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LEARNING PROCESSES AND LEARNING OUTCOMES

SUMMARY

This paper outlines a functional model of learning with respect to initial
states of learners, learning processes, and desired learning outcomes. The
basic idea about learning is that the outcomes of learning (e.g., propositional
knowledge, procedural skills, mental models) reflect differences in learning
processes (e.g., encoding skills, attention allocation, hypothesis generation).
Learning outcomes also reflect differences in conative processes, knowledge
structures, and metacognitive skills, mediated by the learning processes. Following
a brief historical introduction, educationally relevant learning processes and
underlying acquisition processes are presented in terms of recent research
findings. Different learning environments are discussed (e.g., direct instruction,
drill and practice, and discovery), as well as implications for the design of
computerized instructional environments.

INTRODUCTION

Instructional psychology has emerged as an important and separate part of
mainstream cognitive psychology. What has prompted this development? For
the past 20 years, cognitive research has focused on the analysis of expertise
including studies of memory, problem solving, and language (see, for example,
Anderson, 1981; Dillon & Schmeck, 1983; Kanfer, Ackerman, & Cudeck, 1989;
Nickerson, Perkins, & Smith, 1985; Sternberg, 1977). But just studying the
nature of performance and the outcomes of learning without applying these
findings to instruction is remiss. In other words, simply knowing how experts
perform, and what they learn does not necessarily help in formalizing a way
to transition novices to the same place (i.e., the best teaching approach to
achieve the best learning outcome). But during the past 10 years, a new
stream of research has appeared highlighting the transition issue. This research
involves developing intelligent computer-assisted instruction (ICAI). Within this
field, cognitive diagnosis has become critically important (e.g., Mandel & Lesgold,
1988; Sleeman & Brown, 1982; Wenger, 1987). In fact, accurate cognitive
diagnosis and appropriate remediation provide the active ingredients in the
transformation of instructional psychology from an art into a science.

Individuals come to any new learning task with differing profiles of knowledge,
skills, and traits (i.e., individual difference measures). The "intelligence" in an
ICAI (or the "mastery" in a master teacher) resides in the ability to analyze
learner characteristics dynamically, using principles to decide what to do next
and to adapt instruction to different learners (e.g., Sleeman & Brown, 1982;
Wenger, 1987). Valid and reliable cognitive diagnoses, then, are essential to
computer systems that adapt to their users'- needs. But what should computers
assess in order to contribute to a science of instruction?



According to prominent researchers in the field (e.g., Glaser, 1976; 1984;
Glaser & Bassock, 1989; Snow, 1990), there are three main elements to a
theory of instruction: (a) Analysis of the initial state of knowledge and skill;
(b) Description of the desired or end state of knowledge and skill (learning
outcome); and (c) Explanation of the learning processes that serve to transition
a learner from initial to desired state accomplished in instructional settings.
The point of instructional psychology, then, is to figure out how these elements
relate to one another and how to enhance learning outcome with the appropriate
instructional method.

The purpose of this article is to systematically explore possible relations
among initial states, learning processes, and learning environment on various
learning outcome measures, and to relate all these elements into a model of
learning. This experimental method has, in the past, been referred to as
aptitude-treatment interaction (ATI) research (see Cronbach & Snow, 1977) where
aptitude is defined in the broadest sense of a person's incoming knowledge,
skills, and personality traits. Treatment refers to the condition or environment
that supports learning. The point of ATI research is to provide information
about initial learner states that influence learning processes, which in turn can
be used to select the best learning environment for a particular student to
optimize outcome. To justify such an approach, evidence is needed that
individuals do perform better or worse under different learning conditions (or
environments). Two studies will be presented which illustrate ATI's following
the discussion on each major area of this article: initial states, learning
processes, learning outcomes, and learning environment.

A simple theoretical framework to guide research in this field is shown in
Figure 1. The framework asserts that learning processes, influenced by the
initial states of the learner, affect learning outcome. What is not represented
in this figure, but will be shown later, is that learning environments also
influence learning outcome. This impact may be direct, or may interact with
characteristics of the learner to effect learning outcome.

INITIAL STATES

Conative and cognitive aptitudes represent two basic determinants of learning
and performance; what the learner brings to the learning task. Conative
aptitudes refer to mental conditions or behaviors directed toward some event
and include, for example, motivation, effort, volition, arousal, and striving (Kanfer,
1989; Revelle, 1989; Snow, 1989; Watson, Clark, & Tellegen, 1988). Cognitive
aptitudes refer to mental processes and structures associated with knowledge
and skill acquisition, such as the ability to encode, store, and retrieve information
to and from memory (Anderson, 1983; 1987; Kyllonen & Christal, 1989). One
distinction which is commonly made between these two factors is that the
conative aptitudes, in general, are more malleable than the cognitive aptitudes,
which tend to represent more stable or fixed abilities (e.g., Baron, 1985). Figure
2 represents an elementary depiction of the initial states with arrows implying
possible direction of influence.
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Conative Factors

When learning something new, individuals need to focus their attention and
persist in the task, despite difficulties they may encounter. Individual differences
in these learning activities reflect motivational or affective as well as learning
style differences. These two categories have been clustered together under
the heading of "conative factors" representing separate but correlated :earner
attributes.

Affective state, in general, describes an individual's bevy of feelinqs, attitudes
and emotions distinct from cognition, thought, and behaviors. Affective states
may be altered by external conditions (e.g., a pending exam affecting anxiety)
or internal conditions (e.g., sleep deprivation affecting arousal). The affective
state of the learner, regardless of the causal agent(s), can have a profound
influence on learning or performance. To illustrate, Yerkes & Dodson (1908)
found an interesting (inverted U-shaped) relation between arousal/anxiety and
performance. Foot shocks were administered to subjects while learning a visual
discrimination task (which ranged from easy to difficult). When the task was
easy, increasing the shock level (and thus the anxiety level) actually increased
performance on the task. But when the task became more difficult, a negative
relation was found between shock level and performance. Optimal performance
was associated with moderate levels of foot shocks.

Meier & Schmeck (1985) investigated the relationship between a general,
negative affective state and several learning processes. They found that college
students with higher scores on a "burned out inventory showed significantly
lower scores on measures of deep processing, elaborative processing, and fact
retention. Another study investigated the general relationship between arousal
and deep processing (Schmeck & Spofford, 1982). In this case, arousal was
negatively associated with deep processing.

A series of studies reported by Revelle (1989) examined the relationship
between affect and learning processes during performance on various learning
tasks. For example, when a modified Sternberg (1969) memory-search task
was used and an individual's affer.rive state (arousal) was manipulated by the
administration of caffeine, learning processes were shown to be differentially
affected. Some processes were facilitated by caffeine intake (e.g., reduced
reaction times to respond to items) while others were impaired (e.g., increased
latencies associated with processing items in short-term memory such as
encoding and comparing stimuli).

Another study reported by Revelle (1989) separated subjects into either
"high impulsive* or *low impulsive' categories and found the following:
High-impulsive subjects showed a positive relationship between arousal and
performance on several ability tests. On the other hand, "low impulsive' subjects
showed a quadratic trend where greater arousal was positively related to
performance, but just up to a point, then too much arousal was found to be
detrimental to performance. One possible explanation to account for these
Indings is that more impulsive individuals are generally less focused (more
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easily distracted); therefore, when arousal levels are increased (e.g., with
caffeine), this helps to focus their attention to the task at hand. Individuals
who are less impulsive (and perhaps more reflective and focused) are facilitated
up to a point by arousal, but too much arousal could actually be disruptive to
the learning processes.

In summary, affective states can facilitate or impair learning processes,
overall. Some affective states exert their influence on particular learning
processes, while some have been shown to interact with other learner traits
(i.e., learning styles like impulsivity) to impact learning. Let's now consider in
more detail the second conative factor--learning style.

Learning styles, in the broadest sense, refer to "general behavioral
dispositions that characterize performance n mental tasks; they are intellectual
personality traits.' (Baron, 1985, p. 366). They can be viewed as parameters
of thinking, under voluntary control, and with optimum levels for a particular
situation. For instance, being "reflective" is often a positive mental trait, but
in some cases (e.g., a vigilance task requiring rapid responses), persisting in
this style can be detrim,.ntal to performance. Whereas affective states can be
easily manipulated and thus are more transitory in nature, learning styles are
comparatively more stable. However, style does imply a choice by the learner
as to preferred orientation towards learning, so it, too, should be manipulable
through instruction or other environmental influences.

The learning styles in the list of exemplars shown in Figure 2 include:
Reflective vs. impulsive, holistic vs. serial, spatial vs. verbal, exploratory vs.
passive, systematic vs. haphazard, and independent vs. conforming. These
styles have been synthesized from several sources (Baron, 1985; Kyllonen &
Shute, 1989; Pask & Scott, 1972; Perrig & Klntsch, 1984; Shute, in press-a;
Shute & Glaser, 1990) and represent commonly researched styles in the literature.
This list should not, however, be viewed as exhaustive.

Probably the most researched learning style measure is reflectivity-impulsivity.
Basically, this dimension represents the tendency to be accurate at the expense
of speed in learning or problem-solving situations. That is, slower, more accurate
processing is equated with a reflective style while faster, less accurate processing
is associated with an impulsive style. Messer (1976) found a negative correlation
between impulsivity and 10. And when IQ was held constant, an inverse
relationship still existed between impulsivity and school performance. Impulsive
individuals, then, may not be allocating sufficient time for processing information
during the learning process, thereby negatively impacting learning outcome.

Another study investigated the relationship between learning style and learning
from a microworld environment (i.e., Smithtown). Shute & Glaser (1990) used
a cluster analysis technique to characterize learners according to their performance
indicators. Findings showed that individuals classified as systematic in their
explorations of Smithtown (e.g., generating and testing hypotheses, replicating
experiments) learned significantly more economic concepts compared to less
systematic learners. Furthermore, systematic subjects tended to be more
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reflective, taking time to collect and analyze sufficient data before deriving
conclusions. Less systematic subjects were more impulsive and attempted to
induce generalizations based on inadequate data. This learning style measure
was also shown to be significantly correlated with general intelligence indicating
that the more intelligent subjects tended to be more systematic and reflective.
It is noteworthy that the intelligence measure only accounted for a small
proportion (<1%) of unique learning outcome variance (i.e., total number of
economic concepts acquired). In contrast, a particular learning style measure
(i.e., hypothesis-driven behaviors or systematic style) accounted for a much
larger proportion of outcome variance (38%). So, this systematic learning style
and its associated learning processes can successfully predict learning in this
type of environment.

Another learning style dimension that has been investigated is "holistic" vs.'serial." Pask & Scott (1972) identified these two types of learning styles and
found the following: Holistic subjects were inclined to focus on higher-order
relations and remembered the overall organization (or gist) of the subject matter
to be learned. In contrast, subjects showing a serial style of learning tended
to focus on lower-order relations and remembered information in lists. Pask
and Scott showed that when a learning task was presented in a way that
matched the learner's style (e.g., lists administered to serial subjects), then
learning was enhanced.

In summary, these findings suggest that learning styles are associated with
different learning processes (e.g., serial learning style with associative learning
processes, systematic learning style with hypothesis-generating and testing
processes). Learning processes may differentially affect learning outcome.
Some learning styles affect learning processes which produce quantitatively
different outcomes (e.g., reflective learners may encode and store more informatic'n
and thus learn more). Other styles may affect learning qualitatively (e.g., spatial
vs. verbal representations will result in different relationships learned). As
discussed earlier, some learning styles interact with affective measures to
differentially affect learning (e.g., Revelle, 1989 on arousal, impulsivity, and
performance).

Cognitive Factors

As just discussed, learning is partly a function of a person's affective state
and learning style. However, prior knowledge, skills, and cognitive abilities
appear to be more reliable and robust predictors of learning (e.g., Shute &
Kyllonen, 1990; Shute, Woltz, & Regian, 1989). Collectively, these fairly fixed
characteristics of an individual's information-processing system comprise the
cognitive lactors that govern knowledge and skill acquisition. These cognitive
factors have been separated into what Kyllonen and Christal (1989) have referred
to as "enablers" and *mediators' of learning.

Enablers consist of what one already knows and cdn transfer to new
situations. In particular, enablers refer to the depth, breadth, accessibility, and
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organization of the knowledge possessed by a learner.1 In fact, some researchers
have argued that an individual's knowledge structure is the primary determinant
of new learning (e.g., Chi, Glaser, & Rees, 1982; Schmalhofer, 1982; Walker,
1987; White & Frederiksen, 1986).

During the course of learning, components of new knowledge become
interwoven with old knowledge; associations are established. A richer, more
organized knowledge structure makes it easier to find uhooks on which to hang
new knowledge. Thus, high-knowledge individuals2 can acquire and access
larger chunks of information compared to low-knowledge individuals whose
acquisition process is more piecemeal, and accessibility is often a problem
(Chase & Simon, 1973; de Groot, 1966). The degree to which an individual's
knowledge structure is organized impacts both the speed and accuracy by which
new knowledge and skills are acquired (i.e., the learning processes). Glaser &
Bassock (1989) have summarized this relationship as follows, "... structured
knowledge enables inference capabilities, assists in the elaboration of new
information, and enhances retrieval. It provides potential links between stored
knowledge and incoming information, which facilitate learning and problem
soMng" (p. 26).

Mediators can be viewed as parameters that determine what one can acquire.
They represent limits on the maintenance, storage, and retrieval of information,
and thus govern the rate and quality of knowledge and skill acquisition. Examples
of mediators include working-memory capacity and information processing speed.

Working memory, in general, is defined as the temporary storage, or activation
level, of information being processed in a variety of cognitive tasks (e.g.,
Anderson, 1983; Baddeley, 1986). Two processes that are associated with this
measure include: (1) focusing attention, and (2) allocating cognitive resources.
Working-memory capacity has repeatedly been shown to be a potent predictor
of learning across many and varied learning tasks (e.g., Ackerman, 1988;
Kyllonen & Christal, 1990; Shute, 1991-a; Woltz, 1988). For example, Woltz
(1988) found that during the early stages of skill acquisition, working-memory
capacity is the most important determinant of successful learning. On the other
hand, information processing speed plays an important role later in the learning
process, after the task has been well practiced (e.g., Ackerman, 1988).
Furthermore, if subjects are prevented from proceduralizing task knowledge,
then working memory demands remain high, and working-memory capacity
continues to be a strong determinant of task success, regardless of how much
practice subjects have (Ackerman, 1986). Working-memory capacity has also
been shown to be an important predictor of successful learning of a logic gates

1Fgm 2 dieplays two calegode of enablers: pir knowledge and prior Sdls. in this articie, I refer to both incoming knowledge
end cognlv akills as 'prlor knowledge.* The remon is because inoming knowledge relates to declart ve knowledge while
cognitve ekE relates to prochdal kn , so both can be subsumed under "prr knowledge"
2H0ig dp may refer to having eer a large amount of general knowledge .e., the breadth Issue) or a large mount of
speciic knowledge 0.e.. the depth Iue).
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task (Kyllonen & Stephens, 1989) and PASCAL programming skills (Shute &
Kyllonen, 1990). In those studies, a working-memory factor predicted all phases
of learning.

The second mediator, information processing speed, refers to the rate by
which learners acquire new knowledge or skills. The affiliated processes for
this cognitive measure include: encoding, storing, retrieving, comparing, and
responding to information. While these processes tend to be fairly independent,
they are relatively stable across content areas. That is, fast encoders may be
slow retrievers, but fast encoders on a word task tend to be fast encoders on
a numeric task (Kyllonen & Christal, 1989).

Is there a relationship between these two mediators? One possible link
between working memory and information processing speed is that both of
these measures reflect the dynamic activation level of a memory trace (Woltz,
1988). So, an individual with greater working-memory capacity (i.e., possessing
an ability to establish and maintain activation levels) may process information
faster because the relevant traces in long-term memory are already activated,
thereby accelerating the search and retrieval processes.

Another relationship exists between the enablers and mediators. As learning
progresses, knowledge becomes organized into larger, more coherent chunks
of information. One consequence of this increased organization is that the
process of retrieving information from long-term memory is more efficient (i.e.,
faster and more accurate). Moreover, working memory, dealing with chunks
rather than isolated units of knowledge, can handle more information and thus
has greater virtual capacity.

Interaction Between Conative and Cognitive Factors

In addition to the main effects of conative and cognitive processes on
learning, some research suggests there may be interactions between ih-3se
factors (Gagn6 & Fleishman, 1959; Kanfer & Ackerman, 1989; Pinder, "984;
Vroom, 1964). For example, Vroom (1964) found that low motivation levels
did not differentially affect performance for low or high ability subjects on a
learning task. However, high motivation levels did differentiate performance
based on ability level.

More recently, Kanfer & Ackerman (1989) found that motivation affected
learning differentially during the learning process. When subjects engaged
motivational processes too early (i.e., before the acquisition of declarative
knowledge), learning was impeded because resources were allocated toward
motivational, self-regulatory processes and away from learning the task at hand.
But when motivational processes were engaged later during the course of
learning (when cognitive processes were less occupied with the learning task),
results indicated a facilitative effect of motivation on learning.
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Finally, a number of studies cited by Snow (1989) involve conative and
cognitive aptitude interactions in learning. For example, one study described
a significant relationship involving (a) interest in school subjects, (b) cognitive
abilities, and (c) achievement. Findings showed that more interest was
associated with higher cognitive ability measures, and both predicted achievement.
What is unclear is whether individuals develop abilities in areas of high interest,
or whether interests develop as a result of exercising abilities in a given area.
But regardless of the direction of influence, the conative-cognitive correlation
exists.

LEARNING PROCESSES

The simplest relationship between learning process and outcome has been
summarized by Bower and Hilgard (1981) "... as a process is to its result, as
acquiring is to a possession, as painting is to a picture' (p. 1). But painters
differ--they have diverse experiences, use different painting techniques, and thus
produce quite different pictures.

In general, learning processes may be defined as any series of actions or
changes that directly impact the learning outcome. The definition used here
will be limited to the processes related to: associative learning, procedural
learning, and inductive reasoning. These three processes are arrayed along a
dimension of increasing complexity where associative learning processes represent
more elementary ones, followed by the procedural learning processes, and
ending with the more complex processes involved with inductive reasoning.
Furthermore, these three categories are influenced, or controlled, by a fourth
process: metacognitive skills. Figure 3 shows the organization of the learning
processes focused on in this article.

Metacognition

A variety of terms in the literature are used to refer to metacognition (e.g.,
self-regulatory processes, learning strategies, control processes, executive skills).
For our purposes, metacognition is defined as personal knowledge of one's
learning abilities and limitations, including skills that enable the acquisition,
application, and control of knowledge and skills. The specific processes included
under this construct have been assembled from the voluminous research in this
area (e.g., see Baron, 1985; Brown, 1978, 1987; Brown & Palinscar, 1974;
Collins & Stevens, 1982; Flavell, Friedricks, & Hoyt, 1970; Glaser & Bassock,
1989; Kanfer & Ackerman, 1989; Kuhl & Kraska, 1989; Schmeck, 1988). These
processes include: (a) defining the problem or goal into one's own words; (b)
developing a plan to attain that goal; (c) allocating resources (e.g., time,
processes) for enacting the plan; (d) executing the plan; (e) monitoring progress
(or identifying problem areas and thus modifying the plan); and (f) summarizing
and integrating results (new knowledge or skill) into the existing knowledge
structure. This whole series of actions may be performed over and over again
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because most learning tasks can be decomposed Into smaller, more manageable
problems or goals.

0O 0 000M 
'I

ULemin Prooesses

Metacognitive skills typically begin to appear between the ages of 6 to 10

years old (Kuhl & Kraska, 1989). Not all of these processes arise at the same
time. For instance, it is cognitively easier to define a particular problem than
to be able to actually design an efetv plan to solve the problem. Reavell
et al. (1970) presented a set of items for children (kindergarten to fourth grade)
to memorize. Findings showed that older children know when they had succeeded
in memorizing the set, and their recall performance supported their perceptions.
In contrast, when younger children indicated they had memorized the items,
their actual recall performance was faulty. So, the older children were able to
define the problem (memorize list), develop a plan (rote memorization or
elaboration), allocate resources (allow enough time to complete the list), execute
the plan (begin encoding process), monitor progress (self-check on memory of
items), and summarize results (indicate readiness when list could be recalled
without prompts). Younger children could specify the goal of the task, but were
mostly unsuccessful in applying the other metacogniive skills, and thus
unsuccessful In their outcome peromne
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In addition to developmental differences in metacognition, there are individual
differences as well. The source of these differences probably resides in the
underlying cognitive and conative aptitudes. For example, Brown (1978) has
reported that retarded children show severe impairments with regard to exercising
most metacognitive skills. However, even deficit performance evidenced by
retarded persons in memorization can be partly overcome through instruction
in certain strategies, such as rehearsal (e.g., Belmont & Butterfield, 1971).

Other studies focusing on training metacognitive skills have succeeded in
consequently enhancing skills in the following areas: reading comprehension
(e.g., Brown & Palinscar, 1984), math (e.g., Schoenfeld, 1985), writing
(Scardemalia, Bereiter, & Steinbach, 1984), and microeconomics (Shute, Glaser,
& Raghavan, 1989). The importance of these findings is that effective
metacognitive skills influence learning in a variety of domains. This learning
probably occurs at the level of the learning processes, which will now be
discussed.

Associative Learning

The processes affiliated with associative learning are believed to represent
fundamental learning abilities, involving the rate and quality of forming associations
or links between new and old knowledge. The notion that associative learning
processes are general and important to knowledge and skill acquisition is
certainly not new. Rather, the literature offers ample support for this proposition
(e.g., Anderson, 1983; Kyllonen & lirre, 1988; Malmi, Underwood & Carroll,
1979; Underwood, 1975). The processes believed to constitute associative
learning are: encoding, storing, retrieving, and responding to information from
the environment. These processes are mediated by the cognitive and conative
factors, discussed earlier. For instance, the speed and accuracy of encoding
a new unit of information are constrained by an individual's processing speed
and also working-memory capacity.

Procedural Learning

Since the turn of the century, psychologists have been interested in studying
procedural learning (or skill acquisition) distinct from fact learning (see Bryan &
Harter, 1899). This distinction continues to intrigue cognitive psychologists
today. A procedure is defined as any unit of knowledge represented in the form
of if-then rules. Procedures may be general (e.g., how to work backwards
from a goal) or specific (e.g., how to measure the diameter of a circle).

Unlike associative learning, which is characterized by the processes related
to acquiring facts, procedural learning is characterized by the processes related
to compiling procedures or rules into efficient skills (i.e., knowledge compilation).
According to Anderson (1987), knowledge compilation actually consists of two
related processes. Proceduralization transforms a general rule into one that is
specialized for a particular task. So the general procedure serves as a template
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for the formation of a more domain-specific production or rule. Composition
is a related process pertaining to the collapse of a sequence of lower-level
rules into a larger, more complex rule. Finally, productions are strengthened
as a result of sustained and successful practice applying them.

Inductive Reasoning

While both associative and procedural learning involve the acquisition of
some information at hand, inductive reasoning transcends given information. It
involves the discovery of rules and principles, requiring greater mental effort
on the learner's part than simply encoding or proceduralizing knowledge. While
inductive reasoning is a complex learning process, it has been argued that it
represents a primary mental ability (e.g., Thurstone, 1938).

Typically, inductive reasoning is invoked given a set of problems or examples
from which specific rules must be derived and applied in the solution of
subsequent problems. To illustrate inductive reasoning processes, please attempt
to solve the problem shown in Figure 4. This example is similar to actual
items found on the Raven's Progressive Matrices test. The task characteristics
require abilities in generating and testing hypotheses fitting a given set of data
(e.g., progressions of geometric stimuli), as well as modifying hypotheses if the
test is not confirmed. Simple introspection should validate the proposed
processes (i.e., generating, testing, and modifying various hypotheses before
arriving at the correct solution).

The higher-level processes of developing and testing hypotheses can be
decomposed into lower-level processes. First, the various attributes of the data
or stimuli must be encoded (e.g., vertical bar shadings in Figure 4). After that,
one needs to systematically analyze or compare the ways in which individual
stimuli relate to one another. Only then may a hypothesis be generated,
establishing a possible relationship among attributes. One of the most difficult
aspects of inductive reasoning is maintaining a growing number of relationships
or rules in working memory, thus there is a direct relationship between
working-memory capacity and inductive reasoning skills (see Kyllonen & Christal,
1990 for more on this topic). Finally, individual differences in inductive reasoning
exist both developmentally as well as within comparable age groups (e.g.,
Goldman, Pellegrino, Parseghian, & Sallis, 1982; Kyllonen & Christal, 1990;
Pellegrino, 1985; Sternberg, 1977).

In summary, four learning processes have been postulated to directly impact
learning: metacognitive skills, associative learning, procedural learning, and
inductive reasoning. Individual differences in the application of these processes
are believed to be what determines the learning outcome, discussed next.

12



yMit s ow .~nuig &wep?

Rease uelse one nuw.

a b C d

e f g h

Figure 4
Example Inductive Reasoning Test Item

LEARNING OUTCOMES

The outcome of learning, as the name implies, refers to what the learner
walks away with from a learning task. One way to characterize the wide
assortment of learning outcomes can be seen in Figure 5. Here, the
declarative-procedural distinction is fundamental; a learner will usually acquire,
to some degree, new knowledge or new skill from a learning task. Furthermore,
refinements are made within each of these two categories. Declarative knowledge
can be arrayed by complexity, from propositional knowledge, to schemata
(collection of related propositions), to mental models (collection of functionally
or conceptually related schemata). Similarly, procedural knowledge can be
arrayed from simple rules or producv-ns, to skills (collection of related
productions), to automatic skills (skills ecuted without conscious attention)
(Kyllonen & Shute, 1989). Figure 5 represents the learning outcomes focused
on in this article.

Declarative Knowledge Outcomes

A proposition is the basic unit of knowledge; a single, isolated postulate
(e.g., Gasoline serves as fuel for automobiles.). A schema is an interconnected
set of related propositions and concepts defining a situation (e.g., Fuel is
c s ; spark plugs convert electrical current across metal points into
sparks; sparks ignite fuel.). The most organized declarative knowledge structure
is the mental model, a highly organized set of related propositions, concepts,
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and rules representing some integrated system (e.g., Fuel lines feed gasoline
to the area of the spark plugs. Spark plugs receive energy from the distributor
or electronic ignition causing a spark to occur. The spark ignites the fuel
causing it to explode in a controlled manner. The explosion drives the piston
down, and the descending piston drives another piston up and also creates a
vacuum causing more fuel to enter the area. Pistons going up and down
rotate the crank shaft, and this mechanical energy is used to drive the car.).

DECLARATIVE

Proposiions Schema Mental Model

PROCEDURAL

Rle Si Autonaic S

Figure 5
Learning Outcomes

Procedural Skill Outcomes

A rule is the basic unit of action, a representation of a condition-action
pair. The condition may be defined in terms of cognitive or perceptual states
while the action may be cognitive or motor (e.g., If you are driving and want
to turn left, then turn on the left turn signal and glance to the left.). A skill
is a collection of related rules and can be cognitive, perceptual, or motor (e.g.,
driving a car in traffic). Finally, a skill may become an automatic skill only
after considerable practice applying that skill in many and varied situations,
eventually requiring little or no conscious effort. Most skills involve both cognitive
and perceptual conditions and both cognitive and motor actions (e.g., executing
a left turn off of a highway by automatically turning on the turn signal and
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glancing to the left, adjusting the steering and acceleration of the car as
necessary, while simultaneously listening to the radio and planning the menu
for the evening's meal).

So, the desired learning outcome may be declarative or procedural in nature
and may further be distinguished by level of complexity. For instance, the
learning outcome for a Russian history course would most likely be declarative
knowledge, and could range from propositional knowledge of historical facts to
a mental model of the flow of events in Russian history with associated, causal
factors. On the other hand, the learning outcome for a computer programming
course would probably be procedural skills enabling learners to write executable
programming code. It is important that learning outcome measures actually
correspond to the desired goals of the course. Otherwise, there would be a
mismatch between what is instructed and what is being assessed. Let us now
consider the numerous methods that exist to impart knowledge and skills.

LEARNING ENVIRONMENTS

One useful way to characterize learning environments (especially computerized
environments) is in terms of the amount of learner control supported during
the learning process.3  Environments can be viewed as a continuum ranging
from minimal (e.g., rote or didactic environments) to almost complete learner
control (e.g., discovery environments). See Figure 6 for an illustration of
learning environments examined in this article.4 There is considerable debate
in the literature concerning what constitutes an optimal learning environment,
especially related to computerized instruction. At one end, some have argued
that it is better to develop straightforward, more didactic, learning environments
that do not permit excessive digressions from an optimal solution path (e.g.,
Anderson, Boyle & Reiser, 1985; Corbett and Anderson, 1989; Sleeman, Kelly,
Martinak, Ward, & Moore, 1989). The other end argues for more unstructured
learning environments containing adequate tools for the learner to employ during
the learning process (e.g., Collins & Brown, 1988; Shute, Glaser, & Raghavan,
1989; White & Horowitz, 1987). But the issue is really more complicated than
simply which is the better learning environment; rather, a more helpful question
is: Which is the better environment for what type(s) of persons, a classic
aptitude-treatment interaction question (Cronbach and Snow, 1977). This issue
will now be examined in more detail.
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Cwandel at l. (1983) nd ekboraftd on in Kyloen ed Shute (19" .

'Figre *on Kyonen (19 ). A gem mode of Iw. Parw Preaeed to isAir Fore Aademy, Coorado Spring CO
(reOp ed by pemleks ).

15



fat

Figure 6
Learning Environments

INDIVIDUAUZED INSTRUCTION AND APTITUDE-TREATMENT
INTERACTION RESEARCH

The idea that teaching is best accomplished by tailoring instruction to
individual learners is not new. For example, Snow & Yallow (1982) point out
that in an ancient Hebrew reference, the Haggadah of Passover, four sons with
differing characteristics are portrayed: wise, wicked, simpleminded, and one
that asks no questions. The Haggadah describes four different ways to teach
the meaning of Passover to each kind of son. Today, this idea of individualized
instruction forms the basis of several important streams of research, such as
mastery learning (e.g., Bloom, 1956; 1984; Cohen, Kulik & Kulik, 1982),
aptitude-treatment interactions (e.g., Cronbach & Snow, 1977; Shute, in press-a;
in press-b), and intelligent tutoring systems (e.g., Burton & Brown, 1982; Mandel
& Lesgold, 1988). The idea also has empirical support. A certain amount of
data indicate that carefully individualized instruction is superior to conventional
group instruction (fo- reviews, see Bloom, 1984; Kulik, Kulik, & Bangert-Drowns,
1990; Shute, 1991-b). But what characteristics of a learner should the computer
(or teacher) assess in order to personalize (and thus optimize) instruction?
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ASSOCIATIVE LEARNING BY ENVIRONMENT INTERACTION

Shute (in press-b) conducted a study using an intelligent tutoring system
(ITS) instructing basic principles of electricity. Over 300 subjects participated
in the study. First they completed a computerized battery of cognitive tests
which measured associative learning skills as well as other cognitive abilities,5
then were randomly assigned to one of two learning environments: rule induction
or rule application. The two learning environments were created from the one
tutor by altering the nature of the feedback to the learner, everything else
remained the same. The computer presented all problems (under both learning
conditions) by showing different electrical circuits and asking questions about
them. After completing a problem, all subjects received feedback concerning
whether their answer was correct. The relevant principle was addressed in
one of two ways. In the rule application environment, feedback clearly stated
the variables and their relationships for a given problem (e.g., "The principle
involved in this kind of problem is that current before a resistor is equal to
the current after a resistor in a parallel net.*). Subjects then proceeded to
apply the rule in the solution of related problems. But in the rule induction
environment, the tutor provided feedback which identified the relevant variables
in the problem, but the learner had to induce the relationships among those
variables (e.g., "What you need to know to solve this type of problem is how
current behaves, both before and after a resistor, in a parallel net.). Subjects
in the rule induction condition, therefore, generated their own interpretation of
the functional relationships among variables comprising the different rules.

Four posttests were administered to subjects after they had completed the
curriculum (25 principles, averaging about 12 hours of learning time spanning
2-3 days). The first two tests measured declarative knowledge and the last
two tests measured procedural skill acquisition. Figure 7 shows the results
from this study.

Results showed the following pattern of interactions involving associative
learning skills, learning environment, and type of outcome measured.

Declarative knowledge outcome: (1) Subjects with higher measures of
associative learning (AL) skills learned more if they had been assigned to the
rule induction environment, and (2) low AL subjects learned more if they had
been assigned to the rule application environment.

Procedural skill outcome: (3) High AL subjects developed more skill if they
had been assigned to the rule application environment, and (4) low AL subjects
performed poorly on the procedural skills tests, regardless of learning environment.
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Figure 7
Associative Learning by Environment Interaction

The rule induction environment elicited declarative representations. Learners
had to first understand the concepts involved in a given problem, then create
a rule by connecting relevant concepts together in a meaningful way. Cognitive
resources would thus be consumed by the processes, discussed earlier, relating
to inductive reasoning (viz., generating and testing hypotheses). A possible
explanation for the finding that high AL subjects in the inductive environment
performed well on the declarative knowledge tests, is that there was a good
match among learning environment, outcome measure, and cognitive ability:
(1) the rule induction environment supported declarative representations; (2) the
outcome tests required accessing declarative representations; and (3) the high
AL subjects possessed relevant cognitive skills.

Another "match* accounted for the finding that high AL subjects in the
application environment performed well on the procedural skill tests. The rule
application environment simply informed learners of the appropriate rule underlying
each problem. For related problems, learners promptly applied the rule during
the solution process. The cognitive activity supported by this environment was
the proceduralization of skills. Subjects with good associative learning skills
performed well on the procedural skills tests in the applied environment because:
(1) the application environment supported proceduralization of skills; (2) the

18



outcome tests required the application of rules and procedures in the solution
of problems; and (3) the high AL subjects possessed good cognitive abilities.

Individuals with lower AL measures acquired more declarative knowledge
from the tutor if they were in the rule application environment as opposed to
the induction environment, probably because of its straightforward inst-uctiona
approach (i.e., the explication of rules). Furthermore, these low ability subjects'
deficient skills were not as burdened as they would have been in the induction
environment. Because the computer provided the relevant rules explicitly (and
repeatedly), this should have enabled memory for the associated principle, thus
enhancing performance on the declarative knowledge tests. When the outcome
being measured was procedural, however, neither learning environment enhanced
outcome performance for low AL subjects. They scored equally poorly.

So, the more demanding rule induction environment simply does not "pay
off," except if the outcome measures declarative knowledge acquisition. The
rule application environment, in contrast, does not "waste' cognitive resources
in the induction of variable relationships. By providing these relationships to
subjects explicitly in the form of specific feedback, learners can proceed
immediately to apply them across various circuits. To solve the more complex
procedural skills tests, a learner must have had sufficient and consistent practice
across a variety of circuit types. These findings are in accord with other
research on practice and skill acquisition (e.g., Ackerman, 1988; Schneider &
Shiffrin, 1977; Regian & Schneider, 1990).

EXPLORATORY LEARNING STYLE BY ENVIRONMENT INTERACTION

Different data from the same study, described earlier, can be used to
illustrate another ATI, namely exploratoty learning style by environment interaction.
The purpose of this investigation was to explore the possible interaction between
a particular learning style measure and environment on the same outcome
measures previously mentioned (see Shute, in press-a for more on this topic).
It is hypothesized that an active, exploratory learning style (evidenced by a
composite of certain behaviors) would facilitate knowledge and skill acquisition
in conjunction with the environment supporting inductive learning behaviors.
Less exploratory behaviors were hypothesized to be better suited to the structured
learning environment. Figure 8 shows the results from this analysis.

As seen in Figure 8, the interaction hypothesis was supported. The disordinal
interaction was straightforward: Two opposite trends defined the correlations
between exploratory behavior and outcome score. A positive linear trend
expressed the relationship between exploratory behavior and outcome in the
rule induction environment (i.e., more exploratory behavior is associated with
greater outcome scores in the induction environment). But a strong negative
trend defined the relationship between exploratory behavior and outcome in the
rule application environment (i.e., more exploratory behavior is associated with
poorer outcome in the applied environment).
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Exploratory Learning Style by Environment Interaction

The explanation for these findings again centers on matching learner and
environment. Exploratory individuals thrived in the inductive environment but
may have become bored in the directed environment, while less exploratory
persons acquired more knowledge and skills from the structured environment.
Furthermore, exploratory behavior does not appear to be an artifact of aptitude:
the correlations between this learning style measure and various cognitive
process measures were zero.

CONCLUSION: A MODEL nF LEARNING

As stated earlier, the purpose of this article was to examine possible relations
among initial states, learning processes, and learning environment on learning
outcome measures in order to devise a model of learning. After defining and
elaborating each major construct, results were presented supporting the notion
tha learning environments can impact learning outcome differentially, dependent
on characteristics of the learner (e.g., assciative learning processes and
expWaating style).
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For a model of learning to influence instructional psychology, it would require
substantial empirically derived information, such as: how to implement the
various learning environments; what learning outcomes are better suited to
which types of environments; which aptitude measures interact with the learning
environments; and so on. In addition, each outcome measure would need to
contain detailed information about how to test for the presence and quality of
various knowledge types (see Kyllonen & Shute, 1989). Over time, sufficiently
detailed information could be assembled to guide the development of principled
instruction across a wide range of curriculum goals.

A first attempt at outlining such a model appears in Figure 9 integrating
the components discussed in this article and representing an expansion of the
simple model depicted in Figure 1. Arrows in the figure represent real, as
well as hypothetical, relationships among initial states, learning processes,
learning outcomes, and learning environments--solid lines denoting more direct
relations and dashed lines representing less direct relations.

titfial Learning Learning Learning
States Processes Outcomes Environment
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Figure 9
Model of Learning
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This model shows the two main initial states (cognitive and conative factors)
exerting an influence on the learning processes. In particular, the cognitive
factors directly impact metacognitive skills, associative learning, procedural
learning, and inductive reasoning. These relations have been documented in
the literature. The conative factors, however, are depicted only impacting
metacognitive skills, but other relationships are possible (e.g., impulsive learning
style--> associative learning processes--> declarative outcome).

Among the learning processes, metacognitive skills have been shown to
influence other learning processes. These three learning processes show
specific relations to learning outcomes. First, associative learning is shown to
directly influence declarative knowledge outcomes, but another possible (dashed
line) relationship has been made to procedural learning. For example,
rule-learning may be accomplished with associative learning skills. The processes
underlying procedural learning are shown influencing procedural outcomes (e.g.,
facility in proceduralizing knowledge leads to the development and acquisition
of skills). And finally, inductive reasoning processes are shown exerting influences
on both declarative outcomes (e.g., formation of mental models) as well as
procedural outcomes (e.g., induction of rules).

Learning outcomes are typically the end product of learning, but if a
curriculum or learning task is broken down in a collection of learning outcomes,
each new knowledge or skill acquired alters the initial state of the learner.
That is, each new declarative or procedural outcome eventually becomes prior
knowledge or skill when it becomes integrated into the existing knowledge
structure.

The relationships among learning environments and outcomes is more
speculative, thus a ripe area for additional research. For instance, initial learning
of propositional knowledge or simple rules is probably best accomplished in
environments supporting rote memorization. The acquisition of a mental model
may be best supported by exploratory or discovery environments. Also, the
development of automatic skills is probably better served by a drill and practice
learning environment.

Finally, the area of most interest to the focus of this article involves the
interaction among learner characteristics, learning environment, and outcome.
For example, we saw that when the outcome was declarative knowledge,
individuals with higher associative learning skills learned significantly more from
the discovery (or rule-induction) environment. But when the outcome being
assessed was procedural skill, individuals with higher associative learning skills
learned better from the applied or directed environment. Furthermore, exploratory
learners acquired more knowledge and skills if they had been assigned to the
discovery environment, while less exploratory individuals learned better from the
structured, directed learning environment.

In conclusion, the puzzle parts have been presented and a first effort has
been made to relate the pieces together. Additional research is needed in the
area to obtain information on both the direction and strength of the arrows
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depicted in the proposed model of learning. Furthermore, a science of instruction
need not be restricted to finding just one "optimal' learning environment. Rather,
multiple environments working in concert may best serve the instructional needs
of some curriculum and for different students at different times during the
learning process.
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