 hr, F < 1). In general, outcome scores were enhanced by tool usage,
at no cost to learning time. There was no main effect of learning environment on
either dependent measure (Fs < 1), nor was there a significant Tool Use x
Environment interaction.
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However, when the overall tool-use data were decomposed into declarative and
procedural tool data and the analyses were recomputed, the story became more
interesting. We predicted the same two dependent variables (Postfac and tutor time)
across four possible conditions of tool use by environment (i.e., 1 = low-RA, 2 =
high-RI, 3 =low-RI, and 4 = high-RA).? Results (for both declarative and procedural
data) showed a significant effect of condition on Postfac, but not on tutor time. The
univariate test results for declarative tool usage were, F(3, 375)=13.40, p = .02; and
for procedural tool use, F(3, 391)=2.97, p = .03. Comparing participants who were
either matched (Conditions 1 and 2) or mismatched (Conditions 3 and 4) to learning
environment, the respective effect sizes were as follows: declarative, .27; and
procedural, .15. These data, shown in Figure 2, indicate that for declarative and
procedural tool use, learners who readily employed the online tools performed
much better on the posttest having learned from the RI condition compared to the
RA condition. The converse was true for individuals less inclined to use the tools.

Differences in tool usage by learning environment. We next investi-
gated whether there were any differences in tool usage as a function of learning
environment (the fourth research issue mentioned in the introduction). That is, did
either environment promote or thwart such behaviors? Our original postulate was
that the RI environment would engender tool use compared to the didactic RA
environment. We computed an ANOVA on the overall tool-use index by environ-
ment, and the difference was not significant, F(1, 403) = 0.01. Thus, the environ-
ment in which a student learned did not seem to affect tool-usage behavior.

Having conducted these global analyses, we then tested more specific hypothe-
ses related to different patterns of tool use, the relation of these patterns to outcome
performance, and learner characteristics related to each pattern.

Patterns of Tool Usage

Tool use across time.  As mentioned, there were 20 principles that were
instructed by the Ohm program, each more difficult than its predecessor. The
principles all related to Kirchhoff’s and Ohm’s laws (see the Appendix). We divided
the curriculum into equal sections, the first 10 principles comprised the early
segment, and the last 10 principles comprised later learning. This division provided
a more sensitive way to examine tool-usage patterns compared to the across-the-
curriculum scores used in the previous global analyses. Each participant’s tool-us-

2Explicitly testing the condition variable, rather than analyzing two separate independent variables
(environment and tool use), represents a slightly different test than was used before. Specifically, we
tested the main effect of condition rather than the two-way interaction.
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age data were first separated into declarative and procedural variables, then they
were averaged across the early and late segments of the curriculum. This resulted
in four new variables: declarative-early, declarative-late, procedural-early, and
procedural-late.

To determine the degree to which each variable predicted outcome performance,
we computed a stepwise regression analysis predicting Postfac from the four new
variables. All four variables remained in the equation (Multiple R = .34), F(4, 381)
=12.10, p < .001. The results were as follows: (a) declarative-early, #(380) = 3.04,
p < .005; (b) declarative-late, #(380) = -1.97, p < .05; (c) procedural-early, #(380)
= 4.06, p < .001; and (d) procedural-late, #(380) = -5.29, p < .001. These results
suggest that for both declarative and procedural tool usage, it is more beneficial to
engage in such behaviors earlier rather than later in the curriculum (note the
direction of signs on the individual ¢ tests).

Categorizing tool-usage patterns. To answer questions about individual
differences in tool-usage patterns and how those patterns may affect learning, we
needed to categorize learners based on their early—late activities. That is, we wanted
to be able to distinguish individuals who were fairly consistent in their tool-usage
patterns from those who changed their pattern over time. We began by computing
a median split on the four variables listed earlier, resulting in divisions of high and
low data. For both the declarative and procedural data, this resulted in four new
categories of tool-usage patterns: (a) High-early, Low-late (High-Low); (b) Low-
early, High-late (Low—High); (c) Low-early, Low-late (Low-Low); and (d) High-
early, High-late (High-High).

Which of these patterns is the most efficacious with regard to learning? Table 2
shows the frequencies of each of the four patterns of tool-usage behavior, separately
by learning environment.

One should note the unequal frequencies among learners in each of the four
categories. In the RA environment, on average, 61% of the learners reflect unchang-
ing, or stable, patterns of tool usage (i.e., Low~Low and High-High), and 39%
show changing patterns (High~Low or Low—High). Similarly, in the RI environ-
ment, 60% of the learners show stable patterns, and 40% show changing patterns.
Thus, regardless of the characteristics of the learning environment, individuals
tended to demonstrate consistent behaviors across the tutor.

Predicting outcome: Tool-usage pattern and learning environment.
Having made the classification into pattern types, we next tested the degree to which
these patterns influence learning outcome. In other words, do certain behavioral
patterns enhance learning of this subject matter, and is there an interaction between
pattern and environment in relation to learning outcome? Two ANOVAs were
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TABLE 2
Frequencies of Learners by Tool-Usage Pattern Per Environment
Declarative Procedural Average
Early Late N Early Late N Early Late N %
Rule Application
High Low 33.0 High Low 48.0 High Low 40.5 Mixed
Low High 420 Low High 30.0 Low High 36.0 39
Low Low 54.0 Low Low 62.0 Low Low 58.0 Stable
High High 68.0 High High 58.0 High High 63.0 61
Total 197.0 198.0 197.5
Rule Induction

High Low 50.0 High Low 26.0 High Low 38.0 Mixed
Low High 49.0 Low High 44.0 Low High 46.5 40
Low Low 60.0 Low Low 68.0 Low Low 64.0 Stable
High High 48.0 High High 75.0 High High 61.5 60

Total 207.0 213.0 210.0

computed on the declarative and procedural tool-usage data separately, where the
dependent variable was Postfac and the independent variables were pattern
(High-Low, Low-High, Low-Low, and High-High) and environment (applied and
inductive):

* Declarative data: Results showed a significant main effect of pattern on
learning outcome, F(3, 385) = 4.52, p < .01. There was neither a main effect of
environment on outcome (F = 1) nor a significant Pattern x Environment interaction
(F<1).

+ Procedural data: These results were similar to the declarative data. That is,
there was a significant main effect of pattern on outcome, F(3, 403) = 5.10, p =
.002, but neither a main effect of environment on outcome (F < 1) nor a significant
Pattern X Environment interaction (F < 1).

These data, representing both declarative and procedural tool usage, clearly
indicate that the optimal pattern is High—~Low, and the least effective pattern is
Low-High. The stable patterns (Low—Low and High-High) show about average
outcome performance. These data are shown in Figure 3.
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The next series of analyses examined specific learner characteristics believed to
relate to differential patterns of tool usage, the fifth research question examined by
this study.

Individual Differences and Tool-Usage Pattern

Aptitude, interest, and gender. 'What are the characteristics of individuals
who manifest the different behavioral patterns? Specifically, (a) do high-aptitude
individuals employ the online tools differently than do the cognitively challenged?
(b) does greater interest in the subject matter promote different kinds of behavioral
patterns? and (c) do men show different patterns compared to women?

Aptitude was the single factor extracted from a principal components analysis
of all CAM—4 test data (spatial, quantitative, and verbal): working-memory capac-
ity, information-processing speed, general knowledge, inductive reasoning, fact
learning, and skill learning. Six variables accounted for 81.1% of the aptitude factor
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FIGURE 3 Learning outcome by tool-use pattern: declarative and procedural data. HL =
high-low; LH = low-high; LL = low-low; HH = high-high.
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TABLE 3
Descriptive Statistics From the Demographic Questionnaire
Variable M SD Min. Max. N Label
Interest
Electronics 0.70 0.45 0.00 1.00 408 Interest in electronics?
interest (1 =yes, 0=no)
Science 0.81 0.39 0.00 1.00 407 Interest in science? (1 =
interest yes, 0 = no)
Take apart 0.52 0.50 0.00 1.00 407 Took apart electronic
device item? (1 = yes, 0 = no)
Build 0.10 0.29 0.00 1.00 407 Built an electronic item?
device (1 =yes, 0=no)
Education
School 12.82 1.40 8.00 18.00 408 Number of years of
school
Science 261 1.33 1.00 7.00 376 Number of prior science
courses taken
Math 3.01 1.48 1.00 12.00 404 Number of prior math
courses taken
English 319 1.62 1.00 8.00 357 Number of prior English
courses taken
General
Age 22.39 3.48 17.00 30.00 408 Age in years
Gender 0.40 0.49 0.00 1.00 408 0 = male, 1 = female
Use PC 0.92 027 0.00 1.00 408 Ever used a PC? (1 = yes,
0 = no)
Own PC 0.25 043 0.00 1.00 408 OwnaPC? (1 =yes, 0=
no)
Preference 1.54 0.46 1.00 2.00 402 1 = discovery, 2 = guided

environment

Note. Min. = minimum; Max. = maximum; PC = personal computer.

variance, and factor loadings were all high, ranging from .94 to .85. Interest
similarly resulted from a principal components analysis of items from an online
demographic questionnaire (see Table 3, top section). Four variables accounted for
41% of the interest factor variance: interest in electronics (.76), interest in science
(.67), took apart electronic item (.65), and built an electronic item (.46). A median
split on aptitude and interest resulted in low—high categories for both variables.
Gender was a dummy-coded variable: O for men, and 1 for women.

We computed two discriminant analyses with the grouping variable as either
declarative or procedural tool-usage pattern. The predictor variables, in both cases,
included the aptitude and interest scores and the gender variable. Results from the
declarative discriminant analysis showed that only aptitude resulted in significant
differences by tool-use pattern, %*(3, N=332)=10.68, p < .02. The procedural data
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were much more interesting. Each of the three predictor variables showed signifi-
cant differences in relation to pattern: (a) aptitude, x2(3, N=335)=1647,p<.001;
(b) interest, xz (3, N=1335)=9.55, p < .03; and (c) gender, x2(3, N=1335)=17.53
p < .001. These data are shown in Figure 4.

The aptitude data are similar to the outcome data (from Figure 3) in that the
highest and lowest aptitude levels were associated with the High-Low and
Low-High categories, respectively. The interest data showed that high interest
levels were associated with learners in the High-High category, whereas the other
patterns showed only moderate to relatively low interest in the subject matter (as
assessed at the outset of instruction). Finally, men and women differed by category
type, with more men (i.e., white bars falling below the 0 line) in the High-Low and
High—High categories, and women greatly outnumbering men in the Low-Low
category.
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FIGURE 4 Relations among aptitude, interest, and gender by tool-use pattern. HL = high-low;
LH = low-high; LL = low—low; HH = high-high.
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Relations among aptitude, interest, and gender.  Finally, we were curi-
ous about collinearity among the independent variables. In other words, what is the
correlation among aptitude, interest, and gender? There was no significant correla-
tion between aptitude and interest (rxy = .05) or between aptitude and gender (ry, =
—.08). However, there was a significant correlation between interest and gender (rxy
=-.36,p <.001). We had no a priori reason to posit any aptitude differences between
men and women, and we were gratified to find no correlation between these two
variables. But we had believed that men would report themselves to be more
interested in the topic compared to women (based on the proportion of men to
women enrolled in electronics courses). To test this hypothesis, we computed an
ANOVA predicting interest level by gender, and the results were significant,
interest F(1, 274) = 35.13, p < .001. These data are shown in Figure 5.

The number and variety of research questions in which we were interested during
this project resulted in a series of results that may be difficult to follow. It became
evident that a parsimonious representation was sorely needed, one that summarized
the complex interplay among factors shown to influence elective tool use and
subsequent outcome score. We therefore constructed a causal model that combined
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all the independent and dependent variables that were relevant from earlier analyses
(i.e., gender, interest, aptitude, procedural tool-usage pattern, and learning out-
come). A graphical representation of this model is shown in Figure 6. The numbers
along the arrows represent regression coefficients, denoting the strength and
directionality of relations and the unique influence of one element on another. These
data were tested with a structural equations modeling program, EQS (Bentler, 1989,
1990), and both fit indexes (i.e., Bentler—Bonett Nonnormed Fit Index [NNFI] and
the Comparative Fit Index [CFI]) show that the data fit the model very well (CFI
=.99; NNFI = .98).

The amount of outcome variance accounted for by this model was R*= .81, and
the amount of procedural (tool-use) factor variance accounted for was R*=.79.The
model suggests that a person’s initial interest in the subject matter (electronics) is
predicted by gender (i.e., men tend to be more interested than do women). And both
aptitude and interest predict an individual’s procedural tool-usage pattern evi-
denced during the learning process. Furthermore, early tool-usage behaviors are
positively related to the general tool-use factor, whereas later tool-usage behaviors
are inversely related. Finally, the general tool-use factor strongly influences one’s
learning outcome.

SUMMARY AND CONCLUSIONS

In general, individuals learned a lot from the tutor, as shown by the large pretest to
posttest gains. However, we did not find any differences between the inductive and
the applied learning environments with regard to outcome performance. Learners
in each environment performed comparably on their posttests and required about
the same length of time to complete the tutor. This was surprising because we had
expected to see longer learning times and greater learning outcomes from those in
the more cognitively challenging environment (i.e., RI). In addition, neither envi-
ronment showed a significant difference in relation to overall tool-use behavior.
This, too, was counter to our original belief that the inductive environment would
promote more explorations (tool usage) compared to the applied (straightforward)
environment. Finally, electing to use the online tools did not add any extra time to
the learning process.

Learning Environment, Outcome, and Efficiency

Our finding of no main effect of learning environment on either posttest outcome
score or learning efficiency seems inconsistent with reports by others in the field
who found such effects with environments that, like ours, differed only in the nature
of the feedback that learners received. For instance, Corbett and Anderson (1991)
conducted a study comparing outcome and efficiency measures across three feed-
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back conditions (immediate, error flagging, and demand feedback) and a control
group that received no feedback at all during learning. These were all versions of
the Carnegie Mellon University (CMU) Lisp tutor, which varied only in the type
(or existence, in the case of the control group) of feedback students received
(receiving no feedback proved to be a serious handicap, both in terms of outcome
and efficiency). Participants in the feedback conditions achieved virtually identical
outcome scores, but they showed substantial efficiency differences, with immediate
feedback being the most efficient, followed by error flagging. Demand feedback
was the least efficient of the three.

McKendree (1990) investigated the effects of four feedback types on both
outcome and efficiency in learning from the CMU Geometry tutor.’ She found that
elaborate, goal-oriented feedback improved both learning efficiency and posttest
performance, compared to minimal feedback that merely pointed out a rule viola-
tion. She concluded that, in addition to the learning benefits derived from informa-
tive feedback, “strategic information in the goal feedback makes it possible to
continue successfully” (p. 408), and that is where the efficiency gain is to be found.
This particular statement can reasonably explain why we did not see differences in
the Ohm tutor’s two feedback conditions. A closer look at the conditions in the
McKendree study helps clarify this argument. The feedback fell along a continuum
ranging from minimal (previously described), to condition violation feedback
(which stated the condition for application of the rule that was violated in the
attempted step), to goal feedback (which stated the current correct subgoal), and
ending at the maximally informative combined feedback (a combination of condi-
tion violation and goal feedback). The two feedback conditions in the Ohm tutor
were most like the goal and combined types from McKendree’s study. Individuals
in those two conditions were almost indistinguishable on dependent measures, and
this would actually be consistent, therefore, with our null difference. Such an
interpretation also helps explain why we saw no difference between the induction
and application environments in terms of tool usage. It seems reasonable that simply
varying the specificity of goal statements would not necessarily influence one’s
propensity for tool use.

We feel that differences in curriculum objectives could go the rest of the way
toward reconciling our results with these others. The Lisp tutor and the Geometry
tutor, as products of Anderson’s Advanced Computer Tutoring Project (Anderson,
Corbett, Koedinger, & Pelletier, 1995) were designed to guide the acquisition of
procedural skills. The Ohm tutor, however, was designed primarily to teach
declarative knowledge, as is reflected in the curriculum and composition of the
pretest and posttest. The empirical question then becomes, What type of feedback
is right for what type of knowledge? Here it seems that we discovered a case in

*McKendree (1990) actually used a revised portion of the Geometry tutor that focused on proofs
from the topic of congruent triangles.
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which it simply did not make any difference, perhaps because varying levels of
elaboration in goal directedness usually will not affect declarative knowledge
acquisition. Only continued empirical research in this direction will demonstrate
whether this result is anomalous to the Ohm tutor or characteristic of a more general
phenomenon.

Tool-Usage Behaviors and Learning Outcome

In terms of outcome performance, we found that (a) in general, there was a main
effect of tool use on learning outcome (i.e., more was better, overall); and (b)
specifically, it was much more effective to engage the tools earlier in the curriculum
rather than later. This finding resulted in a categorization of learners into four
different styles of tool-usage behavior (High-Low, Low-High, Low-Low, and
High—High) based on both declarative and procedural tool-use patterns.

These patterns differed significantly in terms of learning outcome. By far, the
most successful pattern (High-Low) was characterized by those who started out
actively using their online tools to examine their environment, then decreased
activities during the second half of the tutor. The lowest outcome scores were
associated with the other mixed group (Low—High), who minimally utilized the
tools at the outset but later engaged in a flurry of tool-related activities. The two
stable groups (Low-Low and High—High) performed about average in terms of
posttest scores (with a slight benefit for the consistently High—High group).

Learner Characteristics and Tool-Use Pattern

We believe there are at least three reasons why a learner would engage online tools:
(a) hypothesis testing, (b) floundering, and (c) curiosity. That is, a person may use
a particular tool after designing an experiment involving the systematic manipula-
tion of a circuit and taking controlled meter readings (i.e., testing a hypothesis).
This use of tools may ultimately supplement a student’s current understanding and
yield other valuable insights. Alternatively, a learner who is unable to solve the
current problem may grope for something that he or she can do instead. In this case,
tool use would reflect floundering on the learner’s part. Finally, a person may
simply use the online tools for fun and diversion (i.e., a playful curiosity). Hypothe-
sis testing may be associated with cognitive surfeits, whereas floundering may be
associated with cognitive deficits. Playful curiosity may be associated with cogni-
tive ability, but it is probably more associated with an interest in the subject matter
(or computers in general). Although specifying the exact underlying reasons for
tool usage is not the focus of this article, it is important to note that persons
demonstrating the same level of tool usage may have entirely different reasons for
doing so.
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Figure 4 shows each of the learner variables separated into the four procedural
tool-usage patterns, and each pattern differentially impacts learning outcome
(Figure 3). We show how it is possible to characterize each pattern by combining
these data. To simplify the story, we averaged the declarative and procedural
outcome scores shown in Figure 3: High-Low = .28, Low-High =-.32, Low-Low
=-.02, and High-High = .07.

Pattern 1: High-early, Low-late. Learners who demonstrate this pattern
had the highest aptitude scores of all, but only average interest in the topic.
Furthermore, there were more men than women in this category. These learners
showed the highest outcome scores (.28) across the four categories of behavioral
patterns. Thus, early engagement of the tutor’s online features suggests that these
persons entered the instructional environment intellectually curious, but only
moderately interested in the specific domain. Moreover, they had the mental
capacity to adjust quickly to the interface and pedagogical style, thereby reducing
the need to employ the tools later on. The decline in tool usage, therefore, was not
a function of attenuated interest, but a result of the fact that these learners had the
cognitive capacity to acquire the early material quickly and assimilated later
material with ease. They did not use the tools later in the tutor because they simply
had no need to.

Pattern 2: Low-early, High-late. These individuals shifted from low to high
tool usage, a change that could reflect either (a) some floundering in the later stages
of the tutor or (b) increasing interest during the course of instruction. Figure 4 shows
that participants in this category (about equally split between men and women)
exhibited a fairly severe deficiency in aptitude level and a slightly below-average
interest in learning about electricity. Given the low aptitude distinction of these
individuals, as well as the data that this tool-use pattern resulted in the lowest
outcome score (—.32) among the four groups, we concluded that the first explanation
(a) is the more likely. These learners arrived at the tutor fairly inactive (Low-early),
perhaps as a result of being cognitively challenged by the novel material and too
busy attempting to assimilate what information they were able to acquire. In other
words, at the outset of instruction, their cognitive resources were fully engaged,
and there were no resources available to engage the elective online tools. Later,
upon encountering procedural or conceptual impasses, these learners had great
difficulty and began using the tools (i.e., floundering), albeit somewhat aimlessly.

Pattern 3: Low-early, Low-late. These individuals represent stable, low
tool use learners. Figure 4 shows that these learners displayed slightly lower
aptitude levels compared to the other groups, reported a fairly low interest in the
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subject matter, and consisted of more women than men. These Low—Low learners
already had one strike against them upon entering the instructional setting—their
disinterest in electricity did not motivate them to actively seek out new information
on a regular basis. Additionally, a good portion of whatever minimal tool usage
they did engage in was probably not very beneficial because their working memory
and associative learning capacities were likely strained in the novel environment.
This group also had slightly below-average outcome scores (~.02), which we
expected given their composite of attributes. These “minimalist” learners did what
it took to get through the program, but nothing more.

Pattern 4: High-early, High-late.  Participants in this predominantly male
group demonstrated a consistent tendency to explore their environment via the
online tools. Without so much as a glance at Figure 4, one could easily predict that
these individuals would report a higher interest in the domain than would the
members of any other group. Indeed, this was the case. High—-High learners also
tended to show slightly better-than-average cognitive ability compared to those in
other groups. As a result of this combination of characteristics, it was not surprising
that this group showed the second highest outcome score (.07) across the four
categories, consistent with the finding of a positive main effect of tool-usage
behavior on outcome. These stable tool users were presumably seeking out more
information from the tutor by taking advantage of the optional activities. These
learners were bright enough to appreciate that they were getting something out of
the explorations and stuck with it. Judging from their outcome scores, this approach
eventually paid a valuable dividend.

Looking back on the results and interpretations from these analyses, we contend
that elective tool-usage behavior is more likely a result of cognitive and conative
influences on learning than a result of environmental impact. Thus, people tend not
to spontaneously change behavior in relation to the two kinds of instructional
environments used in this study. Rather, these behaviors are indicative of charac-
teristics of the learner. The graphs in Figure 4 and the model shown in Figure 6
form a composite that represents an intriguing correlational description. It appears
that one’s pattern of tool-usage behavior is directly related to a combination of
general cognitive ability, domain-related interests, and gender, and should be
interpreted in relation to those learner characteristics. That is not to say that one
learning style is not more advantageous in one environment than it is in the other.
For instance, individuals who elected not to employ the online tools at the beginning
of instruction, but started using them a lot later on (Low—-High), performed poorly
on the posttests in both conditions, but even worse if they learned from the inductive
environment (Postfac M = —.49) than from the applied environment (Postfac M =
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—.26). Alternatively, individuals who consistently employed the online tools
(High-High) performed relatively well on their posttests, but these high tool users
in the inductive environment performed even better (Postfac M = .14) than did those
in the applied environment (Postfac M = .09). Our point is merely that the
environment does not mediate certain behaviors; characteristics of the learner do.
Thus, any given behavior should be interpreted in relation to the characteristics of
the student evidencing it and its impact on posttest performance, rather than solely
in relation to instructional environment.

Applications of This Research

Findings from this study implicate a variety of methods for enhancing learning
outcome and efficiency. Different types of pretraining regimes could be developed
and used for certain kinds of learners; and although we cannot readily change a
person’s aptitude level or gender, it is possible to modify (enhance) one’s interest
in the subject matter. For example, students who have expressed a low interest in
the subject matter (a priori) may greatly benefit by being explicitly informed about
how learning the current topic can help them in the real world and why they should
be interested in the topic. An increase in interest may alter the student’s behavior
and subsequently influence learning outcome.

We feel it is important for those involved with the design and development of
computer-based learning environments to take note of the consistently positive
effect of elective tool use, in general. It seems that every extra chance that learners
have to take the initiative to augment their learning during instruction can only have
a positive impact. In order for those behaviors to have their effect, it must first, of
course, be possible to engage in such activities, and so we encourage the engineers
of computerized tutors to include those opportunities in their design whenever
possible. These could take any number of forms, such as online dictionaries,
formula banks, databases on related topics, or opportunities to go beyond the
minimum requirements of the instruction and modify variables within a simulation
or microworld. The important thing is simply to have them available.

There is quite a bit of empirical support for the idea of teaching students how to
enhance learning in a given instructional environment (e.g., King, 1989; Shute,
Lajoie, & Gluck, in press; Swing & Peterson, 1982). Thus, another approach for
maximizing the learning experience may be to teach students how to engage in
systematic and productive explorations, particularly early in the learning process.
For instance, if you had reliable aptitude data suggesting that a student was
relatively low in ability, a brief remedial course in effective tool usage and
hypothesis testing could be offered. This is less necessary for high-ability learners
because they are more likely to participate in such explorations spontaneously.
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One more way to increase interest and learning outcome involves the application
of aptitude—treatment interaction (ATI) findings. Shute (1993) reported the results
from a study employing the same kind of learning environments as discussed in
this article (RA and RI). Similar to the findings reported here, results from that
study showed that for low-exploratory individuals, learning was enhanced in the
more structured RA environment, as compared to the RI environment. For high-
exploratory individuals, learning was enhanced in the RI environment, as compared
to the RA environment. This study, then, serves as a replication of certain previous
results. The lesson is that it may be educationally valuable to take an active ATI
approach in assigning students to learning environments. To employ ATI methods
in an instructional setting, one needs to make certain critical decisions: What
aptitude(s) should be measured before (or during) instruction? Which treatment
effects should be manipulated, and what learning outcome and efficiency measures
should be used? A taxonomy of learning skills (Kyllonen & Shute, 1989) can assist
in rendering principled decisions when answering these questions.

Future Research

The goal underlying this and similar research projects is to find new and creative
ways to increase the breadth and depth of knowledge obtained from a computer-
based tutor while maximizing learning efficiency. Research on the impact of
domain-related interests on learning needs to continue. Instructional designers
should pay close attention to the results of that research effort as, in an effort to
raise the interest level of those they are trying to educate, they begin to place a
stronger emphasis on motivational issues.

Second, applied research should push forward in seeking out innovative ways
to increase the flexibility and freedom built into computer tutors so that they
encourage the student in the active pursuit of extra knowledge and skill. It is
imperative that a learning environment supports the natural intellectual curiosities
of any and all students, and we should be looking for ways to facilitate that.

Finally, the learning research community needs to continue to allocate a signifi-
cant portion of its resources to research on methodologies that would eliminate
performance differences resulting from lower initial knowledge and skill. A tutor-
ing system could assess domain-relevant knowledge and ability, then offer the
learner an appropriately matched tutorial environment. For some students with
lower requisite abilities, the program might offer additional practice opportunities,
more elaborative feedback, and so forth to elevate outcome performance and
concurrently decrease frustration. Engendering knowledge and skill at this level,
prior to more advanced instruction, would almost certainly boost subsequent
learning.
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APPENDIX
The 20 Electricity Principles Comprising the Curriculum
of the Ohm Tutor

Kirchhoff's Law (Current, Series, Before or After Something)

1. The current at one point in an uninterrupted piece of wire is equal to the
current at another point in the uninterrupted piece of wire.

2. The current is the same before and after a voltage source.

3. The current is the same before and after a resistor.

Kirchhoff's Law (Current, Parallel)

4, The current before aresistor is equal to the current after a resistor in a parallel

net.
5. The current in the branches of a parallel net sums to the current in the entire

net.
6. The current in a component of the net is lower than the current for the entire

net.
Kirchhoff's Law (Voltage Drop, Series)

7. The voltage drop across all individual components of a series net sums up
to the voltage of the entire net.
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8. Voltage drop is lower across any single component of a series net than across
the whole net.

Kirchhoff’'s Law (Voltage Drop, Parallel)

9. The voltage drop is the same across components in a parallel net.
10. The voltage drop is the same across any components in a parallel net as
across the whole parallel net.

Ohm’s Law—Relations Among Voltage, Current, and
Resistance

11. Voltage (V) is equal to current (I) multiplied by resistance (R), or V=IxR.

12. When the current (I) goes up or down and the resistance stays the same, this
implies that the voltage should also go up or down.

13. Current (I) is equal to voltage (V) divided by resistance (R), or I = V/R.

14. Ifthe voltage goes up or down and the resistance stays the same, this implies
that the current will go up or down with the voltage.

Kirchhoff's Law (Current, Series, Before or After Something)

15. The current at one point in an uninterrupted piece of wire is equal to the
current at another point in the uninterrupted piece of wire.

16. The current is the same before and after a voltage source.

17. The current is the same before and after a resistor.

Kirchhoff’'s Law (Current, Parallel)

18. The current before aresistor is equal to the current after aresistor in a parallel
net.

19. The current in the branches of a parallel net sums to the current in the entire
net.

20. The current in a component of the net is lower than the current for the entire
net.
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