
ALMR-TP-199440005

AD-A280 011

A INTELLIGENT TUTORING SYSTEMS:

R PAST, PRESENT, AND FUTURE

M DTIC
T V% ELECTE Valerie J. Shute

S JlH () 81qQ4 iJoseph Psotka

0~ F
N HUMAN RESOURCES DIRECTORATE

G MANPOWER AND PERSONNEL RESEARCH DIVISION
7909 Lindbergh Drive

Brooks Air Force Base, TX 78235-5352

A
B May 1994

0 Interim Technical Paper for Period April 1M3 - April M4

R
A
T
0 Appiroved for public release; distribution Is unlimited.

R
y

94-17332
1111 Il~IHH!el1lJIIllli \Q(N\ 9 4 6 7 07 ?

AIR FORCE MATERIEL COMMAND
BROOKS AIR FORCE BASE, TEXAS



NOTICES

When Government drawings, specifications, or other data are used for any purpose
other than in connection with a definitely government-related procurement, the United States
Government incurs no responsibility or any obligation whatsoever. The fact that the
Government may have formulated or in any way supplied the said drawings, specifications, or
other data, is not to be regarded by implication, or otherwise in any manner constru as
licensing the holder, or any other person or coqxation; or as conveying any rights or
permission to manufacture, use, or sell any patented invention that may in any way be related
thereto.

The Offic of Public Affairs has reviewed this paper, and it is releasable to the National
Technical Information Service, where it will be available to the general public, including
foreign nationals.

This paper has been reviewed and is approved for publication.

VL J.L SHU'IE 
A IME.j

WIARD BEAVERS,E CociUSAF

Chief, Manpower and Personnel Research Division



REP RT OCU ENTTIO PGE 0:0, MFon- 18 8

7 May 1994 Interim - April 1993 -April 1994
4. TnLE AM SUBTITLE 5. FUNDING NUMBERS

Intelligent Tutoring Systems: Past, Present, and Future
PE - 61102F
PR - 2313

6. AUTHOR() TA - TI

Valerie J. Shute WU - 45
josep p~oof

7. PERFORM ORGAATION NAME(S) ANM ADDESS(ES) 8. ERFNOMABERON
* AnnRn Laborator (AF..) R, NUMB
Human Resources D cAratL A,,HR-TP-1994-0005
7b npowe and Personnel Research Division
7 - Drive
Brooks Air Fcrce Base, TX 78235-5352

. :. *J.. ONITORING AENCY NAMES(S) AND ADORES(ES) 10. arm 00 ..N..: AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES
Also to appear In D. Jonassen (Ed.), Handook of Research on Educational mMcation and Tochd ,
Scholastic (1994).

l2. DI1I8lBUTMONAVAILABUITY STATEMENT 1 W DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

IS.ABSTRACT (Minimum 200 worf)

In this paper, we address many aspects of Intelligent Tutoring Systems (ITS) In our search for answers to the
following main questions: (a) What are the precursors of ITS? (b) What does the term mean? (c) What are some
Important milestones and issues across the 20+ year history of ITS? (d) What is the status of ITS evaluations?
and (e) What is the future of ITS? We start with an historical perspective.

U.SUJEC TERS (AI)15. NMBER OF PAGES
h m(A) ca ý_a74

n (n16.'PRICE CODE

S S RCLASSCATIN SECURITYCLASSCATION I.SECURI CLASSICmATION .UMITATIONOOFA-STRACTi

tEEN 9



CONTENTS
Page

SUMMARY ............................................................................................................................... I

PRECURSORS OF ITS ............................................................................................................ I

Early Mechncal Systems .......................................................................................................
Plogw )d Instruction and Computer-Assisted Instru ion ..................................................... 3
Ime m Comput r-Assis nstruction ................................................................................. 5

Artificial Intelligence and Cognitive Psychology ............................................................ 5
The Nature of Errors ....................................................................................................... 6

INrELLIGENT TUTORING SYST M S DEFINED ............................................................... 9

Early Specifications of ITS ...................................................................................................... 9
ITS Componets and RelatIonhips ........................................................................................ 10
Mme "I" in ITS ........................................................................................................................ 11

THE 20+ YEAR HISTORY OF ITS .................................................................................... 14

Up thuugh the 1970s: Defining the Issues ............................................................................. 15
1980s: Stau i zed Approaches and Envirom ents ............................................................... 18
1990s: Great Debates ..... 25

ITS EVALUATIONS .............................................................................................................. 35

Six ITS Evaluations. .............................................................................................................. 35

Conclusions from the Six Evaluation Studies ...................................................................... 39

FUTURE ITS RESEARCH AND DEVELOPMENT ....................................................... 40

Future 1: Immersive Leaning Envirmn em s Evolve from ITS ........................................... 40
Puture 2: Traditional ITS Disappear, Specific Cognitve Tools Dominate .......................... 42
Future 3: Distnce ............................................................................................. 44
Puatre 4: Individualize Leaming is Out, Collaborative Learning is In ............................... 45
Future 5: Te ITS Approach Continmes, Becoming Truly Intelligent ................................. 47

CONCLUSIONS .......................................... . ....... 48

RFERENCES.....................................................52



List of Tables

Table
No. Page
I olmpo ant Issues Related to ITS Development .................................................................... 15
2 Old Versus New Appmaches to Instruction ....................................................................... 49

List of Figures

Figure
No. Page
1 Comput -Assisted istruction ............................................................................................ 4
2 naenigeot Tmoing System ................................................................................................. 9

iv



PREFACE

We would like to thank John Self, Susanne Lajoie, Pat Kyllonen, Bill T'ure, Ellen Hall,

Dave Josassen, and Bill Alley for excellent comments and criticisms concerning a draft of this

paper. Also, we are indebted to the researchers who took time to thoughtfully summarize their

notions about the "r in ITS. Their contributions were so good, we included them in the paper.

Finally, we'd like to thank Wes Regian for providing stimulating debates on where this whole

enterprise may be going.

"The research repored in this paper was conducted by personnel at the Annstrong
Laboratory, Human Resources Directrate, Brooks Air Force Base, Texas. The opinions
expressed ar those of the authors and do not necessarily reflect those of the Air Force or Army.

Crespondence concerning this paper should be addressed to Valerie J. Shute, Armstrong
Laboratory, AIJIRMI, 7909 Lindbergh Drive, Brooks Air Force Base, Texas 78235-5352.

Accesion For

NTIS CRA&M
DTIC TAB o
U•ianmouriced 13
Justification

By. .... ..........By

Dist, lbution I
Availability Codes

Avail lid/or
Dist Special

VA-1

v



Intelligent Tutoring Systemn: Past, Present, and Future

SUMMARY

In this paper, we address many aspects of Intelligent Tutoring Systems (ITS) in our

search for answers to the following main questions: (a) What are the precursors of ITS? (b) What

does the term mean? (c) What are some important milestones and issues across the 20+ year

history of ITS, (d) What is the status of ITS evaluations, and (e) What is the future of ITS? We

start with an historical perspective.

PRECURSORS OF ITS
p~dvM~snle*mS v

Cmaues Babbage (early 1800s), is typically credited with being the first to envision a

multi-purpose computer. He dreamed of creating an all-purpose machine which he called the

"analytic engine." However, because of the technological constraints of the time, he was never

able to build his dream, although he did succeed in building a difference engine, an automatic

(mechanical) means of calculating logarithm tables.

The notion of using "intelligent machines" for teaching purposes can be traced back to

1926 when Pressey built an Itrconal machine teeming with multiple-choice questions and

answers submitted by the teacher. It delivered questiom, then provided immediate feedback to

each lemwe.

Tie somewhat astounding way in which the functioning of the apparatus seems

to fit in with the so-called laws of learning' deserves mention in this connection.

The law of recency' operates to establish the correct answer in the mind of the

subject, since it is always the last answer which Is the right one. The law of

fequency' also coopemates; by chance the right response tends to be made most

often, since it is the only response by which the subject can go on to the next

question. Further, with the addition of a simple attachment the apparatus will

present the subject with a piece of candy or other reward upon his making any

given score for which the experimenter may have set the device; that is the law

of effect' also can be made, automatically, to aid in the establishing of the right

aswer (Pressey, 1926, p. 375).

While the above system was definitely clever for its time, it could not be construed as

Inelligem as it was mechanically set with pre-specified questions and answers. So, although it



was inflexible, this system did incorporate contemporary learning theories and pedagogical

strategies into its design (e.g., giving out candy for correct responses).
General-purpose digital computers arose in the mid-1900s, paving the way for truly

(artificially) intelligent machines. Basically, these computers consisted of a numerical central

processor whose mechanism was electronic, not mechanical, and based on a binary, not decimal,

system. They were also characterized by having a built-in ability to make logical decisions, and

a built-in device for easy storage and manipulation of data.

During this period of computer infancy, Alan Turing (1912-1954, British mathematician

and logician) provided a major link between these modern, digital computing systems and
thinking. He described a computing system capable of not only "number crunching" but

symbolic manipulation as well. He also developed what is now known as the "Turing test," a

means of determining a machine's intelligence. The test consists of an individual asking

questions, in real-time, of both a human and computer. The interrogator attempts, in any way

possible, to figure out which is which via conversations over the communication links. The

Turing test has particular relevance to intelligent tutoring systems. The core concept behind the
test is whether a reasonable person can distinguish between a computer and a permo based solely
on their respective responses to whatever questions or statements the interrogator renders. Thus,

for a computer to pass the test, it would need to communicate like a human, which is a nontrivial

goal. Ibis line of inquiry has challenged and occupied researchers for the pat 20+ yea, and

ontinues to play a prominent role in the development of ITS (see Merrill, Reiser, Ranney, and

Trafton, 1992). Other communication-related esexrch includes devising knowledge structuring
and hypertext techniques within ITS to provide answers to the many possible questions that

students could pose to the system. So, the success of this ITS enterprise really can be measured

in a way that is similar to the Turing test: How well can the UTS commuicate? We should point

out, however, that the goal of ITS is to communicate its embedded knowledge effectively, not

necessarily in an kkdnMk maner as human teachers. In fam some teachers have great difficulty

achieving the effective communication goal themaelves.
Concurent with the gradual emergence of computers on the scene (circa 1950s),

educational psychologists began reporting in the literature that carefully-designed, individualized

tutoring produces the best learning for the most people (e.g., Bloom, 1956; Carroll, 1963;
Crowder, 1959; Glaser, 1976; Skinner, 1957). Thus, it was quite a natural development to apply

computer to the task of Individualized teaching. From the 1970s to the present, ITS have been
heraFded as the most promising approach to delivering such individualized instruction (e.g.,

Burton & Brown, 1982; Lewis, McArthur, Stasz"& Zmuidzinas, 1990; Shute & Regian, 1990;

Sleeman & Brown, 198Z- Wenger. 1987; Woolf, 1988; Yazdani & Lawler, 1986). Well now

review what led to the development of "intelligent" computerized instruction.
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In the early 1960s, programmed instruction (PI) was educationally fashionable. This

kind of pedagogy related to any structured, goal-oriented instruction. According to Bunderson
(1970), PI required the program designer to specify input and output in terms of entering skills

uud terminal behaviors of the learner. In performing a task analysis, the designer determined the

sub-problems or component behaviors, as well as their relationships. As learners were led
through the problems in the curriculum (lock-step), overt responses were obtained at every step;

incorrect responses were immediately corrected, and learners were always informed of their

solution accuracy before moving on to some other content area. Most supporters of the PI

technology strongly believed that it would enhance learning, particularly for low aptitude

individuals. However, evidence supporting this belief was underwhelming (see Cronbach &

Snow, 1981).

In general, PI refers to any instuctional methodology that utilizes a systematic approach

to problem decomposition and teaching (e.g., Bnggs, Campeau, Gagnd, & May, 1967; Gagn6,
1965). That PI results in a computer program, known as computer-assisted instruction (CAI or

computer-based training, CBT). Some similarities between PI and CI are that both have well-
defined curricula and branching routines (intrinsic branching for PI, conditional branching for

CAO. A major distinction between the two is that CAI is administered on a computer.

Computer-assisted istruction also evolved from Skinnerian stimulus-response

psychology, "...the studentes response serves primarily as a means of determining whether the

Scommunication process has been effective and at the same time allows appropriate corrective

action to be taken" (Crowder, 1959). In other words, at every point in the curriculum, the

computer program evaluates whether the students answer is right or wrong and then moves the

student to the proper path. Built-in remediation loops tutor students who are attempting to

answer a question incorrectly. If learners answer correctly, they are moved ahead in the

curfrculum. Figure 1 illustrates a typical flow of events in CAI.

3
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The tacher consee unh afurenchre in the several , aces d of thim. the normal CAI

procedure preseni s some crterial to be learned, followed by a problem to be solved acat

prep I of a subset of the berre mo. Pron. solution tests the learners acquisition of the
knowledge or AMi being instructed at that time. The student's answer is compared to the correct

answer, then the computer gives approp ate feedback. H the answer is correct, a new problem is
selected and presented, but if the student answers incorrectly, eniediation is invoked that reviews

the earlier material, presents simpler pthana s that graduate to the depth of the original material,

ad so forth. Remed4ation usually requires some attempt to find the source of the error and to
U it secially.

As can be seen in the figure, there are several places where this simple model may be

expanded to create more flexibility and, hence, rendr It adaptive to individual learners. For

instance, varius mastery criteria can be unposed, where subjects have to answer a certain

p iotio of items correctly before moving on. Failure to reach criterion would force the

student back into remediation mode (see "If Incorrec" branch) where a different problem is

presented, rather than the problem that caused the error.
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Ln~WlCmmmti•.n
To distinguish between simple versus more adaptive CAI (i.e., "intelligent" computer-

assisted instruction, ICAI), Wenger (1987) pointed out that actually there is no explicit

demarcation between the two. Instead, there's a continuum, from linear CAI, to more complex
branching CAI, to elementary ICA, to autonomous (or stand-alone) ICA. This continuum is
often misconstrued as representing a worse-to-better progression. Yet, for some learning

situations and for some curricula, using fancy programming techniques may be like using a
shotgun to kill a fly. If a drill-and-practice environment is all that is required to attain a
particular Instructional goal, then that's what should be used.

Suppose you wanted to build a computerized instructional system to help second graders
learn double-digit addition. If student A answered the following two problems as: 22 + 39 = fa,
and 46 + 37 = A3, you'd surmise (with a fair mount of confidence) that A understood, and could

successfully apply, the "carrying procedure." But consider some other responses. Student B
answers the same problems with 51 and 73, student C answers with 161 and 203, and student D

answers with 61 and 85. Simple CAI systems may be incapable of differentiating these incorrect
solutions, and remediation would require all three students to re-do the specific unit of
instruction. But a big problem with this approach is that typically, there is little difference
between the remedial and original instruction. That means that a student who didn't get it right
the first time, may not get it right the next time if the same instruction and similar problems are

used.

A more sensitive (or intelligent) response by the system would be to diagnose/dassify
B's answer as a failure to carry a one to the tens column, C's answer as the incorrect adding of the
ones column result (11 and 13) to the tens column, and DUs as a probable computational error in

the second pmblem (mistakenly adding 6+ 7= 15 Instead of 13). An intelligent system would
remediate by specifically addressing each of the three qualitatively different errors.

A , ve Ptdokgy. How can a computer system be
pogrammed to perform Intelligently? Ibis question drives the empirical and engineering
research in a field called artificial intelligence (AI). The simplest definition is that, "Artificial

inteligene is the study of mental faculties through the use of computational models." (Chariak

& McDermot, 1985, p. 6). One of the main objectives of Al is to design and development of

computer systems that can solve the same kinds of activities that we deem intelligent (e.g.,

solving a math prb like the one illustrated above, undetanding natural language,

programming a computer to perform some function(s), maneuvering an aircraft through

obstacles, planning a wedding reception, and so forth). There are far too many Al applications to

delineate in this chapter. For our purposes, AI techniques relevant to ITS include those dealing

with the efficient ron, storage, ,mnd retrieval of knowledge (i.e., a large collection of
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facts and skills--corect and buggy versions), as well as the effective communication of that

information. In addition, AI techniques can include inductive and deductive reasoning processes
that allow a system to access its own database to derive novel (i.e., not programmed) answers to

learners' queries.

Cognitive psychology also provides part of the answer to the question of how to get a

computer to behave intelligently by examining issues related to the representatiovs and
organization of knowledge types in human memory. Research in this area provides detailed
structural specifications for implementation in intelligent computer programs. Cognitive
psychology also addresses the nature of errors, a critical feature in the design of intelligent

systems to assist learners during the learning process.

The Nature of Errors. The idea that students and trainees make mistakes that have to be

corrected is fundamental to teaching and learning. Something so fundamental ought to be

strongly resistant to change, so it is really quite surprising how the idea of a mistake or error has
undergone radical change over the past two decades of ITS development. The traditional view of
errors encompassed many kinds: from inexplicable accidents, to deliberate inaccuracies; but the

most widely held view was that remedial errors stemmed from inaccurate or insufficient

knowledge. Remediation then corrected the mistake by providing the correct knowledge or

overriding the inaccuracy. The first major shift that occurred in this view began with the

development of a theoretical position that errors arose because of complex organizations in

knowledge structures that were not wrong, in the traditional sense, but represented the best a
student could have at that stage of cognitive development These developmentally appropriate

knowledge structures were called misconceptions, and they were soon analyzed in a broad range

of sciences (e.g., Aristotelian versus Newtonian physics, studies of heat and temperature) and

practical training environments (automobile repair, radar maintenance).

This view of error was explicated in great detail in a series of analyses and experiments

by Barbara White and John Frederiksen (1987) in their QUEST system for analyzing levels of

undemanding of electrical functioning into graduated mental models. Their analyses were

actually implemented as qualitative models of the electrical activity in automobile ignition

circuits. Simple models, or models that occur developmentally early in the growth of

knowledge, were not only incomplete, they were wrong or inconsistent in basic ways. They

could not easily be transformed into more complete models. Yet, the simple models effectively

captumd the knowledge of novices as they moved on the road to expertise, so it is not clear if

these models could have been improved at that stage of development. Thus, it appeared that

error or inconsistency was necessary in the growth of knowledge.

As they demonstrated, it took a great deal of effort to conduct error analysis with

sufficient scope and detail to be able to arrive at such complete models. It is perhaps for this

6



reason that no other example comes close to duplicating their feat. Yet, the intellectual

implications of graduated mental models as the basis for misconceptions and error is stunningly
apparent for whoever next decides to pick up the challenge and analyze knowledge structures into

such progressive systems.
An alternate conception of error that has developed contemporaneously with the

misconception literature, is that of a buggy algorithm. Work in this area began with Burton and

Brown's seminal simulation-How The West Was Won--where certain strategic and algorithmic

bugs were identflfe" in student play. A specific program was written, DEBUGGY, that
aI-Iemptd to identify and remediate these bugs (Brown & Burton, 1978; Burton, 1982). Unlike

the work on misconceptions and graduated mental models, bugs were simpler deconstructions in

smaller semantic networks of skills.

This analysis of errors has had a productive life of its own in the worn of Soloway

(catalogs of bugs, Johnson & Soloway, 1984), Sleeman (mal-rules, Sleeman, 1987), and

VanLehn (impasses, VanLehn, 1990). It continues strongly in the model-tracing technology of

John Anderson's various tutors (e.g., Anderson, 1993) where bug catalogs or lists of errors ae

embedded in specific production-system rules that manage all interactions between the student
and tutor. Anderson has proclaimed a much broader view to encmpass not only errors, but all

cognitive skills. His position is, simply stated, that cognitive skills are realized by production

rules. Not only errors, but all skills, are decomposable into unitary rules that fit into a grand

cognitive architecture dominated by production rules.
Vaden's work on impasses extends this buggy conception of errors by analyzing the

ways these errors are generated (VanLebn. 1990). Oversimplifying his analysis somewhat,

VanLehn's framework can be described by saying that bugs ae the result of unsuccessful

attempts to extend existing rules to apply to novel situations (repairs). These repairs can be

modeled and predicted by impasse theory to predict students bugs and problem solving. Usually

the repairs are simple actions, like removing an action step in the production rules, substituting
an operator, or deleting a variable.

The final view of errors that has evolved along with ITS sees the error as a result of

insufficient support given to the student. When a student learns a new skill or body of

knowledge, it is through the support of teachers, students, or other parts of the environment.

This environment acts as a general scaffolding to strengthen the students first new skills or

knowledge structures (Palincsar and Brown, 1984). It also provides the context that makes the

skills or knowledge meaningful. Some of this scaffolding lies literally in the minds of the other

students or teachers, or more precisely, between the minds of everyone. As a kind of social

grop think, the ideas and scaffolding are part of the total situation (Brown, Collins, & Duguid,

1989) and so it has been called situated cognition. If the environment is literally part of the skills

7



and knowledge, then changing it abruptly can actually change student thinking and lead directly

to errors.

ibs fascinating research related to different kinds of enrrs owes its existence directly to

the practical and theoretical developments that ITS have spawned. All have real import for the

design of instruction, but at the moment, they are still very distant from each other and show no

real signs of converging into a common theoretical frameworIk.

Summ . Branching is a fundamental aspect of Pl, CAI, and ICA. It recognizes the

fact that knowledge is interelated in many complex ways, and there may be multiple good paths

through the curriculum. AI programming techniques empower the computer to manifest
intelligence by going beyond what's explicitly programmed, understanding student inputs, and

generating rational responses based on reasoning from the inputs and the system's own database.

In the example just provided, prior to teaching double-digit addition, the system could

first ascertain if the learner was skilled (to the point of automaticity) with single-digit addition,

drilling the learner across a variety of problems, noting accuracy and latency for each solution.

Subsequently, it may be effective to introduce (a) double-digit addition without the carrying

procedure (23 + 41), (b) single- to double-digit addition (5 + 32), or (c) single-digit addition to

10(7 + 10). Each of these curriculum elements is warruated, and some are.easier to grasp than

others. However, for more complex knowledge domains, such as history, or the scientific debate

over the extinction of dinosaums, the complexity of alternatives is beyond enumeration. And it is

the complexity of this branching that really provides a qualitative bwak between older forms of

PI and CAI and newer ITS. Not only is the branching in IrS complex, it is algorithmic and not

numered, pfe-deflned, or hand-crafted. With this qualitative increase in complexity comes a

flexibility of inteaction and potential for communicaon that, better than anything else before,

begins to qualify for the word intelligent.

Another aspect of computer intelligence deals with the identification amn mediation of

errors (bugs) in a learner's knowledge structure or performance. The simple illustnition with four

hypothetical students shows the possible power of adding AI to instructional software that can

recognize bugs or misconceptions via: (a) a bug catalog that specifically recognizes each mistake

(e.g., Johnson & Soloway, 1984), (b) a set of mal-rles that define the kinds of mistakes possible

with this set of problems (e.g., Sleema, 1987), or (c) a set of production rules that specifically

anticipate all alternative problem solutions and can respond to each one (e.g., Anderson, 1993;

VanLeim, 1990). Each of these will be discussed in more detail in the section of this chapter

outlining the 20+ year history of ITS. First. we need to operationalize some terms.

8



INTELLIGENT TUTORING SYSTEMS DEFINED

While many researchers in the field view ICAI and ITS as interchangeable designations,

we make a subtle distinction between the two: I1S represent a more specific type of ICAI, due to

the attributes discussed below.

An early outline of ITS requirements was presented by Hartley and Sleeman (1973).

They argued that 1TS must possess: (a) knowledge of the domain (expert model), (b) knowledge

of the learner (student model), and (c) knowledge of teaching strategies (tutor). It is interesting

to note that this simple list has not changed in more than 20 years (see Lajoie & Derry, 1993;
Poison & Richardson, 1988; Psotka, Massey, and Mutter, 1988; Regian & Shute, 1992; and

Sleeman & Brown, 1982).

All of this computer-resident knowledge marks a radical shift from earlier 'lkowledge-

free" CAI routines. •unthemore, the ability to diagnose errors and tailor remediation based on

the diagnosis represents a key difference between ICAI and CAI Figure 2 illustrates these

knowledge components and their relations within a generic ITS. Each of these ITS components

will be discussed, In turn.

-*t Tub -yokm

pi:su 2-Aqm finn Kylonhn &hR 81*9,18
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A student lear- from an ITS primarily by solving problems-ones that are appropriately

selected or tailor-made- that serve as good learning experiences for that student. The system

starts by assessing what the student already knows, the student model. The system concurrently

must consider what the student needs to know, the curriculum (also known as the domain

expert). Finally, the system must decide what curriculum element (unit of instruction) ought to
be instructed next, and how it shall be presented, the tutor (or inherent teaching strategy). From

all of these considerations, the system selects, or generates, a problem, then either works out a

solution to the problem (via the domain expert), or retrieves a prepared solution. The ITS then
compares its solution, in real-time, to the one the student has prepared and performs a diagnosis

based on differences between the two.

Feedback is offered by the ITS based on the student-advisor considerations such as how
long ifs been since feedback was last provided, whether the student already received some

particular advice, and so on. After the feedback loop, the program updates the student skills

model (a record of what the student knows and doesn't know) and increments learning progress

indicators. These updating activities modify the student model, and the entire cycle Is repeated,

starting with selecting or generating a new problem.

Not all ITS include these components, and the poblem-test-feedback cycle does not

adequately characterize all systems. However, this genetic depiction does describe many curei.
ITS. Alternative Impleme exist, representing conceptual as well as practical differences

in their design. For example, the standard approach to building a student model involves

n ng em learner knowledge and skills. Tbe computer responds to updated
observations with a modified curriculum that is minutely adjusted. Instruction, therefore, is very

much dependent on individual response histories. But an alternative approach involves assessing
incoming knowledge and skills, either instead of, or in addition to, emerging knowledge and

skills. This alternative enables the curriculum to adapt to both persistent ad/or momentary

performance information as well as their interaction (see Shute, 1993-a, 1993-b). In fact, many

have arped that incoming knowledge is the single most Importint determinant of subsequent

learning (e.g., Alexander & Judy, 1988; Dochy, 1992; Glaser, 1984).

Other kinds of systems may not even have a tutor/coach present. For example, the

strenh of microworids (exploratory environments) resides in the underlying simulation and

explicit interfaces in which students can freely conduct experiments and obtain results quickly

and safely. This is a particularly attractive feature for domains that are hazardous, or do not

frequently occur in the real world. Furthermore, these systems can be inutinsically motivating, in

terms of generating interesting complexities that keep students interested in continuing to

explore, while giving them sufficient success to prevent fnmration.

10



Our working definition of computer-tutor intelligence is that the system must behave

intelligMtly, not actually be intelligent, like a human. More specifically, we believe that an

inelligent system must be able to (a) accurately diagnose students' knowledge stncture, skills,
and/or styles using principles, rather than pre-progrunmed responses, to decide what to do next,

MWd then (b) adapt Instnuction accordingly (e.g., Clancey, 1986; Shute, 1992; Sleeman & Brown,
1982). Moreover, the traditional intelligent tutoring system "... takes a longitudinal, rather than

cross-sectional, perspective, focusing on the fluctuating cognitive needs of a single learner over

time, rather than on stable inter-individual differences." (Ohlsson, 1986, pp. 293-294).

In order to obtain a rough idea of the degree of comnensus among researchers in the ITS

community, twenty experts were asked to summarze, in a couple of sentences, their ideas on

what the "I" in ITS meant. Following are the different responses received (in alphabetical order,

and sgty edited, for readability).

Ton de Jong (Dec. 10, 1993): lntelligent in ITS stands for the ability to use (in a

conMected way) different levels of abstraction in the of the learner, the domain,

and the instruction. The higher the range of abstraction, the higher the intelligence. The phrase

"in a comnected way" implies that one should be able to go from specific (e..g., log files) to

abstract (e.g., learneracteristics), as well as the other way around (e.g., from general

Inmuctiona strategies to a specific instructional transaction).

Sharon Derry (Oct. 15,1993): An intelligent instructional system can observe what the

student is doing during problem solving and/or has done over a series of problem-solving

sessioand from this Information draw inferences about the studentes knowledge, beliefs, and

attitudes In terms of some theory of cognition. A system can be intelligent whether or not it

makes instructional decisions based on this infonnation, but if It doesn't use such information in
Insniacona decision-making, then I don't think of it as a tutoring system, but rather a tool that

has some diagnostic capabilities.

Wayne Gray (Nov. 15,1993): I concede a wide latitude on the application of the term

"ITS" in regard to instructional systems. However, at some level and to some degree, there

should be some sort of "cognitive modeling" technology involved. The modeling can be of an

Ideal student, instrctor, or grader, or of a less-than-Ideal problem solver as in the "student

models" that are often built up in ITS. To be intelligent, a system has to incorporate and um a
model for making decisions about what to do at any given point during leamning.

Lee Gugerty (Oct. 20, 1993): Intelligent tutoring Involves: (a) explicit modeling of

expelt repi os and cognitive processes; (b) detection of student errors; (c) diagnosis of

students' knowledge (confct, incorrect, and missing); (d) instrnction adapted to students'
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knowledge state (via problem selection, hints, feedback, and explicit didactic instruction); and (e)

doing all of the above In a timely fashion as the student solves prowlems (not post hoc).

Pat Kylionen (Oct. 14,1993): An "intelligent" tutoring system is one that uses AI

proamming techniques or principles. However, what is considered Al (as opposed to standard)

progrumi•g changes over time (e.g., expert systems used to be archetypal Al systems, but are

now found In $100 PC software packages). For me, two features separate ITS software from

conventional CA. One is the existence of a smudent model. What the student knows cannot be

recorded directly, but must be inferred by the system, based on a pattern of successes or failures

by the student and an "understanding" of what knowledge problems in the curriculum call upon.

Another feature is the existence of "coaches," "demons" or "bug libraries" that can observe a

student's behavior and either diagnose the behavior in terms of the student's current knowledge

structure, or suggest corrections to that behavior.

Susanne Lajole (Oct. 18,1993): Tbe 'T' in ITS means that the computer can provide

adaptive forms of feedback to the learner based on a dynamic assessment of the student's "model"

of perfotance. Intelligent feedback means that the assessment of the lemner is ongoing, the

feedback is afppoiate to that particular leamer in the context of whenr an impasse has been

rncointPred, and it is not canned but generated on the spot, based on tudnt needs.

Alan Lesgold (Oct. 21, 1993): "Intelflgent" mets that the system uses inference

mechanisms to provide coaching, explanation, or other information to the studet performing a

task. Further, It implies that this information Is tuned to the context of the students ongoing

work and/or a model of the student's evolving knowledge.

Man Lef (Oct. 28,1993): An "Intelligent" tutoring system contains, at a minimum, a

reasonably general simulation of human problem solving in direct service of communicating

knowledge and, like a good human tutor, separates domain knowledge from pedagogical

knowledge. The simulation might solve domain-specific problems in the target Instructional

domain (e.g., a human-like approach and solution to the problem of writing a fugue) or solve

pedagogical problems (e.g., error diagnosis and attribution, or selection of appropriate response).

Wes Regian (Oct. 14,1993): An ITS differs from CAI in that: (a) instructional

inaeractions are individually tuned at nm-time to be as efficient as possible, No) instruction is

based on cognitive principles, and (c) at least some of the feedback is generated at rnm-time,

rather than being all cmamed. It is not particularly important to me what language the system is

written in, whether or not the system is in any sense arguably aware of anything, and whether its

decisions are rendered In a maturer that Is the same as a human decision.

Frank Ritter (Oct. 15,1993): The "I" in ITS usually indicates that a single knowledge-

based component has been added that helps a tutoring system pefom one aspect of its

performance in a better way. This can be in lesson scheduling, providing examples of domain
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knowledge In action, or providing domain knowledge for comparison with a student's behavior.

What it a•hxM mean is that it does the whole job intelligently. The systems are usually not

systems In the full sense of the word, they tend to be prototypes, with whole parts missing.
Derek Skermw (Nov. 22,1993): "Intelligent" tutoring systems need to have motivating

learning to communicate effectively, and to render dynamic decisions about

appropdate control strategies. Since the 19604, we've seen that the sme material delivered on
various systems differentially invoke motivation; thus we need to confim the factors that impact

a learners motivation. Next, communication can only occur when there's a shared world-view.

In conventional dialogs, humans dynamically tailor their language to the person to whom they

are speaking, but computers are not yet so adaptable. Finally, control implies which of the
partners in the dialog will take the initiative, and it's often necessary to change contn)l during an
ineato, depending on the social setting, the student's motivation, and the level of incoming

knowledge.
Elliot Soloway (Oct. 28,1993): The itn of the "I" in ITS was to explicitly recognize

that a tutoin system needs to be exceedingly flexible in order to respond to the Immense variety

of learner sponses. CAI, as the forenner of ITS, didn't have the range of interactivity needed

for learning. In fact, the movement from ICAI to ITS was to further distance the new type of
Merning environments from the rigidity of CAL

Sis Tobias (Oct. 15,1993): Intelligent, in an ITS context, means that the program is
flexible In the method and sequence with which intucdonal materials ae presented to the
studet. Purthemnoe, the system is capable of adapting Instructional parameters to student

NaateistI by using data collected prior to, or during, Instruction for such decisions. Finally,
ft suggests that the instructional system can advise the student regarding options most likely to be

sucesa for ft student.

Kurt VaLeha (Oct. 18,1993): "Intelligent" means that at least one of the three classic
modules is Included in the turing system. That is, the machine has either a subject-matter
expmet, a diagn Mrticantuden modeler, or an expert teacher. Just as in any Al system, an expert
sysm with only 10 production rules is intelligent only in that it holds the possibilities for
P epuhla;a l00-nle system is moderately intelligent; and 1000+ rules means you're really
ge there.

Beverly WooLf (Oct. 25,1993). My view of tutor intelligence includes the following
elements: (a) mechanisms that model the thinking processes of domain experts, tutors, and
students; (b) environments that supply world-class laboratories within which students can build
and ftst teir own reality; and (c) a computer partner tha facilitates the ah-ha experience,

renognizes the studet's intention, and aids and advises the student. An intelligent environment

would also support complex discoveries.
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As seen in this non-radom sample of responses about what constitutes imeligence in an

ITS, just about eveyon agrees that the most critical element is real-time cognitive diagnosis (or

student modeling). The next most frequently cited feature is adaptive remedkatlon. And while

-ome maintain that remediation actually comprises the "T' in intelligent Puoring systems, our

position Is that the two components (diagnosis and remedlation), working in concert, make up
the intelligence in an IlS (see our working definition, above). Consider the case where a system

disposes a studenfs skill level, but makes no effort to rectify any faulty behaviors. Can that

system really be classified as intelligent? Theoretically, perhaps, but practically, no. Other

chameeritics of intefligence appear less frequently in these repnses (e.g., caned vs. generated
mand feedback, degree of learner tumul inthe envinment, Pse of awareness).
The degree of agreemen among respoan-er was actually surprising given the diversity of

Aespectlve r rch interems ad bKU (compa sentisms, pyd ogsts, edwmn).

But this degree of consensus was not always ther. Until faidy recently, the field was not only

esoteric, but quite fractionatec no two people could agree on what "Inteligence" in a computer
tutor actually referd to. To understand the curmt congruence, we need to briefly jump back in

time to se the evolution of intelligent tutoring systems, ftim the late 1960s to the present (mid-

1990s).

THE 20+ YEAR HISTORY OF ITS
Iutad of discussing individual tutoring systems tha spmned this period, we present

salient chrteristics of systems appearing at various points in time, iustrating with exemplar

tutm. For excellent discussions of idividual ieligent tutoring systems, see the following
books: Bierim, Breuker, Sdbaerg, 1989, Goodyear, 1991; Lajole & Deny, 1993; Lawler &

Yazdani, 1987; Nickerson and Zodhiates, 1988; Polson & Richardson 1988; Psotka Massey,

Mutter, 1988; Regian & Shute, 1992; Self, 1988; Sleeman & Brown, 198Z and Wenger, 1987.

Ibe issues, by decade, that will be discussed can be seen in the following table.
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Tabl 1: hmeoriant Ismies Related ID MTS Develoommm

1970s 1980s l90s
Problm Guami" Mode-Trcing Learer Cm

Simple Sdem Modeing More Buggy-Based Syss Individual vs. Collaborative

Knowledge Repmtao Case-Based Remoing Situaed Lmaning vs. Infonnution

Socratic Tuatun Discovay Workls Virual Reality

Skils & Snutgic Knowledge ftlogressi Of PIMenta MOdel

Reactive Leamning Bnvironments Shimuatios
Buggy UiNuy Natmal Lu~uan Prcossing

Expert S]sem Tumors Authring Sysmms

Ovefy -1 WWaemdc Om__

Up thinogh &e 1970s Def'ning 1ier

Hardwre and software have evolved at an asunmding raw over the pst 20 yea. To put

thng In penipective. conider the 1970s-"Pon" was dt rage (i.e., a smWe black-ad-white

c-mp-terized t-lMe temis game) md 8K random access memory (RAM) Mt norm for a PC.

Cbmpuer-ainin d Iuiction developed before the 1970s was inflexible and didectc

because th sysiems had very ulmied capba m (i.e., memory capacty and , cOmputation

speed) for adaptive diagosis and feedback Furlbetmore, -...*e only theor available to guide
intrctionl development was behavior theory, which poorly matdhd th cognitive golds of

education" (Lesgold, 1988, p. fii). Over time, resarchers in AI and cogitve psychology joined

fonmms, md kgeth iavided a basis for a new generation of compuMr-based aching programs.

Some of Mte nwrmh Ises tha domied the 70's are discu d below.

Bm.. m.•,._ l iM W The S yms to incorporate some now "classic"

ris eleme we prorunsthat generated problems and leaing tuks, represernt a big

deMartu from the caned problem stoed in CAI databases. For example, Uhr (1969)
deve d a computMer d learning sysem tha created, In real-dime, Simple arithmetic
prolems a md vocabulary recall tasks. The next major advmce In this area came in ft form of

ComP.UR pogrous that generatd problems that had been tailored to the knowledge mid skll

level of a particular stude dth providing t foundation for studen modeling.
Sj h,..•lng-. The Basic Instuctionl Program (BIP) develops procedural

kis required in learning the programmig lanuage BASIC (Barr, Beard, ad A*ks 1976).

It did so by selecting problems based on what the stud already knew (past performn ),
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which skills should be taught next, and its analysis of the skills required (problems in the

curriculum). Exercises were dynanically and individually selected per person (from a pool of

100 sample problems); then teaching heuristics were applied to the student model to identify

skills to be taught and exercises were selected that best involved those skills. Selection of

appropriate exercises was based on information contained in a network called the Curriculum

Information Network (CIN), relating tasks In the curriculum to issues in the domain knowledge.

Thus, a programming task in the tutor was represented in terms of its component skill

requirements. Based on a task analysis, BIP knew tlht the component skills needed for solving a

particular programming problem inclded such skills as: initialize numeric variable, use for-next

loop with literal as final value, and so forth. Moreover, each task tapped a number of skills.

Inwladu it e m. Classic CAl used pages of text to represent knowledge, but

with little psychological validity. In contrast, Carmnel's (1970) SCHOLAR program (often

credited with being the first true ITS) used a semantic net to represent domain knowledge (South

American geography) as well as the student model Nodes In the network had tags to indicate

whether the concept was known to the student Ibis novel application of semantic network as a

genra structure of knowledge rep resenttion supported mixed-initiative dialogs with students.

Not only could the computer ask questions of the studen but the student could, theoretically, ask

questions of the computer. One major limitation of this semantic knowledge representation was

the difficulty of representing procedura knowledge.

Socratic g. Carbonels research spawned another line of work concerned with

enabling systems to engage in Socratic dialogs, believed to involve the learner more actively in

the learning process. Collins (1977) outlined a set of tuoral rules for Socratic tutoring that were

Incoipot into a system called WHY (Stevens amd Collins, 1977). For example, consider the

following lIFIHEN string: IF the student gives an explanation of one or more factors that are not

sufficient, THEN formulate a general rule for asserting that the given factors are sufficient, and

ask the student if the rule is true (Collins, 1977, pp. 343-344). Instead of semantic nets, the

domain knowledge (rainfall) was stored in a "script hierarchy" containing information about

ereotypical sequences of events.
.Ug-mk xidt mi skd . Another attempt to stimulate thought among students

(raher tham being passive recipients of infornation) was the focus of a group of researchers at

Xerox PARC in the mid- to late-1970s. For instance, WEST (Burton & Brown, 1976) was

developed to help students leamnpactlce skills involved in the manipulation of arithmetic
exprsios. The goal was to move around a game board (How the West Was Won) and either

advance the maximum number of squares, land on and thus "bump" an opponent back some

fixed amount of square, or take a shorcut. Not only was basic arithmetic skill involved, but

also strategic knowledge was required. The system was attentive to all levels of knowledge and
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skill, but die "coach" was somewhat unobtrusive, sitting in the background monitoring the

student's moves, Intervening only when it was dear that the student was floundering. Then the

coach would make a few suggestions to enhance student skills. WEST's coaching goals were

ac omplished by focusing on the strategy used to construct a move (viz.,"issue-based" tutoring).

* ,.mUet .Le EnvIu ironments. In reactive learning environments, the system

responds to learners' actions in a variety of ways that extend understanding and help change

e d belief structures using examples that challenge the learners current hypotheses. An

early, excellent example of this kind of environment was SOPHIE (Sophisticated Instructional

Enmvinmmu), designed to assist learners in developing electronic troubleshooting skills (see

Brown & Burto, 1975; Brown, Burto & deKleer, 1982). For instance, in SOPHIE I, learners

located faults in a broken piece of equipment. They could ask SOPHIE questions in English

(e.g., to obtain values of various measurements taken on the device). SOPHIE I included three

main components: a mathematical simulation, a program to understand a subset of natural

lanqage, and routines to set up contexts, keep history lists, and so on. A student,
troublhooting a simulated piece of equipment, could offer a hypothesis about what was wrong.

SOPHIE I reacted to the request by comparing the hypothesis to the mea-urements entered by the

student. SOPHIE II extended the environment of its predecessor by adding an articulate expert

based on a pre-stored decision tree for trubleshooing the power supply that was annotated with

schema for produclng explanations. SOPHIE mI represented a significant advance; it contained

an underlying expert based on a causal model rather than on a mathematical simulation. The
impo-tance of this change is that, in SOPHIE I, the simulator worked out a set of equations not

using human-like, causal reasoning, so it wasn' possible for the system to explain its decision in

any detail But SOPHIE HI did employ a causal model of circuits to deal with the student

feedback deficiency. Research with SOPHIE spawned a lot of later research in moub,

reactive learning evtnmu, and articulate experts.

a= LiJb. Brown and Burton (1978) also developed BUGGY, a frequently cited

example of a system employing a "buggy" library approach to the diagnosis of student errors.

BUGGY was a framework for modeling misconceptions underlying procedural errom in addition

and mibtMtion where students' etror were represented as the results of "bugs" (errors) in an

otherwise correct set of procedures. DEBUGGY (Burton, 1982) was developed as an off-line

version of the system based on the BUGGY framework using the pattern of errors from a set of

p rol to construct an hypothesis concerning a bug, or combination of bugs, from the library

that generated the errors. IDEBUGGY (Burton, 1982) was an on-line version of BUGGY,

diagnosing the student's procedure bit-by-bit while giving the leaner new problems to solve.

1The major limitation of these kinds of systems was the inability to anticipate all possible

mAsconception. Moreover, bugs could appear transient as they were being repaired.
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• _•xuaSw xML ITumm. MYCIN (Shorliffe, 1976) was a rule-based expert system

for diagnosing certain Infectious diseases such as meningitis. GUIDON (Clancey, 1979) was

cmtlcted to Interface with MYCIN for tutoring, interactively presenting the rules in the

knowledge base to a student. This tutoring operated as follows. GUIDON described case

dialogs of a sick patient to the student in general terms. The student had to adopt the role of a

physician and ask for information that might be relevant to the case. GUIDON compared the

student's questions to those which MYCIN would have asked and then responded accordingly.

Ov axMoldtls~ kfhi_. The definition of an overlay model is one of a novice-

expert difference model representing missing conceptions. Its typically implemented as either an

expert model annotated for missing items, or an expert model with weights assigned to each

element in the expert knowledge base. To illustrate how it works, consider WUSOR (Stansfield,

Cam, & Goldstein, 1976)--the name of the on-line coach for the game WUMPUS (Yob, 1975).

The WUMPUS player had to traverse through successive caves to locate the hiding Wumpus.

Many dangers faced the player (e.g., pits, bats), but the problem could be solved by applying

logical and probabilistic reasonin to information obtained along the way. The goal of the game
was to shoot an arrow into the Wumpus' hiding spot before you were killed. WUSOR evolved

through (at least) three generations, each with a progressively more sophisticated student model.

The first version had only an expert and advisor and did not try to diagnose the learners state of

knowledge. The next version (1) incorporated an overlay model (Carr & Goldstein, 1977) where
the expertise was represented as rules, and the students knowledge state was a subset of the

expert's knowledge. Goldstein (1979) made the final transformation to WUSOR (Il) by
including the genetic graph, combining overlay modeling (rule-based representation) with a

learner-oriented set of links between curricular elements. '"emetic" related to the notion of

knowledge being evolutionary, and graph denoted the relationships between parts of knowledge

expresed as links in a network. A genetic graph could represent type-of-links (e.g.,

generalizatimn, analogy, refinement) as well as deviation links (Le., buggy rules as opposed to

simply absent ones).
The 1970s were marked by experimental systems that bore little resemblance to one

another. During the following decade, systems became less idiosyncratic, but there was still a lot

of diversity in the field.

199"9 Firr,• A aOEvinoruentg

The 1980s were characterized by enormous growth and momentum in the ITS fleldL By

the mid-1980s, the development of tutors greatly exceeded their evaluations; everyone wanted to

participate in the excitement of building ITS, but few cared to test their system's efficacy (Baker,
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1990; itman & Soloway, 1988). Sleeman (1984) attemped to focus research efforts by

outlining four main problems with ITS at the time:

(1) Feedback specplciry-Inructional feedback was often not sufficiently detailed for a

particularner.
(2) Non-adaptabltity--Systens forced students into their own conceptual framework rather

than adapting to a particular student's conceptualation.

(3) Atheoretical foundation-Tutoring strategies used by the systems lacked a theoretical

cognitive foundation.
(4) Resorictve envirownent-User interaction and exploration was too restricted.

These main criticisms were addressed, to varying degrees, during the 1980s.

MoxlL.11ng. Anderson and his colleagues at Carnegie-Mellon University developed a
model-tracing approach to tutoring based on production systems as a way of modeling student
behavior. The model-tracing appgoah has been employed in a variety of tutoring systems, such

as the LISP tutor (Anderson, Boyle & Reiser, 1985) and the Geometry tuhtt (Anderson, Boyle &

Yost, 1985). Model tacing provides a powerful way to both validate cognitive theories (e.g.,

Anderson, 1987) and to deliver low-level, personalized remediation. The approach works by

delineatimn many hundreds of production ruiles that model curricular "chunks" of cognitive skill.
A learners acquisition of these chunks is monitored (ie., the student model is traced), and
departure from the optimal mute is immediately remediated.

In theory (and puactice) the model-tracing approach for ihe Geometry and LISP tutors is

so complete that it captures an enormous percentage of all students' errors. A major drawback is

that this approach does not allow students to commit those errors themselves. As soon as there is

a mis-step, the tutor cries "foul".and stops the student from doing anything else until the correct

step is taken. As Reiser points out (e.g., Reiser, Ramey, Lovett & Kimberg, 1989), the student

is not only prevented from following these mistakes to their logical conclusion (and getting

hopelessly confused) but also prevented from obtaining an insight into the mistake (i.e., that the

mistake is obvious). These ae some of the best learning experiences students can have, but they

appear to be blocked by the model-tracing approach.
Model tracing challenges the first criticism (feedback specificity). That is, the grain-size

of feedback is as small as you can get (i.e., the production level) thus providing the most

deailed, specific feedback possible. However, in some cases (i.e., for certain studenes or
particular problems), this level of feedback may be too elemental, the forest is lost for the trees.
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Next, as mentioned above, the systems can adapt to a wide range of student conceptualizations,

challenging the second (non-adaptability) criticism. The approach also demolishes the third

criticism (atheoretical foundation), as it was explicitly based on Anderson's cognitive theory

(ACT*). The positive features of tins approach, however, are achieved at the expense of the

fourth (restrictive environment) criticism. That is, the model-tracing approach is restrictive. To

accomplish the necessary low-level monitoring and remediation of this approach, the learners

freedom has to be curtailed. So, learning by one's mistakes is out (which is often a powerful way

to learn). A final drawback of this approach is that, while it works very well in modeling

procedural skill acquisition, it does not work well for domains that are ill-structured, or that are

not rule-based (e.g., Creative writing, Economics, Russian history).

More Bmu -based S ystms. During this time period, a plethora of tutors was developed

based on the "buggy" library approach (see BUGGY, above). While these systems do provide

very specific feedback about the nature of the learner's error (countering criticism 1, feedback

specificity), the system response is dependent on the program's ability to match the student's

error with that of a stored "bug." Along these same lines, as with model tracing (because only

stored bugs are acknowledged), novel bugs are ignored; thus there is no way to update the buggy

library or adapt to the learne's current concepualization (criticism 2, non-adaptability). This
approach is theoletically based on the notio of cognitive errors in specific procedures, impasse

learning, and repair theory (Varn, 1990), countering criticism 3 (uheoretical foundation).
Finally, these systems constrain the learner somewhat less than the model-tracing approach; thus,

it is a response to criticism 4 (restrictive environment).

A good illustration of a system based on the buggy approach is PROUST (Johnson,

1986; Littman & Soloway, 1988), designed to diagnose nonsyntactic student errors in Pascal

programs. The system works by locating errors in students' programs where they compute

various descriptive statistics such as the minimum and maximum values, and averages. The

major drawback of this system is that it is implemented off-line. In other words, the tutor has

access to a final product on which to base its diagnosis of student errors-completed student

programs are submitted to PROUST, which prints out the diagnosis (Johnson & Soloway, 1984).

A parallel "buggy" research project involved a system called PIXIE (Sleeman, 1987), an

on-line ITS based on the Leeds Modeling System (LMS), a diagnostic model for determining

sources of error in algebra problem solving due to incorrect procedural rules or "mal-rules."

While some may equate mal-rules with buggy rules, they differ in a fundamental way. Sleeman

created them by postulating a set of basic buggy rules from which higher order mal-rules could

be generated from the structure of the knowledge base itself. Mal-rules are inferred from basic

principles and bugs; they are at a level of abstraction above bugs. In fact, John Anderson makes

the same point about his model-tracing procedures. Because of the complexity of his model-

20



tracing productons, many productions fire or are used over and over again in contexts for which

they were not first generated, and so they too take on a kind of abstract or general quality in his

framework.

The major problem with LMS is that it only diagnoses the incorrect rules; it does not

remediate.

IL-n medReasonin. Another category of systems emerging at this time came from

case-based reasoning (CBR) research (Schank, 1982; Kolodner, 1988). Proponents of this

approach suggest that the goal of ITS should be to teach cases and how to index them. Given

that the student, not the program, is the one doing the indexing, this system affords the learner

greater freedom, and promotes a more adaptive learning enviromnent (countering criticisms 4-

restrictive environment and 2-non-adaptability, respectively). Furthermore, whereas the model-

tracing tutors work poorly in ill-structured domains, CBR works well in those areas (e.g.,

politics, philosophy). This tradeoff, however, can result in less specific feedback to learners

(criticism 1, feedback specificity).

These CBR systems also perform well in domains where there are too many rules, or too

many ways in which rules can be applied (e.g., programming, game playing). CBR suggests

approximate answers to complex problems, thereby limiting how many rule combinations should

be explorel. There are two main processes involved with CBR: indexing (labeling new

experiences for future retrieval) and adaptation (chaning a retieved cme to fit a current
situation). Further, two kinds of indices are required: concrete and abstract Concrete indices

refer to objects and actions usually directly mentioned in the case, while abstract indices refer to

more general caracterizations. The "indexing problem" deals with ways to determine the correct

abstract and concrete indices for cases. How one indexes new cases determines what cases one

will compare the inputs against. Using a general index, one can retrieve a case even when it

shares no specific details with the current situation.

Schank has made some very provocative statements about the human mind as a story
teller, and about the need to encapsulate knowledge into stories, not into hierarchical data

structures like semantic networks. But his procedures have yet to lead to any of the other strong
chacterics of MTS that we emphasize in this paper, student models, teaching models, bugs,

and so on. Instead, they exist as very generative and interesting systems. As such, they have

something in common with microworlds; that is, people enjoy exploring them and can learn from

them, particularly those regarding ill-structured and complex domains. However, when students

don't learn, or manifest some misconception(s), the very same looseness of structure and

organization in these systems prevents them from determining why, and doing something about

it Finally, according to Riesbeck and Schank (1990), case-based rasoning (CBR) serves as a

model of cognition and learning. But, while these systems present a provocative and well-
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conceived approach that has many practical and obvious merits, they cannot be said to possess a

solid theoretical foundation (criticism 3, atheoretlcal foundation).

A major limitation of this approach includes the problem of anticipating and repsenting

a sufficient minber of cases to be cataloged.

UM = Worlds. With just a few exceptions, learning from computers in the 1960s

and 19708 was characterized by inflexible presentations of didactic material. But an opposition

movement arose in the 1970s that gained stean in the 1980s; it resulted in the development of

discovery learning environments. These computerized systems (typically a computer simulation

environment with simple interface and tools) were designed to make it possible for students to

acqui various knowledge and skills on their own. For example, students could learn LOGO

(Papert, 1980) or Newton's laws of motion (White, 1984) within discovery (or micro) worlds.

Typically, feedback was "natural" or Implicit, not specifically explained to the learner (relating to

criticism 1, feedback specificity).

One of the main strengths of these systems was their great adaptability to a range of

different learners (countern criticism 2, non-adaptability). Students were free to explore and
act within the microwordd as they chose; with the ramifications of their actions immediately

revealed, countering criticism 4 (restrictive environment). Ibis movement.was based on the
theoretical premise that in discovery learning, one can radically alter ft perceptual relationship

between the learner and the knowledge or skills to be acquired, thus addressing criticism 3

(audhoWical foundation). ihis position was epitomized by Piaget (1954) who stated that, "...an
education which is an active discovery of reality is superior to one that consists merely in

providing the young with ready-made wills to will with, and ready-made truths to know with."

A major drawback of these systems is that not all persons are skilled in the requisite

inquiry behaviors necessary to achieve success in these environments (see Shute & Glaser, 1990).

That is, to be successful, an individual should be able to: formulate efficient experiments, state,

confirm, andjor negate hypotheses; apppriately relate hypotheses a-4 experiments; plan future

experiments and tests; engage in self-monitoring, and so on.
Emgmm ofMental ModeJl., White, Frederiksen and their colleagues (Frederiksen,

White, Collins, & Eggan, 1988; White & Frederiksen, 1987; White & Horowitz, 1987)

incoq~orated Ideas from (a) AI research on mental models and (b) qualitative reasoning to

develop QUEST (Qualitative Understanding of Electrical System Troubleshooting) as well as

"Thinker Tools." This approach, like model-tracing, above, is thus theoretically grounded (in

opposition to criticism 3, atheoretical foundation).

These systems work by motivating students to want to learn by pointing out errors and
Incosistencies in their current beliefs. Then students are guided through a series of

micrworlds, each more complex than the one preceding, toward the objective of more precise
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mntal models of the evolving subject matter (e.g., electrical concepts or Newtonian mechanics).

Finally, students formalize their developing mental models by evaluating a set of laws describing

phenIoena in the microworld; then they apply the selected law to see how well it predicts real-

world events.

These systems promote learning, neither completely free nor overly restricted (relating to
criticism 4, restrictive environment), that resides about halfway between true discovery

environments and model-tracing environments. A programmed sedes of mental models produces

higher-level feedback compared to, for example, feedback at the production level (addressing

criticism 1, feedback specificity). Finally, the systems can adapt to a wide range of learner

misconceptos (challenging criticism 2, non-adaptability).

Simuau . Graphical simulations have become more central to the ITS enterprise as
the power of computers has grown. Along with increasing computational power, software

systems have grown more complex; object-oriented systems can now mimic devices of great

complexity and Ineractivity. Simulations are useful wherever real objects are involved in a

leaIming or training task, and they provide many benefits over real devices. Not only are they
less dangerous, less messy, and exactly replicable; simulations are inspectable and self-
explanatory in ways that real objects camnot be. Simulations not only display aggregate

behavior, but they are decomposable into constituents that mimic novice or expert mental

models. Ibis decomposability of graphic displays and simulations mimics the power of

productions in expert systems for creating natural clunks that promote learning.

Early ITS, like SOPHIE, could generate only very simple line drawings. dramatic
increase in the power of graphic simulations took place with Steamer (Holla, Hw4.- bins &

Weit7man, 1984) and the use of personal LISP madhies. These machines could generate

interactive graphics with animated componens. It was not long before this graphical power

became available for ITS on smaller personal computers that could be used in industrial and

educational settings. Of course, more powerful systems that were developed in the 1980s, like

Hawk MACH-m, could expand the number of cmnponents and complexity of the animations by

orders of magnitude (Kurland, Granville, & a 1992). Using object-oriented

Mtctions, MACH-m made each pat of complex radar systems inspectable and self-
explanatory. For teaching trobeshooting, each decomposable part of the radar device could

even explain its role in the t sequence for any fault that had been created in the

system. Given this power and complexity, these systems were stretched to their limits and

brough to their knees by additional requirements for student models, curriculum sequences, and

hypertext interfaces. Even though these computer simulations were forced to operate at the edge

of their acceptability, an official Army evaluation verified the many benefits of simulation-based

training systems (Farr and Psoka, 1992).
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Depending on the level that a simulated device has been decomposed to, and the degree

of learner response regarding manipulations and ensuing ramifications, feedback could attain

various levels of detail (criticism 1, feedback specificity). Furthermore, as simulations become

typically very reactive to learner actions, they can serve as a direct challenge to the second

criticism (non-adaptability). Simulations, similar to discovery worlds, also leave quite a bit of

freedom to explore and manipulate simulated objects and devices (countering criticism 4,

restrctio envimmnents). However, the drawback of these systems is that a solid theoretical

basis is lacking (criticism 3, atheoretical foundation). Simulation research in the 1980s spurred

later work that attempted to incorporate pedagogical strategies into the simulation-based systems.

Moreover, related developments continue to evolve in complexity with the addition of Virtual

Reality interfaces to three dimensional models and simulations (Acchione-Noel and Psoka

1993).

Two other areas of research and development gained prominence at this time: Natural
language processing (NLP) and authoring shels. While these research spheres were important in

relation to ITS research, they could be applied within a variety of tutor types. For example, NLP

could be used to communicate Information to the leamer (or accept input from the learner) in

model-acing tutors, discovery worlds, and so forth. And authoring shellshouId be built for the

developmnem of a range of tutoring systems. Because of this opmeess, the following two ITS-

related issues won't be discussed in relation to our four criticisms, listed earlier.

Niauaral ljnguac.E . hbis technology was an important part of ITS right from

the beginning. SOPHIE, in facL was built on a powerful and original NLP technique developed
by Richard Bumn; it was called Semantic Grammar. Representing a powerful combination of

carefully selected keywords with algoritlu that searched the context for meaningful variables

and objects, it worked surprisingly well, given its relative simplicity. Since communication is

such an imporant element of ITS (see Wenger, 1987 for emphasis), it is not surprising that NLP

technologies have been used in several rIS for discourse networks (Woolf 1988) and especially

for language instraction (Yazdani, 1990, Psotka, Holiald & Kerst, 1992). The development of

powerful, efficient Prolog compilers and languages on PCs has led to the implementation of

some iteresting instuctionl grmmars that can handle discourse in English or other languages,

and provide multimedia instruction in advanced language concepts and grammar, as well as

simple vocabulary and verb declension. The potential addition of animations and immersion into

Virtual Environments adds a bright new prospect to the old goal of bwneruive language learning.

,AU g Slam . 7The creation of computer-based environments to facilitate the

design and development of ITS has been an important and continuing thread of research. The

goal of authoring systems is to give relative computer novices a software toolkit to take
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advantage of the power of computers for designing instruction. An example of one powerful
graphic authoring system developed over the last decade is that by Towne and Munro (1992).

Quite powerful CBT systems have been made available over the years. Research,

begimang the 1980s, attempted to adapt such systems as authoring shells for developing ITS.

Miller and Lucado (1992) were among the first to integrate the power of CBT authoring

ewith the technology of ITS. Their prototype system was the harbinger of many

more powerful combinations of traditional CBT and next generation MIT techmologies. Most

recently, DARPA has funded a unique consortium of Apple Computer, textbook publishers such

as Houghton-Mifflin, and ITS experts Beverly Woolf and John Anderson to begin the

development of next-generation authoring tools for instnrction and training.

The relative quiescence of the 80s transitioned into the currnt state of ITS affair,

marked by a percpton of instability and controversy.

1990s9Gra Debamls

The four hot ITS topics right now may be broadly characterized as: (a) How much

learner control should be allowed in systems? (b) Should leamnem iteract with MTS individually
or collaboratively? (c) Is learning situated, unique, and ongoing, or symbolic and does it follow

an Information-processing model? and (d) Does virtual ity (VR) uniquely contribute to

learning beyond CAL ITS, or even multi-media? There are, of course, ppoxnet and oponents

to each of these positions.

Iegle of LeamwLC(inu 1. lDTe debate over the amount of leaner control that should be
a part of the learning process has raged for many years. On the one hand, some have argued that

discovering information on one's own is the best way to learn (e.g., Bruner, 1961). On the other

hand, structure and direction have been stressed as the Important Ingredients In the promotion of

student learning (e.g., Ausubel, 1963). The same debate has appeared in the TS arena. Two

differing perspectives, representing the ends of this continuum, have arisen in response to the

issue of the optimal ITS learning environment One approach is to develop a computerized
environment containing assorted tools, and allow learners freedom to explore and learn
in.ependently (e.g., Collins & Brown, 1988; Shute, Glaser, & Raghava, 1989; White &

Horowitz, 1987). Advocates of the 4pposing position argue that it is more effective to develop

straightforward learning environments with no digressions permitted (e.g., Anderson, Boyle &

Reiser, 1985; Corbett and Anderson, 1989; Sleeman, Kelly, Martinak, Ward, & Moore, 1989).

This disparity between perspectives becomes more complicated because the issue is not just
which is the better learning enviromnent, but which is the better environment for whom, a classic

aptitude-trutment interaction question (Cronb and Snow, 1981). There are, undoubtedly,

tempond aspects to this issue as welL For instance, it may be more efficient to learn a new
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cognitive skill Initially by direct instmcdoiz then lawe, by greater exploration. in this way,
learneus can better control their own learning process.

Merrill. Reiser, Ramney, and Trafton (1992) investigated how human tutors dealt with the
issue of learner control. They compared human. to computer-tutoring techniques, and found that,
while expert human tutors did sometimes act like model-tracers, they actually maintained a
"-delicate balance" between (a) allowing students freedom and control and (b) giving students
sufficient guidance. In general, pedagogical researdi findings differ with regard to the amount of
learner control to allow in automated systems (e.g., Pox, 1991; Lepper, Aspinwall, Mumme, &
OCabay, 1990; Merrill, Reiser, & Landes, 1992). in addition to the temporal factor cited above,
this issue of learner control is also greatly dependent on other variables, such as the subject
matter being histructed, the desired knowledge or skil outcome, incoming aptitudes, and so on
(see Kyllonen & Shute, 1989, for a complete discussion of these interacting variables). That Is,
if the desired learning outcome is a smoothly executed skill, it may be more efficient to instruct
certain learning tasks with direct instruction and plenty of practice. But if the desired learning
outcome is a functional mental, model of relevant principles, an exploratory environment,
coM -11Plet with various components such as on-line circuits, ammeters, and resistors, may be what
is needed to achieve that educational objective.

Most currnt computer-administered instructrioa systems do not foster self-reliance in
students, or encourage them to seek new information on their own. To rectify this deficit,
Barnard, Erkens, and Sandberg (1990) propound the building of more flexible systems packaging
commuicaio expertise as a separate component. With less learneir Initiative, itfs much easier
to interpret inuM but at what cost to learning outcome? In Japan, research is being conducted
along these lines. The concept and development of ITS is becoming merged with interactive
learning environments (RLE) to produce what is referred to as a "bi-modus learning environment"
(BLE) (Otiuk, 1993). Whereas the main strength of IUS is Its ability to derive a student model
based on the identification of acquired rules, its main weakness is the inability to help learners
acquire new knowledge by themselves. In contrast, students in an RB can extract and

coprhnd rules Induced from a complex domain, but the RE cannot explicitly identify a
students misconceptions or tutor them in terms of their cmrhninlevel. Thus the two (IT'S
and LB ) are copeentary to one another, and BLE represents combining the strengths of

Another way to increase learner control has been suggested by Bull, Pain, and Brna
(1993). Their Intriguing alternative to traditional student modeling, that of replacing the burden
of the IT, is to produce accurate representations of the learner's knowledge state; the learner is

empowered' with greate control, e.g., to construct and repair the model. Bull and associates

contend that their model will result in a more accurate representation of the learner's beliefs, and
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don. be moe highly regarded by the student. The learner ia expected to benefit through the

reflection necessary to accomplish this modeling task. Unfortunately, no data have yet been
collected about the efficacy of this novel approach.

"Coached practice envirnments" (Le., Shedock I amd II) tetsent yet another way to
provide cotrol during learning by combnining a-niceship training with intelligent

Iwructional systems (Ljoe a Lsgol, 1992; Lsgold, Eggan, Katz, & Rao, 1992). These
system support greater learner Initiatie because the apprentice learns by doing (singulatly or
collaboratively); knowledge is anchored in experience; and the coach provides knowledge within
an applicable contxt. Inelligent systems are developed with many of the atiscs of

human= -pp l1kips, and perfornce can be easily assessed. Through replay and

comarisons with the expert performance, this approach also supports tin analysis of

Salomon (1993) supports the trend of moving away fnom building traditional rTS and
towards the design of system as cognitive tools. le sees cognitive tools manipulated by
studets as intruments that promote constructive thinking, trncending cognitive limitations,
Mid mnking it possible for students to engage in cognitive operations they wouknl otherwise
hatVe been capale oL Some ITS programs make most diagnostic and tutorial decisions for the

stude;t: threfte they ae not really cognitive tools because, "they we not designed to upgrade
sted ' e Co 9'"(p. I0). Also In accordance with t notion of computers as
learning toos, leaers should have the option to aler the deg•re of cotrol themsdves, frm

none (eg., didctic enviroomunt) to maximum (e.g, discovery enviromnent), as necessary.
By sifting toward increased leaner control, are indivduals who are not very active or

exlorator by nature being penalized or huadicapped? Slate and Glaser (1990) investigated
indvidual differences In learning from a discovery environent (Smithtown) and found that

SN divduals who demonstrated systematic, exploratory behaviors (e~g., recording baseline d~ata
limiting the muber of dchnge variables) were signficanly more successful in Smintown

Omardto those who revealed less systematic beavior On the bai•s of that fiing, they
Sin a different study (using an electricity Utor tha higbt-exploratorY mdividuals

would learn more from a iuhuctive environment (than from a more direct applied

) mand les-exploratory learners would bnef from a supportive, applied
enviromu (compared to at inductive one). A pers's exploratory level was quantified based

on certain Indices (e.g., number of tries and length of time spent chngn a resistor value, using
the on-line voltmer or ammeter). Subjects were randomly assigned to one of two learning
eandnts, an the data were analyzed, pot hoc. The hypothesized learning style by aptitude
Intracton was mspported by the data (Slmt, 1993-b). So, discovery learning environments do

not suit everyone equally welL For some, they provide a really bad fit To determine whether

27



this kind of learer style by treatment interaction is repilcahle, Shute (1994) conducted a

mn0 mi test of the -me A77, reported above. Subjects were lIaced a prion in one of two
envirnments based on the decision rnle obtained from the pevious study. And, in faL the Ali
was conflnne.

In conclusion, a mid-point between too much and too little learner control is probably the

bea bet as far as optimal rIS learning environment. Furthennore, this milestone should not be
fixed, but should change in respome to ieuners! evolving needs. inally, learners should have

some iput into the design of the envimnem, as well.
Our next debate addreses the issue of whether leaming alone is better or worse than

a in conjcton with others (wher "ohers" may mean other mmans, or with a computer
acting as a "-ptne in the learning process). As with everything relating to learning, there is

pmbalNy no clear cut mower to this question; there is no "overall" superior way to lam. Rather,

it is alnost certain that Ineractiorm exist, where solo learning may be superior for certimn topics
(e.g., Mee mmodzation of mulIlicio tables) or for particular learner types (e.g., highly
motivated individuals). Collaborative leaming may be more effective for other domains or
pnon -. While we dont specflcally address these inoeactions in the following they

should be kept in mkd

1-xrkl •m- r&,CCi mjW Traditionally, ITS have been designed as single-
lean trerprses. Bloom (1984) mud others have presened compelling evdne thet
lnd kalzd tuoring (usn homumi tors) engmend the most efctive and efficient leaming

cross an arry of domains (see lso Sinue & Regimo, 199, Woolf, 1988). uthermoe,
Itlligent tutoring systems ephoume this principle of indv ld Instruction. Iu his often-

cited 1964 paper, Bloom presented a challenge to niniuctiomal researders tht has been called

the "two sigma problem." The goal is to achieve two standard deviation Is with
tutoring over traditional instmmction meod So far, this gol has yet to be atained using
hxdivkhrlize lb•IS

An al ative approach to Indlvkuazed iný ýi sw rtive ing, the notion
that students, woddng together, cm lemn more dtn by thmnselves, especially when they bring

comp, rher thnm idenical conuirbutions to the joint enterprise (Cummings & Self,

1989). Collaboion is defined - a process by which "Indivickals negotiate and sda meanings
relevan to the probilem-solvng task at hand." (Teasley & Ros.hele, 1993, p. 229), mad is

distinct hom cooperation which relates to the division of labor required to achieve some tak
Two empirical questions relevant to this chper include: (a) Are two heads better than

one? md (b) Cma intelligent computer systems support collaborative learning endeavors?
Receuly, reseatch b beginming to shed light on both of these qustions. For example, many
researche have diown impressive student gains in knowledge mid skil acquisition from
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codllabdrativ learning enviueus (e.g., Brown & Palimsar, 1989; Lampen, 1986; Palincsar &

Brown, 1914; Scadmnala, Berelter, McUeAn, SwaIlow, & Woodruff, 1989;, Scdwenfed 1985).

* IrthennorU , the few studies of the effectiveness oj collaborative learning in computer-hued

lear Vi enments have also been positive (e.g., Justen, Waldrop, & Adams, 199, Katz &
* ~Lesgold, 1993; PapeMt 1980).

Thee we buically two ways of implementing collaborative learning environments using

compute.: (a) a =mall group of learners interact with a single intelligent computer system, or (b)
dte compute system itself serves as the "partr in the collaboratdo The first way (i.e., a small
group using one computer) rPpresuPan extension of the research on collaborative learning in
clasroms. In this cme, some of the issues that need to be addressed have been outlined by

Teasley and Roschelle (1993). The system must be able to: (a) ntroduce and accept knowledge

into a joint problem-solvng spsce, (b) monitor ongoing activities for evidence of divergences in
mem1 n, mid (c) mrpir diverenmc th impede t progss of dte ollboatimon i be difference
between this list md general modeling issues in ITS is that it deals with a studet model that's

built upon a Jolt, rather isn le s, poem o sso . The secondway of -ning
laatin (L.e., amsiglnig the computer am the leareo s patner) mpesen an intriguing twist

on the notion of colaborative kanig To illustrate, Cummings and Self (1989) proposed a
colloative menigt educaton system (m) that engages theaner In a partnership. Here,
the computer serves am a collabotor, not asm an ahortm instructor. In both cases, a student
model still must be derive either that of a individual or a group.

Ad~ditonal renearch aid controled stdies must be coundcted in order to test the relatve
efflcacy of colaborative verus individualized instuction. For a variety of masmos (eg., greater
ange of shared knowledge, esouue limitations, etc.), the notion of colaboratve leaning
envirnmens Is appealing. There ma lot of unanswered research questions that need to be

a-dressed, however. Some of these (listed in Katz & Lesgold, 1993) Include: What pats of the

cuniculun should be learned collaboratively, and what parts learned individually? What

teaching methods should be used to adcieve the instructional goals, and how should they be

sequenced to optimize learning? What should the computer tutor do while students work on
problems? Wha additional rles could the computer coach peuforn? This area of research is

also likely to shed ligl•t on the Interactions mentioned eadier. We now present the third hot
topic, namely, the muoe of learning ad its Impact on MTS design.

, I•,,•Ml 7,U .b supportes this is not just a trend, but a radically

new perspective (or philosophy) that supports the integration of "...psychological theories of

physical arid cognitive skills, unitling emotions, reasoning, and development, in a
-umAblologlcally grounded way." (Clancey, 1993, p. 98). It has also been rferred to in the

literature as "situated action" and "siftued cognition." Recently, several prominent journals have
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devoted entire issues to the debate concerning the value of situated learning compared to the

mon stamdud paradigms (e.g., ACT, SOAR): 1993 CMitve Scie.n, 17(1), and 1993 Jmaml

oL~n~fisAatifu-Im~li• ndI•dn..m 4(1).

Obviously, one's belief in either sitated cognition or the traditional information-

processing model has implications for the design of ITS. To illustrate this distinction, first

conider Geno's summar of situated cognition's perspective on where knowledge resides:

"Rather than thinking that knowledge is in the minds of individuals, we could alternatively think

of knowledge as the potential for situated activity. On this view, knowledge would be

undestI as a relation between an individual and a social or physical situation, rather than as a

property of an tndividual." (Greeno, 1989, p. 286). Next, consider the nature of knowledge from

the infeemainn-piocessg perspective. Anderson's (1983) ACM theory proposed two

fudmental forms of knowledge: procedural, represented in the form of a production system,

and declaradve, repreented in the form of a node-link network of propositions. Both

represenations ate believed to opere within long-term and short-term memory strucures.

These two positions present quite differmt views on how leaning, or knowledge
acquisition, ocer. In the fit case (situated cognition), learning is a process of creating

V Pop invn inl guages, and fomulati• modelsfor thelrstame. Learning is

ongoing, occurring with every thought, perception, and action, and is sdaed in each unique
cIr ms tance. Stuaed copition apes for an Instructional system rich with exl/icit tools and

vmied exempars that can suppo and extend learners' discovery processes. "Insight is more

likely when the problematic situation Is so aranged that all necessary aspects are open to

obmervan" (Bower & Hilgard, 1981, p. 319).

The second position (nfomation pocessing) sees learning as progressing from
decWamve knowledge, to prcedural skils, to automatic skills, dependent upon: enablers (i.e.,
what one already knows and can tranfer to new suatons) and mediators (i.e., cognitive

processes delermniing what one can acquire, such as working-memory capacity and information

proesing speed) (e4g, Andemon, 1983,1987; Kyflonen & Christal, 1990). 7bus, learning
refers to the addition and restuctring of information to a database, in accordance with specific

learning mechanisms (e.g., knowkdge compilation, transfer). To facilitate learning, one must

build a system that can (a) Analyze the initial state of knowledge and skill; (b) Descrbe the
dreined or end sate of knowledge mid ,l (leaning outcome); aid (c) Present materal and
problems that will trmnition a learner from initial to desired state. This kind of tutoring system
is based on a well-defined criculum thas been so arranged to promote knowledgefsklll

acquisiton (or facilitate Utantio from curret to goal state).

It may be tat these two positions ae mutually exclusive. That is, knowledge either

resides interally in on's head, or externailly, in the environment. Alternatively, it may be that
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there is some overlap, whereby some forms of knowledge are stored, anu some derivable from
the current situation. In a preliminary attempt to bridge the gap between situated- and
radltnul-learng models, Shute, Gawllck-3rendell and Young (1993) have recently developed

a series of statistics modules, Slat Lady. Learning is situated within various gaming
*envimumne (e.g., "Stat Craps"); the theoretical postulates are that learning is a constructive

process, a nced by experietial involvement with the subject matter, that is situated in real-
world examples and problems. Furthermore, the system has a well-defined curriculum in
accordance with popular learning theory.

According to a tnrctivisn, learners actively construct new knowledge and skills, either

from what they already know (infonnation-processWg premise) or from what resides in the
enviroment (situated cognition stance). Both positions would probably agree that learners do

not come to a learing situadt with a abula rasa, but rather, as active-pursuers (not passive-

nreIpal's) of new knowledge (e•g., Bartlett, 1932; Collins, Brown, & Newman, 1989; Dreschir,
1991; Edelman, 1987; Piaget, 1954). Both positions also support the position that the
r nstruction process can be enhanced by environments supporting experiential learning.
Research in this area has shown that knowledge derived experientially tends to be more
memorable m passively-received knowledge because the experience C(doef" rather tan
"receiving") provide cognitive structure, and is intrinsically motivating and involving (e.g.,
Friedman & Yarmuuh, 1985; Harel, 1991; Hard & Papert, 1991; Shute & Glaser, 1991;
Spencer & Van Eynde, 1986). Finally, wheins ruction is situated (or anchored) in interesting
and rea-wodd pmblem-solving scenarios, that also is believed to eunauxe aning (Brooks,
1991; Brown, Collins, & DuguK, 1989; Clancey, 1992; Collins, Brown, & Newman, 1989, Lave

& Wenger, 1991; Suduman, 1987; The Cognition & Technology Group at Vanderbilt, 1992).

The Cognition and Technology Group at Vanderbilt (1992) has also been working on

developing a pedagogical approach to situated cognition. They define "anchored instruction" as
an atempt to actively engage lemurs in the learning process by situating instruction in

nte n and red-world problem-solving anvirooments. Rather than teaching students how to
solve particular problems, these systems teach generizable skils, helpful across a variety of
problem-solving situations. The major goal of this type of instruction is to create authentic-

feelingv es in which one can explore urd understand problems and oppommities
experienced by experts in a domain, and learn about the tools these experts use. This group has

developed a series of adventures for middle-school students focusing on math problem
fomnulation and problem solving. These are the "Adventures of Jasper Woodbury" series. The
g-,.d of the project is to facilitate broad transfer to other domains, embodying several design

principles: (1) video-based presentation, (2) narrative format, (3) generative learning, (4)
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emadded data design, (5) problem complexity, (6) pairs of related adventures, and (7) links

a the cuicul.in.

One of the major problems with this whole debate over situated cognition versus

traditional information processing models is that the former position simply has not tested its

underlying hypotheses at this time, while the latter has enjoyed decades of solid research. Vera

and Simon (1993), rebutting Clancey's support paper(s) for situated learning, stated, "Clancey

leaves us with philosophy (whether conect or not is another matter), but with precious little

science." (p. 118). And that appears to be true. Because cognitive psychology is an empirical

science, studies need to be conducted that examine claims made by any new position. For

instance, supporters of our final "hot topic" of the 90Ys (Virtual Reality, or VR) claim that this

new technology can improve learning by virtue of fully immersing the learner in the learning

process (earning by saturation). But is there any veraity to this claim? It is certainly testable.

The relationship between experience, learning, and pedagogy is a briar patch of thorny questions.

Recent teoretical harangues on the nature of situated learning have laid a kind of groundwork

for VR by arguing for an epistemology of learning based on experience.

ViuLImJly. m i t•,Jmn& A collection of technologies, known as Virtual Reality

(VR), has recently been exciting the itns tlanal technology community.. This new technology
refers collectively to the hardware, software, and interface technologies available to the user

inte ed in experiencing certain aspects of a simulated 3-dimensional environment. The

simulated aspects of the aimement ("worid") currmtly include a stereoscopic, low-to-medium

fidelity visual repsnion displayed on a head-moued dislay system. Using
tecnologes, one can update the display in accordance with head and body motions. Tbis

feature, along with Ut stereo disparity of the images on he two screens (one for each eye),

support th illusion of moving around In 3-d1mes-oIal space.
Unquestionbly, VR anges the relationships between learning and experience,

highlighting the role of perception (particularly visual), in learning. Experience is both social

ad perceptual, and VR epitomizes the notion of experiential learning. Many systems are now
being developed that have demontae the success of th experiential approach. ie current

question is: Does VR represent the next logica, developmenal step in the design of
instructional systems? In other words, does the immersion experience (i.e., extra fidelity and

related cost) significantly improve learning and perfomance beyond the more traditional

pedagogical approaches?
Recently, there have been some empirical data collected on the relative success of VR in

teras of inmtuctional effectiveness, as well as skill transfer to the real world. For instaice,

Regian, Sbeblake, and Monk (1992) showed that people can, indeed, learn to perform certain

tasks from virtual environments (e.g., console operation= and large-scale spatial navigation).
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Next, knowledge and skill acquired in a VR have been shown to transfer to performance in the

real world. Regian, Shebilske, and Monk (1993) found that: (a) VR console operations training

can t-mfer/facltat real world console operations performance, and (b) VR spatial navigation

training successfully tansfers to real-world spatial navigation. In contrast to the Regian, et al.

(1993) findings, however, those reported by Kozak, Hancock. Arthur and Chrysler (1993)

showed no evidence for transfer of a "pick and place" task from VR to the real world. However,

the criterion task used in that study was quite easy; thus, the conclusions may actually be

innclusive. So, even with the relatively poor fidelity and interface currently available in VR

tec!mology, there is some evidence for its efficacy and potential as a serious learning/training

envimmna.

Another positive example of VR's potenial for training was presented by Psotka (1993)

who argued that VR creates one uniform point of view on any representation that overcomes the

conflicts and cognitive load of maintaining two disparate points of view (Sweller, 1988). .lbe

reduced cognitive overiead resulting from the single "egocenter" in a VR should expedite
information access and learning. Cential to this perceptual experience of VR is the poody

undemmood phenomenon of immersion or presence. Pmliminary insight based on the SIMNET
experience (Psotka 1993) provides not only personal testimonials to the motivating and
stimulating effects of the social and vehicle-based immersion of synthetic e, but also

preliminary effectiveness data on its potency for learning and training. That is, even though

SIMNET provides an impoverished perceptual simulation of a tank in action, the cues from

interactive communications among crew members, as well as the auditory and visual cues of the

simulated sights, provide gut-wrenching and sweaty believability. What's more, the evidence

clearly shows a level of training effectiveness (even without a curriculum) that is superior to

many other classroom and simulation-based efforts (Bessemer, 19-91). Research is continuing on

how to make this training more effective by including surrogate crew members and intelligent

semiauoated forces in the environments. The need to involve hsmounted infantry, not just

tanks and vehicles, is creating a rwarch base for better computational models of agents and

coaches (Badler, Phillips, and Webber, 1992).
Virtual reality shows promise in the consttuction of microwodds for physics and other

science instruction. For instance, Loftin and Dede (1993) are creating a Virtual Physics

Laboratory from the base facilities of a VR world created for NASA astronaut training. In their

virtual laboratory, students can conduct experiments in a virtual world where everyday accidents,

structural imperfections, and extrinsic forces, such as friction, can be completely controlled or

eliminated. Balls that bounce with complet.i determinism can be measured accurately at all times

and places, and can even leave visible trails of their paths. The effects of gravity can be
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contriolled, and variations of gravity can be experienced visually, and perhaps even
kineuthertcafly.

Although the perceptual aspects of experience are clearly important, it is easy to assume

that there are no difficulties to learning from existing visual representations and simulations, like

photographs, graphs, and static drawings. It is easy to downplay and overlook difficulties in
modern learning environments. Most of us are experts at interpreting visual representations on

printed pages (figures, graphs, photographs, icons, drawings, and prints), but it's easy to forget
the difficulty we once experienced as we tried to interpret scatter plots and line graphs. We know

from many studies that those difficulties never completely go away. For younger learners, they
may be even more pronounced. VR can remove these difficulties to a degree and make

information more accessible through the evolutionarily-prepared channels of visual and

perceptual experience. As to the question of whether the delivered 'bang" is worth the bucks, the

jury is still out.

We now turn ou- attention away from these controversies, and toward the analysis of a

collection of ITS that have been systematically evaluated and reported in the literature. bhe

purpose of this section is to provide a flavor for evaluations that have been conducted, rather than

to review all possible evaluations.
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ITS EVALUATIONS

Building a tutor and not evaluating it is like building a boat and not taking it in the

water. We find the evaluation as exciting as the process of developing the ITS. Often,

the results are surprising, and sometimes they are humbling. With careful experimental

design, they will always be Inormative. (Shute & Regian, 1993, p. 268).

Which systems instruct effectively? What makes them effective? One might think that

increasing the personalization of instruction (e.g., model-tracing) would enhance learning

efficiency, and in the process, improve both the rate and quality of knowledge and skill

acquisition. But results cited in the literature on learning, in relation to increased computer

adaptivity, are equivocal. In some cases, researchers have reported no advantage of error

remediation in relation to learning outcome (e.g., Bunderson & Olsen, 1983; Sleeman, Kelly,

Martinak, Ward & Moore, 1989). In others, some advantage has been reported for more

personalized remedlation (e.g., Anderson, Conrad & Corbett, 1989; Shute, 1993-a; Swan, 1983).

If, however, more researchers conducted controlled ITS evaluations, this issue would be

easier to resolve. But in addition to the availability of relatively few reported evaluations of

ITS, there has been little agreement upon a standard approach for designing and assessing these

systems. Results from six ITS evahlations will now be presented.

Six M Eyalnamons

A few examples of systematic, controlled evaluations of ITS reported in the literature

include: the LISP tutor (e.g., Anderson, Farrell, & Sauers, 1984) instructing LISP programming

skills; Smithtown (Shute & Glaser, 1990, 1991), a discovery world that teaches scientific inquiry

skills in the context of microeconomics; Sherlock (Nichols, Pokomy, Jones, Gott, & Alley, in

prprtion; Lesgold, Lajoie, Bunzo & Eggan, 1992), a tutor for avionics troubleshooting; Bridge

(Bonar, Cunningham, Beatty, & Weil, 1988; Shute, 1991) teaching Pascal programming skins;
Stat Lady instructing statistical procedures (Shute & Gawlick-Grendell, 1993), and the Geometry

tutor (Anderson. Boyle & Yost, 1985), providing an environment in which students can prove

geometry theorems. Results from these evaluations show that these tutors do accelerate learning

with, at the very least, no degradation in outcome performance compared to appropriate control

groups.
11m JIJ -E..atu Anderson and his colleagues at Carnegie-Mellon University (Anderson,

Farreil, & Sauers, 1984) developed a LISP tutor which provides students with a series of LISP

programming exercises and tutorial assistance as needed during the solution process. In one

evaluation study, Anderson, Boyle, and Reiser (1985) reported data from three groups of

subjects: human-utored, computer-tutored (LISP tutor), and traditional instruction (subjects
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solving problems on their own). The time to complete identical exercises were: 11.4, 15.0, and

26.5 hours. respectively. Furthermore, all groups performed equally well on the outcome tests of

LISP knowledge. A second evaluation study (Anderson, Boyle & Reiser, 1985) compared two

groups of subjects: Students using the LISP tutor and students completing the exercises on their
own. Both received the same lectures and reading materials. Findings showed that it took the

group in the traditional instruction condition 30% longer to finish the exercises than the

computer-tutored group. Moreover, the computer-tutored group scored 43% higher on the final

exam than the control group. So, in two different studies, compared to traditional instruction, the

LISP tutor was apparently successful in promoting faster learning with no degradation in

outcome performance.

In a third study using the LISP tutor to investigate individual differences in learning,

Anderson (1990) found that when prior, related experience was held constant, two "meta-factors"

emerged. These two meta-factors, or basic learning abilities, included an acquisition factor and a

retendon factor. Not only did these two factors explain variance underlying tutor performance,

they also significantly predicted performance on a paper-and-pencil midterm and final

examination.

A fourth study with the LISP tutor concerns the usefulness of productions for analyzing

learning. In analyzing student performance on the first six problems In chapter three of the LISP
tutor, Anderson (1993, p. 32) discovered uneven, unsystematic trends in learning. One problem

was relatively easy and the next might be relatively more difficult However, by decomposing

the problems into their constituent production rules, Anderson was able to convert the chaos of

these results into very systematic program solution learning curves, for both time and accuracy.

He analyzed performance on individual production rules across problems. Because productions

were reused, and others newly introduced in each problem, be could plot performance in terms of

the number of opportunities each production nde had for contributing to an additional unit of

LISP code. Tbis simplifying transformation demonstrates that knowledge is acquired in terms of

production rules, and that if we are to understand how learning cognitive skills is to be explained,

our analysis of the task and data ought to be conducted in terms of production rules.

vinLIS Shute and Glaser (1991) developed an ITS designed to improve an

individual's scientific inquiry skills within microworld environment for learning principles of
basic microeconomics. In one study (Shute, Glaser & Raghavan, 1989), three groups of subjects

were compared: a group interacting with Smithtown, an introductory economics classroom, and a

control group. ibe curiculum was identical in both treatment groups (i.e., laws of supply and

demand). Results showed that while all three groups performed equivalently on the pretest

battery (around 50% corect), the classroom and the Smithtown groups showed the same gains

from pretest to posttest (26.4% and 25.2%, respectively); they significantly outperformed the
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control gomp. Although the clasmnxm group received more than twice as much exposure to the

subject matter as did the Smithtown group ( 11 vs. 5 hours, respectively), the groups did not

differ on their possest scores. These findings are particularly interesting because the

instructional focus of Smithtown was not on economic knowledge, per se, but rather on general

scientific inquiry skills, such as hypothesis testing.

SbeisL "Sherlock" is the name given to a tutor which provides a coached practice

environment for an electronics troubleshooting task (Lesgold, Lajoie, Bunzo, and Eggan, 1990).

The tutor teaches troubleshooting procedures for problems associated with an F-15 manual

avionics test station. The curriculum consists of 34 troubleshooting scenarios with associated

hints. A study was conducted evaluating Sherlock's effectiveness using 32 trainees from two

separate Air Force bases (Nichols, Pokomy, Jones, Got, & Alley, in preparation). Pie- and post-

tutor assessment used verbal troubleshooting techniques as well as a paper-and-pencil test. Two

groups of subjects per Air Force base were tested: (1) subjects receiving 20 hours of instruction

on Sherlock, and (2) a control group receiving on-the-job training over the same period of time.

Statistical analyses indicated that there were no differences between the treatment and the control

groups on the pretest (means = 56.9 and 53.4, respectively). However, on the verbal poshest as

well as the paper-and-pencil test, the treatment group (mean = 79.0) performed significanty

better than the control group (mean = 58.9) and equivalent to experienced technicians with

several years of on-the-job experience (mean = 82,2). The average gain score for the group using

Sherlock was equivalent to almost four years of experience.

Pmcal rIS ("Bid•e"). An intelligent programming tutor was developed to assist novice

prgrmmers in their designing, testing, and implementing Pascal code (Bonar, Cunningham,

Beatty, & Weil, 1988). The goal of this tutor is to promote on of progrmming

constructs or "plans" using intermediate solutions. A study was conducted with 260 subjects

who spent upto 30 hours learning from the Pascal ITS (see Shute, 1991). Learning efficiency

rates were estimated from the time It took subjects to complete the curriculum. This measure

involved both speed and accuracy since subjects could not proceed to a subsequeM problem until

they were completely successful in the currem one. To estimate learning outcome (i.e., the

breadth and depth of knowledge and skills acquired), three criterion posttests were administered

measuring retention, application. and generalzaon of programming skills.
"The Pascal curriculum embodied by the tutor was equivalent to about 1/2 semester of

itouty PascaL That is, the curriculum equaled about 7 weeks or 21 hours of instruction

time. Adding two hours per week for computer laboratory time (conservative estimate), the total

time spent learning a half-semester of Pascal the traditional way would be at least 35 hours. In

the study discussed above, subjects completed the tutor in considerably less time (i.e., mean = 12

hours, D = 5 hours, normal distribution). So, on average, it would take about three times as

37



long to learn the same Pascal material in a traditional classroom and laboratory environment as

with this tutor (i.e., 35 vs. 12 hours).

While all subjects finished the Pascal ITS curriculum in less time compared to time

needed to complete the curriculum under traditional intructional methods, there were large

differences in learning rates found at the end of the tutor. For these subjects (having no prior

Pascal experience), the maximum and minimum completion times were 29.2 and 2.8 hours, a

range of more than 10:1. In addition, while all 260 subjects successfully solved the various

pgrnmming problems in the tutor's curriculum, their learning outcome scores reflected differing

degrees of achievement. The mean of the three criterion scores was 55.8% (SD = 19, normal

distrimb1uon). The range from the highest to the lowest score, 96.7% to 17.3%, represented large

between-subject variation at the conclusion of the tutor. To account for these individual

df c in outcome performance, Shute (1991) found that a measure of workng memory

capacity, specific problem solving abilities (i.e., problem identification and sequencing of

elements) and some leaning style measures (i.e., asking for hints and running programs)

accournted for 68% of the outcome variance.

29fat. Two studies have been conducted to date with Stat lady. One study (Shute,
Gawlick-Grndell, & Young, 1993) tested the efficacy of learning PROBABLrITY from Star Lady

in relation to a traditional Lecue and a no-treatment Control group. Results showed that both

treatmen groups learned significantly more than the control group, yet there was no difference
between the two treatment groups in terms of pretest to posattest improvements after three hours

of nstruction. The results were viewed as very encouraging because, not only was the lecture a

more familiar learning environment for these subjects, but the professor administering the

Lecture had more than 20 years experience teaching this subject matter while this was Stat Lady's
first teaching assignment. When test items were separated into declarative and procedural

categories, they found that (a) students using Stat Lady acquired significantly more declarative
knowledge than the other groups, but (b) when procedural skill acquisition was assessed, the

Lecture group prevailed. Finally, a significant aptitude-treatment interaction was obtained where
high-aptitude subjects learned significantly more from Sa: Lady than from the Lecture

environment but for low-aptitude subjects, there was no difference in learning outcome by

condition. Together, these results suggest that a teacher-computer combination maximizes

leaning.
The second study (Shute & Gawlick-Grendell, 1994) compared learning from Stat Lady

vs. lemning from a paper-and-pencil Workbook version of the identical curriculum, and

addressed the question: "What does the computer contribute to learning?" Findings showed that

Stat Lady learners performed at least as well (and in some cases, much better) on the outcome

tests compared to the Workbook group, again despite the presence of factors strongly favoring
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the traditional condition. Specifically, they found that (a) Stat Lady was clearly the superior

environment for high-aptitude subjects, (b) Stat Lady subjects acquired significantly more

declarative knowledge than the Workbook subjects, and (c) regardless of aptitude, the majority of

learners found the Stat Lady condition to be significantly more enjoyable and helpful than the

Workbook condition.

Andem %G's Tutr. The geometry tutor (Anderson, Boyle & Yost, 1985)

provides an environment for students to prove geometry theorems. The system monitors student

peformnce and jumps In as soon as a mistake is made. The skill this system imparts is how to

prove geometry theorems that someone else has provided. Schofield and Evans-Rhodes (1989)

-onducted a large-scde evaluation of the tutor in place within an urban high school. Six

geometry classes were instructed by the tutor (in conjunction with trained teachers), and three

control geometry classes taught geometry in the traditional manner. The reseatchers closely

o the classes using the geometry tutor and traditional instruction for more than 100 hours.

One of the really nice and intriguing results of Schofleld and Evans-Rhodes (1989) evaluation of

this tutor was the counter-intuitive reversal of its effects. Although the geometry tutor was

designed to individualize lnstruction, one of its pragma0c and uninended side effects was to

enou-rage students to share their experiences and cooperatively solve problems. Since their

experiences with the Geometry tutor was so carefully controlled by the immediate feedback

principles of its operations, the tutor guarneed that student' experiences were much more

uniform and similar than was the case for normal classrooms. As a reSultu sudents could mor

easily share experiences and make use of one another's experiences and problem solving

srategies. Th e practical result was a great deal of cooperative problem solving.

"These evaluation results all appear very positive regarding the efficacy of ITS; however,

there is always a selection bias involved with the publication of unambiguous evidence of

successful instructional interventions. We are familiar with other (unpublished) tutor-evaluation

studies that were conducted but were "failures." However, the general positive Vend is viewed as

encourmatn, especially given the enormous differences among the six tuts in design structure

as well as evaluation methods. The findings indicate that these systems do accelerate learning

with no degradation in final outcome.

Obviously, principled approaches to both the design and evaluation of ITS are badly

needed before we can definitively judge the merits of these systems. Some principled approaches
are beginming to emerI.. For example, Kyilonen and Shute (1989) outlined a taxonomy of

learn skilds that has implications for the systematic design of ITS. They hypothesized a multi-
dimensional nt pedicting leamning outcome as a function of: type of

39



Setnvioment, type of knowledge/skill being instructed. subject maer, and
d~aractuastics of the learner (e.g., aptitude, learning style). With a few modifications to this
taoenmy, Relan md colleaues at the Armstrong Laborttory are curremnly trying to fill in the

cells in the matrix through systematic, empirical studies designed to assess performance across a

range of these aforementioned dimensions. Their goal is to map instructional and knowledge-

type vriables to learning.
In terms of systematic approaches to evaluating ITS, Shute and Regian (1993) suggested

seven steps for ITS evaluation: (1) Delineate goals of the tutor, (2) Define goals of the
evaluation study, (3) Select the appropriate design to meet defined goals, (4) Instantiate the

design with appropriate measures, number aid type of subjects, and control groups, (5) Make
careful logistical preparations for conducting the study, (6) Pilot test tutor and other aspects of

the study, and (7) Plan primary data analysis concurrent with planning the study. These
prnipe may also be employed as a framework for oauizing, discussing, and compaInrg ITS
evaluation studies.

FUTURE ITS RESEARCH AND DEVELOPMENT

What is possible for the fwture includes ample computing resources fQr every student

tapping electronically many resources outside the classroom. It includes the Idea of

a personal factotum that could serve as a knowledgeable intermediary ... to bridge the

gap between the classroom and the external world ... Virtual field trips linking

libraries and museums will have their holdings available in electronic (or photonic)

orm ..." (Nickerso, 1988, p. 312).

We've seen where UTS research and development has been, and we've discused a few of

the systems that have been evaluated in controlled sudlies. Well now examine some of the

conceivable futures for these systems. Given the diverdty of researcher in the area, and the

great differences among leamen, tbere will be, in reality, many different streams of research co-

occuning and the most likely future is prbably a composite of them all.

Future 1: Immerive Lann .nvimn-mut Evolve froUn ITS

Alden (age 11) walks into his cubicle at school and excitedly puts on his VR body-suit.

Today's itinerary (jointly produced by Alden and his main teacher) is teeming with new learning

adventures. After taking a Dramamine, he boards a boat heading up the Nile. This trip (and his

on-line tour guide) will help him learn about East Africa's geography, flora, and fauna as he

cruises, observes, hears, and smells things along the world's longest river. When the trip

concludes, he plans on visiting Olduva Gorge for some archeological excavations (after all, he 's
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already in Africa). Specifically, Alden will get a chance to help dig out some early human

remains. Then, for change of pace, Alden and his VR.oal Rafael, who lives in Mexico City, will

meet in a happenin space station they programmed together. They are learning each others'

language and culture--Rfael pks English and helps Alden learn Spanish, while Alden speaks

Spanish and assists Rafael with his English. Following a real lunch (not a virtual one, as all

this learning makes one hungry), Alden concludes his day on an artistic note. He's creating a

VR masterpiece representing his interpretation of the classical score, "The Wall" by the noted

composer Roger Waters, designing virtual sculptures, their choreography, and musical

arrangement.

This imagined future using Immersive Lemaing Envimninents can attain its Intructional

goals as follows. As a ghost prese , the tutor in these new systems can interact with a student
through digital speech, through text that floats In the air, or through replays. As an embodied

e, the tutor can vary In realt fnom a stick figure to a realistic mannequin, with facial

expression and voice. Tbe possibilities for realistic guidance that is as believable and as forceful

as a real tutor may be quite diflfcult to achieve, but it can be dramatic in Implications. The

believability of these new systemb inges on the quality of the immeruive experience they

provide. The diffeances between an hmmersive Leamni Envioment ad its 2D simulation

countepah depends upon the nsults of Immersion and In the differnt ways that students can

interact with the world. Imtead of moving a mouse or a joystick, learne cm move their own

hands to pick something up. Although they might not feel the object accurately, there e enough
coes to provide the sensation of picking things up. First, they see it happening, and vision

cdearly dominates other seanes to provide a compelling illusion. Contact and force cam be

provided realistically with expensive fore-feedback devices, or suggestively with sounds, such
as aping tha denotes collision or touching.

VR also opens the opportunity for providing handicapped or disabled peopl an

experece of unfettered motion; or new Intrac to control the world with minimal movements.

It can make invisible forces like gravity and air pressure visible and hence, more cble

to students. For Instn, Minstrel (198S) pointed out that high school students go dtough a

period of miscon ceions duuing which they confuse gravity and air pressum so that when air is

pumped out of a bell jar, objects inside it an expecd to b=ome ligtr or even floa VR offers

an opportunity for doing a set of experiments in which the fores of gravity and air pessme

could be made visible through graphic icons, such as colored anows or tetres. As the gas is

removed from a bell jar, it could be visible as a colored gas flowing ouL Students could actually

reach into the ben jar and manipulate the objects as the gas is removed. They could even adopt

the point of view, or hme of reference, of an object inside the bell jar, and experience the
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chop t forces lwctly. Making thse forces visible In a mutitude of lifelike Mad believable
awlmzaauu may have profound effects on children's uPi t ng of science.

It should be noted that the same poblems that plague ITS ae relevant to VR. hat is.
the emphlsis needs to periap shift away fom omnipotent VR sysems, toward a Coecto of
specific mini-systems and goals (e.g. teach the knowledge of X, the skill of Y, and provlde the

ines�t�ic feedback for Z).

lFbae 2-- TmiimIISD~n~r.nwfCaga~mte Tnuds Damnint,

Whitney (age 14) arrives in her classroom and takes a seat at her learning station, a

large couifortable desk with an embedded computer. The touch-screen is divided into many

dfren are that have distinct functions (e.g., graphics, spreadsheet, sound analyzer, dozens

of databiass). From the front of the class, a visiting detective (serving as the day's teacher)

accesses the international police databae (IPD) and obtains details surrounding a grisly

P r that happened the previous month in a small Italian city. She electronically tran i all

j hO•amation to the students, which includes electronic photographs of the physical

evidence (eg., the body and the weapon), psychological profdes of the victm and 11 sIs pect,

recorded Interviews, alibis and motives, phone logs, and so on. The stuents have to engage in a

wariety of coordinated cognitive acvities to solve the murder mystery. Whimey first brings ap

the psychological profil of the dead man. After reading the file, she notes in her electronic

scratch pad that the victim had a history of drug abuse and depressio On anoter part of her

25" screen, she accesses a 3D photo of the vitm, zoom-In on his anr, and sees evidence of

two recent Intravenous Inectons. The pathology report from the coroner's ofce concluded that
the victim died from a gunshot wound to his heart, but traces of a narcotic substance were also

found in his body. Playing the interview tapes on her "stress analyser," Whitney discovers that

two of the suspects are clearly lying. Throughout the day, pule pieces slowly come together,
the detective-teacher offers afew suggesons, andfinally, Whifteyftgures out whodunit (with

S93 probabifty of accuracy).
In this vision of the futre, "onmooe" ineliet wrin syms have been rpae

by colections of specialized educatid or cognitive tools-te- mological devices that help
people to purform cognitive tasks (ie., help them know, think, or lam). For exampie,
imulastos, matm spteadsheets, and extensive databases are cognitive tools available within

dassroms. Applenticeshp training is envisioned as the main source of imparting skill, in

concm with the supemeaw simulator and associated tools for the apprentice to employ

during karnin. whe training situations relate to real-world events, thus placing ]eaning within a
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One mom tmht TrS may disppear in the future Is that, while many researchem agree

tdu bIefl in In rrS is directly a function of the presume of a studet model, the student

model may, In fact, be the wrmg frnmewok around which to build good learning machines.

Dey nd LAjoie (1993) pgr e 1P six reasons why tme studet modeling pardigm is
b (1) In complex domains, the student model camot specify all possible solution

pstk (2) One cannot deftenine or Indh all possible "buggy" behavios (3) "Camned" text is
-.3-et1 to principles of tuorial dialog, (4) Reflection and diagnosis should be performed by

dim Aw . not the tutor. (5) mpemeIn the student modeling approach is very difficult
teAmncaPly, iad (6) Model-tracIng is only applicable to procedural learning, but the focus should

be on critical thinking and problem solving
A mond factor tht could contribute to the decline of ITS is that the term "intelligent

tuorn systm" is associated with philosophical issues relating to the nature of intelligence.
Mmy people associate intelligence with awareness aid, since no AI system could be said to have
achieved awamase theme people would not mu that any ITS had ever been developed.

evet ss dozenm of "Inmelligen" tuon system have been rutinely reported in the

lrme anre, ud even mom discussed at conferences. So, the name (aid hence, the whole

I eofriue) may be Inappropriate or misleading. Simply putg ITS may promise too much, deliver

too little, and constitute too restrictive a construct. Ougerty (1993) summed it up best as,

There Is a sense In which the goals of tradtitonal intelligent tutoring system are

both too ambitious and too narrow. Most tradifonal MT'... are designed to provide

tutoring In a stand-alone setnt... This ambitious goal requires that the ITS handle

all ampec of the very docult task of tutoring, Inchldig eer problem solving,

student diagnosis, kilorg Instruction to changing student needs, and providing an

instructional environment... On the other hand, the goal of developing very

Intelligent stand-alone ITS is narrow In the sense that It limits our conception of how

intelligence can be incorporated into computer-based training and education (p. 3).

As a parallel, consider what happened In the field of robotics. First-generation robots

were contructed out of pure reseiarh curiosity. Tlwn, after the initial flurry of excitement in the

1960a aid early 1970s died down, emphasis shifted from building single-system robots, to more

emphasl•s on building component patL .Iis trade-off was due to the problems associated with
desiguing a system dhat has general-purpose problem-solving skils versus one with more focused

expetise. The next generation oi ubots, arising fnrm the work being done on the individual

part, may resolve this conflict by becoming a expert in a given domain, but also p a

wide eperolm of general poblem-solving skills. The same applies for ITS. Rather than
tantln to build an miptn tutor, a more frnid appoach might be to create a coherent

collection of computerized tools (i.e., a divide-md-conquer strategy).
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Putnit 3: Dimtu• ! mingno

Curtds (age 9) rolls out of bed, greets his parents (already at work in their cubicles), eats

breakfast, glances at the sleet falling outside, then ambles over to his computer for his morning

curriculum. Curtis "goes to school" in his home. When he logs onto the Public School System,

he first checks hIs mail, then receives a menu of options for the morning's learning project:

Would he like to learn about Tyrannosaurus Rex, the politics leading up to World War H, or

what caused the California earthquake of 1994? All he has to do is tap into the appropriate

database, travel to the correct geographical region and time period, and interact with these

respective environments through the mult-media systems. The respective databases all include

on-line hosts to narrate events and answer questions, movies to depict a range of relevant topics

(from mundane to crucial), and simulators to allow Curtis to experiment within the diferent

worlds. After choosing T. Rex as his learning project, the host narrates some basic declarative

irformatdon (e.g., when they existed and for how long, size of the dinosaur, diet, mating habits,

other co-existing plants and animals) then Curtis uses the simulator to manipulate geological

events to see their ramifcations on the dinosaur. The first thing he does is to reverse the

advancing ice age (introducing a global warming trend in its place), and then sees its

implications on not only the survival of the lizard king, but also on the evolution of other plants

and animals on the planet. Periodically, the host asks for some predictions, Curtis responds,

and recelvesfeedbackfrom the host. On occasion, other students in the same module

communicate their finding, and questions to him over the network lines.

As can be seen, this future is attractive for a lot of reasons. With distance learning, one

can allow learners to stay at home or some other convenient learning location (saving time and

traspoutWon costs), and conmect to a rich network of information and training software,
available across an information super-highway. To achieve this future, expert systems-spanning

a huge array of possible domains-wre needed that present comprehensive information, as well as

.povide thoght-pmvoking questions, and respond to student-directed queries. 1The network

should also allocate nodes to which one's pees can be connected, thus providing for

coflMao learning opportunities. Notice that this distance-learning future is not limited to
accessing declarative knowledge from databases. Rather, software (e.g., simulators) should also

be accessible to practice skll in any specific domain.

in this future, it is possible to quickly access on-line, digital-rich libraries with virtually

limitless realms/databases for our personal learning pleasure. And while the educational horizon

will invariably include VR technology as an important Instructional medium (see Future 1), it

will be just one of many media.
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Pinaily, to attain this future and the metaphor and promise of the library as a knowledge

space (i.e., th epiome of Carbonell's drenm and the hypertext vision), we must first make a
fundame-al change how we think about education. Our narrow conception of education (e.g.,

"school"), only relevant for those between the ages five and eighteen, is no longer appropriate.

Education should be for everyone, all ages, and available in all places.

]Fmzre 4: ImlivildnaliwM. Learning Ii Out. Cflahoraliye I arning is In

Sierra, Nicole, Fernando, Sasha, Kevin, and Uri comprise "Team 3." They are between

the ages of 18-22 (college sophomores). In their sociology class, there are two professors and

five teams, each team reftecting an optimal mixture of aptitude, gender, learning styles,

personality types, and ethnic backgrounds. They are all geared-up for their on-line VR lesson on

"rackal prejudice." The six students are transported to Birmingham, Alabama on a hot August

day in 1951. In reality, only Sasha and Kevin are African-American, but in this lesson, all six

kids are transormed into "Negroes" (as they're called in 1951). The lesson requires them to take

a city bus to a "Whites Only" park that has a nice public swimming pool, try to swim in the pool,

then go home to their impoverished residences on the outskirts of town. Problems arise

immediately in this compelling simulation when they board the bus. Automatically, they all sit

down in the front seats: after all, there are only four other riders on the bus, sitting In the middle

section. The white bus driver rudely informs them to 'move to the back" whereupon Sierra

(Team 3"s outspoken leader) politely asks "why?" When she gets slapped for her impudence,

Nicole starts to cry. But Sierra persists. Then the bus driver utters some very ugly sentiments

about them all, based solely on their skin color. They see by his reddening face and posture that

he's about to strike out again, so they collectively decide to move quickly to the back of the bus.

During the ride to the park, they discuss their experiences (what they ftel, what they could have

done differently, what caused this state of affairs, etc.). Sasha and Kevin contribute valuable

oimaodon to the discussion from personal tales related to them by their grandparents and

great-grandparents. Finally they arrive at the park, and things really go downhill from there.

They're not allowed to enter the park or swim in the pool, they're called "dirty" and worse, and

the simulation makes them all pairoully aware of racial prejudice. Afterward, Team 3 reviews

and discusses all of the events, and their professors provide information, as needed, about the

historical roots of racial prejudice leading up to the situation they encountered in their lesson.

'w motivating force driving this future is the belief that collaborative learning is

superior to individualized learning. Tbat is, learning may be invaluably enhanced from

conversaions with those who have differing opinions, backgrounds, or skills, know more about
same topic, or who can ask perceptive, thought-provoking questions. Basic research is being
onduct in cognitive and social psychology that seeks answers to questions pertaining to the
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optimal compositions of leaner groups. Some of these research questions include: Is it better to

mix genders, or have more homogeneous groupings? When establishing groups based on

aptitude levels, is it better to match highs with highs, or a high with a low? What are the optimal

odlnations of affective charactersc (e.g., passive with gregarious)? And what other

cognitive/socal considerations should be made (e.g., letting individuals self-select their group vs.

being assigned)? According to Resnick and Johnson (1988), sociological studies show that most

people prefer personal sources of information, and computers can eni-,nce such communications.

Technology is evolving to the point where computer systems can routinely contain

leaming environments that support a high level of social interaction. This important technology

facilitates effective learning, especially within the classroom. The atmospheres in the classrooms

containing the connected computerized environment are boisterously controlled, similar to what

Feurzeig (1988) found in a collaborative mathematics course that was "...more like a beehive

than a math class." (p. 117). These collaborative classrooms can even support networked VR,

which means that students, trainees, and experts can interact between schools and remote sites,

and that trainees and instructors can share the same expenence. Lzarners can work

collaboatively on the same project. On the other hand, different students can work on the same

project at the same time, without awareness of each other's presence, but with some invisible

insructor lurking over their shoulders. The number of combinations are staggering, and their

l ,ngrng potential is unknown.
"The other person in the networked world could also be an autonomous agent, or cyborg,

part real and part synthetic. This idea raises a whole new set of possibilities for a computer

coach, explanations, and guidance. "Social interface agents" (Tborisson, 1993) have progressed

steadily as information about how to direct gaze, when to use paraverbals (hmmm, uh ...) and

when to take turns in a dialogue, all become better undertood. Improvements in modeling
humn actions and planning (e.g., Badler, Phillips, and Webber, 1992), Including natural

language interaction, will soon lead to the development of virtual agents that can coach and guide

learners' actions within carefully planned learning activities. Some of these interactions are

already available in a text form (Curtis and Nichols, 1993). Mmese virtual agents focus on

suxdents' errors by offering experts' stories (Kedar, Baudin, Bimbaumn, Osgood, and Bareiss,

1993). Networked digital spaces, such as digital libraries, demand new techniques for navigating

through these complex spaces without getting lost. Issues of how to maintain a sense of location

(Benedikt, 1991) and how to best use these environments to support memory with the method of

loci (Neisser, 1987) need more research.

As shown in the above illustration, VR provides a new saliency on the notion that some

things (such as race and gender) are constructed, and that we can become what we play, argue

about, and build. For instance, text-based VR already invites the participation of women and
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girl in social interactions in ways that adventur games like dungeons and dragons did not

(TUkle, 1993). Turkle points out that MUDs (i.e., multi-user dungeons) are easily used for

gender swapping. When gender roles we switched, sexist expectations and overt demands that

might be ignored in daily life become highly visible and reactive, and they are openly discussed.

Tbe MUD then becomes an evocative object for a richer undersanding not only of sexual

haassment, but of the social construction of gender.

FPtnre 5: Mw US Apmuh Coni Becoming Truly lntelligem

Wesley (age 10) arrives at the math lab where he sits in front of a computer that is going

to help him learn to solve algebra word problems better. Today's focus is on those troublesome

distance-rate-time problems. After stating his name, the computer accesses Wesley's records,

flagging his salient strengths and weaknesses (i.e., not only his higher-level aptitudes, but also

the low level productions that he's acquired and not yet acquired). Beginning with a review of

concepts and skills that he learned the day before, the MTS generates a problem which is just a

link bit out of his grasp. The ITS then works out the correct solution to the problem, along with

an alternative solution that Wesley is very likely to come up with based on its student model of

him. In fact, he solves the problem exactly like the tutor predicted. As part.of its student model

of him, the ITS "knows" to instruct Wesley with an emphasis on a graphical representation of the

problem to clarify the discrepancy between the correct and incorrect solutions and facilitate the

formation of a functional mental model. Thus, the tutor presents two animated trains appearing

on opposite sides of the screen that converge at a point almost In the middle of the screen. They

travel at different rates of speed. The problem statement stays up at die top of the screen, and

the tutor points out, as it periodically pauses the simulation, what elements should be attended to

and when. Wesley states that he understands the mapping between the explicated mental model,

the appropriate equation, and the relevant parts of the word problem. So the ITS presents an

isomorphic word problem. This time he solves it correctly, without any supplemental graphics.

Wesley exercises an option to play around with some trains, missiles and boats on his own for a

while to test his emerging understanding. He views his "score" of curricular elements acquired,

and seems a little frustrated about his progress, but the ITS reassures him that he is proceeding

at a reasonable rate. Instruction and learning continue.

For ITM to evolve to the point seen in the above scenario, more controlled research must

be conducted in three areas of intelligence: the domain expert, the student model, and the tutor.

First, the subject matter must be understood by the computer well enough for the embedded

expert to draw inferences or solve problems in the domain. Next, the system must be able to

deduce a learners approximation of that knowledge. Finally, the tutorial strategy must be
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intelligent to the point where an on-line tutor can implement strategies to reduce the differences

between the expert and student performance (Burms & Capps, 1988).

Solutions to problems involving difficult AI, psychology, and pedagogy will emerge

fram research endeavors that yield information about effective and efficient ways to (a) represent,

utilize, and communicate domain knowledge, (b) represent an individual's evolving knowledge

state (for both declarative knowledge and procedural skill), and (c) instruct the material most

effectively for a particular learner. Some specific research questions include: How can

computers better understand natural language (input as well as output)? What kinds of inference

mechanisms can optimally model students' knowledge status? How can computers be

progranmed to understand "semiogical" reasoning (including intuitions, pet theories, prior

experiences)? What we the specific characteristics of learners who perform better in certain types

of leaning environments and not in others? Are certain domains better suited for specific

instructional methods? When should feedback be provided, what should it say, and how best

should it be presented? How much learner control should be allowed?

Some additional limitations of current TS have already been mentioned (e.g., student

models cannot specify all possible solution paths in complex domains, model-tracing is only

suitable for procedural learning). One possible solution would be to use a.kind of model-tracing

approach for instructing well-defined procedural skills, using an underlying expert and student

model that are primarily rule-based. And for instructing declarative information or complex, ill-

structured domains, the 17S may include a knowledge base that is a semantic net with extensive

indexing (ike CBR).

Whatever future ultimately evolves from ITS, the fields of AI, education, and

psychology have p1,vt: enormously from the contributions made in the IrS arena. Learning

theories have been tested; individual differences issues have been validated against complex,

real-world learning tasks (e.g., MTS, in contrast to artificial laboratory tasks); Al programming

techniques have been refined; different instructional approaches have been compared, controlled

studies conducted of aptitude-treatment interactions, and so forth. So, in terms of research

vehicles, T are greatly underestimated. But for purposes of education, their time may be

limited; maybe not.

CONCLUSIONS

Before the computer age, the prevailing instructional approach was sufficient (e.g., one

teacher tranmmitting information to about 30 students), but we now reside in a computerized

world. Initial implementations of CAI mirrored this pedantic approach, and to some extent, so

does the currently popular model-tracing approach in sophisticated ITS. Do we need to change

our educational philosophies or systems?
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We have most of the components necessary to advance educational reform. Not only is

there great need for change, but also there are powerful, affordable technologies available to

support L Mming are definitive answers to the psychological controversies cited earlier. Basic
research Is actively being pursued to resolve these issues. For example, studies are beginming to

consistently find that higher-order thinking skills are not acquired through didactic approaches

(i.e., straight conveyance of facts), but rather, through learers' active involvement with the

subject matter. This "constnactivist" view of learning allows students to achieve intellectual

accomplishments not possible under more traditional pedagogical approaches (Collins, Brown &

Newman, 1989; Resnick, 1987).

The table, below, contrasts old versus new approaches to instruction (from Means,

Blando, Olson, Middleton, Morocco, Remz & Zorfass, 1993):

Table 2: Old versus New Awroaches to Instruction

OLD NEW

Teacber-directed activities Student-directed explorations

Didactic teaching Interactive modes of instruction

Short instruction on a single subject Extended, multidisciplinary instruction

Individual work Collaborative work

Teacher as knowledge dispenser Teacher as facilitator

Ability groupings Heterogeneous groupings

Assessment of factual knowledge and Performance-based assessment

discrete skills

This table provides a clear direction for ITS research and Implementation. That is, to get
from "old" to "new," we need to open up learning environments that promote increased learner
initiative and between-learner collaboration. We should assess learning as it transfers to

authentic tasks, not standardized tests, and attempt to establish connections across various fields

so topics ae not learned in isolation of one another. As technologies emerge and advance, we

can fit them into this f-mework. Furthermore, additional research is needed to validate the

goodness of the new -wer the old approach to teaching-learning.

Look around you. Computer technologies have dramatically transformed the workplace,

communications and commercial activities, as well as the entire business community. But

education remains status quo. We need to harness the computer's potential and find ways to

employ it in promoting educational change. Are current and prevalent ITS adequate for our

purposes--now and in the 21st century (just right around the corner)? We believe that, as
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currently implemented, these systems may have asymptoted in utility. A philosophical shift has

been suggested in this chapter, away from stand-alone instructional devices and toward using

tools to aid in the more collaborative learning process. There ar actually very few ITS in place

in schools, yet they exist in abundance in research laboratories. We need to move on.

As we've discussed in this paper, reform can proceed along a number of pathways

(perhaps in parallel). For instance, computer graphics are getting better every day; we can now

develop 3-dimensional virtual environments where individuals can interact with any artificial

world we choose to program (or purchase). Satellite transmissions can relay data to very distant

locations; learners from different parts of the globe can access distal data, or even get together

and jointly experience and solve various problems. Cognitive tools abound (e.g., simulators,

hypertextjhypermedia formats, etc.), and we seem to be ready to recast our convictions about

ITS. Rather than vying to create all-knowing, all-pmrpose teaching machines, a more fruitful

approach may be to develop specific computerized tools. These tools can be specific for a given

domain, or general purpose, applicable across domains. To paraphrase a well-known quotation:

A person who is given afish will eat for a day, but a person who learns how to fish will eat for a

lifetine.

We can see the seeds of discontent growing. Go to any ITS-related conference and

notice how reseachers in the field have begum to discontine using the term "ITS." Instead, in a

show of semantic squirming, they refer to advanced automated instuctiond systems (formerly,

ITS) as: Interactive Learning Environments, Cognitive Tutors, Individualized Teaching Systems,

Computer-Assisted Learning, Automated Instructional Support Systems, Computer-Based

Learning Environments, Immersive Tutoring Systems, Knowledge Communications Systems,

Computer Tools, and so on.

Not only is the ITS construct too ambitious, but there is no universally-accepted

definition of what comprises computer intelligence. While our woddng definition of intelligence

is fairly specific, there exists a wide range of criteria in the literature related to computer-tutor

intelligence. For instance, some say that for an automated Instructional system to earn the label

"intelligent," it must demonstrate the ability to learn by showing an evolving knowledge base.

Yazdani and Lawler (1986) asserted, "No system which is too rigid to learn should be called

intelligen" (p. 201). Others have argued that intelligent systems must provide for learner

control during the learning process (Papert, 1980, Scardamaula, et al., 1989). Still others (e.g.,

MacKenzie, 1990) suggest that we reserve the word "intelligent" to describe only those systems

showing truly impressive advances (e.g., intuition, empathy). Are these even realistic goals?

The fields of Al, psychology, and education have all greatly benefited from 1TS research.

But to conitinue (see Future 5), much more systematic research is needed to achieve some of the

great potential offered by these systems. One suggestion is to begin a coordinated stream of
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systematic I1S research and development, altering specific features of existing systems and

evaluating the results of those changes in accordance with a principled approach. According to

Self (1989), "Once a sounder foundation for ITS has been specified, it becomes possible to

identify the elements of a theory of ITS. These elements lie within (formal) AM, in areas such as

belief logics, reason maintenance, meta-level architectures, and discourse models-areas from

which ITS research has been divorced" (p. 244). Intelligent utoring systems, as we now know

them, may not exist 20 years from now, but we're on the right path, the motives are

commendable, and the learner will ultimately profit.

As we began this review of ITS with the evolution of computer technology, so do we end

it. ITS and related, developing technologies for education and training are constrained by two

important factors: (a) the cost and power of computers, and (b) the pragmatic and theoretical

knowledge of how best to employ them. Every month, computers are dramatically decreasing in

cost and increasing In power, these changes bearing directly on consumer knowledge and

application of the technology. While discussion of the interaction between these two factors goes

beyond the scope of this chapter, we can make u preditions about upcoming

hardware and software developments. The MIPS (millions of instructions per second) curve is

already converging on a BIPS (billions of instructions per second) curve Ina4m exponential

explosion that knows no limits. Desktop computers with 100 MIPS are currently available, and

this raw horsepower makes a qualitative difference in computing possibilities. Soon, powerful

systems will be available in notebook- and calculator-sized formats that fit into our hands, shirt

pockets, and purses. Further, software tools enable us to learn from, and perform within, all

major domains, such as algebra, biology, physics, art history, computer science, home

economics, psychology, botany, calculus, accounting, and even manufacturing, medicine, and

engineering. At our finger tips, we will be able to retrieve information, translate foreign

languages, complete our tax returns, work out investment portfolios, analyze sales trends, and so

forth. Software will be everywhere with embedded "assistants" to explain, critique, provide on-

line support and coaching, and perform all of the ITS activities outlined in this chapter. Society

stands at the edge of all this. Although the timeline for these exciting developments is unceain,

we do know that the research conducted so far is just a drizzle in comparison with the deluge to

come.
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