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Intelligent Tutoring Systems: Past, Present, and Future

SUMMARY

In this paper, we address many aspects of Intelligent Tutoring Systems (ITS) in our
search for answers to the following main questions: (a) What are the precursors of ITS? (b) What
does the term mean? (c) What are some important milestones and issues across the 20+ year
history of ITS, (d) What is the status of ITS evaluations, and (¢) What is the future of ITS? We
start with an historical perspective.

PRECURSORS OF ITS

Early. Mechanical Systems

Charles Babbage (carly 1800s), is typically credited with being the first to envision a
multi-purpose computer. He dreamed of creating an all-purpose machine which he called the
"analytic engine." However, because of the technological constraints of the time, he was never
able to build his dream, although he did succeed in building a difference engine, an automatic
(mechanical) means of calculating logarithm tables,

The notion of using "intelligent machines” for teaching purposes can be traced back to
1926 when Pressey built an instructional machine teeming with multipie-choice questions and
answers submitted by the teacher. It delivered questions, then provided immediate feedback to
cach leamer:

The somewhat astounding way in which the functioning of the apparatus seems

to fit in with the so-called ‘laws of leaming’ deserves mention in this connection.

The 'law of recency’ operates to establish the correct answer in the mind of the

subject, since it is always the last answer which is the right one. The law of

frequency' also cooperates; by chance the right response tends to be made most

often, since it is the only response by which the subject can go on to the next

question. Further, with the addition of a simple attachment the apparatus will

present the subject with a piece of candy or other reward upon his making any

given score for which the experimenter may have set the device; that is the law

of effect’ also can be made, automatically, to aid in the establishing of the right

answer (Pressey, 1926, p. 375).

While the above system was definitely clever for its time, it could not be construed as
intelligent as it was mechanically set with pre-specified questions and answers. So, although it




was inflexible, this system did incorporate contemporary leaming theories and pedagogical
strategies into its design (e.g., giving out candy for correct responses).

General-purpose digital computers arose in the mid-1900s, paving the way for truly
(artificially) intelligent machines. Basically, these computers consisted of a numerical central
processor whose mechanism was electronic, not mechanical, and based on a binary, not decimal,
system. They were also characterized by having a built-in ability to make logical decisions, and
a built-in device for easy storage and manipulation of data.

During this period of computer infancy, Alan Turing (1912-1954, British mathematician
and logician) provided a major link between these modem, digital computing systems and
thinking. He described a computing system capable of not only "number crunching"” but
symbolic manipulation as well. He also developed what is now known as the "Turing test,” a
means of determining a machine's intelligence. The test consists of an individual asking
questions, in real-time, of both a human and computer. The interrogator attempts, in any way
possible, to figure out which is which via conversations over the communication links. The
Turing test has particular relevance to intelligent tutoring systems. The core concept behind the
test is whether a reasonable person can distinguish between a computer and a person based solely
on their respective responses to whatever questions or statements the interrogator renders. Thus,
for a computer to pass the test, it would need to communicate like a human, which is a nontrivial
goal. This line of inquiry has challenged and occupied researchers for the past 20+ years, and
continues to play a prominent role in the development of ITS (see Merrill, Reiser, Ranney, and
Trafton, 1992). Other communication-related research includes devising knowledge structuring
and hypertext techniques within ITS to provide answers to the many possibie questions that
students could pose to the system. So, the success of this ITS enterprise really can be measured
in a way that is similar to the Turing test: How well can the ITS communicate? We should point
out, however, that the goal of ITS is to communicate its embedded knowledge effectively, not
necessarily in an identical manner as human teachers. In fact, some teachers have great difficulty
achieving the effective communication goal themselves.

Concurrent with the gradual emergence of computers on the scene (circa 1950s),
educational psychologists began reporting in the literature that carefully-designed, individualized
tutoring produces the best leaming for the most people (e.g., Bloom, 1956; Carroll, 1963;
Crowder, 1959; Glaser, 1976; Skinner, 1957). Thus, it was quite a natural development to apply
computers to the task of individualized teaching. From the 1970s to the present, ITS have been
heralded as the most promising approach to delivering such individualized instruction (e.g.,
Burton & Brown, 1982; Lewis, McArthur, Stasz & Zmuidzinas, 1990; Shute & Regian, 1990;
Sleeman & Brown, 1982; Wenger, 1987; Woolf, 1988; Yazdani & Lawler, 1986). We'll now
review what led to the development of “intelligent" computerized instruction.




In the early 1960s, programmed instruction (PI) was educationally fashionable. This
kind of pedagogy related to any structured, goal-oriented instruction. According to Bunderson
(1970), P1 required the program designer to specify input and output in terms of entering skills
and terminal behaviors of the leamer. In performing a task analysis, the designer determined the
sub-problems or component behaviors, as well as their relationships. As leamers were led
through the problems in the curriculum (lock-step), overt responses were obtained at every step;
incorrect responses were immediately corrected, and leamers were always informed of their
solution accuracy before moving on to some other content area. Most supporters of the Pl
technology strongly believed that it would enhance leaming, particularly for low aptitude
individuals. However, evidence supporting this belief was underwhelming (see Cronbach &
Snow, 1981).

In general, Pl refers to any instructional methodology that utilizes a systematic approach
to problem decomposition and teaching (e.g., Briggs, Campeau, Gagné, & May, 1967; Gagné,
196S). That PI results in a computer program, known as computer-assisted instruction (CAI or
computer-based training, CBT). Some similarities between PI and CAI are that both have well-
defined curricula and branching routines (intrinsic branching for P1, conditional branching for
CAI). A major distinction between the two is that CAl is administered on a computer.

Computer-assisted instruction also evolved from Skinnerian stimulus-response
psychology, "...the student's response serves primarily as a means of determining whether the
. communication process has been effective and at the same time allows appropriate corrective
action to be taken” (Crowder, 1959). In other words, at every point in the curriculum, the
computer program evaluates whether the student's answer is right or wrong and then moves the
student to the proper path. Built-in remediation loops tutor students who are attempting to
answer a question incorrectly. If learners answer correctly, they are moved ahead in the
curriculum. Figure 1 illustrates a typical flow of events in CAL




Computer-Assisted Instruction
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Figure 1

The teacher constructs all branching in the program, shead of time. The normal CAI
procedure presents some material to be leamed, followed by a problem to be solved that
represents a subset of the curriculum. Problem solution tests the leamer’s acquisition of the
knowledge or skill being instructed at that time. The student's answer is compared to the correct
answer, then the computer gives appropriate feedback. If the answer is correct, a new problem is
selected and presented, but if the student answers incorrectly, remediation is invoked that reviews
the earlier material, presents simpler problems that graduate to the depth of the original material,
and so forth. Remediation usually requires some attempt to find the source of the efror and to
treat it specially.

As can be seen in the figure, there are several places where this simple model ray be
expanded to create more flexibility and, hence, render it adaptive to individual learers. For
instance, various mastery criteria can be imposed, where subjects have to answer a certain
proportion of items correctly before moving on. Failure to reach criterion would force the
student back into remediation mode (see "If Incorrect” branch) where a different problem is
presented, rather than the problem that caused the error.




Intelligent Computer-Assisted Instruction

To distinguish between simple versus more adaptive CAl (i.e., "intelligent” computer-
assisted instruction, ICAI), Wenger (1987) pointed out that actually there is no explicit
demarcation between the two. Instead, there's a continuum, from linear CAI, to more complex
branching CAl, to elementary ICAL, to autonomous (or stand-alone) ICAL This continuum is
often misconstrued as representing a worse-to-better progression. Yet, for some leamning
situations and for some curricula, using fancy programming techniques may be like using a
shotgun to kill a fly. If a drill-and-practice environment is all that is required to attain a
particular instructional goal, then that's what should be used.

Suppose you wanted to build a computerized instructional system to help second graders
leam double-digit addition. If student A answered the following two problems as: 22 + 39 = 61,
and 46 + 37 = §3, you'd surmise (with a fair amount of confidence) that A understood, and could
successfully apply, the "carrying procedure.” But consider some other responses. Student B
answers the same problems with 51 and 73, student C answers with 161 and 203, and student D
answers with 61 and 85. Simple CAI systems may be incapable of differentiating these incorrect
solutions, and remediation would require all three students to re-do the specific unit of
instruction. But a big problem with this approach is that typically, there is little difference
between the remedial and original instruction. That means that a student who didn't get it right
the first time, may not get it right the next time if the same instruction and similar problems are
used.

A more sensitive (or intelligent) response by the system would be to diagnose/classify
B's answer as a failure to carry a one to the tens column, C's answer as the incorrect adding of the
ones column result (11 and 13) to the tens column, and D's as a probable computational error in
the second problem (mistakenly adding 6 + 7 = 15 instead of 13). An intelligent system would
remediate by specifically addressing each of the three qualitatively different errors.

Attificial Intelligence and Cognitive Pgychology. How can a computer system be
programmed to perform intelligently? This question drives the empirical and engineering
research in a field called artificial intelligence (AI). The simplest definition is that, "Artificial
intelligence is the study of mental faculties through the use of computational models." (Charniak
& McDermott, 1985, p. 6). One of the main objectives of Al is to design and development of
computer systems that can solve the same kinds of activities that we deem intelligent (e.g.,
solving a math problem like the one illustrated above, understanding natural language,
programming a computer to perform some function(s), maneuvering an aircraft through
obstacles, planning a wedding reception, and so forth). There are far too many Al applications to
delineate in this chapter. For our purposes, Al techniques relevant to ITS include those dealing
with the efficient representation, storage, .nd retrieval of knowledge (i.c., a large collection of




facts and skills--correct and buggy versions), as well as the effective communication of that
information. In addition, Al techniques can include inductive and deductive reasoning processes
that allow a system to access its own database to derive novel (i.e., not programmed) answers to
leamers' queries.

Cognitive psychology also provides part of the answer to the question of how to get a
computer to behave intelligently by examining issues related to the representatior: and
organization of knowledge types in human memory. Research in this area provides detailed
structural specifications for implementation in intelligent computer programs. Cognitive
psychology also addresses the nature of errors, a critical feature in the design of intelligent
systems to assist leamers during the learning process.

Ihe Nature of Errors. The idea that students and trainees make mistakes that have to be
corrected is fundamental to teaching and leaming. Something so fundamental ought to be
strongly resistant to change, so it is really quite surprising how the idea of a mistake or error has
undergone radical change over the past two decades of ITS development. The traditional view of
errors encompassed many kinds: from inexplicable accidents, to deliberate inaccuracies; but the
most widely held view was that remedial errors stemmed from inaccurate or insufficient
knowledge. Remediation then corrected the mistake by providing the correct knowledge or
overriding the inaccuracy. The first major shift that occurred in this view began with the
development of a theoretical position that errors arose because of complex organizations in
knowledge structures that were not wrong, in the traditional sense, but represented the best a
student could have at that stage of cognitive development. These developmentally appropriate
knowledge structures were called misconceptions, and they were soon analyzed in a broad range
of sciences (e.g., Aristotelian versus Newtonian physics, studies of heat and temperature) and
practical training environments (automobile repair, radar maintenance).

This view of error was explicated in great detail in a series of analyses and experiments
by Barbara White and John Frederiksen (1987) in their QUEST system for analyzing levels of
understanding of electrical functioning into graduated mental models. Their analyses were
actually implemented as qualitative models of the electrical activity in automobile ignition
circuits. Simple models, or models that occur developmentally early in the growth of
knowledge, were not only incomplete, they were wrong or inconsistent in basic ways. They
could not easily be transformed into more complete models. Yet, the simple models effectively
captured the knowledge of novices as they moved on the road to expertise, so it is not clear if
these models could have been improved at that stage of development. Thus, it appeared that
error or inconsistency was necessary in the growth of knowledge.

As they demonstrated, it took a great deal of effort to conduct error analysis with
sufficient scope and detail to be able to arrive at such complete models. It is perhaps for this




reason that no other example comes close to duplicating their feat. Yet, the intellectual
implications of graduated mental models as the basis for misconceptions and error is stunningly
apparent for whoever next decides to pick up the challenge and analyze knowledge structures into
such progressive systems.

An altemate conception of error that has developed contemporaneously with the
misconception literature, is that of a buggy algorithm. Work in this area began with Burton and
Brown's seminal simulation—-How The West Was Won--where certain strategic and algorithmic
bugs were identifie  in student play. A specific program was written, DEBUGGY, that
attempted to identify and remediate these bugs (Brown & Burton, 1978; Burton, 1982). Unlike
the work on misconceptions and graduated mental models, bugs were simpler deconstructions in
smaller semantic networks of skills.

This analysis of errors has had a productive life of its own in the work of Soloway
(catalogs of bugs, Johnson & Soloway, 1984), Sleeman (mal-rules, Sleeman, 1987), and
VanLehn (impasses, VanLehn, 1990). It continues strongly in the model-tracing technology of
John Anderson's various tutors (e.g., Anderson, 1993) where bug catalogs or lists of errors are
embedded in specific production-system rules that manage all interactions between the student
and tutor. Anderson has proclaimed a much broader view to encompass not only errors, but all
cognitive skills. His position is, simply stated, that cognitive skills are realized by production
rules. Not only errors, but all skills, are decomposable into unitary rules that fit into a grand
cognitive architecture dominated by production rules.

VanlLehn's work on impasses extends this buggy conception of errors by analyzing the
ways these errors are generated (VanlLehn, 1990). Oversimplifying his analysis somewhat,
VanLehn's framework can be described by saying that bugs are the result of unsuccessful
attempts to extend existing rules to apply to novel situations (repairs). These repairs can be
modeled and predicted by impasse theory to predict students bugs and problem solving. Usually
the repairs are simple actions, like removing an action step in the production rules, substituting
an operator, or deleting a variable.

‘The final view of errors that has evolved along with ITS sees the error as a result of
insufficient support given to the student. When a student leams a new skill or body of
knowledge, it is through the support of teachers, students, or other parts of the environment.
This environment acts as a general scaffolding to strengthen the students first new skills or
knowledge structures (Palincsar and Brown, 1984). it also provides the context that makes the
skills or knowledge meaningful. Some of this scaffolding lies literally in the minds of the other
students or teachers, or more precisely, between the minds of everyone. As a kind of social
group think, the ideas and scaffolding are part of the total situation (Brown, Collins, & Duguid,
1989) and so it has been called situated cognition. If the environment is literally part of the skills




and knowledge, then changing it abruptly can actually change student thinking and lead directly
to errors.

This fascinating research related to different kinds of errors owes its existence directly to
the practical and theoretical developments that ITS have spawned. All have real import for the
design of instruction, but at the moment, they are still very distant from each other and show no
real signs of converging into a common theoretical framework.

Summary. Branching is a fundamental aspect of P1, CAI, and ICAL. It recognizes the
fact that knowledge is interrelated in many complex ways, and there may be multiple good paths
through the curriculum. Al programming techniques empower the computer to manifest
intelligence by going beyond what's explicitly programmed, understanding student inputs, and
generating rational responses based on reasoning from the inputs and the system's own database.

In the example just provided, prior to teaching double-digit addition, the system could
first ascertain if the learner was skilled (to the point of automaticity) with single-digit addition,
drilling the learner across a variety of problems, noting accuracy and latency for each solution.
Subsequently, it may be effective to introduce (a) double-digit addition without the carrying
procedure (23 + 41), (b) single- to double-digit addition (5 + 32), or (c) single-digit addition to
10 (7 + 10). Each of these curriculum elements is warranted, and some are-easier to grasp than
others. However, for more complex knowledge domains, such as history, or the scientific debate
over the extinction of dinosaurs, the complexity of alternatives is beyond enumeration. And it is
the complexity of this branching that really provides a qualitative break between older forms of
P1 and CAI and newer ITS. Not only is the branching in ITS complex, it is algorithmic and not
enumerated, pre-defined, or hand-crafted. With this qualitative increase in complexity comes a
flexibility of interaction and potential for communication that, better than anything else before,
begins to qualify for the word intelligent.

Another aspect of computer intelligence deals with the identification and remediation of
errors (bugs) in a leamer’s knowledge structure or performance. The simple illustration with four
hypothetical students shows the possible power of adding Al to instructional software that can
recognize bugs or misconceptions via: (a) a bug catalog that specifically recognizes each mistake
(e.g., Johnson & Soloway, 1984), (b) a set of mal-rules that define the kinds of mistakes possible
with this set of problems (e.g., Sleeman, 1987), or (c) a set of production rules that specifically
anticipate all alternative problem solutions and can respond to each one (e.g., Anderson, 1993;
VanLehn, 1990). Each of these will be discussed in more detail in the section of this chapter
outlining the 20+ year history of ITS. First, we need to operationalize some terms.




INTELLIGENT TUTORING SYSTEMS DEFINED ,
While many researchers in the field view ICAI and ITS as interchangeable designations,
we make a subtle distinction between the two: ITS represent a more specific type of ICAL, due to
the attributes discussed below.

Eady Specifications of ITS

An early outline of ITS requirements was presented by Hartley and Sleeman (1973).
They argued that ITS must possess: (a) knowledge of the domain (expert model), (b) knowiedge
of the leamer (student model), and (c) knowledge of teaching strategies (tutor). It is interesting
to note that this simple list has not changed in more than 20 years (see Lajoie & Derry, 1993;
Polson & Richardson, 1988; Psotka, Massey, and Mutter, 1988; Regian & Shute, 1992; and
Sleeman & Brown, 1982).

All of this computer-resident knowledge marks a radical shift from earlier "knowledge-
free” CAl routines. Furthermore, the ability to diagnose errors and tailor remediation based on
the diagnosis represents a key difference between ICAI and CAl. Figure 2 illustrates these
knowledge components and their relations within a generic ITS. Each of these ITS components
will be discussed, in tum.
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ITS Components and Relationships
A student leams from an ITS primarily by solving problems—ones that are appropriately

selected or tailor-made-- that serve as good leaming experiences for that student. The system
starts by assessing what the student already knows, the student model. The system concurrently
must consider what the student needs to know, the curriculum (also known as the domain
expert). Finally, the system must decide what curriculum element (unit of instruction) cught to
be instructed next, and how it shall be presented, the tutor (or inherent teaching strategy). From
all of these considerations, the system selects, or generates, a problem, then either works out a
solution to the problem (via the domain expert), or retrieves a prepared solution. The ITS then
compares its solution, in real-time, to the one the student has prepared and perfonns a diagnosis
based on differences between the two.

Feedback is offered by the ITS based on the student-advisor considerations such as how
long it's been since feedback was last provided, whether the student already received some
particular advice, and so on. After the feedback loop, the program updates the student skills
model (a record of what the student knows and doesn't know) and increments learning progress
indicators. These updating activities modify the student model, and the entire cycle is repeated,
starting with selecting or generating a new problem.

Not all ITS include these components, and the problem-test-feedback cycle does not
adequately characterize all systems. However, this generic depiction does describe many currc «
ITS. Alternative implementations exist, representing conceptual as well as practical differences
in their design. For example, the standard approach to building a student model involves
representing emerging leamer knowledge and skills. The computer responds to updated
observations with a modified curriculum that is minutely adjusted. Instruction, therefore, is very
much dependent on individual response histories. But an altemative approach involves assessing
incoming knowledge and skills, either instead of, or in addition to, emerging knowledge and
skills. This alternative enables the curriculum to adapt to both persistent and/or momentary
performance information as well as their interaction (see Shute, 1993-a, 1993-b). In fact, many
have argued that incoming knowledge is the single most important determinant of subsequent
leaming (e.g., Alexander & Judy, 1988; Dochy, 1992; Glaser, 1984).

Other kinds of systems may not even have a tutor/coach present. For example, the
strength of microworlds (exploratory environments) resides in the underlying simulation and
explicit interfaces in which students can freely conduct experiments and obtain results quickly
and safely. This is a particularly attractive feature for domains that are hazardous, or do not
frequently occur in the real world. Furthermore, these systems can be intrinsically motivating, in
terms of generating interesting complexities that keep students interested in continuing to
explore, while giving them sufficient success to prevent frustration.

10




Ibhe “T"in ITS

Our working definition of computer-tutor intelligence is that the system must behave
intelligently, not actually be intelligent, like a human. More specifically, we believe that an
intelligent system must be able to (a) accurately diagnose students’ knowledge structures, skills,
and/or styles using principles, rather than pre-programmed responses, to decide what to do next,
and then (b) adapt instruction accordingly (e.g., Clancey, 1986; Shute, 1992; Sleeman & Brown,
1982). Moreover, the traditional intelligent tutoring system "... takes a longitudinal, rather than
cross-sectional, perspective, focusing on the fluctuating cognitive needs of a single leamer over
time, rather than on stable inter-individual differences.” (Ohlsson, 1986, pp. 293-294).

In order to obtain a rough idea of the degree of consensus among researchers in the ITS
community, twenty experts were asked to summarize, in a couple of sentences, their ideas on
what the "I" in ITS meant. Following are the different responses received (in alphabetical order,
and slightly edited, for readability).

Ton de Jong (Dec. 10, 1993). Intelligent in ITS stands for the ability to use (in a
comnected way) different levels of abstraction in the representation of the leamer, the domain,
and the instruction. The higher the range of abstraction, the higher the intelligence. The phrase
“in a connected way” implies that one should be able to go from specific (e.g., log files) to
abstract (e.g., learner characteristics), as well as the other way around (e.g., from general
instructional strategies to a specific instructional transaction).

Sharon Derry (Oct. 15, 1993). An intelligent instructional system can observe what the
student is doing during problem solving and/or has done over a series of problem-solving
sessions, and from this information draw inferences about the student’s knowledge, beliefs, and
attitudes in terms of some theory of cognition. A system can be intelligent whether or not it
makes instructional decisions based on this information, but if it doesn’t use such information in
instructional decision-making, then I don't think of it as a tutoring system, but rather a tool that
has some diagnostic capabilities.

Wayne Gray (Nov. 15, 1993): 1 concede a wide latitude on the application of the term
"ITS" in regard to instructional systems. However, at some level and to some degree, there
should be some sort of "cognitive modeling" technology involved. The modeling can be of an
ideal student, instructor, or grader, or of a less-than-ideal problem solver as in the "student
models"” that are often built up in ITS. To be intelligent, a system has to incorporate and use a
model for making decisions about what to do at any given point during leaming.

Lee Gugerty (Oct. 20, 1993): Intelligent tutoring involves: (8) explicit modeling of
expert representations and cognitive processes; (b) detection of student errors; (c) diagnosis of
students’ knowledge (correct, incorrect, and missing); (d) instruction adapted to students’
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knowledge state (via problem selection, hints, feedback, and explicit didactic instruction); and (¢)
doing all of the above in a timely fashion as the student solves problems (not post hoc).

Pat Kyllonen (Oct. 14, 1993): An "intelligent” tutoring system is one that uses Al
programming techniques or principles. However, what is considered Al (as opposed to standard)
programming changes over time (e.g., expert systems used to be archetypal Al systems, but are
now found in $100 PC software packages). For me, two features separate ITS software from
conventional CAIL. One is the existence of a student model. What the student knows cannot be
recorded directly, but must be inferred by the system, based on a pattern of successes or failures
by the student and an "understanding” of what knowledge problems in the curriculum call upon.
Another feature is the existence of "coaches,” "demons” or "bug libraries” that can observe a
student's behavior and either diagnose the behavior in terms of the student’s current knowledge
structure, or suggest corrections to that behavior.

Susanne Lajoie (Oct. 18, 1993). The "T" in ITS means that the computer can provide
adaptive forms of feedback to the leamer based on a dynamic assessment of the student’s “model”
of performance. Intelligent feedback means that the assessment of the leamer is ongoing, the
feedback is appropriate to that particular leamer in the context of where an impasse has been
encountered, and it is not canned but generated on the spot, based on student needs.

Alan Lesgold (Oct. 21, 1993): "Intelligent” means that the system uses inference
medmﬂmsmprwldémactﬂng,explmaﬁmorommfomaﬁmwﬂwsmdunpeﬁominga
task. Further, it implies that this information is tuned to the context of the student's ongoing
work and/or a model of the student's evolving knowledge.

Matt Lewis (Oct. 28, 1993): An "intelligent” tutoring system contains, at a minimum, a
reasonably general simulation of human problem solving in direct service of communicating
knowledge and, like a good human tutor, separates domain knowledge from pedagogical
knowledge. The simulation might solve domain-specific problems in the target instructional
domain (e.g., a human-like approach and solution to the problem of writing a fugue) or solve
pedagogical problems (e.g., error diagnosis and attribution, or selection of appropriate response).

Wes Regian (Oct. 14, 1993): An ITS differs from CAl in that: (a) instructional
interactions are individually tuned at run-time to be as efficient as possible, (b) instruction is
based on cognitive principles, and (c) at least some of the feedback is generated at run-time,
rather than being all canned. It is not particularly important to me what language the system is
written in, whether or not the system is in any sense arguably aware of anything, and whether its
decisions are rendered in a manner that is the same as a human decision.

Frank Ritter (Oct. 15, 1993): The "I" in ITS usually indicates that a single knowledge-
based component has been added that helps a tutoring system perform one aspect of its
performance in a better way. This can be in lesson scheduling, providing examples of domain
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knowledge in action, or providing domain knowledge for comparison with a student’s behavior.
What it should mean is that it does the whole job intelligently. The systems are usually not
systems in the full sense of the word, they tend to be prototypes, with whole parts missing.

Derek Sleeman (Nov. 22, 1993). "Intelligent” tutoring systems need to have motivating
learning environments, to communicate effectively, and to render dynamic decisions about
appropriate control strategies. Since the 1960s, we've seen that the same material delivered on
various systems differentially invoke motivation; thus we need to confirm the factors that impact
a leamer’s motivation. Next, communication can only occur when there's a shared world-view.
In conventional dialogs, humans dynamically tailor their language to the person to whom they
are speaking, but computers are not yet so adaptable. Finally, control implies which of the
partners in the dialog will take the initiative, and it's often necessary to change control during an
interaction, depending on the social setting, the student's motivation, and the level of incoming
knowledge.

Elliot Soloway (Oct. 28, 1993): The intent of the "I" in ITS was to explicitly recognize
that a tutoring system needs to be exceedingly flexible in order to respond to the immense variety
of leamner responses. CAl, as the forerunner of ITS, didn't have the range of interactivity needed
for leaming. In fact, the movement from ICAI to ITS was to further distance the new type of
leamning environments from the rigidity of CAL

Sig Tobias (Oct. 15, 1993): Intelligent, in an ITS context, means that the program is
flexible in the method and sequence with which instructional materials are presented to the
student. Furthermore, the system is capable of adapting instructional parameters to student
characteristics by using data collected prior to, or during, instruction for such decisions. Finally,
it suggests that the instructional system can advise the student regarding options most likely to be
successful for the student.

Kurt VanLehn (Oct. 18, 1993): "Intelligent” means that at least one of the three classic
modules is included in the tutoring system. That is, the machine has either a subject-matter
expert, a diagnostician/student modeler, or an expert teacher. Just as in any Al system, an expert
system with only 10 production rules is intelligent only in that it holds the possibilities for
expansion; a 100-rule system is moderately intelligent; and 1000+ rules means you're really
getting there. '

Beverly Woolf (Oct. 25, 1993). My view of tutor intelligence includes the following
elements: (a) mechanisms that model the thinking processes of domain experts, tutors, and
stadents; (b) environments that supply world-class laboratories within which students can build
and test their own reality; and (c) a computer partner that facilitates the ah-ha experience,
recognizes the student's intention, and aids and advises the student. An intelligent environment
would also support complex discoveries.
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As seen in this non-random sample of responses about what constitutes intelligence in an
ITS, just about everyone agrees that the most critical element is real-time cognitive diagnosis (or
student modeling). The next most frequently cited feature is adaptive remediation. And while
some maintain that remediation actually comprises the "T" in intelligent tutoring systems, our
position is that the two components (diagnosis and remediation), working in concert, make up
the intelligence in an ITS (see our working definition, above). Consider the case where a system
diagnoses a student's skill level, but makes no effort to rectify any faulty behaviors. Can that
system really be classified as intelligent? Theoretically, perhaps, but practically, no. Other
characteristics of intelligence appear less frequently in these responses (e.g., canned vs. generated
problems and feedback, degree of learner control in the environment, presence of awareness).

The degree of agreement among responders was actually surprising given the diversity of
respective research interests and backgrounds (computer scientists, psychologists, educators).
But this degree of consensus was not always there. Until fairly recently, the field was not only
esoteric, but quite fractionated; no two people could agree on what "intelligence” in a computer
tutor actually referred to. To understand the current congruence, we need to briefly jump back in
time to see the evolution of intelligent tutoring systems, from the late 1960s to the present (mid-
1990s).

THE 20+ YEAR HISTORY OF ITS

Instead of discussing individual tutoring systems that spanned this period, we present
salient characteristics of systems appearing at various points in time, illustrating with exemplar
tutors. For excellent discussions of individual intelligent tutoring systems, see the following
books: Bierman, Breuker, Sandberg, 1989; Goodyear, 1991; Lajoie & Derry, 1993; Lawler &
Yazdani, 1987; Nickerson and Zodhiates, 1988; Polson & Richardson, 1988; Psotka, Massey,
Mutter, 1988; Regian & Shute, 1992; Self, 1988; Sleeman & Brown, 1982, and Wenger, 1987.
The issues, by decade, that will be discussed can be seen in the following table.

14




Tabie 1. Important Issues Related to ITS Development

1970s 1980s 1990s

Problem Generation Model-Tracing Leamer Control

Simple Student Modeling More Buggy-Based Systems | Individual vs. Collaborative
Leaming

Knowledge Representation Case-Based Reasoning Situated Leaming vs. Information
Processing

Socratic Tutoring Discovery Worlds Virtual Reality

Skills & Strategic Knowledge Progression of Mental Models

Reactive Leaming Environments Simulations

Buggy Library Natural Language Processing

Expert Systems & Tutors Authoring Systems

Overlay Models/Genetic Graph

Up through the 1970s: Defining the Issues

Hardware and software have evolved at an astounding rate over the past 20 years. To put -
things in perspective, consider the 1970s--"Pong" was the rage (i.c., a simple black-and-white
computerized table tennis game) and 8K random access memory (RAM) the norm for a PC.
Computer-administered instruction developed before the 1970s was inflexible and didactic
because the systems had very limited capabilites (i.c., memory capacity and computational
speed) for adaptive diagnosis and feedback. Furthermore, "...the only theory available to guide
instructional development was behavior theory, which poorly matched the cognitive goals of
education.” (Lesgold, 1988, p. iii). Over time, researchers in Al and cognitive psychology joined
forces, and together provided a basis for a new generation of computer-based teaching programs.
Some of the research issues that dominated the 70's are discussed below.

Real-time Prohlem Genenation. The earliest systems to incotporate some now “classic”
ITS clements were programs that generated problems and leaming tasks, representing a big
departure from the canned problems stored in CAI databases. For example, Uhr (1969)
developed a computer-based leaming system that created, in real-time, simpie arithmetic
problems and vocabulary recall tasks. The next major advance in this area came in ¢he form of
computer programs that gencrated problems that had been tailored to the knowledge and skill
level of a particular student, thus providing the foundation for student modeling.

Simpie Student Modeling. The Basic Instructional Program (BIP) develops procedural
skills required in leaming the programming language BASIC (Barr, Beard, and Atkinson, 1976).
It did so by selecting problems based on what the student already knew (past performance),
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which skills should be taught next, and its analysis of the skills required (problems in the
curriculum). Exercises were dynamically and individually selected per person (from a pool of
100 sampie problems); then teaching heuristics were applied to the student model to identify
skills to be taught and exercises were selected that best involved those skills. Selection of
appropriate exercises was based on information contained in a network called the Curriculum
Information Network (CIN), relating tasks in the curriculum to issues in the domain knowledge.
Thus, a programming task in the tutor was represented in terms of its component skill
requirements. Based on a task analysis, BIP knew that the component skills needed for solving a
particular programming problem included such skills as: initialize numeric variable, use for-next
loop with literal as final value, and so forth. Moreover, each task tapped a number of skills.

Knowledge Representation. Classic CAI used pages of text to represent knowledge, but
with little psychological validity. In contrast, Carbonell's (1970) SCHOLAR program (often
credited with being the first true ITS) used a semantic net to represent domain knowledge (South
American geography) as well as the student model. Nodes in the network had tags to indicate
whether the concept was known to the student. This novel application of semantic network as a
general structure of knowledge representation supported mixed-initiative dialogs with students.
Not only could the computer ask questions of the student, but the student could, theoretically, ask
questions of the computer. One major limitation of this semantic knowledge representation was |
the difficulty of representing procedural knowledge.

Socratic Tutoging. Carbonell’s research spawned another line of work concerned with
enabling systems to engage in Socratic dialogs, believed to involve the leamer more actively in
the learning process. Collins (1977) outlined a set of tutorial rules for Socratic tutoring that were
incorporated into a system called WHY (Stevens and Collins, 1977). For example, consider the
following IF/THEN string: IF the student gives an explanation of one or more factors that are not
sufficient, THEN formulate a general rule for asserting that the given factors are sufficient, and
ask the student if the rule is true (Collins, 1977, pp. 343-344). Instead of semantic nets, the
domain knowledge (rainfall) was stored in a "script hierarchy” containing information about
stereotypical sequences of events.

Skills and Strategic Knowledge. Another attempt to stimulate thought among students
(rather than being passive recipients of information) was the focus of a group of researchers at
Xerox PARC in the mid- to late-1970s. For instance, WEST (Burton & Brown, 1976) was
developed to help students leam/practice skills involved in the manipulation of arithmetic
expressions. The goal was to move around a game board (How the West Was Won) and either
advance the maximum number of squares, land on and thus "bump" an opponent back some
fixed amount of squares, or take a shortcut. Not only was basic arithmetic skill involved, but
also strategic knowledge was required. The system was attentive to all levels of knowledge and
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skill, but the "coach" was somewhat unobtrusive, sitting in the background monitoring the
student’s moves, intervening only when it was clear that the student was floundering. Then the
coach would make a few suggestions to enhance student skills. WEST’s coaching goals were
accomplished by focusing on the strategy used to construct a move (viz.,"issue-based" tutoring).

Reactive L eamning Environmenis. In reactive leaming environments, the system
responds to leamers’ actions in a variety of ways that extend understanding and help change
entrenched belief structures using examples that challenge the leamer’s current hypotheses. An
carly, excellent example of this kind of environment was SOPHIE (Sophisticated Instructional
Environment), designed to assist leamers in developing electronic troubleshooting skills (see
Brown & Burton, 1975; Brown, Burton, & deKleer, 1982). For instance, in SOPHIE I, learners
located faults in a broken piece of equipment. They could ask SOPHIE questions in English
(e.g., to obtain values of various measurements taken on the device). SOPHIE I included three
main components: a mathematical simulation, a program to understand a subset of natural
language, and routines to set up contexts, keep history lists, and 50 on. A student,
troubleshooting a simulated piece of equipment, could offer a hypothesis about what was wrong.
SOPHIE I reacted to the request by comparing the hypothesis to the measurements entered by the
student. SOPHIE 11 extended the environment of its predecessor by adding an articulate expert
based on a pre-stored decision tree for troubleshooting the power supply that was annotated with
schema for producing explanations. SOPHIE III represented a significant advance; it contained
an underiying expert based on a causal model rather than on a mathematical simulation. The
importance of this change is that, in SOPHIE 1, the simulator worked out a set of equations not
using human-like, causal reasoning, so it wasn't possible for the system to explain its decision in
any detail. But SOPHIE I did employ a causal model of circuits to deal with the student
feedback deficiency. Research with SOPHIE spawned a lot of later research in troubleshooting,
reactive learning environments, and articulate experts.

Buggy Library. Brown and Burton (1978) also developed BUGGY, a frequently cited
example of a system employing a "buggy" library approach to the diagnosis of student errors.
BUGGY was a framework for modeling misconceptions underlying procedural errors in addition
and subtraction where students' errors were represented as the results of "bugs” (errors) in an
otherwise correct set of procedures. DEBUGGY (Burton, 1982) was developed as an off-line
version of the system based on the BUGGY framework using the pattern of errors from a set of
problems to construct an hypothesis concemning a bug, or combination of bugs, from the library
that generated the errors. IDEBUGGY (Burton, 1982) was an on-line version of BUGGY,
diagnosing the student's procedure bit-by-bit while giving the leamer new problems to solve.
The major limitation of these kinds of systems was the inability to anticipate all possible
misconceptions. Moreover, bugs could appear transient as they were being repaired.
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Expert Systems and Tutors. MYCIN (Shortliffe, 1976) was a rule-based expert system
for diagnosing certain infectious discases such as meningitis. GUIDON (Clancey, 1979) was
constructed to interface with MYCIN for tutoring, interactively presenting the rules in the
knowledge base to a student. This tutoring operated as follows. GUIDON described case
dialogs of a sick patient to the student in general terms. The student had to adopt the role of a
physician and ask for information that might be relevant to the case. GUIDON compared the
student's questions to those which MYCIN would have asked and then responded accordingly.

Qverlay Models/Genetic Graph. The definition of an overlay model is one of a novice-
expert difference model representing missing conceptions. It's typically implemented as either an
expert model annotated for missing items, or an expert model with weights assigned to each
element in the expert knowledge base. To illustrate how it works, consider WUSOR (Stansfield,
Carr, & Goldstein, 1976)--the name of the on-line coach for the game WUMPUS (Yob, 1975).
The WUMPUS player had to traverse through successive caves to locate the hiding Wumpus.
Many dangers faced the player (e.g., pits, bats), but the problem could be solved by applying
logical and probabilistic reasoning to information obtained along the way. The goal of the game
was to shoot an arrow into the Wumpus' hiding spot before you were killed. WUSOR evolved
through (at least) three generations, each with a progressively more sophisticated student model.
The first version had only an expert and advisor and did not try to diagnose the leamer’s state of
knowledge. The next version (IT) incorporated an overlay model (Carr & Goldstein, 1977) where
the expertise was represented as rules, and the student’s knowledge state was a subset of the
expert's knowledge. Goldstein (1979) made the final transformation to WUSOR (III) by
including the genetic graph, combining overlay modeling (rule-based representation) with a
leamer-oriented set of links between curricular elements. "Genetic" related to the notion of
knowledge being evolutionary, and graph denoted the relationships between parts of knowledge
expressed as links in a network. A genetic graph could represent type-of-links (e.g.,
generalization, analogy, refinement) as well as deviation links (i.e., buggy rules as opposed to
simply absent ones).

The 1970s were marked by experimental systems that bore little resemblance to one
another. During the following decade, systems became less idiosyncratic, but there was still a lot
of diversity in the field.

ROs: Standardized Aporoaches and Environments

The 1980s were characterized by enormous growth and momentum in the ITS field. By
the mid-1980s, the development of tutors greatly exceeded their evaluations; everyone wanted to
participate in the excitement of building ITS, but few cared to test their system's efficacy (Baker,
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1990; Littman & Soloway, 1988). Sleeman (1984) attempted to focus research efforts by
outlining four main problems with ITS at the time:

(1) Feedback specificity--Instructional feedback was often not sufficiently detailed for a
particular leamer.

(2) Non-adaptability-—-Systems forced students into their own conceptual framework rather
than adapting to a particular student's conceptualization.

(3) Atheoretical foundation--Tutoring strategies used by the systems lacked a theoretical
cognitive foundation.

(4) Restrictive environment—User interaction and exploration was too restricted.

‘These main criticisms were addressed, to varying degrees, during the 1980s.

Model tracing. Anderson and his colleagues at Camegie-Mellon University developed a
model-tracing approach to tutoring based on production systems as a way of modeling student
behavior. The model-tracing approach has been employed in a variety of tutoring systems, such
as the LISP tutor (Anderson, Boyle & Reiser, 1985) and the Geometry tutbr (Anderson, Boyle &
Yost, 1985). Model tracing provides a powerful way to both validate cognitive theories (e.g.,
Anderson, 1987) and to deliver low-level, personalized remediation. The approach works by
delineating many hundreds of production rules that model curricular "chunks” of cognitive skill.
A leamer’s acquisition of these chunks is monitored (i.e., the student model is traced), and
departure from the optimal route is immediately remediated.

In theory (and practice) the model-tracing approach for the Geometry and LISP tutors is
s0 complete that it captures an enormous percentage of all students’ errors. A major drawback is
that this approach does not allow students to commit those errors themselves. As soon as there is
a mis-step, the tutor cries "foul" and stops the student from doing anything else until the correct
step is taken. As Reiser points out (e.g., Reiser, Ranney, Lovett & Kimberg, 1989), the student
is not only prevented from following these mistakes to their logical conclusion (and getting
hopelessly confused) but also prevented from obtaining an insight into the mistake (i.c., that the
mistake is obvious). These are some of the best leaming experiences students can have, but they
appear to be blocked by the model-tracing approach.

Model tracing challenges the first criticism (feedback specificity). That is, the grain-size
. of feedback is as small as you can get (i.e., the production level) thus providing the most
detailed, specific feedback possible. However, in some cases (i.e., for certain students or
particular problems), this level of feedback may be too elemental, the forest is lost for the trees.
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Next, as mentioned above, the systems can adapt to a wide range of student conceptualizations,
challenging the second (non-adaptability) criticism. The approach also demolishes the third
criticism (atheoretical foundation), as it was explicitly based on Anderson's cognitive theory
(ACT®*). The positive features of uiis approach, however, are achieved at the expense of the
fourth (restrictive environment) criticism. That is, the model-tracing approach is restrictive. To
accomplish the necessary low-level monitoring and remediation of this approach, the leamer’s
freedom has to be curtailed. So, learning by one's mistakes is out (which is often a powerful way
to leam). A final drawback of this approach is that, while it works very well in modeling
procedural skill acquisition, it does not work well for domains that are ill-structured, or that are
not rule-based (¢.g., Creative writing, Economics, Russian history).

More Buggy-based Systems. During this time period, a plethora of tutors was developed
based on the "buggy" library approach (see BUGGY, above). While these systems do provide
very specific feedback about the nature of the leamner’s error (countering criticism 1, feedback
specificity), the system response is dependent on the program’s ability to match the student's
error with that of a stored "bug.” Along these same lines, as with model tracing (because only
stored bugs are acknowledged), novel bugs are ignored; thus there is no way to update the buggy
library or adapt to the learner’s current conceptualization (criticism 2, non-adaptability). This
approach is theoretically based on the notio» of cognitive errors in specific procedures, impasse
leamning, and repair theory (VanLehn, 1990), countering criticism 3 (azheoretical foundation).
Finally, these systems constrain the leamer somewhat less than the model-tracing approach; thus,
it is a response to criticism 4 (restrictive environment),

A good illustration of a system based on the buggy approach is PROUST (Johnson,
1986; Littman & Soloway, 1988), designed to diagnose nonsyntactic student errors in Pascal
programs. The system works by locating errors in students’ programs where they compute
various descriptive statistics such as the minimum and maximum values, and averages. The
major drawback of this system is that it is implemented off-line. In other words, the tutor has
access to a final product on which to base its diagnosis of student errors—completed student
programs are submitted to PROUST, which prints out the diagnosis (Johnson & Soloway, 1984).

A paralle] "buggy" research project involved a system called PIXIE (Sleeman, 1987), an
on-line ITS based on the Leeds Modeling System (LMS), a diagnostic model for determining
sources of error in algebra problem solving due to incorect procedural rules or "mal-rules.”
While some may equate mal-rules with buggy rules, they differ in a fundamental way. Sleeman
created them by postulating a set of basic buggy rules from which higher order mal-rules could
be generated from the structure of the knowledge base itself. Mal-rules are inferred from basic
principles and bugs; they are at a level of abstraction above bugs. In fact, John Anderson makes
the same point about his model-tracing procedures. Because of the complexity of his model-
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tracing productions, many productions fire or are used over and over again in contexts for which
they were not first generated, and so they 100 take on a kind of abstract or general quality in his
framework.

The major problem with LMS is that it only diagnoses the incorrect rules; it does not
remediate.

Case-Based Reasoning. Another category of systems emerging at this time came from
case-based reasoning (CBR) research (Schank, 1982; Kolodner, 1988). Proponents of this
approach suggest that the goal of ITS should be to teach cases and how to index them. Given
that the student, not the program, is the one doing the indexing, this system affords the learner
greater freedom, and promotes a more adaptive leaming environment (countering criticisms 4--
restrictive environment and 2--non-adaptability, respectively). Furthermore, whereas the model-
tracing tutors work poorly in ill-structured domains, CBR works well in those areas (e.g.,
politics, philosophy). This tradeoff, however, can result in less specific feedback to leamers
(criticism 1, feedback specificity).

These CBR systems also perform well in domains where there are too many rules, or too
many ways in which rules can be applied (e.g., programming, game playing). CBR suggests A
approximate answers to compilex problems, thereby limiting how many rule combinations should
be explored. There are two main processes involved with CBR: indexing (labeling new
experiences for future retrieval) and adaptation (changing a retrieved case to fit a current
situation). Further, two kinds of indices are required: concrete and abstract. Concrete indices
refer to objects and actions usually directly mentioned in the case, while abstract indices refer to
more general characterizations. The "indexing problem" deals with ways to determine the correct
abstract and concrete indices for cases. How one indexes new cases determines what cases one
will compare the inputs against. Using a general index, one can retrieve a case even when it
shares no specific details with the current situation.

Schank has made some very provocative statements about the human mind as a story
teller, and about the need to encapsulate knowledge into stories, not into hierarchical data
structures like semantic nctworks. But his procedures have yet to lead to any of the other strong
characteristics of ITS that we emphasize in this paper: student models, teaching models, bugs,
and so on. Instead, they exist as very generative and interesting systems. As such, they have
something in common with microworlds; that is, people enjoy exploring them and can leam from
them, particularly those regarding ill-structured and complex domains. However, when students
don’t leamn, or manifest some misconception(s), the very same looseness of structure and
organization in these systems prevents them from determining why, and doing something about
it. Finally, according to Riesbeck and Schank (1990), case-based reasoning (CBR) serves as a
model of cognition and leaming. But, while these systems present a provocative and well-
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conceived approach that has many practical and obvious merits, they cannot be said to possess a
solid theoretical foundation (criticism 3, atheoretical foundation).

A major limitation of this approach includes the problem of anticipating and representing
a sufficient number of cases to be cataloged.

Discovery Worlds. With just a few exceptions, learning from computers in the 1960s
and 1970s was characterized by inflexible presentations of didactic material. But an opposition
movement arose in the 1970s that gained steam in the 1980s; it resulted in the development of
discovery leaming environments. These computerized systems (typically a computer simulation
environment with simple interface and tools) were designed to make it possible for students to
acquire various knowledge and skills on their own. For example, students could leam LOGO
(Papert, 1980) or Newton's laws of motion (White, 1984) within discovery (or micro) worlds.
Typically, feedback was "natural” or implicit, not specifically explained to the leamer (relating to
criticism 1, feedback specificity).

One of the main strengths of these systems was their great adaptability to a range of
different leamers (countering criticism 2, non-adaptability). Students were free to explore and
act within the microworld as they chose; with the ramifications of their actions immediately
revealed, countering criticism 4 (restrictive environment). This movement.was based on the
theoretical premise that in discovery leaming, one can radically alter the perceptual relationship
between the leamer and the knowledge or skills to be acquired, thus addressing criticism 3
(atheoretical foundation). This position was epitomized by Piaget (1954) who stated that, "...an
education which is an active discovery of reality is superior to one that consists merely in
providing the young with ready-made wills to will with, and ready-made truths to know with."

A major drawback of these systems is that not all persons are skilled in the requisite
inquiry behaviors necessary to achieve success in these environments (see Shute & Glaser, 1990).
That is, to be successful, an individual should be able to: formulate efficient experiments, state,
confirm, and/or negate hypotheses; appropriately relate hypotheses ar experiments; plan future
experiments and tests; engage in self-monitoring, and so on.

Progression of Mental Models. White, Frederiksen and their colleagues (Frederiksen,
White, Collins, & Eggan, 1988; White & Frederiksen, 1987; White & Horowitz, 1987)
incorporated ideas from (a) Al research on mental models and (b) qualitative reasoning to
develop QUEST (Qualitative Understanding of Electrical System Troubleshooting) as well as
“Thinker Tools.” This approach, like model-tracing, above, is thus theoretically grounded (in
opposition to criticism 3, atheoretical foundation).

These systems work by motivating students to want to learn by pointing out errors and
inconsistencies in their current beliefs. Then students are guided through a series of
microworlds, each more complex than the one preceding, toward the objective of more precise
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mental models of the evolving subject matter (e.g., electrical concepts or Newtonian mechanics).
Finally, students formalize their developing mental models by evaluating a set of laws describing
phenomena in the microworld; then they apply the selected law to see how well it predicts real-
world events.

These systems promote learning, neither completely free nor overly restricted (relating to
criticism 4, restrictive environment), that resides about halfway between true discovery
environments and model-tracing environments. A programmed series of mental models produces
higher-level feedback compared to, for example, feedback at the production level (addressing
criticism 1, feedback specificity). Finally, the systems can adapt to a wide range of leamer
misconceptions (challenging criticism 2, non-adaptability).

Simulations. Graphical simulations have become more central to the ITS enterprise as
the power of computers has grown. Along with increasing computational power, software
systems have grown more complex; object-oriented systems can now mimic devices of great
complexity and interactivity. Simulations are useful wherever real objects are involved in a
learning or training task, and they provide many benefits over real devices. Not only are they
less dangerous, less messy, and exactly replicable; simulations are inspectable and self-
explanatory in ways that real objects cannot be. Simulations not only display aggregate
behavior, but they are decomposable into constituents that mimic novice or expert mental
models. This decomposability of graphic displays and simulations mimics the power of
productions in expert systems for creating natural chunks that promote leaming.

Early ITS, like SOPHIE, could generate only very simple line drawings. .. dramatic
increase in the power of graphic simulations took place with Steamer (Hollan, Hr.. hins &
Weitzman, 1984) and the use of personal LISP machines. These machines could generate
interactive graphics with animated components. It was not long before this graphical power
became available for ITS on smaller personal computers that could be used in industrial and
educational settings. Of course, more powerful systems that were developed in the 1980s, like
Hawk MACH-HI, could expand the number of components and complexity of the animations by
orders of magnitude (Kurland, Granville, & MacLaughlin, 1992). Using object-oriented
constructions, MACH-HI made each part of complex radar systems inspectable and self-
explanatory. For teaching troubleshooting, each decomposable part of the radar device could
even explain its role in the troubleshooting sequence for any fault that had been created in the
system. Given this power and complexity, these systems were stretched to their limits and
brought to their knees by additional requirements for student models, curriculum sequences, and
hypertext interfaces. Even though these computer simulations were forced to operate at the edge
of their acceptability, an official Army evaluation verified the many benefits of simulation-based
training systems (Farr and Psotka, 1992).
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Depending on the level that a simulated device has been decomposed to, and the degree
of leamer response regarding manipulations and ensuing ramifications, feedback could attain
various levels of detail (criticism 1, feedback specificity). Furthermore, as simulations become
typically very reactive to leamer actions, they can serve as a direct challenge to the second
criticism (non-adaptability). Simulations, similar to discovery worlds, also leave quite a bit of
freedom to explore and manipulate simulated objects and devices (countering criticism 4,
restriction environments). However, the drawback of these systems is that a solid theoretical
basis is lacking (criticism 3, atheoretical foundation). Simulation research in the 1980s spurred
later work that attempted to incorporate pedagogical strategies into the simulation-based systems.
Moreover, related developments continue to evolve in complexity with the addition of Virtual
Reality interfaces to three dimensional models and simulations (Acchione-Noel and Psotka,
1993).

Two other areas of research and development gained prominence at this time: Natural
language processing (NLP) and authoring shells. While these research spheres were important in
relation to ITS research, they could be applied within a variety of tutor types. For example, NLP
could be used to communicate information to the learner (or accept input from the leamer) in
model-tracing tutors, discovery worlds, and so forth. And authoring shells:could be built for the
development of a range of tutoring systems. Because of this openness, the following two ITS-
related issues won't be discussed in relation to our four criticisms, listed carlier.

Natural Language Processing. This technology was an important part of ITS right from
the beginning. SOPHIE, in fact, was built on a powerful and original NLP technique developed
by Richard Burton; it was called Semantic Grammar. Representing a powerful combination of
carefully selected keywords with algorithms that searched the context for meaningful variables
and objects, it worked surprisingly well, given its relative simplicity. Since communication is
such an important element of ITS (see Wenger, 1987 for emphasis), it is not surprising that NLP
technologies have been used in several ITS for discourse networks (Woolf, 1988) and especially
for language instruction (Yazdani, 1990; Psotka, Holland, & Kerst, 1992). The development of
powerful, efficient Prolog compilers and languages on PCs has led to the implementation of
some interesting instructional grammars that can handle discourse in English or other languages,
and provide multimedia instruction in advanced language concepts and grammar, as well as
simple vocabulary and verb declension. The potential addition of animations and immersion into
Virtual Environments adds a bright new prospect to the old goal of immersive language leamning.

Authoring Systems. The creation of computer-based environments to facilitate the
design and development of ITS has been an important and continuing thread of rescarch. The
goal of authoring systems is to give relative computer novices a software toolkit to take
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advantage of the power of computers for designing instruction. An example of one powerful
graphic authoring system developed over the last decade is that by Towne and Munro (1992).

Quite powerful CBT systems have been made available over the years. Research,
beginning in the 1980s, attempted to adapt such systems as authoring shells for developing ITS.
Miller and Lucado (1992) were among the first to integrate the power of CBT authoring
environments with the technology of ITS. Their prototype system was the harbinger of many
more powerful combinations of traditional CBT and next generation ITS technologies. Most
recently, DARPA has funded a unique consortium of Apple Computer, textbook publishers such
as Houghton-Mifflin, and ITS experts Beverly Woolf and John Anderson to begin the
development of next-generation authoring tools for instruction and training.

The relative quiescence of the 80s transitioned into the current state of ITS affairs,
marked by a perception of instability and controversy.

1990s: Great Debates

The four hot ITS topics right now may be broadly characterized as: (a) How much
leamer control should be allowed in systems? (b) Should leamers interact with ITS individually
or collaboratively? (c) Is leaming situated, unique, and ongoing, or symbolic and does it follow
an information-processing model? and (d) Does virtual reality (VR) uniquely contribute to
learning beyond CAIL ITS, or even multi-media? There are, of course, proponents and opponents
to each of these positions.

Degree of Leamer Control. The debate over the amount of leamer control that should be
a part of the leaming process has raged for many years. On the one hand, some have argued that
discovering information on one’s own is the best way to leam (e.g., Bruner, 1961). On the other
hand, structure and direction have been stressed as the important ingredients in the promotion of
student leaming (e.g., Ausubel, 1963). The same debate has appeared in the ITS arena. Two
differing perspectives, representing the ends of this continuum, have arisen in response to the
issue of the optimal ITS leaming environment. One approach is to develop a computerized
environment containing assorted tools, and allow learners freedom to explore and learn
independently (e.g., Collins & Brow, 1988; Shute, Glaser, & Raghavan, 1989; White &
Horowitz, 1987). Advocates of the pposing position argue that it is more effective to develop
straightforward leaming environments with no digressions permitted (¢.g., Anderson, Boyle &
Reiser, 1985; Corbett and Anderson, 1989; Sleeman, Kelly, Martinak, Ward, & Moore, 1989).
This disparity between perspectives becomes more complicated because the issue is not just
which is the better learning environment, but which is the better environment for whom, a classic
aptitude-treatment interaction question (Cronbach and Snow, 1981). There are, undoubtedly,
temporal aspects to this issue as well. For instance, it may be more efficient to leam a new
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cognitive skill initially by direct instruction, then later, by greater exploration. In this way,
leamers can better control their own leaming process.

Merrill, Reiser, Ranney, and Trafton (1992) investigated how human tutors dealt with the
issue of leamer control. They compared human- to computer-tutoring techniques, and found that,
while expert human tutors did sometimes act like model-tracers, they actually maintained a
“delicate balance” between (a) allowing students freedom and control and (b) giving students
sufficient guidance. In general, pedagogical research findings differ with regard to the amount of
leamer control to allow in automated systems (e.g., Fox, 1991; Lepper, Aspinwall, Mumme, &
Chabay, 1990; Merrill, Reiser, & Landes, 1992). In addition to the temporal factor cited above,
this issue of leamer control is also greatly dependent on other variables, such as the subject
matter being instructed, the desired knowledge or skill cutcome, incoming aptitudes, and so on
(see Kyllonen & Shute, 1989, for a complete discussion of these interacting variables). That is,
if the desired leaming outcome is a smoothly executed skill, it may be more efficient to instruct
- certain learning tasks with direct instruction and plenty of practice. But if the desired leaming
outcome is a functional mental model of relevant principles, an exploratory environment,
complete with various components such as on-line circuits, ammeters, and resistors, may be what
is needed to achieve that educational objective.

Most current computer-administered instructional systems do not foster self-reliance in
smdants.ormoonngethanmseekmwinfonnanonmﬂmrown. To rectify this deficit,
Bamard, Erkens, and Sandberg (1990) propound the building of more flexible systems packaging
communication expertise as a separate component. With less leamer initiative, it's much easier
to interpret input, but at what cost to leaming outcome? In Japan, research is being conducted
along these lines. The concept and development of ITS is becoming merged with interactive
learning environments (ILE) to produce what is referred to as a "bi-modus leaming environment”
(BLE) (Otsuki, 1993). Whereas the main strength of ITS is its ability to derive a student model
based on the identification of acquired rules, its main weakness is the inability to help leamers
acquire new knowledge by themselves. In contrast, students in an ILE can extract and
comprehend rules induced from a complex domain, but the ILE cannot explicitly identify a
student’s misconceptions or tutor them in terms of their comprehension level. Thus the two (ITS
and ILE ) are complementary to one another, and BLE represents combining the strengths of
each.

Another way to increase learner control has been suggested by Bull, Pain, and Bma
(1993). Their intriguing altemnative to traditional student modeling, that of replacing the burden
of the ITS, is to produce accurate representations of the leamer's knowledge state; the leamer is
empowered with greater control, e.g., to construct and repair the model. Bull and associates
contend that their model will result in a more accurate representation of the learner’s beliefs, and
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thus be more highly regarded by the student. The leamer is expected to benefit through the
reflection necessary to accomplish this modeling task. Unfortunately, no data have yet been
collected about the efficacy of this novel approach.

"Coached practice environments” (i.e., Sherlock I and II) represent yet another way to
provide control during leaming by combining apprenticeship training with intelligent
instructional systems (Lajoie & Lesgold, 1992; Lesgold, Eggan, Katz, & Rao, 1992). These
systems support greater leamer initiative because the apprentice leams by doing (singularly or
collaboratively); knowledge is anchored in experience; and the coach provides knowledge within
an applicable context. Intelligent systems are developed with many of the characteristics of
human apprenticeships, and performance can be easily assessed. Through replay and
comparisons with the expert performance, this approach also supports trainee analysis of
performance.

Salomon (1993) supports the trend of moving away from building traditional ITS and
towards the design of systems as cognitive tools. He sees cognitive tools manipulated by
students as instruments that promote constructive thinking, transcending cognitive limitations,
and making it possible for students to engage in cognitive operations they wouldn't otherwise
have been capable of. Some ITS programs make most diagnostic and tutorial decisions for the
student; therefore they are not really cognitive tools because, "they are not designed to upgrade
students’ intelligent engagements.” (p. 180). Also in accordance with the notion of computers as
learmning tools, leamers should have the option to alter the degree of control themselves, from
none (e.g., didactic environment) to maximum (e.g., discovery environment), as necessary.

By shifting toward increased leamer control, are individuals who are not very active or
exploratory by nature being penalized or handicapped? Shute and Glaser (1990) investigated
individual differences in leaming from a discovery environment (Smithtown) and found that
individuals who demonstrated systematic, exploratory behaviors (.., recording baseline data,
limiting the number of changed variables) were significantly more successful in Smithtown
compared to those who revealed less systematic behaviors. On the basis of that finding, they
hypothesized in a different study (using an electricity tutor) that high-exploratory individuals
would leam more from an inductive environment (than from a more directed, applied
environment), and less-exploratory leamers would benefit from a supportive, applied
environment (compared to an inductive one). A person's exploratory level was quantified based
on certain indices (¢.g., number of tries and length of time spent changing a resistor value, using
the on-line voltmeter or ammeter). Subjects were randomly assigned to one of two leaming
environments, and the data were analyzed, post hoc. The hypothesized leaming style by aptitude
interaction was supported by the data (Shute, 1993-b). So, discovery leaming environments do
not suit everyone equally well. For some, they provide a really bad fit. To determine whether
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this kind of leamer style by treatment interaction is replicable, Shute (1994) conducted a
confinnatory test of the same ATI, reported above. Subjects were placed a priori in one of two
environments based on the decision rule obtained from the previous study. And, in fact, the ATI
was confirmed.

In conclusion, a mid-point between too much and too little leamner control is probably the
best bet as far as optimal ITS learning environment. Furthermore, this milestone should not be
fixed, but should change in response to leamers’ evolving needs. Finally, leamers should have
some input into the design of the environment, as well.

Our next debate addresses the issue of whether leaming alone is better or worse than
leaming in conjunction with others (where "others™ may mean other humans, or with a computer
acting as a "partner” in the leaming process). As with everything relating to leaming, there is
probably no clear cut answer to this question; there is no "overall” superior way to leam. Rather,
it is almost certain that interactions exist, where solo leaming may be superior for certain topics
(c.g., rote memorization of multiplication tables) or for particular leamer types (e.g., highly
motivated individuals). Collaborative lcaming may be more effective for other domains or
persons. While we don't specifically address these interactions in the following discussions, they
should be kept in mind.

Individual vs, Collshorative Leaming. Traditionally, ITS have been designed as single-
leamer entetprises. Bloom (1984) and others have presented compelling evidence that
individualized tutoring (using human tutors) engenders the most effective and efficient leaming
across an array of domaing (see also Shute & Regian, 1990, Woolf, 1988). Furthermore,
intelligent tutoring systems epitomize this principle of individualized instruction. In his often-
cited 1984 paper, Bloom presented a challenge to instructional researchers that has been called
the "two sigma problem.” The goal is to achieve two standard deviation improvements with
tutoring over traditional instruction methods. So far, this goal has yet to be attained using
individualized ITS.

‘ An altemative approach to individualized instruction is collaborative leaming, the notion
that students, working together, can leam more than by themselves, especially when they bring
complementary, rather than identical, contributions to the joint enterprise (Cummings & Self,
1989). Collaboration is defined as a process by which "individuals negotiate and share meanings
relevant to the problem-solving task at hand.” (Teasley & Roschelle, 1993, p. 229), and is
distinct from cooperation which relates to the division of labor required to achieve some task.

Two empirical questions relevant to this chapter include: (a) Are two heads better than
one? and (b) Can intelligent computer systems support collaborative leaming endeavors?
Recently, research is beginning to shed light on both of these questions. For example, many
researchers have shown impressive student gains in knowledge and skill acquisition from
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collaborative leaming environments (.., Brown & Palincsar, 1989; Lampert, 1986; Palincsar &
Brown, 1984; Scardamalia, Bereiter, McLean, Swatiow, & Woodruff, 1989; Schoenfeld, 1985).
Furthermore, the few studies of the effectiveness oi collaborative leaming in computer-based
leaming environments have also been positive (e.g., Justen, Waldrop, & Adams, 1990; Katz &
Lesgold, 1993; Papert, 1980).

There are basically two ways of implementing collaborative leaming environments using
computers: (a) a small group of leamers interact with a single intelligent computer system, or (b)
the computer system itself serves as the "partner” in the collaboration. The first way (i.c., a small
£roup using one computer) represents an extension of the research on collaborative leaming in
classrooms. In this case, some of the issues that need to be addressed have been outlined by
Teasley and Roschelle (1993). The system must be able to: (a) introduce and accept knowledge
into a joint problem-solving space, (b) monitor ongoing activities for evidence of divergences in
meaning, and (c) repair divergences that impede the progress of the collaboration. The difference
between this list and general modeling issues in ITS is that it deals with a student model that's
built upon a joint, rather than single, probiem solving space. The second way of implementing
collsboration (1.¢., assigning the computer as the leamer’s partner) represents an intriguing twist
on the notion of collsborative leaming. To illustrate, Cummings and Seif (1989) proposed a
collaborative intelligent education system (IES) that engages the leamer in a partnership. Here,
the computer serves as a collaborator, not as an authoritarian instructor. In both cases, a student
model still must be derived, either that of an individual or a group.

Additional research and controlled studies must be conducted in order to test the relative
efficacy of collaborative versus individualized instruction. For a variety of reasons (e.g., greater
range of shared knowiedge, resource limitations, etc.), the notion of collaborative leaming
environments is appealing. There are a lot of unanswered research questions that need to be
addressed, however. Some of these (listed in Katz & Lesgold, 1993) include: What parts of the
curriculum should be leamned collaboratively, and what parts leamed individually? What
teaching methods should be used to achieve the instructional goals, and how should they be
sequenced to optimize leaming? What should the computer tutor do while students work on
problems? What additional roles could the computer coach perform? This area of research is
also likely to shed light on the interactions mentioned carlier. We now present the third hot
topic, namely, the nature of learning and its impact on ITS design.

Simated Leaming Controvergy. To supporters, this is not just a trend, but a radically
new perspective (or philosophy) that supports the integration of "...psychological theories of
physical and cognitive skills, uniting emotions, reasoning, and development, in a
neurobiologically grounded way.” (Clancey, 1993, p. 98). It has also been referred to in the
literature as "situated action” and "situated cognition.” Recently, several prominent jounals have
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devoted entire issues to the debate conceming the value of situated leaming compared to the
more standard paradigms (e.g., ACT*, SOAR): 1993 Cognitive Science, 17(1), and 1993 Joumal
of Anificial Inelligence and Education, 4(1).

Obviously, one's belief in either situated cognition or the traditional information-
processing model has implications for the design of ITS. To illustrate this distinction, first
consider Greeno's summary of situated cognition's perspective on where knowledge resides:
"Rather than thinking that knowledge is in the minds of individuals, we could altematively think
of knowledge as the potential for situated activity. On this view, knowledge would be
understood as a relation between an individual and a social or physical situation, rather than as a
property of an individual." (Greeno, 1989, p. 286). Next, consider the nature of knowledge from
the information-processing perspective. Anderson's (1983) ACT* theory proposed two
fundamental forms of knowledge: procedural, represented in the form of a production system,
and declarative, represented in the form of a node-link network of propositions. Both
representations are believed to operate within long-term and short-term memory structures.

‘These two positions present quite different views on how leaming, or knowledge
acquisition, occurs. In the first case (situated cognition), leaming is a process of creating
representations, inventing languages, and formulating models for the first sime. Leaming is
ongoing, occurring with every thought, perception, and action, and is situated in each unique
circumstance. Situated cognition argues for an instructional system rich with explicit tools and
varied exemplars that can support and extend leamners’ discovery processes. "Insight is more
likely when the probiematic situation is so arranged that all necessary aspects are open to
observation.” (Bower & Hilgard, 1981, p. 319).

The second position (information processing) sees leaming as progressing from
declarative knowledge, t0 procedural skills, to automatic skills, dependent upon: enablers (i.e.,
what one already knows and can transfer to new situations) and mediators (i.c., cognitive
processes determining what one can acquire, such as working-memory capacity and information
processing speed) (c.g., Anderson, 1983, 1987; Kyllonen & Christal, 1990). Thus, leaming
refers to the addition and restructuring of information to a database, in accordance with specific
learning mechanisms (e.g., knowledge compilation, transfer). To facilitate leaming, one must
build a system that can (a) Analyze the initial state of knowledge and skill; (b) Describe the
desired or end state of knowledge and skill (leaming outcome); and (c) Present material and
problems that will transition a leamer from initial to desired state. This kind of tutoring system
is based on a well-defined curriculum that's been 0 arranged to promote knowledge/skill
acquisition (or facilitate transition from current to goal state).

It may be that these two positions are mutually exclusive. That is, knowledge either
resides intemally in one's head, or externally, in the environment. Altematively, it may be that
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there is some overlap, whereby some forms of knowledge are stored, anu some derivable from
the current situation. In a preliminary attempt to bridge the gap between situated- and
traditional-leaming models, Shute, Gawlick-Grendell, and Young (1993) have recently developed
a series of statistics modules, Szat Lady. Leaming is situated within various gaming
environments (¢.g., "Stat Craps”); the theoretical postulates are that leaming is a constructive
process, enhanced by experiential involvement with the subject matter, that is situated in real-
world exampies and probiems. Furthermore, the system has a well-defined curriculum in
accordance with popular leaming theory.

According to constructivism, leamers actively construct new knowledge and skills, either
from what they already know (information-processing premise) or from what resides in the
environment (situated cognition stance). Both positions would probably agree that leamers do
not come to a leaming situation with a tabula rasa, but rather, as active-pursuers (not passive-
recipients) of new knowledge (e.g., Bartlett, 1932; Collins, Brown, & Newman, 1989; Drescher,
1991; Edelman, 1987; Piaget, 1954). Both positions also support the position that the
construction process can be enhanced by environments supporting experiential learning.
Research in this area has shown that knowledge derived experientially tends to be more
memorable than passively-received knowledge because the experience ("doing” rather than
"receiving™) provides cognitive structure, and is intrinsically motivating and involving (e.g.,
Friedman & Yarbrough, 1985; Harel, 1991; Harel & Papert, 1991; Shute & Glaser, 1991;
Spencer & Van Eynde, 1986). Finally, when instruction is situated (or anchored) in interesting
and real-world problem-solving scenarios, that also is believed to enhance leaming (Brooks,
1991; Brown, Collins, & Duguid, 1989; Clancey, 1992; Collins, Brown, & Newman, 1989; Lave
& Wenger, 1991; Suchman, 1987; The Cognition & Technology Group at Vanderbilt, 1992).

The Cognition and Technology Group at Vanderbilt (1992) has also been working on
developing a pedagogical approach to situated cognition. They define "anchored instruction” as
an attempt to actively engage leamers in the learning process by situating instruction in
interesting and real-world problem-solving environments. Rather than teaching students how to
solve particular problems, these systems teach generalizable skills, helpful across a variety of
problem-solving situations. The major goal of this type of instruction is to create authentic-
feeling environments in which one can explore and understand problems and opportunities
experienced by experts in a domain, and leam about the tools these experts use. This group has
developed a series of adventures for middle-school students focusing on math problem
formulation and problem solving. These are the "Adventures of Jasper Woodbury" series. The
g Al of the project is to facilitate broad transfer to other domains, embodying several design
principles: (1) video-based presentation, (2) narrative format, (3) generative learning, (4)
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embedded data design, (5) problem complexity, (6) pairs of related adventures, and (7) links
across the curriculum,

One of the major problems with this whole debate over situated cognition versus
traditional information processing models is that the former position simply has not tested its
underlying hypotheses at this time, while the latter has enjoyed decades of solid research. Vera
and Simon (1993), rebutting Clancey's support paper(s) for situated leaming, stated, “"Clancey
leaves us with philosophy (whether correct or not is another matter), but with precious little
science.” (p. 118). And that appears to be true. Because cognitive psychology is an empirical
science, studies need to be conducted that examine claims made by any new position. For
instance, supporters of our final "hot topic” of the 90's (Virtual Reality, or VR) claim that this
new technology can improve leamning by virtue of fully immersing the learner in the leaming
process (leaming by saturation). But is there any veracity to this claim? It is certainly testable.

The relationship between experience, leaming, and pedagogy is a briar patch of thomy questions.

Recent theoretical harangues on the nature of situated leaming have laid a kind of groundwork
for VR by arguing for an epistemology of leaming based on experience.

Yirtual Reality and Leaming. A collection of technologies, known as Virtual Reality
(VR), has recently been exciting the instructional technology community.. ‘This new technology
refers collectively to the hardware, software, and interface technologies available to the user
interested in experiencing certain aspects of a simulated 3-dimensional environment. The
simulated aspects of the environment ("world") currently include a stereoscopic, low-to-medium
fidelity visual representation displayed on a head-mounted display system. Using head-tracking
technologies, one can update the display in accordance with head and body motions. This
feature, along with the stereo disparity of the images on the two screens (one for each eye),
support the illusion of moving around in 3-dimensional space.

Unquestionably, VR changes the relationships between learning and experience,
highlighting the role of perception (particularly visual), in leaming. Experience is both social
and perceptual, and VR epitomizes the notion of experiential leaming. Many systems are now
being developed that have demonstrated the success of the experiential approach. The current
question is: Does VR represent the next logical, developmental step in the design of
instructional systems? In other words, does the immersion experience (i.c., extra fidelity and
related cost) significantly improve leaming and performance beyond the more traditional
pedagogical approaches?

Recently, there have been some empirical data collected on the relative success of VR in
terms of instructional effectiveness, as well as skill transfer to the real world. For instanice,
Regian, Shebilske, and Monk (1992) showed that people can, indeed, leam to perform certain
tasks from virtual environments (e.g., console operations and large-scale spatial navigation).
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Next, knowledge and skill acquired in a VR have been shown to transfer to performance in the
real world. Regian, Shebilske, and Monk (1993) found that: (a) VR console operations training
can transfer/facilitate real world console operations performance, and (b) VR spatial navigation
training successfully transfers to real-world spatial navigation. In contrast to the Regian, et al.
(1993) findings, however, those reported by Kozak, Hancock, Arthur and Chrysler (1993)
showed no evidence for transfer of a "pick and place” task from VR to the real world. However,
the criterion task used in that study was quite easy; thus, the conclusions may actually be
inconclusive. So, even with the relatively poor fidelity and interface currently available in VR
technology, there is some evidence for its efficacy and potential as a serious leaming/training
environment.

Another positive example of VR's potential for training was presented by Psotka (1993)
who argued that VR creates one uniform point of view on any representation that overcomes the
conflicts and cognitive load of maintaining two disparate points of view (Sweller, 1988). The
reduced cognitive overhead resuiting from the single "egocenter” in a VR should expedite
information access and learning. Central to this perceptual experience of VR is the poorly
understood phenomenon of immersion or presence. Preliminary insight based on the SIMNET
experience (Psotka, 1993) provides not only personal testimonials to the meotivating and
stimulating effects of the social and vehicle-based immersion of synthetic environments, but also
preliminary effectiveness data on its potency for leaming and training. That is, even though
SIMNET provides an impoverished perceptual simulation of a tank in action, the cues from
interactive communications among crew members, as well as the auditory and visual cues of the
simulated sights, provide gut-wrenching and sweaty believability. What's more, the evidence
clearly shows a level of training effectiveness (even without a curriculum) that is superior to
many other classroom and simulation-based efforts (Bessemer, 1791). Research is continuing on
how to make this training more effective by including surrogate crew members and intelligent
semiautomated forces in the environments. The need to involve dismounted infantry, not just
tanks and vehicles, is creating a research base for better computational models of agents and
coaches (Badler, Phillips, and Webber, 1992).

Virtual reality shows promise in the construction of microworlds for physics and other
science instruction. For instance, Loftin and Dede (1993) are creating a Virtual Physics
Laboratory from the base facilities of a VR world created for NASA astronaut training. In their
virtual laboratory, students can conduct experiments in a virtual world where everyday accidents,
structural imperfections, and extrinsic forces, such as friction, can be completely controlled or
eliminated. Balls that bounce with complet: determinism can be measured accurately at all times
and places, and can even leave visible trails of their paths. The effects of gravity can be




controlled, and variations of gravity can be experienced visually, and perhaps even
kinesthetically.

Although the perceptual aspects of experience are clearly important, it is easy to assume
that there are no difficulties to leaming from existing visual representations and simulations, like
photographs, graphs, and static drawings. It is easy to downplay and overlook difficulties in
modem leaming environments. Most of us are experts at interpreting visual representations on
printed pages (figures, graphs, photographs, icons, drawings, and prints), but it's easy to forget
the difficulty we once experienced as we tried to interpret scatter plots and line graphs. We know
from many studies that those difficulties never completely go away. For younger leamers, they
may be even more pronounced. VR can remove these difficulties to 2 degree and make
information more accessibie through the evolutionarily-prepared channels of visual and
perceptuai experience. As to the question of whether the delivered "bang" is worth the bucks, the
Jury is still out.

‘We now tum our attention away from these controversies, and toward the analysis of a
collection of ITS that have been systematically evaluated and reported in the literature. The
purpose of this section is to provide a flavor for evaluations that have been conducted, rather than
to review all possible evaluations.
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ITS EVALUATIONS
Building a tutor and not evaluating it is like building a boat and not taking it in the
water. We find the evaluation as exciting as the process of developing the ITS. Often,
the results are surprising, and sometimes they are humbling. With careful experimental
design, they will always be informative. (Shute & Regian, 1993, p. 268).

Which systems instruct effectively? What makes them effective? One might think that
increasing the personalization of instruction (e.g., model-tracing) would enhance leaming
efficiency, and in the process, improve both the rate and quality of knowledge and skill
acquisition. But results cited in the literature on leaming, in relation to increased computer
adaptivity, are equivocal. In some cases, rescarchers have reported no advantage of error
remediation in relation to learning outcome (e.g., Bunderson & Olsen, 1983; Sleeman, Kelly,
Martinak, Ward & Moore, 1989). In others, some advantage has been reported for more
personalized remediation (e.g., Anderson, Conrad & Corbett, 1989; Shute, 1993-a; Swan, 1983).

I, however, more researchers conducted controlled ITS evaluations, this issue would be
easier to resolve. Put. in addition to the availability of relatively few reported evaluations of
ITS, there has been little agreement upon a standard approach for designing and assessing these
systems. Results from six I'TS evalvations will now be presented.

Six ITS Evaluati

A few examples of systematic, controlled evaluations of ITS reported in the literature
include: the LISP tutor (e.g., Anderson, Farrell, & Sauers, 1984) instructing LISP programming
skills; Smithtown (Shute & Glaser, 1990, 1991), a discovery world that teaches scientific inquiry
skills in the context of microeconomics; Sherlock (Nichols, Pokomy, Jones, Gott, & Alley, in
preparation; Lesgold, Lajoie, Bunzo & Eggan, 1992), a tutor for avionics troubleshooting; Bridge
(Bonar, Cunningham, Beatty, & Weil, 1988; Shute, 1991) teaching Pascal programming skills;
Stat Lady instructing statistical procedures (Shute & Gawlick-Grendell, 1993), and the Geometry
tutor (Anderson, Boyle & Yost, 1985), providing an environment in which students can prove
geometry theorems. Results from these evaluations show that these tutors do accelerate leaming
with, at the very least, no degradation in outcome performance compared to appropriate control
groups.

The LISP tutor. Anderson and his colleagues at Camegie-Mellon University (Anderson,
Farreil, & Sauers, 1984) developed a LISP tutor which provides students with a series of LISP
programming exercises and tutorial assistance as needed during the solution process. In one
evaluation study, Anderson, Boyle, and Reiser (1985) reported data from three groups of
subjects: human-tutored, computer-tutored (LISP tutor), and traditional instruction (subjects
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solving problems on their own). The time to complete identical exercises were: 11.4, 15.0, and
26.5 hours, respectively. Purthermore, all groups performed equally well on the outcome tests of
LISP knowledge. A second evaluation study (Anderson, Boyle & Reiser, 1985) compared two
groups of subjects: Students using the LISP tutor and students completing the exercises on their
own. Both received the same lectures and reading materials. Findings showed that it took the
group in the traditional instruction condition 30% longer to finish the exercises than the
computer-tutored group. Moreover, the computer-tutored group scored 43% higher on the final
exam than the control group. So, in two different studies, compared to traditional instruction, the
LISP tutor was apparently successful in promoting faster leaming with no degradation in
outcome performance.

In a third study using the LISP tutor to investigate individual differences in leaming,
Anderson (1990) found that when prior, related experience was held constant, two "meta-factors”
emerged. These two meta-factors, or basic leaming abilities, included an acquisition factor and a
retention factor. Not only did these two factors explain variance underlying tutor performance,
they also significantly predicted performance on a paper-and-pencil midterm and final
examination.

A fourth study with the LISP tutor concems the usefulness of productions for analyzing
learning. In analyzing student performance on the first six problems in chapter three of the LISP
tutor, Anderson (1993, p. 32) discovered uneven, unsystematic trends in leaming. One problem
was relatively easy and the next might be relatively more difficult. However, by decomposing
the problems into their constituent production rules, Anderson was able to convert the chaos of
these results into very Systematic program solution leaming curves, for both time and accuracy.
He analyzed performance on individual production rules across problems. Because productions
were reused, and others newly introduced in each problem, he could plot performance in tenms of
the number of opportunities each production rule had for contributing to an additional unit of
LISP code. This simplifying transformation demonstrates that knowledge is acquired in terms of
production rules, and that if we are to understand how learning cognitive skills is to be explained,
our analysis of the task and data ought to be conducted in terms of production rules.

Smithtown. Shute and Glaser (1991) developed an ITS designed to improve an
individual's scientific inquiry skills within microworld environment for learning principles of
basic microeconomics. In one study (Shute, Glaser & Raghavan, 1989), three groups of subjects
were compared: a group interacting with Smithtown, an introductory economics classroom, and a
control group. The curriculum was identical in both treatment groups (i.e., laws of supply and
demand). Results showed that while all three groups performed equivalently on the pretest
battery (around 50% correct), the classroom and the Smithtown groups showed the same gains
from pretest to posttest (26.4% and 25.2%, respectively); they significantly outperformed the
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control group. Although the classroom group received more than twice as much exposure to the
subject matter as did the Smithtown group (11 vs. 5 hours, respectively), the groups did not
differ on their posttest scores. These finlings are particularly interesting because the
instructional focus of Smithtown was not on economic knowledge, per se, but rather on general
scientific inquiry skills, such as hypothesis testing.

Sherock. "Sherlock™ is the name given to a tutor which provides a coached practice
environment for an electronics troubleshooting task (Lesgold, Lajoie, Bunzo, and Eggan, 1990).
The tutor teaches troubleshooting procedures for problems associated with an F-15 manual
avionics test station. The curriculum consists of 34 troubleshooting scenarios with associated
hints. A study was conducted evaluating Sherlock's effectiveness using 32 trainees from two
separate Air Force bases (Nichols, Pokomy, Jones, Gott, & Alley, in preparation). Pre- and post-
tutor assessment used verbal troubleshooting techniques as well as a paper-and-pencil test. Two
groups of subjects per Air Force base were tested: (1) subjects receiving 20 hours of instruction
on Sherlock, and (2) a control group receiving on-the-job training over the same period of time.
Statistical analyses indicated that there were no differences between the treatment and the control
groups on the pretest (means = 56.9 and 53.4, respectively). However, on the verbal posttest as
well as the paper-and-pencil test, the treatment group (mean = 79.0) performed significantly
better than the control group (mean = 58.9) and equivalent to experienced technicians with
several years of on-the-job experience (mean = 82.2). The average gain score for the group using
Sherlock was equivalent to almost four years of experience.

Pascal ITS ("Bridge™). An intelligent programming tutor was developed to assist novice
programmers in their designing, testing, and implementing Pascal code (Bonar, Cunningham,
Beatty, & Weil, 1988). The goal of this tutor is to promote conceptualization of programming
constructs or "plans" using intermediate solutions. A study was conducted with 260 subjects
who spent up to 30 hours leaming from the Pascal ITS (see Shute, 1991). Leaming efficiency
rates were estimated from the time it took subjects to complete the curriculum. This measure
involved both speed and accuracy since subjects could not proceed to a subsequent problem until
they were completely successful in the current one. To estimate leamning outcome (i.e., the
breadth and depth of knowledge and skills acquired), three criterion posttests were administered
measuring retention, application, and generalization of programming skills.

The Pascal curriculum embodied by the tutor was equivalent to about 1/2 semester of
introductory Pascal. That is, the curriculum equaled about 7 weeks or 21 hours of instruction
time. Adding two hours per week for computer laboratory time (conservative estimate), the total
time spent leaming a half-semester of Pascal the traditional way would be at least 35 hours. In
the study discussed above, subjects completed the tutor in considerably less time (i.e., mean = 12
hours, SD = 5 hours, normal distribution). So, on average, it would take about three times as
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long to leam the same Pascal material in a traditional classroom and laboratory environment as
with this tutor (i.e., 35 vs. 12 hours).

While all subjects finished the Pascal ITS curriculum in less time compared to time
needed to complete the curriculum under traditional instructional methods, there were large
differences in leaming rates found at the end of the tutor. For these subjects (having no prior
Pascal experience), the maximum and minimum completion times were 29.2 and 2.8 hours, a
range of more than 10:1. In addition, while all 260 subjects successfully solved the various
programming problems in the tutor’s curriculum, their leaming outcome scores reflected differing
degrees of achievement. The mean of the three criterion scores was 55.8% (SD = 19, normal
distribution). The range from the highest to the lowest score, 96.7% to 17.3%, represented large
between-subject variation at the conclusion of the tutor. To account for these individual
differences in outcome performance, Shute (1991) found that a measure of working memory
capacity, specific problem solving abilities (i.e., problem identification and sequencing of
clements) and some leaming style measures (i.e., asking for hints and running programs)
accounted for 68% of the outcome variance.

Stat Lady. Two studies have been conducted to date with Stat Lady. One study (Shute,
Gawlick-Grendell, & Young, 1993) tested the efficacy of leaming PROBABILITY from Star Lady
in relation to a traditional Lecture and a no-treatment Control group. Results showed that both
MemglwpshﬁhedsigmﬁwMymommanunwnmlmp.yetﬂnmwasmdiﬁem
between the two treatment groups in terms of pretest to posttest improvements after three hours
of instruction. The results were viewed as very encouraging because, not only was the lecture a
more familiar leaming environment for these subjects, but the professor administering the
Lecture had more than 20 years experience teaching this subject matter while this was Stat Lady’s
first teaching assignment. When test items were separated into declarative and procedural
categories, they found that: (a) students using Star Lady acquired significantly more declarative
knowledge than the other groups, but (b) when procedural skill acquisition was assessed, the
Lecture group prevailed. Finally, a significant aptitude-treatment interaction was obtained where
high-aptitude subjects leamed significantly more from Stat Lady than from the Lecture
environment, but for low-aptitude subjects, there was no difference in leaming outcome by
condition. Together, these results suggest that a teacher-computer combination maximizes
leaming.

The second study (Shute & Gawlick-Grendell, 1994) compared leaming from Stat Lady
vs. learning from a paper-and-pencil Workbook version of the identical curricuium, and
addressed the question: “What does the computer contribute to leaming?" Findings showed that
Stat Lady leamers performed at least as well (and in some cases, much better) on the outcome
tests compared to the Workbook group, again despite the presence of factors strongly favoring
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the traditional condition. Specifically, they found that (a) Stat Lady was clearly the superior
environment for high-aptitude subjects, (b) Star Lady subjects acquired significantly more
declarative knowledge than the Workbook subjects, and (c) regardiess of aptitude, the majority of
leamers found the Stat Lady condition to be significantly more enjoyabie and helpful than the
Workbook condition.

Anderson’s Geometry Tutor. The geometry tutor (Anderson, Boyle & Yost, 1985)
provides an environment for students to prove geometry theorems. The system monitors student
performance and jumps in as soon as a mistake is made. The skill this system imparts is how to
prove geometry theorems that someone else has provided. Schofield and Evans-Rhodes (1989)
conducted a large-scale evaluation of the tutor in place within an urban high school. Six
geometry classes were instructed by the tutor (in conjunction with trained teachers), and three
control geometry classes taught geometry in the traditional manner. The researchers closely
observed the classes using the geometry tutor and traditional instruction for more than 100 hours.
One of the really nice and intriguing results of Schofield and Evans-Rhodes (1989) evaluation of
this tutor was the counter-intuitive reversal of its effects. Although the geometry tutor was
designed to individualize instruction, one of its pragmatic and unintended side effects was to
encourage students to share their experiences and cooperatively solve problems. Since their
experiences with the Geometry tutor was so carefully controlled by the immediate feedback
principles of its operations, the wtor guaranteed that students’ experiences were much more
uniform and similar than was the case for normal classrooms. As a result, students could more
casily share experiences and make use of one another’s experiences and problem solving
strategics. The practical result was a great deal of cooperative problem solving.

Conclusions from the Six Evaluation Studi

These evaluation results all appear very positive regarding the efficacy of ITS; however,
there is always a selection bias involved with the publication of unambiguous evidence of
successful instructional interventions. We are familiar with other (unpublished) tutor-evaluation
studies that were conducted but were "failures.” However, the general positive trend is viewed as
encouraging, especially given the enormous differences among the six tutors in design structure
as well as evaluation methods. The findings indicate that these systems do accelerate leaming
with no degradation in final outcome.

Obviously, principled approaches to both the design and evaluation of ITS are badly
needed before we can definitively judge the merits of these systems. Some principled approaches
are beginning to emerg:.. For example, Kyllonen and Shute (1989) outlined a taxonomy of
leaming skills that has implications for the systematic design of ITS. They hypothesized a multi-
dimensional interaction predicting leaming outcome as a function of: type of
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learning/instructional environment, type of knowledge/skill being instructed, subject matter, and
characteristics of the leamner (e.g., aptitude, leaming style). With a few modifications to this
taxonomy, Regian and colleagues at the Armstrong Laboratory are currently trying to fill in the
cells in the matrix through systematic, empirical studies designed to assess performance across a
range of these aforementioned dimensions. Their goal is to map instructional and knowledge-
type variables to leaming.

In terms of systematic approaches to evaluating ITS, Shute and Regian (1993) suggested
seven steps for ITS evaluation: (1) Delineate goals of the tutor, (2) Define goals of the
evaluation study, (3) Select the appropriate design to meet defined goals, (4) Instantiate the
design with appropriate measures, number and type of subjects, and control groups, (5) Make
careful logistical preparations for conducting the study, (6) Pilot test tutor and other aspects of
the study, and (7) Plan primary data analysis concurrent with planning the study. These
principles may also be employed as a framework for organizing, discussing, and comparing ITS
cvaluation studies.

FUTURE ITS RESEARCH AND DEVELOPMENT
What is possible for the future includes ample computing resources for every student
... tapping electronically many resources outside the classroom. It includes the idea of
a personal factotum that could serve as a knowledgeable intermediary ... to bridge the
gap between the classroom and the external world ... Virtual field trips linking
libraries and museums will have their holdings available in electronic (or photonic)
Jorm ...” (Nickerson, 1988, p. 312).

We've seen where ITS research and development has been, and we've discussed a few of
the systems that have been evaluated in controlled studies. We'll now examine some of the
conceivable futures for these systems. Given the diversity of researchers in the area, and the
great differences among leamers, there will be, in reality, many different streams of research co-
occurring and the most likely future is probably a composite of them all.

mmersive Leaming Eovironments
Alden (age 11) walks into his cubicle at school and excitedly puts on his VR body-suit.
Today'’s itinerary (jointly produced by Alden and his main teacher) is teeming with new learning
adventures. After taking a Dramamine, he boards a boat heading up the Nile. This trip (and his
on-line tour guide) will help him learn about East Africa’s geography, flora, and fauna as he
cruises, observes, hears, and smells things along the world's longest river. When the trip
concludes, he plans on visiting Olduvai Gorge for some archeological excavations (after all, he's




already in Africa). Specifically, Alden will get a chance to help dig out some early human
remains. Then, for change of pace, Alden and his VR-pal Rafael, who lives in Mexico City, will
meet in a happenin’ space station they programmed together. They are learning each others’
language and culture--Rafael speaks English and helps Alden learn Spanish, while Alden speaks
Spanish and assists Rafael with his English. Following a real lunch (not a virtual one, as all
this learning makes one hungry), Alden concludes his day on an artistic note. He's creating a
VR masterpiece representing his interpretation of the classical score, "The Wall" by the noted
composer Roger Waters, designing virtual sculptures, their choreography, and musical
arrangement.

‘This imagined future using Immersive Leaming Environments can attain its instructional
goals as follows. As a ghost presence, the tutor in these new systems can interact with a student
through digital speech, through text that floats in the air, or through replays. As an embodied
presence, the tutor can vary in reality from a stick figure to a realistic mannequin, with facial
expressions and voice. The possibilities for realistic guidance that is as believable and as forceful
as a real tutor may be quite difficult to achieve, but it can be dramatic in implications. The
believability of these new systems hinges on the quality of the immersive experience they
provide. The differences between an Immersive Leaming Environment and its 2D simulation
counterpart depends upon the results of immersion and in the different ways that students can
interact with the world. Instead of moving a mouse or a joystick, learners can move their own
hands to pick something up. Although they might not feel the object accurately, there are enough
cues to provide the sensation of picking things up. First, they see it happening, and vision
clearly dominates other senses to provide a compelling illusion. Contact and force can be
provided realistically with expensive force-feedback devices, or suggestively with sounds, such
as a ping that denotes collision or touching.

VR also opens the opportunity for providing handicapped or disabled people an
experience of unfettered motion; or new interfaces to control the world with minimal movements.
It can make invisible forces like gravity and air pressure visible and hence, more comprehensibie
to students. For instance, Minstrell (1988) pointed out that high school students go through a
period of misconceptions during which they confuse gravity and air pressure; so that when air is
pumped out of a bell jar, objects inside it are expected to become lighter or even float. VR offers
an opportunity for doing a set of experiments in which the forces of gravity and air pressure
could be made visible through graphic icons, such as colored arrows or textures. As the gas is
removed from a bell jar, it could be visible as a colored gas flowing out. Students could actually
reach into the bell jar and manipulate the objects as the gas is removed. They could even adopt
the point of view, or frame of reference, of an object inside the bell jar, and experience the
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change in forces directly. Making these forces visible in a multitude of lifelike and believable
environments may have profound effects on chikdren's understanding of science.

It should be noted that the same problems that plague ITS are relevant to VR. That is,
the emphasis needs to perhaps shift away from omnipotent VR systems, toward a collection of
specific mini-systems and goals (e.8. teach the knowledge of X, the skill of Y, and provide the

= Toaditional ITS Disaope: pecific Cognitiy nols Domins

Whitney (age 14) arrives in her classroom and takes a seat at her learning station, a
large comfortable desk with an embedded computer. The touch-screen is divided into many
different areas that have distinct functions (e.g., graphics, spreadsheet, sound analyzer, dozens
of databases). From the front of the class, a visiting detective (serving as the day's teacher)
accesses the international police database (IPD) and obtains details surrounding a grisly

" r that happened the previous month in a small Italian city. She electronically transmits all
0j ... information to the students, which includes electronic photographs of the physical
evidence (e.8., the body and the weapon), psychological profiles of the victim and 11 suspects,
recorded interviews, alibis and motives, phone logs, and so on. The students have 1o engage in a
variety of coordinated cognitive activities to solve the murder mystery. Whitney first brings up
the psychological profile of the dead man. After reading the file, she notes in her electronic
scratch pad that the victim had a history of drug abuse and depression. On another part of her
25” screen, she accesses a 3D photo of the victim, zooms-in on his arms, and sees evidence of
two recent intravenous injections. The pathology report from the coroner’s office concluded that
the victim died from a gunshot wound 1o his heart, but traces of a narcotic substance were also
Jound in his body. Playing the interview tapes on her "stress analyzer,” Whitney discovers that
two of the suspects are clearly lying. Throughout the day, puzzle pieces slowly come together,
the detective-teacher offers a few suggestions, and finally, Whitney figures out whodunit (with
93 probability of accuracy).

In this vision of the future, "omnipotent” intelligent tutoring systems have been replaced
by collections of specialized educational or cognitive tools—technological devices that help
peopie to perform cognitive tasks (i.c., help them know, think, or leam). For example,
simulators, smart spreadsheets, and extensive databases are cognitive tools available within
classrooms. Apprenticeship training is envisioned as the main source of imparting skill, in
conjunction with the supplemental simulator and associated tools for the apprentice to employ
during leaming. The training situations relate to real-world events, thus placing leaming within a

mesningful context.
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One reason that ITS may disappear in the future is that, while many researchers agree
that intelligence in an ITS is directly a function of the presence of a student model, the student
model may, in fact, be the wrong framework around which to build good learning machines.
Derry end Lajoie (1993) presented six reasons why the student modeling paradigm is
problematic: (1) In complex domains, the student model cannot specify all possible solution
paths, (2) One cannot determine or induce all possible "buggy” behaviors, (3) "Canned" text is
antithetical to principles of tutorial dialog, (4) Reflection and diagnosis should be performed by
the stadent, not the tutor, (5) Implementing the student modeling approach is very difficult,
technicaily, and (6) Model-tracing is only applicable to procedural leaming, but the focus should
be on critical thinking and problem solving.

A zcond factor that could contribute to the decline of ITS is that the term "intelligent
tutoring system” is associated with philosophical issues relating to the nature of intelligence.
Many people associate intelligence with awareness and, since no Al system could be said to have
achieved awareness, these people would not grant that any ITS had ever been developed.
Nevertheless. dozens of "intelligent” tutoring systems have been routinely reported in the
literature, and even more discussed at conferences. So, the name (and hence, the whole
enterprise) may be inappropriate or misleading. Simply put, ITS may promise too much, deliver
too little, and constitute t00 restrictive a construct. Gugerty (1993) summed it up best as,

There is a sense in which the goals of traditional intelligent tutoring systems are
both too ambitious and too narrow. Most traditional ITS... are designed to provide
tutoring in a ssand-alone setting... This ambitious goal requires that the ITS handle
all aspects of the very difficult task of nutoring, including expert problem solving,
student diagnosis, tailoring instruction to changing student needs, and providing an
instructional environment... On the other hand, the goal of developing very
intelligent stand-alone ITS is narrow in the sense that it limits our conception of how
inselligence can be incorporated into computer-based training and education (p. 3).

As a panallel, consider what happened in the field of robotics. First-generation robots
were constructed out of pure research curiosity. Then, after the initial flurry of excitement in the
19608 and early 1970s died down, emphasis shifted from building single-system robots, to more
emphasis on building component parts. This trade-off was due to the problems associated with
designing a gystem that has general-purpose problem-solving skills versus one with more focused
expertise. The next generation or *obots, arising from the work being done on the individual
parts, may resolve this conflict by becoming an expert in a given domain, but also possessing a
wide repertoire of general problem-solving skills. The same applies for ITS. Rather than
attempting to build an omnipotent tutor, a more fruitful approach might be to create a coherent
collection of computesized toois (.., a divide-and-conquer strategy).
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Puture 3 Distance Leaming

Curtis (age 9) rolls out of bed, greets his parents (already at work in their cubicles), eats
breakfast, glances at the sleet falling outside, then ambles over to his computer for his morning
curriculum. Curtis "goes to school” in his home. When he logs onto the Public School System,
he first checks his mail, then receives a menu of options for the morning's learning project:
Would he like to learn about Tyrannosaurus Rex, the politics leading up to World War I, or
what caused the California earthquake of 1994? All he has to do is tap into the appropriate
database, travel to the correct geographical region and time period, and interact with these
respective environments through the multi-media systems. The respective databases all include
on-line hosts to narrate events and answer questions, movies to depict a range of relevant topics
(from mundane to crucial), and simulators to allow Curtis to experiment within the different
worlds. Afier choosing T. Rex as his learning project, the host narrates some basic declarative
information (e.g., when they existed and for how long, size of the dinosaur, diet, mating habits,
other co-existing plants and animals) then Curtis uses the simulator to manipulate geological
events to see their ramifications on the dinosaur. The first thing he does is to reverse the
advancing ice age (introducing a global warming trend in its place), and then sees its
implications on not only the survival of the lizard king, but also on the evolution of other plants
and animals on the planet. Periodically, the host asks for some predictions, Curtis responds,
and receives feedback from the host. On occasion, other students in the same module
communicate their finding~ and questions to him over the network lines.

As can be seen, this future is attractive for a lot of reasons. With distance leaming, one
can allow leamers to stay at home or some other convenient learning location (saving time and
transportation costs), and connect to a rich network of information and training software,
available across an information super-highway. To achieve this future, expert systems--spanning
a huge armray of possible domains--are needed that present comprehensive information, as well as
provide thougiht-provoking questions, and respond to student-directed queries. The network
should also allocate nodes to which one's peers can be connected, thus providing for
collaborative leaming opportunities. Notice that this distance-leaming future is not limited to
accessing declarative knowledge from databases. Rather, software (e.g., simulators) should alse
be accessibie to practice skill in any specific domain.

In this future, it is possible to quickly access on-line, digital-rich libraries with virtually
limitless realms/databases for our personal leaming pleasure. And while the educational horizon
will invariably include VR technology as an important instructional medium (see Future 1), it
will be just one of many media.




Finally, to attain this future and the metaphor and promise of the library as a knowledge
space (i.c., the epitome of Carbonell's dream and the hypertext vision), we must first make a
fundamental change how we think about education. Our narrow conception of education (e.g.,
"school”), only relevant for those between the ages five and eighteen, is no longer appropriate.
Education should be for everyone, all ages, and available in all places.

4. Individualized Leaming is Out. Collaborative Leaming is In
Sierra, Nicole, Fernando, Sasha, Kevin, and Uri comprise "Team 3." They are between
the ages of 18-22 (college sophomores). In their sociology class, there are two professors and
five teams, each team reflecting an optimal mixture of aptitude, gender, learning styles,
personality types, and ethnic backgrounds. They are all geared-up for their on-line VR lesson on
"racial prejudice.” The six students are transported to Birmingham, Alabama on a hot August
day in 1951. In reality, only Sasha and Kevin are African-American, but in this lesson, all six
kids are transformed into "Negroes" (as they're called in 1951). The lesson requires them to take
a city bus to a "Whites Only" park that has a nice public swimming pool, try to swim in the pool,
then go home to their impoverished residences on the outskirts of town. Problems arise
immediately in this compelling simulation when they board the bus. Automatically, they all sit
down in the front seats; after all, there are only four other riders on the bus, sitting in the middle
section. The white bus driver rudely informs them to “move to the back” whereupon Sierra
(Team 3's outspoken leader) politely asks "why?” When she gets slapped for her impudence,
Nicole starts to cry. But Sierra persists. Then the bus driver utters some very ugly sentiments
about them all, based solely on their skin color. They see by his reddening face and posture that
he's about to strike out again, so they collectively decide to move quickly to the back of the bus.
During the ride 1o the park, they discuss their experiences (what they feel, what they could have
done differently, what caused this state of affairs, etc.). Sasha and Kevin contribute valuable
information to the discussion from personal tales related to them by their grandparents and
great-grandparents. Finally they arrive at the park, and things really go downhill from there.
They're not allowed to enter the park or swim in the pool, they're called "dirty” and worse, and
the simulation makes them all painfully aware of racial prejudice. Afterward, Team 3 reviews
and discusses all of the events, and their professors provide information, as needed, about the
historical roots of racial prejudice leading up to the situation they encountered in their lesson.
‘The motivating force driving this future is the belief that collaborative leaming is
superior to individualized learning. That is, leamning may be invaluably enhanced from
conversations with those who have differing opinions, backgrounds, or skills, know more about
some topic, or who can ask perceptive, thought-provoking questions. Basic research is being
conducted in cognitive and social psychology that seeks answers to questions pertaining to the
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optimal compositions of leamner groups. Some of these research questions include: Is it better to
mix genders, or have more homogeneous groupings? When establishing groups based on

aptitude levels, is it better to match highs with highs, or a high with a low? What are the optimal
coordinations of affective characteristics (e.g., passive with gregarious)? And what other

cognitive/social considerations should be made (e.g., letting individuals self-select their group vs.
being assigned)? According to Resnick and Johnson (1988), sociological studies show that most
people prefer personal sources of information, and computers can enkznce such communications.

Technology is evolving to the point where computer systems can routinely contain
leaming environments that support a high level of social interaction. This important technology
facilitates effective learning, especially within the classroom. The atmospheres in the classrooms
containing the connected computerized environment are boisterously controlled, similar to what
Feurzeig (1988) found in a collaborative mathematics course that was "...more like a beehive
than a math class.” (p. 117). These collaborative classrooms can even support networked VR,
which means that students, trainees, and experts can interact between schools and remote sites,
and that trainees and instructors can share the same experience. Leamers can work
collaboratively on the same project. On the other hand, different students can work on the same
project at the same time, without awareness of each other’s presence, but with some invisible
instructor lurking over their shoulders. The number of combinations are staggering, and their
leaming/training potential is unknown.

The other person in the networked world could also be an autonomous agent, or cyborg,
part real and part synthetic. This idea raises a whole new set of possibilities for a computer
coach, explanations, and guidance. "Social interface agents” (Thorisson, 1993) have progressed
steadily as information about how to direct gaze, when to use paraverbals (hmmm, uh ...) and
when to take tums in a dialogue, all become better understood. Improvements in modeling
human actions and plarming (¢.g., Badler, Phillips, and Webber, 1992), including natural
language interaction, will soon lead to the development of virtual agents that can coach and guide
‘leamers’ actions within carefully plannmed leaming activities. Some of these interactions are
already available in a text form (Curtis and Nichols, 1993). These virtual agents focus on
students’ errors by offering experts' stories (Kedar, Baudin, Bimbaum, Osgood, and Bareiss,
1993). Networked digital spaces, such as digital libraries, demand new techniques for navigating
through these complex spaces without getting lost. Issues of how to maintain a sense of location
(Benedikt, 1991) and how to best use these environments to support memory with the method of
loci (Neisser, 1987) need more research.

As shown in the above illustration, VR provides a new saliency on the notion that some
things (such as race and gender) are constructed, and that we can become what we play, argue
about, and build. For instance, text-based VR already invites the participation of women and
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gitls in social interactions in ways that adventure games like dungeons and dragons did not
(Turkle, 1993). Turkle points out that MUDs (i.e., multi-user dungeons) are easily used for
gender swapping. When gender roles are switched, sexist expectations and overt demands that
might be ignored in daily life become highly visible and reactive, and they are openly discussed.
The MUD then becomes an evocative object for a richer understanding not only of sexual
harassment, but of the social construction of gender.

to help him learn to solve algebra word problems better. Today'’s focus is on those troublesome
distance-rate-time problems. Afier stating his name, the computer accesses Wesley's records,
flagging his salient strengths and weaknesses (i.e., not only his higher-level aptitudes, but also
the low level productions that he's acquired and not yet acquired). Beginning with a review of
concepts and skills that he learned the day before, the ITS generates a problem which is just a
little bit ous of his grasp. The ITS then works out the correct solution to the problem, along with
an alternative solution that Wesley is very likely to come up with based on its student model of
him. In fact, ke solves the problem exactly like the tutor predicted. As part of its student model
of him, the ITS "knows" to instruct Wesley with an emphasis on a graphical representation of the
problem to clarify the discrepancy between the correct and incorrect solutions and facilitate the
Jormation of a functional mental model. Thus, the tutor presents two animated trains appearing
on opposite sides of the screen that converge at a point almost in the middle of the screen. They
travel at different rates of speed. The problem statement stays up at the top of the screen, and
the tutor points out, as it periodically pauses the simulation, what elements should be attended to
and when. Wesley states that he understands the mapping between the apliéated mental model,
the appropriate equation, and the relevant parts of the word problem. So the ITS presents an
isomorphic word problem. This time he solves it correctly, without any supplemental graphics.
Wesley exercises an option to play around with some trains, missiles and boats on his own for a
while 1o test his emerging understanding. He views his "score"” of curricular elements acquired,
and seems a little frustrated about his progress, but the ITS reassures him that he is proceeding
at a reasonable rate. Instruction and learning continue.

For ITS to evolve to the point seen in the above scenario, more controlled research must
be conducted in three areas of intelligence: the domain expert, the student model, and the tutor.
First, the subject matter must be understood by the computer well enough for the embedded
expert to draw inferences or solve problems in the domain. Next, the system must be able to
deduce a learner's approximation of that knowledge. Finaily, the tutorial strategy must be
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intelligent to the point where an on-line tutor can implement strategies to reduce the differences
between the expert and student performance (Bumns & Capps, 1988).

Solutions to problems involving difficult Al, psychology, and pedagogy will emerge
from research endeavors that yield information about effective and efficient ways to (a) represent,
utilize, and communicate domain knowledge, (b) represent an individual's evolving knowledge
state (for both declarative knowledge and procedural skill), and (c) instruct the material most
effectively for a particular learner. Some specific research questions include: How can
computers better understand natural language (input as well as output)? What kinds of inference
mechanisms can optimally model students’ knowledge status? How can computers be
programmed to understand "semilogical” reasoning (including intuitions, pet theories, prior
experiences)? What are the specific characteristics of leamers who perform better in certain types
of leaming environments and not in others? Are certain domains better suited for specific
instructional methods? When should feedback be provided, what should it say, and how best
should it be presented? How much leamer control should be allowed?

Some additional limitations of current ITS have already been mentioned (e.g., student
models cannot specify all possible solution paths in complex domains, model-tracing is only
suitable for procedural leaming). One possible solution would be to use a.kind of model-tracing
approach for instructing well-defined procedural skills, using an underlying expert and student
model that are pﬁmaﬁly rule-based. And for instructing declarative information or complex, ill-
structured domains, the ITS may include a knowledge base that is a semantic nei with extensive
indexing (like CBR).

‘Whatever future ultimately evolves from ITS, the fields of Al, education, anc
psychology have paufit>4 enormously from the contributions made in the ITS arena. Leaming
theories have been tested; individual differences issues have been validated against complex,
real-world learning tasks (e.g., ITS, in contrast to artificial laboratory tasks); Al programming
techniques have been refined; different instructional approaches have been compared, controlled
studies conducted of aptitude-treatment interactions, and so forth. So, in terms of research
vehicles, ITS are greatly underestimated. But for purposes of education, their time may be
limited; maybe not.

CONCLUSIONS
Before the computer age, the prevailing instructional approach was sufficient (e.g., one
teacher transmitting information to about 30 students), but we now reside in a computerized
world. Initial implementations of CAI mirrored this pedantic approach, and to some extent, so
does the currently popular model-tracing approach in sophisticated ITS. Do we need to change
our educational philosophies or systems?




|

We have most of the components necessary to advance educational reform. Not only is
there great need for change, but also there are pwerful, affordable technologies available to
support :t. Missing are definitive answers to the psychological controversies cited earlier. Basic
research is actively being pursued to resolve these issues. For example, studies are beginning to
consistently find that higher-order thinking skills are not acquired through didactic approaches
(i.c., straight conveyance of facts), but rather, through leamers' active involvement with the
subject matter. This “constructivist” view of leaming allows students to achieve inteliectual
accomplishments not possible under more traditional pedagogical approaches (Collins, Brown &
Newman, 1989; Resnick, 1987).

‘The table, below, contrasts old versus new approaches to instruction (from Means,
Blando, Olson, Middleton, Morocco, Remz & Zorfass, 1993):

Table 2: Old versus New A s to Instruction
OL NEW
Teacher-directed activities Student-directed explorations
Didactic Interactive modes of instruction
Short instruction on a single subject Extended, multidisciplinary instruction
Individual work Collaborative work
Teacher as knowledge dispenser Teacher as facilitator
| Ability groupings Heterogeneous groupings
Assessment of factual knowledge and Performance-based assessment
|_discrete skills

This table provides a clear direction for ITS research and implementation. That is, to get
from "old" to "new," we need to open up learning environments that promote increased leamer
initiative and between-leamer collaboration. We should assess ieaming as it transfers to
authentic tasks, not standardized tests, and attempt to establish connections across various fields
s0 topics are not learned in isolation of one another. As technologies emerge and advance, we
can fit them into this f..mework. Furthermore, additional research is needed to validate the
goodness of the new wver the old approach to teaching-leaming.

Look around you. Computer technologies have dramatically transformed the workplace,
communications and commercial activities, as well as the entire business community. But
education remains status quo. We need to harness the computer’s potential and find ways to
employ it in promoting educational change. Are current and prevalent ITS adequate for our
purposes--now and in the 21st century (just right around the comer)? We believe that, as
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currently implemented, these systems may have asymptoted in utility. A philosophical shift has
been suggested in this chapter, away from stand-alone instructional devices and toward using
tools to aid in the more collaborative learning process. There are actually very few ITS in place
in schools, yet they exist in abundance in research laboratories. We need to move on.

As we've discussed in this paper, reform can proceed along a number of pathways
(perhaps in parallel). For instance, computer graphics are getting better every day; we can now
develop 3-dimensional virtual environments where individuals can interact with any artificial
world we choose to program (or purchase). Satellite transmissions can relay data to very distant
locations; leamers from different parts of the globe can access distal data, or even get together
and jointly experience and solve various problems. Cognitive tools abound (e.g., simulators,
hypertext/hypermedia formats, etc.), and we seem to be ready to recast our convictions about
ITS. Rather than trying to create all-knowing, all-purpose teaching machines, a more fruitful
approach may be to develop specific computerized tools. These tools can be specific for a given
domain, or general purpose, applicable across domains. To paraphrase a well-known quotation:
A person who is given a fish will eat for a day, but a person who learns how to fish will eat for a
lifetime.

We can see the seeds of discontent growing. Go to any ITS-related conference and
notice how researchers in the field have begun to discontinue using the term "ITS." Instead, ina
show of semantic squirming, they refer to advanced automated instructional systems (formerly,
ITS) as: Interactive Leaming Environments, Cognitive Tutors, Individualized Teaching Systems,
Computer-Assisted Leaming, Automated Instructional Support Systems, Computer-Based
Leaming Environments, Immersive Tutoring Systems, Knowledge Communications Systems,
Computer Tools, and so on.

Not only is the ITS construct too ambitious, but there is no universally-accepted
definition of what comprises computer intelligence. While our working definition of intelligence
is fairly specific, there exists a wide range of criteria in the literature related to computer-tutor
intelligence. For instance, some say that for an automated instructional system to earn the label
“intelligent," it must demonstrate the ability to leam by showing an evolving knowledge base.
Yazdani and Lawler (1986) asserted, "No system which is too rigid to leam should be called
intelligent." (p. 201). Others have argued that intelligent systems must provide for leamer
control during the leaming process (Papert, 1980; Scardamalia, et al., 1989). Still others (€.g.,
MacKenzie, 1990) suggest that we reserve the word "intelligent” to describe only those systems
showing truly impressive advances (¢.g., intuition, empathy). Are these even realistic goals?

The fields of Al, psychology, and education have all greatly benefited from ITS research.
But to continue (see Future 5), much more systematic research is needed to achieve some of the
great potential offered by these systems. One suggestion is to begin a coordinated stream of
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systematic ITS research and development, altering specific features of existing systems and
evaluating the results of those changes in accordance with a principled approach. According to
Self (1989), "Once a sounder foundation for ITS has been specified, it becomes possible to
identify the elements of a theory of ITS. These elements lie within (formal) Al, in areas such as
belief logics, reason maintenance, meta-level architectures, and discourse models-—-areas from
which ITS research has been divorced” (p. 244). Intelligent tutoring systems, as we now know
them, may not exist 20 years from now, but we're on the right path, the motives are
commendable, and the leamer will ultimately profit.

As we began this review of ITS with the evolution of computer technology, so do we end
it. ITS and related, developing technologies for education and training are constrained by two
important factors: (a) the cost and power of computers, and (b) the pragmatic and theoretical
knowledge of how best to employ them. Every month, computers are dramatically decreasing in
cost and increasing in power; these changes bearing directly on consumer knowledge and
application of the technology. While discussion of the interaction between these two factors goes
beyond the scope of this chapter, we can make straightforward predictions about upcoming
hardware and software developments. The MIPS (millions of instructions per second) curve is
already converging on a BIPS (billions of instructions per second) curve in-an exponential
explosion that knows no limits. Desktop computers with 100 MIPS are currently available, and
this raw horsepower makes a qualitative difference in computing possibilities. Soon, powerful
systems will be available in notebook- and calculator-sized formats that fit into our hands, shirt
pockets, and purses. Further, software tools enable us to leam from, and perform within, all
major domains, such as algebra, biology, physics, art history, computer science, home
economics, psychology, botany, calculus, accounting, and even manufacturing, medicine, and
engineering. At our finger tips, we will be able to retrieve information, translate foreign
languages, complete our tax retums, work out investment portfolios, analyze sales trends, and so
forth. Software will be everywhere with embedded "assistants” to explain, critique, provide on-
line support and coaching, and perform all of the ITS activities outlined in this chapter. Society
stands at the edge of all this. Although the timeline for these exciting developments is uncertain,
we do know that the research conducted so far is just a drizzle in comparison with the deluge to
come.
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