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Evaluating Intelligent Tutoring
Systems

J. Wesley Regian

Valerie J. Shute ,,
Armstrong Laboratory, Human Resources Directorate,
Brooks Air Force Base, Texas

It has long been claimed that automated %%3&5@ has the g?zg:mv:?g
delivery of effective and efficient instruction (e.g., m@iwﬁx ,Ew? %wﬁ,?w;&mw
1957, Woolf, 1988). Over the vears, a variety of theoretical ww%qégm w&w
been adopted to pursue that potential (e.g., ﬁ@% % Brown, 1982; ﬁ%ﬁw
1963; Cohen, J. Kulik, & C. C. Kulik, 1982; gé%w 3&&%&& Stas ,,,f.mw
Zmuidzinas, 1990; Sleeman & Brown, 1982; Wenger, 1987). As ﬁ%w as Qwﬁw%w
Pressey described a device that sought to apply %%.é&gﬁmxxﬁ@ Wﬁ%ﬁ%ww
theory to the task of automated instruction. The mechanical %&% g wiﬁ% %@ :
multiple-choice questions and answers by the g@gﬁ would drill ,m@ »ﬁa‘ g,ﬁ on
the questions and provide immediate feedback in order o support learning:

The somewhat astounding way in which the mgn&%%ﬁ of .%@ %@%ﬁ% isﬁw W
fit in with the so-called “laws of learning” desgrves ﬁ%%%m in ﬁ&& agmw%@&r ?r
“taw of recency” operates to establish the correct answer in the ﬂmg& of mw% &bgf
since it is always the fast answer which is the right one. The “law am m%%g?w

also cooperates; by chance the right response tends 10 be made most &%m, %?m x
is the only response by which the subject can go on lo w,g next nwgﬁg» .mfﬁ ﬁ
with the addition of a simple attachment the apparatus %& present %w gﬁﬁw fmm
a piece of candy or other reward upon mﬁﬂ. making any given «ﬁxa tha MW?% MM
experiment may have set the device, that is @% “law of effect . &% a&W | QM_EW
automatically, to aid in the establishing of the right answer. (Pressey, 1926, p. 375)

Pressey’s ideas were probably viewed by some as quite @ﬁugwwgmﬁ%a% %M@
relationship to then-current learning theory, @% they were a%ﬁ %ﬁ@%ﬁ%wwg
evaluated in any rigorous sense. Today, intelligent wtoring &ﬁ@%w (ITS) %,M%u
mize the notion of theory-based, individualized, sutomated instruction. gm@% &
us are iust as excited about the potential of ITS as Pressey was about his weaching
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machine. Unfortunately, although ITS have been in existence for well over a
decade, the degree to which they have been successful remains equivocal due to
the relative dearth of controlled evaluations {Baker, 1990; Littman & Soloway,
1988 Shute & Regian, 1993),

Some of the more familiar ITS evaluations reported in the literature mclude
the LISP tutor (e.g., Anderson, Farrell, & Sauers, 1984), instructing LISP pro-
gramming skills; Smithtown (Shute & Glaser, 1990, 1991), a discovery world
that teaches scientific inquiry skills in the context of microeconomics; Sherlock
(Lesgold, Lajoie, Bunzo, & Eggan, 1992), a tutor for avionics troubleshooting;
and Bridge (Shute, 1991; Shute & Kyllonen, 1990) teaching Pascal program-
ming skills. Results from these evaluations show that the tutors can accelerate
learning with, at the very least, no degradation in outcome performance com-
pared to appropriate control groups.

How much can we make of these findings? As always, there is a selection bias
tor publication of unambiguous evidence for successful instructional interven-
tions. Thus, we do not know how many studies found disappointing results. We are
personally familiar with other (unpublished) tutor-evaluation studies that were
conducted but were “failures.” We are also aware of a great many ITS that have
been built but never evaluated. We believe that a consistently applied, systematic,
and rigorous approach to evaluation would speed the emergence of ITS into
applied sewings. The primary goals of this chapter are to outline a systematic
approach to research and development of intelligent tutoring systems, and to
present a set of steps 1o organize the design of evaluations for these systems.

RESEARCH AND DEVELOPMENT OF ITS:
A GENERAL APPROACH

Our general approach has two main thrusts. First, in order to manage the tradeoff
between internal and external validity, we believe ITS research and development
should progress from laboratory studies of pedagogy in artificial tasks toward
field studies of fully implemented ITS for real-world tasks. In other words, begin
by identifying powerful instructional manipulations in controlled settings, and
then work up to evaluating those manipulations in applied settings. Second, to
maximize the efficiency of the research as well as the generality of the results, we
believe ITS research and development should be driven by learning theory and
constrained by evaluation data. In other words, if it should work, try it; if 1t
doesn’t work, change it.

Managing Experimental Validity

Experimental design involves arranging conditions to promote the validity of an
experiment. If the causal link between independent manipulations and dependent
measures is equivocal, the experiment is said to lack internal validity. If the
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ability to generalize from the experimental sample to %Mw wﬁyﬁwﬁ% of gﬁ@@ﬁ is
equivocal, the experiment is said to lack external validity. w& g%%%m% re-
search, increases in external validity are generally accompanied by %&2& S in
internal validity. As you increase your ability to generalize %@Q@g& %wzm%%
to applied settings, you lose the level of ﬁxw@%&%ﬁ%ﬁ n@%ﬁ %ﬁ%& within %%
laboratory. We believe the solution to this mﬁ%&g is %w, azﬂ%& develop %& tesst
pedagogical principles in a laboratory setting with careful .&g@g to experimen-
tal control. Promising approaches should then be tested in increasing fieldlike
settings, and ultimately in applied settings with careful attention to external
validity. ; "

Figure 4.1 depicts the posited tradeofT between internal and ?»&%& 5&%%,
as internal validity decreases, external validity increases. This éwﬁ»g%% i
particularly true with regard to research on pedagogy. %&%ﬁ% in %mﬁ%@%ﬁ
settings is desirable because of the experiment a&%«& that is possible in @%
laboratory. One can control for prior knowledge, assign %3%@ W groups,
counterbalance for teacher (experimenter) effects, and so on. On the other hand,
research in field settings (e.g., high school classrooms) is desirable because all
aspects of the target setting are present in the experiment. ggw ﬁ, ﬁgé %?%
however, are potential confounds to the experiment, making W.N %@%ﬁ% o relate
outcome performance measures to the experimental g&zwﬁ&%? Field research
on pedagogy, if done well, can have high external validity, but often ar the
expense of internal validity. ‘ o

Our approach to managing the tradeoff between ,mwﬁzwﬁ and external m%ww&%
1s to begin with laboratory research (high experimental g@a&% mz& x%@%
validity) using carefully designed laboratory gaﬁ,? we ,@m@ %@ﬁ%@&
manipulations that are powerful, we attempt to 5%2% the ﬁ%%m with z@g
realistic tasks, again within the laboratory. Eventually, we study the intervention

FIG. 4.1. Simple inverse rela- Low

tionship between internal and
external validity.
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External Validitv rn
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Lo External Validity High

Fis. 4.2, Categories of pedagogy ﬁcawg along a validity vector.

in an applied instructional context (field setting) with real-world tasks. Figure
4.2 depicts this flow, and places these stages of research on the validity vector
from Fig. 4.1. We believe that neither laboratory nor field research alone will
give a complete and accurate picture of the instructional effectiveness of a partic-
ular intervention. Further, we believe the choice of target tasks used to study
instructional interventions at the various stages deserves careful consideration.

Managing Experimenter Bias

We believe that ITS research and development can advance more rapidly if the
process is both driven by learning theory and constrained by empirical data. By
learning theory, we mean a coherent, plausible body of ideas about how people
acquire, store, retrieve, and apply knowledge and skill. We find that instructional
prescriptions {or “theories” of instruction) that fail to address mechanisms of
human knowledge acquisition and representation, are inadequate for our pur-
poses. However, even if the design of an ITS is carefully linked to well-
established theory, its value can only be ascertained from empirical testing.
Theory is important in generating hypotheses about teaching and learning, and in
driving generalizations about pedagogical effectiveness across instructional do-
mains, but empirical testing is critical in order to judge how these ideas fare in
reality. Only empirical data, with appropriate control conditions, can provide
convincing documentation of the effectiveness of an intervention. Figure 4.3
shows this proposed cyclical relationship between theory and data, where

rr
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o External Validity Hon

FIG. 4.3. ferative process of experimentation—driven by learning
theory and constrained by evaluation data.

research begins with theory that is progressively modified by empirical re-
sults.

In summary, empirical data sbout the effectiveness of theory-based {nstruction
provides feedback about how well our implementation works, and may also lead
to a revision of the original theory. We believe it is extremely important o
evaluate systems rigorously and often in order to make progress in ITS effective-
ness.

In the next section, we present examples of research that reside at each of
three anchor points along the validity vector in Fig. 4.2, Our intention is o give a
sense of the kinds of studies that are possible, and to indicate how the results of
such studies can influence subsequent ITS work. 1t 1s important to keep in mind,
however, that we view these three stages of research as relatively arbitrary points
along a continuum, rather than truly distinet categories. We present examples of
(a) laboratory research employing artificial tasks, (b) laboratory rescarch em-
ploying real-world tasks, and {c) field research using real-world tasks,

Laboratory Research With Artificial Tasks

Artificial, or laboratory, tasks do not exist (in their exact form) in the real world,
Examples of artificial tasks that have been used over the years in psychological
research include memornization of nonsense syllables, cryptaritbmatic, forced-
choice reaction time tasks, and cursor-tracking tasks. Such tasks are devised 1o
allow uncontaminated study of various phenomena of interest to the experimen-
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ier. Artificial tasks are useful in pedagogical research because they allow us to
sliminate or reduce the effects of prior knowledge on learning, isolate very
specific components of real tasks of interest, and study knowledge/skill acquisi-
tion in shorter time frames than would be required for real tasks.

Space Foruress Research on Small-Group Pedagogy.  Space Fortress is an
example of un artificial task that has a rich record as a research tool for studying
issues of training and skill acquisition (see Acta Psychologica, Vol. 71, 1989).
This gamelike dynamic control task was originally developed at the University of
llinois under funding from the Defense Advanced Research Project Agency
(DARPA) as part of the Learing Strategies project (Donchin, 1989). We have
developed an updated version of the program to run in our laboratory, with more
flexibility than the original for our research purposes. Shebilske and Regian
(1992), and Shebilske, Regian, Arthur, and Jordan (1992) report some of the
research conducted in our laboratory using Space Fortress. For instance, we have
found that it is possible to train up to four subjects on & single computer while
achieving individual performance levels equivalent to those attained by subjects
trained in the same amount of time on four separate computers. This is achieved
by using a training protocol that involves a combination of whole-task practice,
shared part-task practice, and observational learning among trainees. These find-
ings are leading us to design prototype instructional systems that operate from the
perspective of small-group pedagogy rather than individual pedagogy. In gener-
al, automated instruction is more cost-effective and sometimes more instruc-
tionally effective when designed for small groups rather than for individuals.
When teaching multiple students simultaneously at a single computer, the hard-
ware investinent is reduced, as are demands on buman instructor time. Also,
students in small groups tend to teach one another, benefiting both the provider
and the recipient of the instruction. Because students diagnose and remediate
each other’s performance, the difficult problems of awtomated diagnosis and
natural language processing are avoided.

Space Fortress Kesearch on Gender-Related Performance Differences.
Agnother research area that we have been examining with Space Fortress involves
the significant spatial component of the task. Typically, spatially loaded labora-
tory tasks vield robust gender effects with males outperforming females. This
effect occurs on static spatial tasks (e.g., mental rotation, mental paper folding,
form boards) as well as dypamic ones (e.g., collision estimation, dynamic con-
trol of moving figures). There has been a long-running argument over whether
this gender difference in spatial performance is due to sex-related biological
differences or differential developmental experiences, There is clear evidence
that at least some of the difference is related to differences in testosterone levels
{e.g., Kimura, 1992; Shute, Pellegrino, Hubert, & Reynolds, 1983). Recently,
we have been examining instructional interventions that may overcome the hypo-
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thesized experiential deficits. We were surprised to find a very simple ggn@@;
tion that seems to go a long way in this direction; namely, placing women n
discussion groups with men. We had female subjects participate in m%%,, gm
regularly occurring (and specifically structured) discussion groups ﬁ»% ke
subjects, to talk about Space Fortress strategy and tactics. This simple interven-
tion dramatically increased women's Space Fortress performance. Short discus-
sion groups following practice sessions produced a small positive effect on men’s
skill acquisition, but a significant positive effect on women'’s. The women ﬁ%ﬁ
this treatment performed nearly as well as the men. This very %@ﬁﬁz&g ,m.ﬁ%ﬂ
vention may help reduce gender differences in skill acquisition for other kinds of
tasks as well,

Loader Research on Mental Models During Training. A second example of
an artificial task from our laboratory is Loader-—a complex procedural task
(Farquhar, 1992). It requires subjects to execute long sequences i consie-
operation actions (e.g., button presses, switch actuations, dial rotations) © a0~
complish specific goals. The task is based on a computer-simutated console a%
controls railroad cars, tracks, and cranes in a fictitious railroad yard. The task is
designed to be a laboratory analog of procedural console operations and process
control tasks, which are common in industrial and defense settings.

We hypothesized that acquisition of Loader performance skill would ? SUp
ported by the development of a dynamic mental maodel linking console actions 1o
events in the “railroad yard.” That is, in the process of learning to carry out a
specific sequence of actions to accomplish a goal, the operator wiould come to
imagine the corresponding events in the railroad yard, even if she could not
actually see the yard while operating the console. We therefore %ﬁzﬁ@ the
following experiment (Farquhar, Shebilske, & Regian, 1992). méﬁ,m w&%&%
were shown a simple static diagram representing a bird’s-eye view of the %&ﬁ%
yard. The diagram depicted the layout of tracks, the initial location of cars, and
the locations of bins and the crane. Subjects were told they would leamn to
operate a console that would enable them to move the cars around on ﬁg tracks,
and to use the crane to move canisters between bins and cars. Subjects were
randomly divided into two groups (i.e., dynamic model vs. no %@? gﬁ%
training, both groups received identical text-based instruction in an instructional-
window above the Loader interface. One group, however, additionally saw a
dynamic version of the bird's-eye view of the railroad yard. After ggw@w both
groups were tested under identical conditions. They were %w% to perform %@
complete procedure without guidance and without access to either type _@m vaile
road yard representation. The results were striking. Rather than w%ﬁ%%w %,%,?
dent on the animated rail yard model, subjects in the dynamic model condition
apparently internalized the model, as evidenced by their performance ﬁg, the
model was removed. Posttraining performance was 33% faster and 50% more
accurate for subjects trained with a dynamic graphical model compared to the no-
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maodel condition, even though the graphical model was not present during test-
ing. This is an example of a very simple graphical aid that can be added to
simulation-based ITS to produce significant and enduring performance enhance-
ment.

Laboratory Research With Real Tasks

By real tasks, we mean tasks that constitute all or part of actual tasks that are
performed in the world outside of the laboratory. In addition to having counter-
paits in the real world, they typically are more complex in structure than artificial
tasks, Because real tasks tend to be more complex, they may take longer to
acquire and performance may be more error-prone than artificial tasks.

Bridge Tutor. “Bridge” is the name of an ITS that teaches a subset of the
Pascal programming language, which fits our criteria for being a real task (Bo-
nar, Cunningham, Beatty, & Weil, 1988). We conducted a study using this tutor
prior to conducting a full field evaluation of Bridge (Shute, 1991; Shute &
Kylionen, 1990). Approximately 200 subjects participated in the initial labora-
tory study. Many of them, however, had significant problems learning the pro-
gramming curriculum because they lacked or had forgotten prerequisite knowl-
edge presumed by the system (e.g., not knowing what an integer or variable
was}), Findings from this study highlighted about 10 weak concepts in program-
ming and math: integer, real number, string, data, sum, product, constant, vari-
able, expression, and value assignment. As a result of this laboratory investiga-
tion, we built a “pretutor,”an approximately 2-hr computer-assisted instruction
(CAI) module that instructed those 10 concepts. Subjects received on-line defini-
tions of concepts, followed by a series of questions pertaining to the concept
(e.g., Is 5.24 an example of an integer?). After each response, feedback was
provided on both the accuracy of the response and the item in question (e.g.,
“No, 5.24 is not an example of an integer because integers are positive or
negative whole numbers without decimal points, and 5.24 contains a decimal™).
This pretutor presented items in a learning-by-doing format with a strict mastery
learning criterion. In the subsequent field study, once subjects encountered the
Bridge tutor, they no longer had to ask, “What’s a variable?” or “What's an
integer?” The problem was solved, and learning Pascal programming skills was
not confounded by inadequate knowledge of necessary concepts.

Llectricity Tutor.  MHO is a tutor that teaches basic principles of electricity
(Lesgold, Bonar, lvill, & Bowen, 1989). In one laboratory study {Shute, in
press-a), we tested about 400 subjects using two instructional environments
created as slightly different versions of MHO. These two environments differed
only in the computer-generated feedback. Al other aspects of the tutor were
identical. In the rule-application environment, the ITS told the learners what the
relevant principles were, and in the rule-induction environment, learners had to
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induce principles on their own, only given information sbout what variables were
relevant. One learner characteristic that was examined was “exploratory behave
ior,” a quantified measure of on-line tool usage (e.g., taking a meter reading
from a circuit). Results from this laboratory study showed that learners with more
exploratory behaviors learned significantly faster and scored significantly higher
on outcome tests if they had been assigned to the inductive environment thuan the
applied environment. On the other hand, less exploratory learners performed
significantly better from the more structured, application environment compared
to the inductive environment. It is interesting to note that there was no significant
main effect due to learning environment on any of the many outcome or efficien-
¢y measures used in that study. Thus, neither of the instructiona! approaches was
a clear “winner,” overall. Instead, the study gave us critical information about
how subsequent versions of the tutor should adapt to student behavior.

Field Research With Real Tasks

This section discusses studies that have employed real tasks tested in the field as
opposed to in the laboratory. As noted earlier, the controls that are possible
within laboratory environments may be more difficult, or impossible, to achisve
during the conduct of field studies. For example, it may not be possible w
randomly assign subjects 1o treatment conditions in a field study. However, with
field research, the ability to generalize to the actual instructional context of
interest is enhanced, increasing the study’s external validity.

Smithtown.  Shute and Glaser (1991) developed an ITS designed o improve
an individual’s scientific inguiry skills as well as provide a microworld eaviron-
ment for learning principles of basic microeconomics. Both of these foci consti-
tute real knowledge and skills as they are applied outside of the laboratory in the
real world. Shute, Glaser, and Raghavan {(1989) reported that results from a field
study comparing three groups of subjects: a group interacting with Smithtown,
an introductory economics classroom, and a control group. The curriculum was
identical in both treatment groups {(i.e., laws of supply and demuand). Resplts
showed that whereas all three groups performed equivalently on the presest
battery (around 50% correct), the classroom and the Smithtown groups showed
the same gains from pretest o posttest {26 4% and 25.2%, respectively), signifi-
cantly outperforming the control group. Although the classroom group received
more than twice as much exposure to the subject matter as did the Smithtown
group (11 vs. 3 hrs, respectively), the groups did not differ on their positess
scores. These findings are particularly interesting because the instructional focus
of Smithtown was not on economic knowledge, but rather on general scientific
inquiry skills, such as hypothesis testing.

LISP Turor.  Another example of an T8 field was conducted by Andemson
and his colleagues at Carnegie-Mellon University (Anderson et al., 1984). They
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developed a LISP tutor that provides students with a series of LISP programming
exercises and tutorial assistance as needed during the solution process. In one
study, Anderson, Boyle, and Reiser (1985) reported data from three groups of
subjects: human-tutored, computer-tutored (LISP tutor), and traditional college
instruction (subjects solving problems on their own). The time to complete
identical exercises were 11.4, 15.0, and 26.5 hrs, respectively. Furthermore, all
groups performed equally well on the outcome tests of LISP knowledge. A
second evaluation study (Anderson et al., 1985) compared two groups of sub-
Jects: Students using the LISP tutor and students completing the exercises on
their own. Both received the same lectures and reading materials. Findings
showed that it took the group in the traditional instruction condition 30% longer
to finish the exercises than the computer-tutored group. Furthermore, the
computer-tutored group scored 43% higher on the final exam than the control
group. So, in two different studies, the LISP tutor was successful in promoting
faster learning with no degradation in outcome performance compared to tradi-
tional instruction.

In this section, we have provided examples of the types of studies we believe
are useful at various stages in the development of ITS. We hoped to give a sense
of the kinds of studies that are possible, and to indicate how the results of such
studies can influence subsequent ITS work. In the following section, we turn to
the goal of designing evaluation studies. We describe a set of steps that may be
used to organize the design of ITS evaluation studies.

STEPS IN ITS EVALUATION

Outcomes of evaluation studies occasionally reflect the quality of an experimen-
tal design rather than the efficacy of the ITS. In our experience, we have seen
evaluation studies fail due to poor experimental design, inadequately opera-
tionalized constructs and measures, and even deficient logistical planning and
implementation. In the following sections, we present some general steps that
may be followed to implement an effective 1TS evaluation (see Shute & Regian,
1993, for a fuller discussion on this topic): (a) Clearly delineate the goals and
methods of the tutor; (b) clearly define the goals of the evaluation study; (¢)
select the appropriate design to meet the defined goals; and (d) instantiate the
design with appropriate measures, subjects, and controls.

Step 1: Clearly Delineate the Goals and
Methods of the ITS

A careful review of the ITS goals and methods should be undertaken prior to
designing an evaluation study. Occasionally, the instructional goals or methods
may have shifted over the developmental life cycle of the ITS. In any event, if
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the designer of the evaluation study is uofamilisr with the twtor's goals and
methods, then designing a good evaluation study is almost impossible. We be-
lieve the evaluation designer should be very clear about the following critical
issues.

What Instructional Approach Underlies the Tuwtor?  How, generally and spe-
cifically, does the system accomplish instruction? s instruction guided or un-
guided, student directed or tator directed? Is knowledge explicitly presented by
the system or induced by the student? To what degree will all students have seen
the same information or experienced the same interactions? Do students “com-
plete” the tutor after a fixed time period or after reaching some performance
criterion?

What Learning Theory Does It Asswme?  What knowledge or skill
acquisition theory motivates the instructional approach of the ttor? Which as-
pects of the tutor are directly theory-driven and which are arbitrary? How closely
linked are the instructional approach and the learning theory? It is important to
distinguish among a learning theory, a general instructional approach, and
specific instantiation of that instructional approach. Failure to do so can mﬁﬁ iy
over generalizations about evaluation results (e.g., Sleeman et al., 1989),

Whar Exacitly Does It Teach? It is important to be very clear about what
students are expected to learn as a result of interacting with the tor. First, in a
concrete sense, what exactly will they know or be able to do alter tutoring that
they did not know or could not do before? Specific and measurable knowledge or
skills should be clearly delineated as the expected learning outcomes. For exam-
ple, one might hope that students will be able to solve differential equations, list
the bones in the human hand, or diagnose faults in a specific electromechanical
system. It is also useful to characterize the goals of instruction in a more %%@%
manner. For example, one might hope to teach procedural skills, %&%mé
knowledge retrieval, or logical problem solving. The ability o %ﬁ%«@% find-
ings across or within instructional domains is dependent on some type of theoret-
ical characterization of domain dimensions.

What Other Impacts Is It Expected to Have?  Are there other ways in which
interacting with the tutor is expected to impact the student? For example, w@%a
town explicitly instructed scientific inguiry behaviors, but it provided an enviro-
ment that promoted learning sbout microeconomics. Less intentional %&@é@aﬁw
of tutoring might include near or far transfer of skill, changes n %@gﬁgﬁ@w\?
efficacy, or modification of attitudes about computers. I you believe such effects
are probable and important, then appropriaie and objective measures %%&a be
obtained to demonstrate the effect. So-called anecdotal evidence is usually the
clearest indication of a missed opportunity during an evaluation.
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In What Context Is It Supposed 1o Operate? 1s the system intended to
supplement existing instruction or provide stand-alone instruction? Is the system
targeted to individuals or small groups? What prior knowledge, training, or
demographic characteristics are assumed of students? Is the tutor supposed to be
used in an academic setting to support declarative knowledge acquisition, or in
an industrial training environment to support acquisition of procedural skills? It
is important to clearly specify the environment in which the tutor is intended to
operate in order to give it a fair chance of succeeding in evaluation, and in
deciding on appropriate control conditions,

Step 2: Clearly Define the Goals of the
Evaluation Study

Evaluation studies should not be fishing expeditions. A thoughtful consideration
of what you want to know enables you to develop an experimental design that
will unequivocally give you that information. You should also be realistic about
the difficulties involved in implementing various designs, and adjust your goals
at the outset to those that are realizable. Consider the following questions:

What Would You Like to Know After the Study is Completed? What is the
primary question you want snswered, or alternatively, what is the most important
claim you want to be able to make? You may want to know if the wtor is more
effective, more efficient, or both, than some instructional alternative at produc-
ing criterion performance on some task. You may want to see how much students
learn beyond their incoming knowledge and skills, or as a function of their
incoming knowledge and skills. You may want to see how tutor effectiveness is
influenced by students’ individual learning style. You should clearly specify your
research questions and hypotheses before you design the study.

How Will You Measure Success, and By What Standard Will You Judge
ft7 Think carefully about how to measure what is being taught, and how you
will judge success. Suppose your instructional goal is to teach nine test-taking
strategies, and you found that | week after students received 2 hrs of tutoring,
they were able 1o state five of these strategies, on average. Was your tutor a
success? What if you also learned that | week after students received S min of
nstruction using a simple mnemonic approach, they were able to state eight of
the nine strategies. By comparison, your tutor would seem ineffective. But what
it you found that students learning from your tutor could reliably apply five of the
nine strategies, whereas students trained with the mnemonic approach can state,
but not apply, eight strategies? Because any human performance is extremely
sensitive to the methods used to measure it, your measures of learning should
closely reflect the goals of instruction.

You may want to capture quantitative indices, protocols, and/or observational
data. Because your subjects will be working at computers, it will be possible to
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plan for the online capture of quantitative measures & ﬁ@&@ﬁﬁ@&%;@%& w@
latencies, accuracies, and behavioral counts. With g%%@&@% more ﬁw@% %&
expense, protocol analyses can yield important wmgégﬁ ww%% gﬁ%@@%
cannot be captured directly by the computer. }mgg@éwﬁ trained @%w%ﬁ
may be employed to record aspects of learning and %%ﬁ%%% that are impossi-
ble to obtain otherwise (Schofield & Evans-Rhodes, 1989).

Step 3: Select an Appropriate Design to Meet
Defined Goals

Only after reviewing the goals and methods of the tutor and ﬁ%@w&% %? %K?
of the evaluation study is it appropriate to select an @é@ﬁ?g %@%f@?
searchers involved in the evaluation of automated w,gwgﬁw% have %ﬁ%ﬁ%
chosen to distinguish between formative @%& %ﬁ%&ﬁé %ﬁ%ﬁ@& ,g,m,w
Kearsley, 1983) of courseware, Generally @@%:ymf gégwsé aaﬁ:ﬁﬁ% have
an internal control condition, and ask the question: How can % %ﬂgw@wﬁw
improved? Summative evaluations have an exiernal control condition, %& ,Miy
the question: How does the system compare 0 ﬁgm SYstems or x%%gwg?

Originally, the formative/summative %&%@z&s Wias gﬁw 10 &%ﬁm_%ﬁ%w ) K,
tween diagnostic (formative) evaluation mﬁﬁz% %ﬁ%ﬁ w&gﬁ:m VEISUS %H ﬁé
(summative) evaluation after student learning {Bloom, Hastings, %. K@@ﬂﬁ
1971). This distinction was only later adapted to the purpose of categorizing
evaluations of courseware during development versus after aéﬂ%wﬁmﬁ? Kﬂwﬁw
ever, we have found that distinction too restrictive for our purposes. mmgﬁﬁgﬁm
types of evaluation studies, we prefer o think in terms of mwg ﬁ%ﬁw@@w aw‘
scribed earlier (see Fig. 4.2) and a set of mﬁ&% evaluation g@%ﬁga _@
particular, we present five broad design maﬁ%ﬁg that may be used for %&gg
tion studies. These include (a) within-system designs iwﬁmngﬁ WO OF e
alternative versions of a single tutor compare o one ﬁ@%@& {b} ?&@%@,@ﬁ@%
designs addressing the effectiveness of one tutor in &,ﬁ%& to awéwgw n m%my pw@
teaching the same subject matter; (¢) benchmark %ﬁw&% gxwg g@ a gsw Wz,ﬁ
in relation to some standard instructional wﬁ%&@%&% 3@% &%&% %ﬁﬁgww;
ing combinations of the above options; and Qw»%%%é&?ﬁﬁ%a& designs %@M
senting any of the previous categories, but without random mﬁwwﬁﬁwﬁ aw@m -
jects to conditions. Such an approach is ofien necessary for true mﬁa iﬁgﬁﬁ a‘g
should be undertaken with some care {see ﬁ%ﬁ%ﬁ & Stanley, 1968} Although
these five categories do not represent an exhaustive set, they are common and
useful design types for evaluation studies.

Step 4: Instantiate Design With Proper Measures,
Subjects, and Controls

The next step is to carefully plan the details of the design. Carefuily i&i&ﬁ the
selection of dependent and independent measures, the number and type of sub-
jects, and the appropriate control conditions,
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Dependent Measures.  We have found that a common problem in failed
evaluation is poor selection, design, or implementation of dependent measures to
assess knowledge and skill acquisition. The dependent measures should directly
reflect both the goals of the ITS and the goals of the evaluation study.

We prefer to obtain a variety of dependent measures. Because ITS instruction
is done on computers, it is cheap and easy to capture data on virtually everything
that happens during instruction. Given the expense and trouble involved in build-
ing an ITS and implementing a large-scale evaluation, we choose to err on the
side of gathering too much data. Besides, it is the nature of learning and instruc-
tional research that the apparent effectiveness of an intervention will depend, in
large part, on how you measure performance. If you measure performance in a
variety of ways, you are more likely to pick up treatment effects if they exist.
Possible dependent measures include performance latency, performance accu-
racy, declarative knowledge, procedural knowledge, procedural skill, automatic
skill, secondary task performance, higher order knowledge, as well as measures
of near wansfer, far transfer, and skill retention or decay.

Independent Measures. It is likely that the effectiveness of an instructional
ntervention will vary with individual characteristics of students. Individuals
come to any new learning situation with varying knowledge, skills, and abilities.
Common individual difference measures include general intelligence, grade
point average, standardized aptitude test scores, cognitive process measures
{e.g., working memory capacity, information processing speed), personality
measures (e.g., impulsivity, aggression, introversion), and demographic infor-
mation {(gender, age, years of school, experience with computers). Consider
collecting these kinds of measures in order to control for potential confounds in

your experimental design (e.g., two schools with different mean 1Qs for enrolled
students ).

Conirol Conditions.  One of the most common arguments in interpreting the
results of evaluation studies is over the suitability of the control conditions. The
choice of treatment condition(s), as well as the proper control condition(s), must
be principled, based on a reasonable consideration of the claims you hope to
make. For example, if you choose only to include a no-treatment control, you
iy only be able to claim “My intervention is better than nothing.” This as-
sumes, of course, that data support the claim. Certain rules of thumb may be
applied 1o help eliminate control-condition problems in ITS evaluation research
(see Shute & Regian, 1993, for more on this topic). One problem that may arise
in ITS research is the creation of Hawthore effects {i.e., reatment differences
due only to the fact that one group, usually the tutor-instructed group, receives
special attention). Hawthorne effects, like placebo effects, are easily obtained,
and thus must be carefully avoided. In the ideal case, the only difference between
the control and treatment condition should be the treatment itself. Confounding
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difference you may want to avoid including differences in motivation, time-on-
task, exposure to certain information, background characteristics, and s0 on.

Subjects.  In addition to specifying rigorous control and ﬁ%ﬁ»&%wg,ﬁ%&?
tions, you will need to identify the right type and number of subjects that ane
needed in the study. In this regard, the most inportast considerations are the
target population to which you would like 10 generalize, and the effect size that
you expect to obtain.
~ For whom is the tutor intended? If the purpose of your ITS is to teach
university graduate students a certain curriculurn, and your test subjects come
from an undergraduate population, you won't be able to accurately assess the
effectiveness of your tutor on the target population.

As a rule of thumb, we believe evaluation studies looking for main effects of
instructional treatments should use at least 30 subjects per condition. For
aptitude-treatment variables (AT]) studies, using individual difference measures
as independent variables, studies should use at least 100 subjects per treatment
{Cronbach & Snow, 1977). This estimate can be relaxed somewhat for E@&
ciently powerful designs involving extreme groups or matched cases. Mot in-
vestigators in the AT tradition before 1980 used 40 or fewer subjects per treat-
ment, and may have lacked the power to pick up even moderate effects. Keep in
mind the relationship between sample size and power. The ability 1o mzﬁn up s
given treatment effect goes up as sample size ncreases. Most basic ﬁ%m&%@ﬂm&m
design textbooks describe how to estimate the required sample %& m% %@wgm
up a treatment effect of some hypothesized magnitude. When performing these
calculations, keep in mind the difference between statistical significance and
real-world importance. With enough power, you can pick up very small teat-
ment effects, even though the effect size may be oo small w be of practical
importance.

CONCLUDING REMARKS

In this chapter, we have described our general approach to research and develop-
ment of intelligent wtoring systems. The approach was based on the fundamental
belief that ITS research should be driven by learning theory and constrained by
evaluation data. We further described and illustrated a principled progression
from laboratory studies using artificial tasks {with high internal validity), o ﬁwﬁﬁ
studies of fully implemented ITS teaching real tasks (with high external ﬁﬁ&m@;
We believe that early in this progression it is appropriste to identify effective
instructional interventions in controlled laboratory settings using carefully de-
signed laboratory tasks. Interventions that appear promising ma this context
should be applied to real-world tasks in controlled laboratory studies and eventu-
ally in field studies. Finally, we presented four steps we believe are useful in
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organizing the design of an evaluation study: (a) Delineate the goals and methods
of the tutor, (b} define the goals of the evaluation study, (c) select the appropriate
design 1o meet the defined goals, and (d) instantiate the design with appropriate
measures, subjects, and controls.

It is important to note that even the most carefully designed evaluation study
can fail during implementation due to incomplete logistical planning and prepa-
vation. Any evaluation effort has a multitude of details to attend to, and it is
important to try to anticipate all of these in advance. Problems can be avoided
with careful planning, training of personnel, and general preparation. For exam-
ple, you can avoid a lot of problems by providing testing personpel with clear
“scripts” and procedural checklists. You should also consider, in advance, the
possible “worst-case” scenarios, such as what you would do if your hardware or
software fails. These kinds of questions are best considered before the study
begins (i.e., an ounce of prevention is worth a pound of cure).

If you succeed in carrying out a large evaluation study, you may be surprised
at the difficulties involved in dealing with very large and diverse data sets. We
recommend that you automate the storage, moving, recoding, and formatting of
data as much as possible, and carefully check your automated procedures with
dummy data sets having known distributions. Try to keep human recoding to a
mininsim to reduce errors. It is possible to be very efficient managing data that is
initially collected on the computer.

We have found the evaluation of instructional interventions to be every bit as
exciting as the development of these interventions, We are sometimes supported,
sometimes humbled by data about how our instruction influences learning. Al-
ways, however, we benefit from the process.
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Assessment of Intelligent
Training Technology

Alan Lesgold
University of Pittsburgh

Over the past decade, there has been considerable research and development in
applications of artificial intelligence to education and training (e.g., studies in
Larkin & Chabay, 1992; Polson & Richardson, 1988; Psotka, Massey, & Mutter,
1988). In several cases, training systems have been produced that are receiving
practical use (e.g., Anderson, 1990; Corbett & Anderson, 1992; Govindaraj,
1988). More commonly, so far, managers are starting to face decisions about
whether a prototype research system has potential utility. In this chapter, 1 view
the assessment of intelligent training systems from a long-term perspective,
discussing the different kinds of decisions that require assessment of intelligent
training technology and a number of specific assessment issues, considered in
light of current theory and experience. In particular, I draw on experiences with
the Sherlock coached practice environment for electronics troubleshooting {La-
joie & Lesgold, 1990; Lesgold, Lajoie, Bunzo, & Eggan, 1992; Lesgold, Lajoie,
Logan, & Eggan, 1990).

IMMEDIATE EFFECTIVENESS VERSUS POTENTIAL

Technology assessment in the world of intelligent training systems must consider
not only the effectiveness of a training system but also the likelihood that it can be
assimilated by the organizations that could use it. This can be seen either super-
ficially as a marketing problem or more deeply as a problem in changing schooling
or training. In either case, though, it is not enough for a product to be effective; it
also must either fit the existing organizational structure and available technology
or be so attractive as to bring about adaptive changes that make it usable.



