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Individuals come to any new learning task with differing profiles of knowledge
and skills. The “intelligence” in an intelligent tutoring system (IT5) resides in
the ability to analyze solution histonies dynamically, using principles, rather than
preprogrammed responses, to decide what to do next (e.g., Clancey, 1986}, and
to adapt instruction to different learners {e.g., Sleeman & Brown, 1982; Wenger,
1987). Valid and reliable cognitive diagnoses, then, are essential to computer
systems that adapt to their users’ needs.

The standard approach to cognitive skill diagoosis represents emerging
knowledge and skills of the learner. The computer responds to these wpdated
observations with a modified curriculum, adjusted error by error, action by
action, minute by minute. Instruction, therefore, is dependent on individual
response histories. More sensitive approsches permit even greater tailoting of
curriculum to learner characteristics by considering incoming as well as emerg-
ing knowledge and skills in the cognitive disgnosis. This enables the curricalum
to adapt to both persistent and momentary performance information as well as the
interaction.

One would think that increasing the personalization of instruction would
enhance learning efficiency, improving buoth the rate and quality of cognitive skall
acquisition. However, results cited in the litersture on learning in relation o
increased computer adaptivity are equivocal. In some cases, researchers have
reported no advantage of error remediation in relation W learning outcome {2.g.,
Bunderson & Olsen, 1983; Sleeman, Kelly, Martinak, Ward, & Moore, 1989). In
others, some advantage has been reported for more personalized remediation
{e.g., Swan, 1983).

Cognitive diagnosis serves two main purposes: classification and explanation
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(Snow, 1990). As explained previously, the result of cognitive diagnosis suggests
uniquely appropriate curricular paths (classification); however, it also provides
an interpretive theory about a learner’s performance history (explanation)., Snow
{1990 has suggested using aptitude-treatment interaction (AT methodologies in
order to exploit these two functions fully (for background, see Cronbach &
Snow, 1977). ATI research provides information about initial states of learners
that can be applied in macroadaptive instruction (e.g., selection of a learning
environment for a particular student); then microadaptive instruction can be used
as a response to particular actions (e.g., selection of the next small unit of
instruction to be presented based on a specific response history). In other words,
initial states are characterized by an aptitude profile.! Then microadaptive in-
structional systems can either focus on strengths, circumvent weaknesses, or
highlight deficits to be remediated.

Obviously there is some cost associated with increasing a system’s respon-
siveness, which raises two important practical questions: (a) How much, and
what kind of, information about a learner is required to tailor instruction 1o his or
her needs? so as 1o maximize chances for learning to occur? (b) What is the
payoff of increasing a system's adaptability? Sleeman (1987) has argued that “if
one takes seriously the findings of the ATT work of Cronbach and Snow (1977), it
would appear that there is little likelihood of producing instruction that is unique-
ly individualized” (p. 242). The key word in this statement is “uniquely.” An
exhaustive characterization of a learner would probably not warrant the effort and
expense in terms of increases in final outcome, However, the empirical guestion
remains: How much is enough? Answers to these cost-benefit questions are
discussed at the end of the chapter following a description of the macroadaptive
approach and an examination of its theoretical and motivational bases.

Macroadaptive Approach

The approach to cognitive diagnosis taken in this chapter involves conducting a
controlled experiment with the purpose of determining individual differences in
learning and possible ATls. Before the experiment, certain critical decisions have
to be made. For instance, what aptitudes should be measured before the instruc-
tion, which treatinent effects should be manipulated, what learning indicators
should be recorded to measure learning progress, and what learning outcome and
efficiency measures should be used?

The learning skills taxonomy developed by Kyllonen and Shute {1989) can
assist in rendering principled decisions to some of these questions. This tax-

1] define aptitude in this chapter as the incoming knowledge and cognitive abilities possessed by
individuals srriving at a new learning task, Personality variables, classified by some researchers as
aptitades, are not included in this definition.

INeeds sre defined in this context as the individual differences measures (i.¢., aptitades) believed
to impact learning owtcome and efficiency.
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onomy defines a four-dimensional space involving the subject matter, learning
environment, desired knowledge outcome, and learner attributes. Interactions
among these dimensions are believed to influence outcome performance. For
example, no single type of learning environment (e.g., exploratory-discovery) is
Kﬁ for all persons. Rather, aptitude-treatment interactions oceur in which cer-
tain learner characteristics are better suited to certain learning environments than
o an in order to achieve optimal outcome performance (see Shute & %&%
1990). Similarly, some domains lend themselves more readily to certain kinds &w
wwci&m@ outcomes than to others. For instance, nonquantitative fields (e.g |
mggév emphasize propositions, whereas quantitative fields (e.g., calculus)
focus on procedures. And finally, knowledge outcomes covary with Wﬁﬁgﬁgﬁ
method: Propositions are more commonly learned by rote and procedures are
more commonly learned by practice. , ;

S0, to begin answering questions concerning the most appropriate aptitude,
outcome, and efficiency measures to use, one must consider the effect(s) of
wo%wia combinations of the four dimensions comprising the taxonomy. ,ﬁ?
ﬁ:%w to assess before instruction should be relevant to the subject matter, @5
m&%&a knowledge outcome, and the type of learning environment in %Ww%
instruction will take place. |

Theoretical Basis for Macroadaptive Approach

The Learning Abilities Measurement Program (LAMP)® conducts basic research
on the nature of human learning abilities. In the past, LAMP studies have
examined relationships between aptitude measures and performance on simple
Jearning tasks. Recently, large-scale studies have been conducted validating the
m&&@&ﬁ?& aptitude tests against more complex learning from intelligent tutor-
ing systems (¢.g., Shute, 1990, 1991). Major research now in progress examines
whether learning can be predicted from basic cognitive process measures or
aptitudes.

The theoretical model of learning underlying LAMP has been influenced by
Anderson’s ACT* model (see Anderson, 1983; Kyllonen & Christal, 1989).
Basically, it posits three stages of learning (i.e., declarative knowledge, ﬁ%;
a_&acﬂ& skills, and automatic skills) and two sets of learning predictors: enablers
c.a. . what one already knows and can transfer o new situations) and mediators
(i.e., cognitive processes determining what one can acquire, such as working-
memory capacity and information-processing speed). Relations among the learn-
ing stages, enablers, and mediators show how, as learning progresses, enablers
become elaborated, and working-memory capacity and wgﬁ%mwﬁ speed become
functionally larger and faster, respectively {e.g., Chase & Simon, 1973 Chi,
Glaser, & Rees, 1982; Siegler & Richards, 1982). ,

SLAMP is a project at the Armstrong Labormory, Brooks Adr Force Base, T,
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Justifigation and Motivation for This Approach

The justification for such a broad approach requires evidence that individuals do,
in fact, perform better or worse under different learning conditions (or environ-
ments). As noted earlier, this is usually referred to as aptitude-treatment interac-
tion research (Cronbach & Snow, 1977). ATI research was very popular in the
1960s and 1970s; then popularity waned. One of the major reasons contributing
o the decline was that the older ATI research typically involved studies con-
ducted in classroom environments. Data were confounded by many extraneous
variables (e.g., personality of the teacher, instructional materials, classroom
dynamics) making ATls hard to find and difficult to interpret. A second factor
contributing to the decline was the realization that we did not understand the
processing requirements underlying performance on the various aptitude mea-
sures. This motivated process-oriented analyses, using elementary cognitive
tasks as tests. A second generation of ATI research using theoretically derived
aptitude measures and controlled learning environments is discussed.

Seviral factors motivated this approach to cognitive skill diagnosis. First, the
learning skills taxonomy (with its four interactive dimensions) provided a frame-
work for the systematic design and evaluation of intelligent tutoring systems.
Second, after testing over 800 subjects on Smithtown,* it was clear that some indi-
viduals thrived in this type of guided-discovery environment, whereas others did
not. This finding prompted the identification of characteristics of individuals who
succeeded (and failed) in such a learning environment (see Shute & Glaser, 1990;
Shute, Glaser, & Raghavan, 1989). Finally, findings reported in two recent studies
reported no effect of different instructional treatments on learning outcome.

In the first, Sleeman et al. (1989) investigated the effects of different remedia-
tion techniques on high school students’ learning of algebra. They concluded,
“Three studies suggest that when initial instruction and remediation are primarily
rule-based and procedural, remedial reteaching appears to be as effective as
MBR (model-based remediation). From this it follows that classical CAl
[computer-assisted instruction] would be as effective as an ITS” (p. 563).

In the other article, Anderson, Conrad, and Corbett (1989) reported results
from various manipulations made to the LISP tutor environment. They con-
cluded that “well-designed feedback can minimize the time and pain of learning,
but has no effect on final instructional outcome” (p. 498),

There are at least two alternative explanations for both of these findings. The
most obvious one is that the respective modifications were not distinct enough to
impact learning outcome. A second explanation is that perhaps there was an
effect of the manipulations (i.¢., remediation and feedback), but to find it would
require considering some additional variable(s).

#This is the name of a somewhat guided but mostly discovery environment for learning principles
of microeconomics. The coach addresses specific sclentific inguiry skills, such as changing one
variable at a time while holding others constant. The coach does not address economic principles.
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~ A hypothetical depiction of the Sleeman et al. (1989) data appears in Fig. 2.1,
illustrating the second explanation. Although these data show no main effect
&.@ggﬁ treatment condition on outcome measure (both about 509%) with age
titudes in the equation, we do see differential outcome effects due to M%w%%% (o
mﬁ%ﬁ?gwg@% interaction). In this figure, high-aptitude individuals { possess.
ing good reasoning and verbal skills, broad general knowledge, large %%w%@
memory capacities, and so on) benefit from the more elaborate explanations
offered by the model-based remediation (MBR) approach. This approsch ad-
dresses specific errors made during the solution process. On the other hand, low
aptitude individuals (possessing less of the same attributes) perform better in the
reteaching condition. This approach simply demonstrates the relevant procedure
@«gﬁ addressing the learner’s error. There is some evidence for this proposi-
tion in the ATI literature. More elaborate explanations were found to belp high-
aptitude subjects, but less elaborate explanations were more effective for the low-
aptitude subjects, “Elaboration that takes the form of systematic explanations
places a burden of comprehension on the learner, which tends o help Highs™
(Cronbach & Snow, 1977, p. 501}, S

n Similarly, a hypothetical depiction of the Anderson et al. (1989} data appears
in Fig. 2.2. One study they reported contrasted outcome {quiz) performance
based on whether the student or the ttor controlled the feedback. The same iogic
applies here as with the previous illustration. Subjects with high aptitudes could,
8%@%%% benefit more by taking an active, independent approach during the
learning process. They would have the necessary capabilities to direct the course
of their own learning. But the low-aptitude subjects could perform beter if the
tutor guided them through the curriculum.® There is also some support for this

‘ *Actually, John Anderson said that be did look for, but did not find, say ATT's I this data (sex
mx%%%% section following this chapter). This was attributed 1o the restricted range of aptinids hevels
in the sample of university stodents used us subjects in the sudy.
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FiG, 2.2. Hypothetical depiction of Anderson et al. (1989) data.

premise in the AT literature. Campbell (1964) contrasted two learning environ-
ments and found the “self-direction” condition was better for the high-aptitude
group, whereas “programmed instruction” was better for the low-aptitude sub-
jects. In addition, Cronbach and Snow (1977) reported that high-aptitude sub-
jects profit from the opportunity to process the information in their own way,
whereas low-ability subjects tend to be handicapped: “we see the Highs doing
better when given greater freedom to proceed in their own manner, when thrown
more upon thelr OwWn resources. And we see regression slopes becoming flatter
when more of the intellectual work is done for the learner” (p. 503).
These two graphs present alternative perspectives on the reported findings,
but are hypothetical. To make the case more authentic requires empirical evi-
~ dence from controlled rescarch using a large, heterogencous sample in order to
allow the hypothesized ATls to emerge. The following study was designed to
provide such evidence.

Comparing Two Learning Environments

A study was conducted employing an intelligent tutoring system instructing basic
principles of electricity (Ohm's and Kirchhoff’s laws) as the complex learning
task. Research questions examined in this experiment related to the influence of
different learning environments on learning outcome and efficiency measures.
Other research issues looked at the relationships among individuals’ associative
Jearning skills, learning environment, and learning outcome and efficiency mea-
SUres. :

[ tested 282 individuals® (84% males, 16% females) participating in a 7-day
(45-how) study on the acquisition of basic principles of electricity. All subjects

;..2.,:_..:_.5_«...4 FH) subjects avtually participated in the study, but only 282 completed all of the
testing and lewrning activities weporied in this chapler.
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were ammw %gm graduates (or equivalent), with a mean age of 22 yewrs. A
restriction on this sample was that individuals could have no prior ...._«Q e
training or formal instruction. Subjects were obtained from ;ir i
ployment service and paid for their participation. V ot ARG

Experimental cognitive aptitude tasks were administered on Zenith 248 |
%&ﬁﬁ%@ﬁg (AT-compatible) with standard keyboards % EGA n:_p”n v .._- :
gﬁﬁgﬁu The intelligent tutoring system was administered § Xerox 1186 eﬂ_mﬁc
mwwg %&ﬁ%& g%%ﬁ% and _:ms resolution monochromatic displays on

9in MODItors. Software was written in InterLISP-D and LOOPS

?ﬁgﬁﬁm were tested in groups of 15-20 at Lackland Air Force w......n Texas, i
wg ﬁm@@@ Learning Assessment (CLASS) laboratory. .ﬁsw i.......:&b.gi
ﬁﬁgﬁw testing carrels, and instructions, testing, and m@%ng s.....:"*.,c_: _,3—“
administered _,_c:: proctors available to answer questions. On the :.:_._._,s g w,.cndn
first day, subjects were given a brief orientation to the entire study E.r.a, th .ﬁ
E_.a,:_:_v_ assigned to one of two leaming conditions. They ‘s,nR then admi F.:
MM%Q balf Qw the ‘w%wﬁw of cognitive ability tusks. On subsequent days, subj H”_.,
ﬁwﬁwﬁm&hﬂaﬁm ﬁ%@ %mg&ﬁg ..-:n.vah.._n..._ problem solving involving electrical
HCUE ivered by the ITS. Upon completion of the tutor, subjects were given a

ﬁﬁmﬁﬁm&%mznm-,};: 4 .,.‘ \,
o wc ﬁﬁg;ﬁﬁ c..nzrcnﬁ—n?aﬁg%gﬁm%nﬁ::za...?::_

Cognitive Ability Tasks

@ A comprehensive battery of computerized tests was administered to all sub-
%mww to assess their incoming knowledge and cognitive skills. A full &,u..r.:,.v. )

of this battery (Kyllonen et al., 1990) is beyond the scope of this cha ,.2. H_.Nz
present focus is on just one of the cognitive process ,,Enmuﬁﬁfm%fkr.h _n
Kﬁﬁﬁw {AL) skills. Because of the exploratory nature of this study, | s.ghn_ .
investigate a __,_EE:_E__E_ leamning ability. One such %ﬁgﬁ% .::.u._qn.m the E”M
and »:E_:.v. of forming associations when learning L::n:.::m new a..:n notion
that associative learning skills are general and important w r:oﬁ_n._.m«. and skills
acquisition is certainly not new. Rather, the literature offers ample support ﬁ_cw
this proposition (e.g., Anderson, 1983; Kyllonen & Tirre, 1988; Z..._..:_#H nder-
wood, & Caroll, 1579; Underwood, 1975; Underwood, Boruc, & "Maimi,
ﬁg computerized tests were administered in each of the verbal, quan-
:ﬁ%ﬁ ga spatial domains for a total of nine tests on this measure, mw&,.%nunu ,“ﬁ
mﬁw, wﬁi tests are described here, one from each of the verbal, quantitative, and
spatial domains (note matching test paradigm). ¢ T

iy ‘w%gw@ Test.  Subjects are required to learn eight pairs of words displayed
2 .ﬁw Tows at the top of the computer screen. The word pairs consist of an
cupation directly above a piece of furniture {g.g., lawyer/table, carpen-
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r/couch). The eight pairings remain the same throughout the test, although the
airs’ positions vary with each new question. For example, while lawyer és&.&
lways be paired with table, it may come either before or after carpenter/couch in
1e listing at the top of the screen. Questions appear one ata time at the gsei of
1¢ screen and consist of either a match or mismatch to the word pairs being
sarned. After the subject enters a response (typing “L” for like or “D" for
ifferent), another question is displayed. Subjects are asked to remember the
vord pairs as quickly and accurately as possible so that they will not have to keep
ooking up at the top of the screen to confirm a match. At the ﬁwn of each set of
juestions (one set = 32 items), subjects are informed of their accuracy and
atency on that set. There are 10 sets of items in the entire test {320 items), and
or the first eight sets of items, word pairs remain on the screen, For the last two
ets, word pairs do not appear on the screen and subjects are tested on how many
»airs they successfully memorized during the preceding iawm,, Accuracy and
atency data {milliseconds) are recorded. Odd-even reliability is .98.

Quantitazive AL Test. This test is identical to the verbal >r.£§ wc& de-
scribed, except that in this test, subjects are required to learn eight pairs of
numbers located at the top of the screen, one row above the other (e.g., 41 over
2,95 over 6, 89 over —9). The number pairings remain the same throughout
the test while the pairs’ positions may vary from question to question. Instruc-
tions, number of items, and goals are the same as presented above for the verbal
AL test. Odd—even reliability is .96.

Spatial AL Test.  This test is the same as the verbal and quantitative AL tests,
except that subjects must learn eight pairs of simple geometrical mz%& located
in two parallel rows at the top of the screen {e.g., arrow above L., triangle above
+), Odd—even reliability is .96,

yﬁﬁ other AL tests are similar, requiring connections to be established be-
tween verbal, quantitative, or spatial stimuli. Individual differences in asso-
ciative learning skills have been shown to predict complex _wgwmm (see
Kyllonen & Tirre, 1988). The complex learning task used as a criterion in the
current study involved basic electricity content.

Complex Learning Task (Electricity iTS)

The electricity tutor was originally developed at the gﬁémm ,w@mwﬁua: and
Development Center, University of Pittsburgh (Lesgold, waw.ﬁm Ivill, & Bowen,
1989) and then modified at the Armstrong Laboratory. In mwzwaﬁwﬁ we .e%wga
two learning environments, developed and coded a variety of W@wgmmm indicators,
established mastery criteria, refined principles, definitions and feedback, @a
modified the system's interface. Learning from the tutor resulted from éﬁwwsm
problems, reading definitions of concepts (hypertext structure), and exploring
mirenite (2 0 takine meter readines and changing values of components).
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I created the two learning environments specifically to investigate possible
ATls in learning. To differentiate the two learsing environments (rule-application
and rule-induction), the ITS was manipulated by altering the nature of the feed-
back to the learner, all else being equal. After completing a problem, subjects in
each group received feedback concerning whether their answer was correct,
Moreover, the principle (Ohm’s or Kirchhoff's laws) that was relevant to the
problem was addressed in one of two ways. In the rde-upplication environment,
feedback clearly stated the variables and their relationships for a given problem.
This was communicated in the form of a rule such as, “The principle involved in
this kind of problem is that current before a resistor is equal to the current after a
resistor in a parallel net.” Subjects then proceeded to apply the rule o the
solution of related problems.

In the rule-induction environment, the tutor provided feedback that identified
the relevant variables in the problem, but the leamner had to induce the rela-
tionships among those variables., For instance, the computer might give the
following feedback: “What you need to know to solve this type of problem is
how current behaves, both before and after a resistor, in a parailel net.” Subjects
in the rule-induction condition, therefore, generated their own interpretation of
the functional relationships among variables comprising the different rules. Sub-
jects were randomly assigned to one of the two environments for the entire study.

The computer presented all problems (under both learning conditions) by
showing different electrical circuits and asking questions about them, Figure 2.3
shows an example of the main screen. On the screen's left, a paraliel cirouit
depicts various component values. The upper right of the screen shows the main
options {(e.g., look at definitions, take a measurement on the circuit). Problems
were presented in the lower right quadrant of the screen with feedback given in
the same window. A notebook in the lower left of the screen allowed students 1o
store information from their explorations and manipulations. Finally, an on-line
calculator was always available for computing solutions to more complex, guan-
titative problems.

Figure 2.4 shows an example of a definition. When the *View Definitions”
option was selected, the screen cleared and a menu of tems appeared. In the
main definition window, bold-faced words implied connections between the ime
mediate word and related concepts. Choosing a bold-faced word with the mouse
resulted in that concept’s appearance on the screen. In some cases, dynamic
sirnulations, such as comparing current flow in series versus parallel circuits,
were available to the learner.

The electricity curriculum consisted of 15 principles (see Table 2.1). Problems
were generated by the computer based on those principles. Each problem was
urique (i.e., generated “on the fly,” not preprogrammid), based on the purticulay
learner’s response history. If a student needed more work on current flow in
parallel circuits, for instance, the system would generate a problem satisfying
specific constraints, such as, it must be a parallel circuit problem involving
current, perhaps a more difficult quantitative solution required, and so forth.
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Problem types ranged from easy to difficult (Levels 1, 2, 3) and included
qualitative problems (requiring responses of up, down, or stay the same), relative
problems (requiring responses of higher, lower, or equal to), and quantitative
ones (requiring calculations and numeric input). Learners “mastered” a principle
once they had answered correctly three consecutive problems per principle.

3
N g ™y et P
i E

P Y

p /

gusa i
}

E ] {1”33
¢

FiG. 2.3. Examp

N

<
#

Learning Outcome Measures

A four-part criterion test battery was developed measuring knowledge and
skills acquired from the tutor. This battery was administered on-line after the
student completed the tutor. The first two tests in the battery were also adminis-
tered at the beginning of the experiment.

Part 1 of the criterion battery {pretest and posttest) assessed declarative
knowledge understanding of different components and devices involved in basi
electronics: ammeter, ampere, charge, circuit, current, ohm, parallel cirouit,
resistance, resistor, series circuit, volt, voltage, voltage source, voltmeter. Some
example true/false questions included: A voltmeter is used to measure a voltage
drop across two points in a circuit; there is o standaed nwmber of volts used in o
parallel circuit; a resistor is designed to store electricity.
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TABLE 2.1
Principles Underlying the Electricity Tutor

Kirchhotf's Laws

e

T current at one ¢ oint in an uninterrupted wire is equal to the current at another point
i an uninterrupted plece of wire,

T currend is the same before and after a voltage source.

The currers is the same before and after a resistor.

Thie currert before & resistor is equal to the current after a resistor in a paraliel net.

Thee currert in the branches of the paralisl net sums to the current in the entire net.

The current in & component is lower than the current for the entire net.

Voltage drop is lower across any single componert of a series net than across the whole
ot

<§a drop s luwer across any single component of a series net than across the whoie
sk

Vadage drop is the same across paraliel components,
Vedtage drop is the same across any componernt as across the whole paralisl net,

Be o NposwewR

s

Chm's Laws

11, Viltage is sgual to the current multiplied by the resistance (V = Ix A .

12. When the current goes up/down and the resistance stays the same, this implies that the
woltage will go uphdown,

13, Current is equal to voltage divided by resistance (F = V / A ).

14, ‘When the voltage gues up/down and the resistance stays the same, this implies that
current will go upddown.

1%, Rusistance Is equal to voltage divided by current (R = vV /1 )

Part 2 of the battery tested qualitative understanding of Ohm’s and Kirchhoff's
laws. These questions did not require any computations to be performed. In-
stead, the subject needed to understand the important variable relationships cor-
responding to the different principles. An example test item can be seen in
Fig. 2.5,

Part 3 assessed the degree to which procedural skills were acquired from the
tutor. Subjects needed to apply Obm's and Kirchhoff's laws in the solution of
different problems. Because test items required computations in their solution, an
on-screen calculator was provided. A typical problem presented a circuit, and the
subject had to figure out what the reading was (at some point or points) for some
component. An example question is shown in Fig. 2.6,

The last test in the criterion battery, Part 4, measured a subject’s ability to
peneralize knowledge and skills beyond what was explicitly instructed by the
tutor. The subject was required to generate or design circuits to do specific
things. An example item from this test is included in Fig. 2.7

In summary, the four tests measured different aspects of electronics knowl-
edge and skill acquisition. Test 1 measured declarative knowledge understand-
ing; test 2 assessed qualitative knowledge of variable relationships (mental model
without procedural skills); test 3 measured quantitative understanding and ability
to apply Ohm’s law (procedural skills); and test 4 gauged transfer or generaliza-
tion of skills (mental model with procedural skills).
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Is the current from point g t b higher, lower, o equed b6 the surrent from
point g to g7

o no g0

FIG. 2.6. Example item for posttest 2.

In this cirouit, the voltage source 15 11 wolts and the voltage doross 3 W B is
214 volts. What s the current flowing from 1o g7
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FiG. 2.6, Example item for posttest 3.
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FIG. 2.7, Example item for postiest 4.
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Learning Efficiency Measure

Another learning measure used in this study was defined as the total time
spent completing the ITS curriculum. This “learning efficiency” measure in-
volved both speed and accuracy because subjects could not proceed to the next
principle until they had mastered the current one. Again, the mastery criterion
was three consecutive correct responses per principle.

Research Questions

The research questions involving main effects included: (a) Is there an effect
of lewrning environment on subsequent learning outcome? and (b) Is there an
effect of learning environment on learning efficiency? 1 hypothesized that sub-
jects in the rule-application environment would complete the tutor faster, but
would not do as well on the posttests compared to subjects in the rule-induction
environment. The basis for this belief was that the rule-application environment,
by providing subjects explicitly with the relevant principle, was more straightfor-
ward and hence easier to get through. On the other hand, the more active
participation required by the rule-induction environment was hypothesized to
involve more of a time investment but to result in greater learning outcome (see
Shute & Glaser, 1990).

The next question concerned the interaction between learning environment
and aptitude affecting either learning outcome or learning efficiency. I hypothe-
sized that high-ability subjects (1.e., those with above average associative learn-
ing skills) would benefit from the rule-induction environment because it provides
more learner control (ie., independence) compared to the rule-application en-
vironment. However, I hypothesized that lower-ability subjects would perform
better on the outcome measures if they had learned from the rule-application
environment because it provides more structure and support during the learning
process than the rule induction environment.

RESULTS

A MANOVA was computed on the four posttest scores as dependent variables,
the two pretest scores as covariates (to control statistically for incoming, related
knowledge),” and environment as an independent variable (coded 0, 1 for rule-
application, rule-induction, respectively). A composite AL score (i.e., the aver-
age of the mine standardized test scores) was included in the analysis as another
independent variable along with the interaction between AL and environment.

Results showed the following. First, there was no main effect of learning

TTwo MANOVAs were actually computed-—with and without the pretest data as covaristes. In
both analyses, the F ratios and significance levels were the same.
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TABLE 2.2
Summary Statistics of Posttest Scores, Time-on-Tutor, and Pretest Scores by Envicorment

Variabie Mean S0 Minderirn Mo

Hule-Application (N = 138}
Posttest 1 73.7 121 4

.3 §86.7
Postiest 2 43.4 271 0.0 0.0
Posttest 3 80.8 8.0 0.0 100.0
Postiest 4 16.9 28.2 0.0 0oL
Time-on tutor {h) 11.25 4.2 5.2 268
Pretest 1 853 11.1 49.9 42.0
Pretast 2 227 2E.1 .80 B88.3
Rute-induction (N = 142}
Posttest 1 T4.1 13.5 40.9 8.1
Postiest 2 411 269 8.0 100.0
Posttest 3 57.2 22.8 0.0 W0
Postiest 4 14.5 19.4 EER ] 1000
Time-ontutor (h) 11.29 3.8 58 2058
Pretest 1 64.7 111 42.3% 823
Pretest 2 23.8 AR -1 .8 76,0

environment on learning outcome: F, 5, = 1.58. As can be seen in Table 2.2,
the pretest and posttest data were remarkably similar between the two learning
environments. Next, there was a significant main effect of AL on outcome:
Fey oy = 16,06, p <0 001, Individuals with high AL scores performed better
than low AL subjects, overall, on the postiests. Furthermore, each of the fouw
univariate F ratios was significant beyond the 001 level.

The nonsignificant effect of environment on learning outcome was unantici-
pated, suggesting that the feedback manipulations were simply too subtie to
result in learning outcome differences. It is interesting 1o note that if 1 had oot
analyzed the effects of environment in relation to aptitude levels, 1 would bave
erroneously concluded that there was no difference between the two environ-
ments in terms of their effects on learning outcome. This is not unlike the
conclusions reached by Sleeman et al. {1989) and Anderson et al. (1989), dis-
cussed carlier. But, in fact, there was a significant interaction between AL and
environment on learning outcome: F, ,,,, = 5.62, p < 001, So, given this
significant (albeit, general) interaction, the next step was to determine more
precisely its nature—that is, its pattern across the four posttests.

An interaction term was computed by multiplying the composite AL score by
environment {coded 0, 1). Multiple regression analyses were then computed
regressing the four posttest scores, individually, on the following variables: AL,
environment, AL X environment, Pretest 1, and Pretest 2. The pretest data wese
included in the equation to statistically control for incoming related knowledge,
designed to correspond to the full MANOVA,
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TABLE 2.3
Multiple Regression Solution Predicting Posttest 1 Scores (Multiple A = .75)

Sum of

Variabie Squares df Unique FE F Significance
Al £82.70 1 1.9% 7.87 005
Enwirommoent 2.54 1 0.0% 5.03 B2

Al x Ersironment 208.73 1 0.7% 4.09 044
Protest § 12,565.70 1 27.5% 171.85 000
Fretest ¥ 257.87 1 0.6% 3.52 062
Mode! 25,743.06 & 56.3% 70.45 000
Residuad 2.003.69 274 43.7%

Results from these multiple regression analyses were as follows. Predicting
Posttest | scores® (declarative knowledge acquisition), there were significant
main effects of AL and pretest data on outcome, and no main effect of environ-
ment. However, of much more interest, a significant interaction appeared involv-
ing AL and environment for this outcome measure. These data may be seen in
Table 2.3

To illustrate this interaction, expected values were computed from the regres-
sion equation for all four groups of subjects: individuals one standard deviation
above and below the mean AL in each of the two learning environments.” The
results can be seen in the upper left part of Fig. 2.8. The subjects with higher
associative learning skills performed better on this declarative knowledge test if
they werg in the rule-induction environment. However, subjects showing lesser
associative learning skills performed better on Posttest 1 if they were in the rule-
application environment,

Results from the regression analysis predicting Posttest 2 data {qualitative
understanding) showed that the only significant independent variables were the
pretest data. There was no main effect due to AL, environment, or the interaction
between AL and environment. These data are summarized in Table 2.4. Al-
though nonsignificant, a graph of the interaction data {expected values) is in-
cluded in Fig. 2.8, upper right quadrant, to illustrate the trend of the interaction,
AL by environment, across the four posttests,
ion analysis computed with Postiest 3 data { procedural skill
acquisition) as the dependent variable yielded findings similar to Posttest |
results, with an interesting twist. Similar to the regression solution predicting
Posttest | scores, this analysis of Posttest 3 data produced significant main
effects due to AL and pretest data, but not to environment. In addition, the

¥The postiest duta used in all analyses were the raw scores, as recommended in Cronbach & Snow
(1977, pp. 514-515)

SError bars are included in cach of the four graphs i Fig. 2-8. These represent the standard error
meanges per group (e, square oot of mean-square ertor divided by N).
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TABLE 2.4 . .
Muitiple Regression Solution Predicting Posttest 2 Scores [Multiple A = 35)

Sum of ) o

Varfable Squares of Uesiguon 5% ¥ Sigeiticarne
AL 362.24 1 0.58%% .88 AET
Environment B51.44 1 0.3% 400 319

Al x Environment 1,004.70 1 0.5% 1.54 218
Pretest 1 6,537.73 1 3.8% 10.01 02
Pretest 2 4,233.84 1 2. 1% 6.48 RehF
Model 24.518.45 5 12.1% 7.50 L0
Residual 179,101.189 274 §7. 9%

interaction involving AL and environment predicing Posttest 3 data was also
significant. This solution may be seen in Table 2.5. The “twist”™ was that for this
outcome measure, high-AL subjects performed better in the rule-application
environment than in the rule-induction environment. In addition, environment
did not affect outcome performance for low-Al subjects. This finding can be
compared to Posttest | results where high-Al subjects performed better in the
rule-induction environment than in the rude-application environment and low AL
subjects performed better in the rule-application environment than in the rule-
induction environment, This interaction may be seen in Fig. 2.8, lower left
quadrant.

The last finding from this regression analysis involved Posttest 4 data {(gener-
alization of skills) as the dependent variable. These results were comparable 1o
those discussed with Posttest 3 data. That is, there were significant main effects
due to AL and pretest data, and there was no main effect due to environment. The
interaction between Al and environment on Posttest 4 data was also significant
{see Table 2.6). Again, high-AL subjects performed significantly better on this
more difficult test in the rule-application environment than the rule-induction
environment. For lower-AL subjects, environment did not affect performance.
This interaction can be seen in Fig. 2.8, lower right quadrant,

TABLE 2.5 -
Muitipie Regression Solution Predicting Postiest 3 Scores [Multiple A = §8)

Sum of ) o

Variabie Squares of Unitgisn 7% # ificnnce
AL 13,328.79 1 T. 4% 38.89 @g
Environment B27.42 4 0.0% 1.683 . Qw

Al x Environment 1,415,688 4 aewﬁ 4.13 a3
Pretest 1 26,683.80 1 14, 8% w%,g 000
Pretest 2 2,517.41 1 1.4% 7.38 R o
Model 86,448.52 5 48.0% 50,44 B00
Residual 893,81 1.80 274 £ 0%
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TABLE 2.8
buitiple Regression Solution Predicting Posttest 4 Scores [Multiple A = 62)

Sum of
Variabie Sguares of Unilque ¥ ¥ Bignificance
Al 9,962 .94 1 £.1% 27.08 000
Ernvironment 131088 1 0.9% 3.75 B2
AL x Ersvironrnent 1.412.56 1 1.0% 3.88 050
Prutest 1 16,138,357 1 9.8% 43.81 Ree ]
Pratest 2 520154 1 3.2% 14.12 000
Model 63,447 44 5 38.6% 34.45 000
74 B1.4%

Residual 100,925 .84 2

Post hoe comparisons were computed in order to establish some basis for the
differential relations found between the aptitude-treatment interaction. These
consisted of an overall posttest score and three orthogonal contrasts. Average
was simply the sum of the four standardized outcome measures: (Y, + Y, + ¥, +

'), This represented a general outcome factor, independent of type of learning
requirements inberent in the individual tests. The first contrast examined perfor-
mance on Posttests 1 and 2 relative to 3and 40 (¥4 + Y ) — (¥, + Y,). This new
variable, DecPro, represented a declarative versus procedural distinction be-
cause Tests 1 and 2 required conceptual (declarative) understanding of the subject
matter, whereas Tests 3 and 4 required procedural skills. The next orthogonal
contrast, MentMod, compared outcome Measures 2 and 4 against | and 3: (Y, +
Yo — (¥, + Yy Posuests 2 and 4 required subjects to solve problems
qualitatively; that is, they had to develop a mental model of how current, voltage
and resistance interacted in the solution of a circuit problem. On the other hand,
Tests 1 and 3 required a specific response to problems-—a word/concept or a
number (i.e., retrieval of facts or procedures in the solution process, not the more
abstract creation of mental models). Finally, Last was defined as the remaining
orthogonal contrast: (¥, + Y,) — (¥, + ¥,). It was not interpreted in terms of
psychological meaning.

The orthogonal contrasts were analyzed with the same MANOVA design as
described earlier, except that the contrasts (rather than the actual posttests)
served as the dependent variables. Results from this MANOVA were as follows.
The analysis was first computed for Average, and the interaction (AL by environ-
ment) was not significant (F; 54, = 0.05; p = .82). This was not surprising
because combining the posttests obscured differentiating information. Results
from the orthogonal contrasts, on the other hand, did reveal a significant aptitude
by treatment interaction: F 5 54, = 7.47, p < .001. The univariate F tests show
clearly the basis for this finding. The only significant contrast was DecPro. The
other contrasts were not significant: DecPro (F | 5,5, = 20.07, p < .001);
MentMod (F | 1y = 0.03, p = 87); and Last (F(y 395, = 0.01, p = .93).

Figure 2.9 depicts the AL by environment interaction in relation to the
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FIG. 2.9. Associative learning ability by snvironment interactions in
relation to declarative/procedurgl outocome measure.

DecPro contrast. 'Y Large positive DecPro values reflect higher scores on the
more difficult, procedural tests in relation to the simpler declarative knowledge
tests. Large negative values imply just the opposite (Le., higher scores on the
declarative than procedural tests). A DecPro value of zero indicates no difference
between test scores. This figure shows that high-AL subjects acquired new
procedural skills better (in relation to declarative knowledge scquisition) if they
learned from the rule-application environment. High-AL subjects in the rule-
induction environment were greatly impaired with regard to procedursd skill
acquisition. For low-AL subjects, the contrast between epvironments was not so
great. Large negative DecPro values were associated with the rule-application
environment, and there were po large positive DecPro values for the low-AL
subjects. So, in regard to leaming outcome, a significant ATT was found, Furtber
more, the effects of the interaction differed by type of vutcome {e.g. , declarstive
vs, procedural skills).

Was learning efficiency influenced by ATIs? An ANOVA was computed op
subjects’ time to complete the tutor (dependent variable) by learning environ-
ment, aptitude, and the interaction between AL and environment (independest
variables). The findings were similar to those reported above with outcome as the
criterion. That is, there was no main effect of learning environment on this

WExpected values (+1, -1 standard deviation for high/low AL) were oompuied froom the
regression equation and plotted separately by eovironment. Standand ervor bars are incladed for each
group.
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Fi3. 2.10.  Associative learning ability by environment interactions in
redation to time on tutor,

learning ctficiency measure [F, 575, = 0.01]. There was a significant main
effect due to AL (F; ,5y) = 67.41, p < .001). Finally, there was a marginally
significant interaction between AL and environment Foy o = 373, p << .057).

The same plotting convention was used as with the outcome data: expected
values were plotted from the regression equation (regressing hours on AL, en-
vironment, and AL X environment) using plus and minus one standard deviation
t represent high- and low-AL groups. Error bars are included for each group in
the graph (see Fig. 2.10). First note that individuals in both learning environ-
ments ook, on average, about the same amount of time to complete the curricu-
lum (see Table 2.2). However, when AL was included in the analysis, the results
showed that the rule-application environment was associated with more “effi-
cient” behavior (i.e., it took less time to complete). This was true for the high-
Al subjects but not for the low-AL subjects.

DISCUSSION

Three studies involving learning environment manipulations were discussed in
this chapier. None of the three showed main effects of environment on outcome
performance for different domains. First, Sleeman et al. (1989) reported no main
effects on high school students’ learning of algebra when they compared (two
types of mediation techniques (i.e., model-based remediation versus reteaching
the subject matter). Second, Anderson et al. (1989) reported no main effects of
student- versus tutor-controlled feedback on an outcome quiz measuring acquisi-
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tion of LISP procedures. Third, in the study reported in this chapter, no main
effects were found between the inductive versus more applied learning euviron-
ments in terms of acquiring basic principles of electricity. However, when asso-
ciative learning data were examined in relation to learning electricity principles,
then learning environments did appear 1o be differentially effective.

In the focal study, I created two different learning environments (i.e., rule-
application and rule-induction) to systematically examine possible aptitude-treat-
ment interactions. Four outcome measures were developed to assess declarative
knowledge (Tests 1 and 2) and procedural skill (Tests 3 and 4) acquisition. The
four main results were as follows:

Declarative Knowledge Acquisition:

1. High-ability subjects learned more if they had been assigned to the rule-
induction environment, and

2. Low-ability subjects learned more if they had been assigned to the rule-
application environment.

Procedural Skill Acquisition:

3. High-ability subjects developed more skill if they had been assigned o the
rule-application environment, and

4. Low-ability subjects performed poorly on the procedural skills tests, re-
gardless of learning environment.

To understand these findings, consider the cognitive activities invoked byy
each environment in conjunction with the learning outcome being assessed and
the cognitive abilities of the learner. For example, the rule-induction environ-
ment invoked declarative representations. Learners had to first understand the
concepts involved in a given problem, then formulate a rule by connecting
relevant concepts together in a meaningful way. To illustrate, an early, relatively
simple principle to be learned was: The current is the same before and after a
resistor. In the inductive environment, learners would receive a problem involy-
ing this principle. They had to determine the relevant variables embedded in the
problem (i.e., current and resistance), then induce the functional relationships—
what happens to current after it crosses a resistor {i.e., increases, decreases, or
stays the same). Finally, they had to verify whether this relationship beld up in
related problems involving current and resistors. Coguitive resources would thus
be wrapped up in elaborative processing and lesting.

High-ability subjects in the inductive environment performed well on the
declarative knowledge tests (Finding 1). A possible explanation is that there was
a good match among learning environment, outcome measure, and cognitive
ability: (a) the rule-induction environment supported declarative representations,
(b) the outcome tests required accessing declarative representations, and (¢} the
high-AL subjects possessed relevant cognitive skills.

Another good match accounted for Finding 3. The rule-application environ-
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ment simply informed learners of the appropriate rule underlying each problem.
For related problems, learners promptly applied the rule during the solution
process. The cognitive activity supported by this environment was the pro-
ceduralization of skills. Subjects with good associative learning skills performed
well on the procedural skills tests in the applied environment because (a) the
application environment supported proceduralization, (b) the outcome tests re-
quired the application of rules and procedures in the solution of problems, and
(¢) the high-AL subjects possessed good cognitive abilities.

Low-ability individuals acquired more declarative knowledge from the tutor if
they were in the rule-application environment (Finding 2) as opposed to the
induction environment. This was probably due to its straightforward instructional
approach (i.¢., the explication of rules). Furthermore, these low-ability subjects’
deficient skills were not as burdened as they would have been in the induction
environment. Because the computer provided the relevant rules explicitly (and
repeatedly), this should have enabled memory for the associated principle, thus
enhancing performance on the declarative knowledge tests. When the outcome
being mieasured was procedural, however, neither learning environment en-
hanced outcome performance for these low-ability subjects. They scored equally
poorly (Finding 4).

What are the implications of mismatching conditions? One mismatch between
environment, outcome, and subject abilities included high-AL subjects assigned
to the rule-application environment and tested on their declarative knowledge
acquisition. These subjects performed poorly on declarative knowledge tests
compared to high-AL subjects in the inductive environment. This may be ex-
plained by ACT* (see Anderson, 1983). That is, when learning a new cognitive
skill, initial learning is declarative. With practice, the skill can be executed
progressively faster. The cost of this speed-up is the gradual inability to describe
the underlying procedures. In other words, as a skill becomes more automatic,
the ability to talk about constituent procedures decreases. Because the applied
environment fostered proceduralization, and the outcome measured in the mis-
match condition was declarative, high-AL subjects may have lost access to the
original declarative representation during the process of practicing and pro-
ceduralizing new skills.

One other mismatch with negative consequences involved high-AL subjects in
the rule-induction environment being tested on procedural skill acquisition. Their
procedural skills were significantly worse compared to high-AL individuals from
the rule-application environment. The disadvantage of the rule-induction en-
vironment in relation to the complex procedural tests was that it did not provide
time for necessary practice. Instead, it continued to demand and use cognitive
resources in estimating variable relationships. If cognitive resource demands are
continually kept high and learners never have the opportunity to practice certain
skills, they will inevitably fail on the complex tasks that require high levels of
proficiency (see Ackerman, 1988). So the more demanding rule-induction en-
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vironment simply does not “pay off,” except if the outcome measures declarative
knowledge acquisition. The rule-application environment, in contrast, does no
“waste” cognitive resources in the induction of variable relationships. By
providing these relationships to subjects explicitly in the form of specific feed-
back, learners can proceed immediately to apply them across various circuits. In
order to solve the more complex procedural skills tests, a Jearner must bave had
sufficient and consistent practice across a variety of circuit types (for more on
practice effects, see Regian & Schueider, 1990; Schoeider & Shiffrin, 1977

Relating these findings back to cognitive diagnosis, the question posed earlier
concerned which aptitudes should be diagnosed, and when. In the present study,
& composite measure of associative learning skill was found to be an informative
predictor of various learning outcome measures. Any or all of these tesis could
be administered prior to ITS instruction. But the decision about what aptitudes to
measure should depend on the subject matter being instructed as well as the
desired knowledge outcome. For example, suppose you wanted 10 teach 12th-
century English history, and you wanted your students to walk away with de-
clarative (propositional) knowledge. An individusl's verbal skills, associative
learning skills, and/or general knowledge represent reasonable and relevant ap-
titudes to assess prior to instruction. As different ITS are tested across a variety
of domains, more precise information about important cognitive correlates
should be forthcoming. At the Armstrong Laboratory, we have begun this map-
ping process between cognitive factors and knowledge and skill acquisition in a
variety of areas, including logic gates, microeconomics, Pascal programming,
principles of electricity, and flight engineering.

In terms of macroadaptation, the pertinent question becomes: Does prelimi-
nary aptitude testing increase tutor effectiveness? Although the range of ap-
plicability remains an empirical question, results from this study suggest that it
potentially can increase performance (i.e., instuction and conseguently logen-
ing). For instance, consider the following decision rules determining the optimal
environment for persons based on their AL score (see Fig. 2.9}

When outcome = declarative knowledge { postiests | and 2)—H high AL (greater
than or equal to the mean AL), then rule-lnduction environment, else rale-applice-
tion environment (for low AL).

When outcome = proceduralization of skilly {postiests 3 and 4311 high or low
AL, then rule-application environment since thal eavironment is better for the high
>r§&§gMia%ﬁzﬁ%ﬁiﬁﬁ%ﬁg@ég&;%&%@

Also related to tutor and learner improvements, & pragmatic concern involves
the payoff of this proposed approach. There are two parts 1o this guestion. The
first part concerns the cost of employing the macroadaptive method (i.e., prelim-
inary aptitude testing and global adjustment of environment based on the results),
The second part addresses the impact on learning.
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The cost of prior testing is minimal. The average time to finish the associative
learning tests ranges from 2 to 10 min (mean completion time per test = 4.8
min). In addition, the odd-even reliabilities of these tests are high, ranging from
B2 1o .98 (mean religbility of all pine tests > .90). The cost associated with
altering the tutor’s learning environment is also very small. To illustrate, in the
electricity tutor discussed in this chapter, simple modifications were made to the
feedback, with all else equal. At most, it required 2 hr to rewrite the feedback
from the explicated form (e.g., “The principle involved in this kind of problem is
that current before a resistor is equal to the current after a resistor in a parallel
net”) o the more inductive form {e.g., “What you need to know to solve this
type of problem is how current behaves, both before and after a resistor, in a
paralled net”™). The variables remained the same, but the structure of the sen-
tences was altered. This resulted in a single computer program with a yes/no
“environment flag” denoting learning environment. In this study, when the
program was initialized, the flag was set to either rule-application (environment
flag = yes) or rule-induction (environment flag = no). Given the exploratory
nature of this study, assignment to learning environment was random. However,
the computer could just as easily set the flag itself based on the results from
preliminary aptitude testing (i.e., the action taken in response to the evaluation of
a decision rule).

To answer the second part of the question concerning the benefit(s) of such an
approach, consider the amount of variance explained by these independent vari-
ables: AL, environment, AL X environment, Pretest 1 and Pretest 2. These
variables accounted for 56% of Posttest 1 outcome variance (declarative knowl-
edge acquisition), 12% of Posttest 2 variance (qualitative understanding), and
48% and 39% of the outcome variance, respectively, for Posttests 3 and 4
{ proceduralization and generalization of skills). Also, the AL by environment
interaction accounted for unigue, significant variance underlying Posttests 1, 3,
and 4 {see Tables 2.3, 2.5, and 2.6). These findings suggest that tutor improve-
ments are possible using the appropriate decision rules. Additional apalyses are
planned that will investigate the relationship(s) among other cognitive process
measures (e.g., working-memory capacity, information-processing speed), learn-
ing environment, and learning outcome and efficiency measures. This may lead
to even more complex and informative decision rules.

The implications of these findings for ITS design are as follows. To teach
procedural skills, use a more structured, rule-application environment, allowing
for sufficient practice on the skills being instructed. In the present study, high-AL
subjects were shown to perform better in this environment, whereas low-AL
subjects were not affected by environment. But to teach declarative or conceptual
knowledge, assign high-AL subjects to a more self-directed, inductive environ-
ment and low-AL subjects to a more mtor-directed, applied environment. The
present findings thus go beyond what Anderson et al. (1989) found, that “well-
designed feedback can minimize the time and pain of learning but has no effect
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on final instructional outcome™ (p. 498). In fact, feedback may affect final
outcome performance, but it depends on learner traits as well as the outcome
MEasures.

A number of empirical research questions remain. What are the charscieristics
of learners who perform better in what types of learning environments? Are
certain domains better suited for specific instructional methods? At what point
should feedback be provided, what should it say, how is it best presented, and
what is the relationship of feedback to learner characteristics? How much learner
control should be allowed? What other learner attributes influence putcome
performance (¢.g., motivation, interests, activity level, independence). Do the
same aptitudes predict learning outcome and efficiency across various subjoct
matters? What treatment effects should be manipulated and how?

AT1 research, conducted with ITS, can belp answer some of these questions.
Furthermore, the learning skills taxonomy (Kyllonen & Shute, 1989) provides a
framework for conducting systematic and controlled ATT studies that was not
possible prior to the arrival of ITSs. Instead of continuing to add o the growing
pool of ITSs, the field can profit from controlled rescarch altering, systemat-
ically, the design of existing ones and evaluating the results of those changes in
accordance with a principled approach. Results from this study showed that
different learning environments are differentially effective for learners; however,
treatment conditions mostly affected the performance of high ability subjects.
Research is needed to determine what kinds of environments promote learning
for low-ability persons, precisely the population that needs help the most.
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TRANSCRIPTION OF DISCUSSION

John Anderson: That was very unice dita. Io vur study that you mentioned, we didn't
find aptitude-treatment interactions, but our students sl have Math SAT scores around
600--800 (30 no aptitude variance)., Although we hive not been able to identify such
interactions, for a long time we've had a suspicion that there was & trade-off going on with
respect to learning. Some situations call for students 10 work out things themselves. And
there is & whole lot of research suggesting that better memory results when you generate
angwers yourself rather than being told things, O the other hand, if you can't generate the
answers yourself, then obviously you bave to be told. We have beun struggling with ways
to do this. We think this happens on an item-by-item basis. Even within a particular
student, there are going to be problems that the student can't sctully solve, and other
points of difficulty that they can’t control. In that direction, we've heen trying to adapt
instruction on a problem-by-problem basis. This sight be & reasonable way of crganizing
your results. That is, when it's the case thut students are baving difficulty, then & more

direct approach helps. But, in general, leaving problem solution more in the students’

hands is positive. In the first study, you analyzed different learning outcome measures. ln
the case where the questions were easy (the declarative questions), high-aptitude students
were doing better in 2 more discovery-based environment. But then, when the questions
were getting presumably more difficalt, even for the high-ability students, that was the
point in which more directed instruction was needed.

Val Shote: That's a preity good summary., What 1 envision is a kind of merplay
between macro- and microadaptation. | think that the problem-by-problem adaptation of
instraction that you mentioned is a good jdea. This takes place during the learning process
where the computer deals with each problem-solving episode individually, That's what |
think of as *microadaptation.” But the nature of these low-level computer responses is a
function of “macroadaption.” Suppose you had information ghout a student, like she had
a high aptitude, And you also had a specific learning goal in mind, like the student should
be able to effortlessly apply Ohm's law in solving circuit problems. The results from my
research suggest that she should be placed in w miore applied leaming environment o
achieve the goal state. This environment would provide ber with the principles and the
time to practice solving vircuit problems rather than making her spend time inducing
principles first. Although these were exploratory studies, it seems that both micro- snd
macroadaption may be important in terms of optimizing lewning.

Dan Fisk: Can you tell me a little bit more about what the associative g%m tasks
are wnd how they relute to a measure | might be familior with?

Val Shute: These computerized tests measure how quickly & person can form ussocia:
tions between different things, like words, numbers, or geometric shapes, For example,
one of the verbal associative learning tests showed subjects cight pairs of words at the top
of the screen that they had to remember. The pairings between the words always stayed
the same and always remained at the top of the screen, but for esch new test item, the pain
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appeared in random order, Subjects bad W answer true/false questions presented at the
bottom of the screen, like: lawyer/bed? For subjects to answer the questions quickly and
sccurately, they needed to memorize the top pairs so they wouldn't have to keep looking
up and searching through the list.

Dan Fisk: And how they relate o other measures?

Val Shude: The associative learning tests were all pretty highly correlated with one
another (from 3 to . 7) and the odd—-even reliabilities of these tests were all above .95, The
relation to the other cognitive factors showed these tests correlated most highly with
working reemory (.6), geseral knowledge (.5), and inductive reasoning skills (.5).

Jim Pellegrino: Were your primary dimensions operating in your analyses of cognitive
abilities the abilities themselves or the content domain?

Val Shate: I've done some analyses that show the data cluster more on the process
than the cortent dimension. For example, when 1 computed a factor analysis on all of the
test data, three factors emerged. But the factors weren't verbal, guantitative, and spatial.
Instead, they were (a) working memory and associative learning skills, (b) general knowl-
edge and inductive peasoning skills, and (c) processing speed. Within cach factor, all
content domains were mixed up. This factor analysis accounted for a whole bunch of the
variance (75%).

Bill Johunson: As | got my presentation material together, 1 asked myself what a human
tutor would do at any given point in an instructional scenario. When 1 think about
aptitude, a human tutor knows the general characteristics about the population that he or
she is training. We know that they have X number of years of school, it is an environment
where they have 2 or 3 vears of on-the-job experience, and they understand some of the
prerequisites coming in. Thevefore, the human tutor can predict some of the aptitude.
Now you use 4 pretest bantery of tests o understand what some of the aptitudes are. |
guess my guestion is: What does an intelligent tutor system do @ the very beginning? 1
know that Doug Towne's system asks a student what his or her skill level is. That's a good
ides, but what are some other ways early on what would belp assess what the student’s
aptitude is, make adjustments, and then decide what kind of tutoring 1o provide?

Val Shute: That’s a really good question. | think that the answer depends on what you
want to tesch and what you want your students to walk away with. That information
would constrain the decision about what to assess. For example, if you wanted to teach
conceptual understanding of Ohm’s law, then the computer could administer a 20- to 30-
minute test measuring verbal aptitude, like word knowledge or associative learning skills.
Results from that testing would inform the tutor about which environment would be best.
By using tutors that teach different domains by different instructional methods, I'd like to
be able to figure vut the best combinations among domain, learning environment, and
desired knowledge outcome. 1 suspect that some learning environments may be better for
certain domains with specific knowledge outcomes in mind. So more empirical studies
can begin filling in the missing pieces of this puzzle, and we might eventually be able 1o
really constrain decisions about how to teach a particular person. Right now I'm just
limited to talking about teaching electricity and Pascal programming and have only tested
two contrasting environments (inductive and applied).
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John Anderson: In the university environment, most people actuadly walk in with o
of good measures. Is that true in other enviromments too?

Val Shute: If by “good measures™ you mean “high aptitudes,” then I guess other
environments are comparable. Sometimes 1 test Alr Foroe recruits. These people are
selected on the basis of their ASVAB scores, so there s 8 selection criterion, but ot as
high as, say, Carnegie-Mellon students. The subject populations 1 use in wy large-scale
studies are pot university stadents or Air Force recrgits, They come from temporary
employment agencies. So my subjects are students, housewives, unemployed carpemers,
and “others.” These people are very heterogencous, showing a range on all the aptitude
mwasures. And there are lots of individual differences on the outcome measures a8 well,

Alan Lesgold: | bave two questions. It seews o me that calling fhis an “aptitude
issue” is u peculiar convenience. 1 think, although I could be mistaken, the model you sre
heading toward is sort of a Swellard-like mvodel, that says that people are lacking cortain
capabilities. There is too much stuff to do in the middle of problem solving, and if you
give them one more thing to do, we simply overburden them. 'We might be betier off
figuring out for them what information they need. And then giving them that information
rather than giving them the extra burden of trying to figure out what information to go
after, and when to try to figure something out on thelr own, If that's the case, then the
question arises: “What is the utility of the aptitude approach?” The aptitude approach says
that, for some reason, we think we would fike to messure enduring characteristics of these
folks and then use an instructionsl strategy that is tailored o those enduring charac-
teristics. The alternative would be to try to find ways to assess information abowt people
while they are in the middle of doing complex activities, when they're being swiamped by
the burdens that are being placed on them by the instroctional approach, and essentially
microadapting. You made a strong case for adapting and I'm inclined w0 believe it The
reason 1 would raise the possibility of microsdapting is that there is just & chance that this
ability to, this sort of “learning to learn™ capability that is nvolved io nductive lewning,
wight be part of {somewhere n the back of your mind) what you think you are teaching.
In particular, what about teaching Air Force jobs, where you hope that if they suddenly
need to do a different job, they can pick it up fairly quickly withowt oo sk formal
instruction. When you choose to go the route of macrondapring, saying that we e going
to give you the rules and be as efficient a5 possible, are you costing people anytbing? 1
don’t know the answer to that. You showed us that adaptation is important, but have vou
showed us that macroadaptation is prefersble to some more miceo-oriented or some more
domain-centered adaptation?

Doug Towne: Of course, they don’t have t be sutually exclusive vither.

Val Shute: 1 view micro- and macroadaptation s complementary approaches, hand-
in-glove, rather than being mutually exclusive. Now, with macrosdaptation, § have seen a
lot of instances where people placed in an inductive environment {like Smithiown) either
thrive and do well, or just flounder around and do poorly. For some people, garden paths
are fruitful, more fruitful than, say, the straight and narrow. For example, when T get new
software, 1 rarely open the manual, but [ lears a ot just by trial and error, But other people
o better in a directed environment. If we just defanlt to using inductive kinds of eaviron-
ments, then that would only benefit some folks, and bupede learning for others, Also, by
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using this macro- and microadaptive approach, if we select a learning environment at the
outset based on aptitude data but the learning-in-progress data indicate that it’s not being
effective, well, nothing is written in stone. In other words, there’s no reason why the
learning environment couldn’t be switched midstream, why the computer couldn’t make
another “macro” decision rule later on based on new information. So microadaptation is
always going on, and macroadaptation can occur at the outset of learning, and possibly
during the course of leaning. So there’s a constant interplay between micro- and mac-
roadaplive responses.

Walt Schueider; 'm kind of concerned that after 30 years of searching for aptitude-
treatment interactions, so many studies were below the level of statistical chance. So
going after it now, anew, should be at least somewhat concerning. In the cases that you've
illustrated, for example, one out of the four cases looks like an interaction. You have not
just one st there were @ namber of aptitudes you compared to a number of treatments, 50
how do you do the post hoc verification, whether there is anything there, is iffy at best. In
order to have a chance at being able to impact an instructional domain, first you have to be
able to have an a priori specification of an aptitude-treatment interaction. Then you have
to be able to design a number of tutor systems that do all of those treatments so you have
now increased your costs, perhaps significantly. The trick is coming up with an a priori
interaction. 1 totally agree that, particularly in the military environment, you have lots of
aptitude measures that just come in for free. Recruits come in and the first thing you do is
test them. 1f there is something there, you need to be able to show when that treatment will
be true and when it will be generalizable, so that it can impact the next person’s tutor. In
each case that you deal with, you need to figure out how to specify the decision rules.
What is your reason for optimism?

Val Shute: My reasons for optimism are because the older ATI studies, hundreds of
which are reviewed in Cronbach and Snow’s 1977 book, are filled with confounded, noisy
data. Those studies used different classrooms, different teachers with different person-
alities, different instructional materials that weren't controlled, and so on. A whole lot of
noise entered into the equation 50 I'm not surprised that there were s0 few significant ATls
reported. But with ITSs, you can control these variables. 1 guess my optimism is partly
innate, but also springs from having been successful in finding several significant ap-
titude-treatment interactions. And actually my tests were very conservative. 1 may have
given the wrong impression that 1 just tested a bunch of interactions uatil 1 found some
that were significant. That's not what I did. What T did was first compute a MANOVA and
found that the overall aptitude by environment interaction was significant for all outcome
measures considered simultaneously. That permitted me to then zoom in on the data, and [
chose 1o start with a really basic ability: associative learning skill. So the MANOVA told
me that, yes, there is something there, in general. This macro/microadaptive approach
does provide a systematic way of fitting learning environments to individuals to optimize
learning, which is the name of the game in ITS design.

Das Fisk: But your optimism for generalizing these findings still has to be somewhat
task specific.
Vil Shute: Yes, absolutely. 1 am limited to only speaking about teaching different

aspects of electricity, like conceptual knowledge or procedural skills. But the approach
provides a framework for conducting additional studies, those that can systematically

2. ATLAND COGNITIVE BKILL DIAGNOSIS 47

permute various things like learning enviromment and domain. Then 1 can collect more
data and start making geveralizations. 1've just completed another large-scale study with a
witor that teaches flight engineering skills. 1 developed shiernative learsing soviromments,
and have found some tantalizing ATls lnwlving working-memory capacity and general
knowledge by different learning environments. But that's a story for anuther thoe.



