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SUMMARY

We investigated the development of computer programming skill in an intelligent tutoring
system (ITS) by individual-differences analyses. Data were collected on general and
domain-specific knowledge and abilities, tutor-specific learning processes (concept acquisition
and skill development on the ITS), and a set of near, middle, and far transfer measures.
Structural modeling analyses revealed that 74% of the variance in domain-specific declarative
learning, a latent factor presumed to underlie all learning in the ITS, was accounted for by
three factors: working-memory capacity, domain-specific knowledge, and general knowledge.
Also, 10% of the variance in domain-specific procedural learning, a second latent factor orthogonal
to associative learning presumed to underlie programming skill development per se, was accounted
for by working-memory capacity. Finally, 86% of the variance in transfer, a third latent factor
presumed to underlie performance on the transfer tests, was accounted for by a combination
of domain-specific knowledge, domain-specific learning ability, and general working-memory
capacity; there was no indication that the different transfer measures tapped different abilities.
Through .xploratory analyses of the relationship between learning behaviors and tutor and
transfer performance, we found that good learners engaged in more exploratory activities (e.g.,
hint-asking) early n the tutor, but these activities were drastically reduced over time. We
discuss contributions both to the individual differences in learning literature, and to the literature
on optimizing ITS design.
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MODELING INDIVIDUAL DIFFERENCES IN
PROGRAMMING SKILL ACQUISITION

I. INTRODUCTION

What makes a competent computer programmer? What cognitive skills and background
knowledge are most important in determining who will succeed and who will not in a computer
programming course? There have been numerous psychological investigations of various aspects
of computer programming ability (e.g., Brooks, 1977; Jeffries, Turner, Poison, & Atwood, 1981;
Mayer, Dyck, & Vilberg, 1986; Pena, 1989). These studies have all looked at a relatively small
part of the learning process. Only a few analyses have been conducted across longer periods
of learning time (e.g., Anderson, 1990). But thus far, the question of what specific cognitive
competencies govern the rate at which programming skill is acquired has not been addressed.
The purpose of this study is to examine the development of programming skills over a longer
period of learning time.

If you observe a group of individuals learning a new cognitive skill, you will notice some
persons learning more efficiently than others. Even under optimal learning conditions using
one-on-one tutors, individuals differ widely in how quickly they learn and in how much they
remember (e.g., Anderson, 1990; Shute & Glaser, 1990). What causes those differences? Two
perspectives have emerged in the individual differences literature. One is the "knowledge
perspective" and the other is the "abilities perspective."

Knowledge Perspective

This is the view that cognitive skill results from the possession of vast bodies of domain-relevant
knowledge. Chi, Glaser, and Rees (1982) have argued that knowledge is of utmost importance
in skill acquisition: "Our hypothesis is that the problem-solving difficulties of novices can be
attributed mainly to inadequacies of their knowledge bases and not to limitations in either the
architecture of their cognitive systems or processing capabilities" (p. 71). Eight novice-expert
studies were reported using physics problems. Novices did not differ from experts on a wide
variety of processing measures (e.g., number of categories sorted, identification of key problem
features). However, novices did differ from experts in terms of knowledge structures and
representations. This was supported by findings of novice-expert differences in inferencing and
abstracting capabilities reflecting novices' relative knowledge deficits.

Two experiments were conducted by Walker (1987) investigating whether specific (i.e.,
baseball) knowledge could compensate for low overall aptitude levels on certain domain-related
cognitive tasks (e.g., free recall of a fictitious baseball game). Aptitude levels were estimated
from scores on a standard Army aptitude test of general/technical ability. In both experiments,
she found that performance on the domain-related cognitive tasks was a function of baseball
knowledge, not aptitude level.

A third study investigated the effects of knowledge on cognitive skill acquisition (Schmalhofer,
1982). Computer science and psychology students (neither group having prior LISP familiarity)
read a chapter from a programming text on LISP. A posttest revealed that both groups
developed an adequate declarative knowledge base of the material presented in the chapter.
The psychology students remembered as much of the propositional content as did the computer
science students. But, for the psychology students, the knowledge was only declarative. They
could not apply the knowledge to problem solving (verifying and debugging LISP programs).
In contrast, the majority of computer science students were able to go beyond a declarative
understanding and could proceduraliz6 some of the knowledge taught in the text, as indicated
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by their skill in verifying and debugging USP programs. This suggests that prior knowledge
may determine the degree to which new incoming knowledge about a skill will be proceduralized.

A shortcoming of this perspective that compares extremes of knowledge differences (e.g.,
novice-expert contrasts) is that in most cases, these studies used subjects that were homogeneous
with respect to ability levels (e.g., university students with restricted aptitude ranges). Thus,
the studies tended to be biased toward demonstrating that knowledge, not ability, was the
reason for the observed individual differences.

Abilities Perspective

An alternative to the knowledge perspective is what might be called the abilities perspective.
This is the idea that the most important determinants of skill acquisition are certain cognitive
abilities. Ackerman (1988) and Woltz (1988) have investigated the role of general abilities (i.e.,
working-memory (WM) capacity) on cognitive skill acquisition.1 Their findings suggest that
during the early stages of skill acquisition, WM capacity is the most important determinant of
successful learning. Other cognitive ability factors, such as information processing speed, play
an important role later in the learning process, after the task has been well practiced. If
subjects are prevented from proceduralizing task knowledge, then working memory demands
remain high, and WM capacity continues to be a strong determinant of task success, regardless
of how much practice subjects have (Ackerman, 1986).

Another study suggests that WM capacity may govern the efficiency of declarative learning
(Kyllonen & Christal, in press). They showed that working-memory capacity and reasoning
abilities were closely related to one another (correlations in the .80's and .90's). Previous
research has established the relationship between reasoning ability and declarative learning
(e.g., Snow, Kyllonen, & Marshaek, 1984; Thurstone, 1938). The results from testing various
path models using structural equations modeling (EQS) led Kyllonen and Christal to propose
that it may actually be WM that is responsible for differences in reasoning ability.

Working-memory capacity has also been shown to be an important predictor of successful
learning of a logic gates task (Kyllonen & Stephens, in press). In that study, a working-memory
factor predicted all phases of learning success. Furthermore, skill acquisition on the logic gates
task showed a changing pattern of relationships between cognitive measures and learning
performance variables. Together, "the pattern of changing relationships with cognitive variables
over learning phases, and the discontinuities in phase-to-phase performance, reinforce the view
that cognitive skill learning has a multidimensional character" (reported in Kyllonen & Woltz,
1989, p. 267). Indeed, it is this "multidimensional character" of skill learning that requires
further explanation.

A shortcoming of the "abilities perspective" studies are they mostly involve artificial or novel
learning tasks with consequently little or no domain knowledge differences in subjects. So,
these studies are more biased toward showing ability, not knowledge, as the reason for ensuing
individual differences.

1While Woltz does use the term 'working-memory capacity,' Ackerman more broadly views general ability as (a) the
availability of attentional resources and (b) reasoning skills across different content domains. Because attentional resources
reflect working-memory capacity, and Kyllonen and Christal (in press) have reported that reasoning skills and working memory
are highly correlated, we simplify Ackerman's definition of general cognitive ability by denoting it working-memory capacity.
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Other Difficulties with Previous Research

Besides biases, there are two additional problems associated with earlier attempts to ascertain
causes of individual differences in skill acquisition. Much of the older, empirical research
examined factor-analytically derived constructs such as spatial abilities, reasoning skills, and so
on (e.g., Thurstone, 1938) in relation to learning. The first problem is that these factors lacked
a process description. This made it difficult to observe or interpret relationships. Thurstone
(1947) actually envisioned the factors as stepping stones to more definitive experiments designed
to identify and manipulate underlying cognitive processes. But those experiments had to wait
several decades until theory and method in psychclogy caught up with his thinking. Other
visionaries also saw the importance of identifying and measuring the processes of learning.
For example, Melton (1967) observed, "What is necessary is that we frame our hypotheses
about individual differences variables in terms of the process constructs of contemporary theories
of learning and performance" (p. 239). Similarly, Cronbach and Snow (1977) stated, "We need
more sophisticated hypotheses, based on a careful analysis of the information processing
required in the course of learning, and a corresponding analysis of tests to identify the processes
that account for high scores" (p. 292).

Today, even though many individual differences researchers examine cognitive processes in
relation to learning, a second problem concerns the learning tasks used to study complex skill
acquisition. Relatively short laboratory learning tasks are typically employed lasting only a few
hours (e.g., Kanfer & Ackerman, 1989; Kyllonen & Stephens, in press; Pellegrino, 1988; Woltz,
1988). An important question is whether these results generalize to more naturalistic learning
that occurs over longer periods of time.

Proposed Solution

In this study, we integrate the knowledge and abilities perspectives as determinants of
learning because undoubtedly both are important to acquisition. This study teaches a skill that
depends on some domain knowledge that people differ on (but does not use extreme cases
as with novice-expert contrasts). Furthermore, individuals comprising the sample were
heterogeneous in abilities (i.e., the sample came from the general population with a range of
aptitudes rather than just university students) so there is no bias toward either of the two
perspectives. This study also uses a theoretically-based battery of computerized tests measuring
basic cognitive abilities (e.g., WM capacity) in each of three content domains (i.e., verbal,
quantitative, and spatial). This stands in contrast to more broadly-defined aptitudes and
constructs used in previous individual differences research. Other computerized tests administered
in this study measure general and domain-related knowledge. With regard to the problem area
involving the use of relatively short-term, artificial learning tasks, this study employs an intelligent
tutoring system (ITS) for Pascal programming, delivering up to 30 hours of instruction. The
ITS provides an ecologically valid yet controlled means of examining learning in a complex,
long-term task. We are not investigating constrained learning as with typical skill acquisition
studies (e.g., typing, evaluation of logic gates). Rather, we are looking at complex learning over
time involving the interplay between declarative and procedural learning.

Purpose and Approach

The purpose of this study is to ascertain the determinants of individual differences in learning
Pascal programming skills: What causes a person to learn faster and better than someone
else? We are interested in conducting a more equitable test than has previously been done
between knowledge and ability as determinants of skill acquisition. Our approach is to estimate
cognitive abilities, incoming knowledge, and declarative and procedural learning processes, then
link cognitive abilities and knowledge to the learning processes. The sets of estimates are

3



related using exploratory and confirmatory statistical modeling techniques including structural
equations modeling.

Research Questions

The questions driving this study can be summarized as follows: (a) What are the relative
contributions of incoming knowledge and cognitive abilities in o9termining different learning
factors? (b) Are declarative and procedural learning factors distinct or best defined as a single,
general learning factor? and (c) Is transfer predictable? If so, what underlies it? Other research
questions focus on what individuals actually do in the tutor that may influence learning.

II. METHOD

Subjects

Subjects in this study consisted of 260 students participating in a 7-day (40-hour) study on
acquisition of Pascal programming skills from an intelligent tutoring system. There were 50
females and 210 males in the sample. Subjects were recruited and selected from San Antonio
colleges, technical schools and universities to match demographic and general ability characteristics
of the Air Force enlisted population. All subjects were high school graduates (or equivalent)
with a mean age of 2.2. None of the subjects had any prior Pascal programming experience
and all subjects were paid for their participation.

Apparatus

Experimental cognitive abilities tasks were administered on Zenith 248 microcomputers with
standard keyboards and EGA color video monitors (640 x 350 resolution). Software was written
to achieve millisecond timing for response latency measures. The complex learning task was
administered in an adjacent facility on Xerox 1186 computers with standard keyboards and high
resolution (1024 x 840) monochromatic displays on 19" monitors. Software was written in
Interlisp-D and LOOPS.

Procedure

Sutjects were tested in groups of 15 to 20 a Lackland Air Force Base, Texas, in two
testing facilities: the Cognitive Abilities Measurement (CAM) laboratory, and the Complex
Learning Assessment (CLASS) laboratory. In each facility, subjects occupied individual testing
carrels and instructions, testing, and feedback were computer administered with proctors available
to answer questions. On the morning of Day 1, subjects were given a brief orientation to the
entire study. Subjects were then administered 6 hours of cognitive ability tasks, with short
breaks between tasks and a 1-hour break at noon. On subsequent days, subjects were provided
with instruction and practice in Pascal programming through an ITS. On the morning of the
7th day (excluding weekends) of each subject's participation, another battery of cognitive ability
tasks was administered.

Cognitive Tasks (CAM laboratory)

To measure cognitive abilities, the CAM-1 battery was administered (Kyllonen & Christal,
1990). This battery consists of computerized tests measuring working memory (WK) capacity,

4



processing speed (PS), general knowledge (GK), and procedural knowledge (PK). Tests for
WM, PS, and PK were developed in each of three domains: quantitative, verbal, and spatial,
while GK tests were measured in the verbal domain. In the past, researchers have demonstrated
that individual differences in a wide variety of learning tasks can be accounted for by these
cognitive factors (see Kyllonen & Woltz, 1989 for an overview). Examples from CAM-1 tests
follow while details of all tests2 can be found in the Appendix.

Working Memory (WM)

Subjects had to learn and remember numeric values assigned to the letters A, B, and C.
Three statements (e.g., A = B/3, B = C + 2, C = 4) were presented one at a time, and
subjects could look at each one for as long as they wanted before going on to the next
statement. Subjects were then asked to recall the values of the letters, one at a time (e.g.,
B = ? C = ? A = ?). Previous analyses of this type of test showed that errors are a function
of the concurrent storage and processing requirements.

Processing Speed (PS)

Two words were simultaneously presented on the computer screen and subjects had to
decide whether the words had similar or different meanings (e.g., humid--moist). Subjects typed
in either "L" (like) or "D" (different). The level of stimuli difficulty was purposefully low (i.e.,
high word familiarity) so as not to confound the issues of processing speed and existence of
knowledge. Latencies were recorded in milliseconds.

General Knowledge (GK)

Subjects were asked general questions (e.g., What is the process by which plants make
food from sunlight?) and had to respond by typing in the first two letters of the answer (e.g.,
"PH" or "FO" for photosynthesis). Accuracy and latency were used as measures of general
knowledge.

In addition to the CAM-1 battery, we also administered a bi .ry of domain-relevant knowledge
tests that we created just for this study. This battery n.Jasuring specific knowledge (SK)
consisted of three tests. The first two tests measured incoming knowledge about simple math
and programming constructs (e.g., Which of the following items are examples of an INTEGER?
(a) -1.25; (b) -67; (c) four; (d) 999.9; (e) 100000; (f) 1; (g) 34.2; (h) 369). The third test
measured comprehension of errors in Pascal code (see Appendix).

Complex Learning Tasks (CLASS Laboratory)

Declarative learning processes were obtained from performance on the Pretutor (i.e.,
computer-aided instruction teaching simple math and programming concepts). Procedural learning
processes were estimated from performance on the Pascal tutor (e.g., time to complete
programming problems). Transfer, a third learning process, was measured from performance

2We do not report examples or data from the procedural knowledge (PK) tests because they were so highly correlated with
WM tests.
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on a criterion test battery administered at the conclusion of the tutor. Each of these learning
processes will be discussed in turn.

Declarative Learning (Pretutor)

Subsequent to the administration of the cognitive abilities tasks, but prior to learning from
the Pascal ITS, subjects were administered computer-based instruction covering simple
programming and math concepts, namely: integer, real number, string, data, sum, product,
constant, variable, expression and value assignment. This instruction was developed in response
to having tested about 200 pilot subjects on the Pascal tutor and discovering that some subjects
had difficulty learning the programming curriculum because they lacked knowledge presumed
by the system (e.g., not knowing what an integer was).

Subjects received initial definitions of concepts (which they could view as long as needed),
followed by eight questions (a "block) pertaining to the concept. After each question, and
regardless of accuracy, feedback was provided (see Figure 1). A strict learning criterion was
imposed (i.e., 100% correct on two successive blor.ks of 16 items for a given concept), and
concepts dropped out of the study-test cycle only when the criterion was met.

Definition Question Feedback

Correct
STRING: A word or phrase that starts 13 the following an example of a sb.?

"...THIS IS A STRING...' is an
and ends wih single quotes. A sting '... THIS IS A STRING ...'

can consist of numbers, symbols, or example of a strng because a sung

is any group of characters enclosed
different combinations of these things. Ye s No

in quotation marks.

Figure 1. Pretutor: Example Definition, Question, and Feedback.

Declarative learning indicators were: (a) Time to complete the Pretutor and (b) Overall
accuracy on the Pretutor. Both reflect the speed and accuracy of acquiring new concepts.

Procedural Learning (Pascal ITS)

Subjects spent up to 30 hours learning from "Bridge," the Pascal ITS. This system was
originally developed by Bonar and his staff (Bonar, Cunningham, Beatty, & Weil, 1988). We
modified the tutor to generate computer-tallied learning indicators summarizing actions from the
student history list (cf. Kyllonen & Shute, 1989). Other additions included: an on-line dictionary
containing relevant programming terms, use of single quotes surrounding strings, three hints
per problem increasing in explicitness, elimination of infinite loops from certain problems,
simplification of the language used in the hints and feedback, elimination of inconsistencies
between phases, delineation of different errors types, and so on.
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The tutor's design originated from research conducted with "programming plans" (e.g.,
Soloway, Bonar, & Ehrlich, 1983; Spohrer, Soloway, & Pope, 1985). Programming plans are
high-level concepts and techniques relevant to introductory programming. Examples include:
input plan, counter plan, and constant running total plan. Plans putatively allow a beginning
programmer to represent goals of a programming task. The tutor provides a means of translating
those goals into code.

The curriculum embodied by the ITS corresponded to about one half a semester of introductory
Pascal programming (J.G. Bonar, personal communication, March 1990) and consisted of 25
programming problems. These problems became increasingly more complex, from simple
problems (e.g., Write a program which prints out your name) to problems involving complex
"While" and "Repeat until" loops. Each problem required a three phase solution from informal
to formal specification. Phase 1 required a natural language solution to a given problem,
Phase 2 involved generating a visual solution by sequencing programming plans like a flow
chart or jigsaw puzzle, and finally, Phase 3 involved translating the visual solution into Pascal
code. Subjects were required to successfully complete each phase in sequence within a
problem before moving on to the next problem. The three phases are illustrated in Figures
2, 3, and 4.

-* ' Congratulations' Your program is

corect for Phase 1.

SClick on ~~
Pae2.

* ' -Done With Program I
Instrutii ons [

[Start Over

Write a program that asks the
user if he/she would like to
add two inegers. Ift he user s i 40

response is 'yes. then read itn Ask ... if he wants to add two ntegers
two integers. compute the sum.and print out the result. lIfthe 1"Got .. th usees resporme

users rsponse is no'. print out it the respoe is yes ...
a thank you anyway message. "Read i... an mteger,

Read in.. . an mteger

Coppute... the sum
Cr e.. Print..." s t

Oet.. Prit. Thenk you nyway
' G o ...

N o is ye.
A k... _ _ _ _ _ _ _ __.

Figure 2. Phase I Example of the Pascal ITS.
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. ~Output
Plan

Hints.
Donc with progran' C

Instructions
;' :" ': .RunProgram . . . Input

Start Phase 2 Over P .Pln

-. 
-
-

Congratulations' Your
program is correct toT Concnnal Pla .. __Co* rl8 Pa

Click on

/ "Done with program" to tu.
goon toPhasc3. inita
SPlanPlan

Plan

Ask... it he wanrls to mdd hvo integeirs

it LIN resporme is y" ... Plan

Rle l in ... a integer.
Rt in ... anit~gW

[ JWlJl I II ....... : .

-. i

Print...rhali you uryiny Plan

Figure 3. Phase II Example of the Pascal ITS.

Context sensitive hints were always available for subjects to use or abuse.3  They ranged
from initially vague to unambiguous. Another feature of the ITS was that programs created in
Phases 2 and 3 could be run, and the execution of the program could be observed. A large
set of learning indicators were extracted from the student history, a collection of all actions
taken during ITS involvement. Some example indicators, per problem, per phase, are seen in
Table 1. The choice of learning indicators used in this study resulted, in part, from past
research employing indicators that were shown to capture a large amount of learning variance
(e.g., Shute & Glaser, 1990).

These data provide a wealth of information regarding a student's understandings and
misunderstandings at any given time. But to prevent drowning by indicators, we selected three
measures as the most informative and also that mapped onto the indicators measuring declarative
learning: (a) Time to complete the tutor where, similar to the Pretutor, this measure represented
learning efficiency as it involved both speed of acquisition and accuracy on the problems; (b)
Slope of hints requested across 25 problems, implying the presence or absence of procedures

3 Some individuals who relied on hints rather than figuring out solutions themselves significantly reduced their final transfer
measures.
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over time; and (c) Slope of conceptual errors made across 25 problems, denoting changes in
the soundness of procedures. The slope measures for hints and errors were better (i.e., more
predictive) parameters of learning than either total counts or starting values (i.e., intercepts).
The most effective estimate of errors was a subject's factor score on a general error factor
(Note: a factor analysis was computed on the five error types and resulted in a single factor
solution). Slope and intercept measures were derived from individual factor scores.
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Figure 4. Phase III Example of the Pascal ITS.

Table 1. Examples of Performance Indicators

Number of times hints were requested
Number of times hints were received (unsolicited)
Number of times a problem was started over
Number of times the solution was run (total runs, successful runs, crashes)
Number of times the problem statement was viewed
Number of errors of omission (leaving out a phrase, plan, or line or code)
Number of errors of sequencing (misplaced phrase. plan, or line of code)
Number of errors of logic (e.g., incorrect stopping condition of a loop)
Number of operator errors (incorrect use of an operator)
Number of data type errors (e.g., input a real number instead of an integer)
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Transfer of Learning (Criterion Posttest Battery)

Transfer, in this study, was defined as the ability to apply knowledge and skills acquired
from one learning task (i.e., the tutor) to new situations. The associated learning processes
include: retention, application, and generalization. Subsequent to completing all 25 problems
in the ITS curriculum, subjects completed an on-line battery of three tests measuring the
breadth and depth of knowledge and skills acquired from the tutor. Each test consisted of 12
items isomorphic to tutor problems, reflecting the range of problem difficulty encountered in the
tutor.

Retention Test. The first test (retention) was created to be a recognition test requiring
error detection for existing Pascal code. Subjects saw a problem statement, then Pascal code,
and a menu of possible error types (i.e., 1 line missing; 2 lines missing; error in line; misplaced
line; unnecessary line). They had to indicate the type of error in the code (if any) and then
select the line of code that was at fault. For each item, the score reflected both whether they
identified the correct error type and whether they identified exactly where in the code the error
occurred.

Application Test. The second test (application) involved rearrangement of code -- decomposing
problem statements into general Pascal commands and sequencing them into a solution for the
programming problem. Here the subject received a problem statement (e.g., "Write a program
that multiplies the integers from one to some number that is specified by the user. Then have
the program print out the result."). From a menu of different Pascal statements, the subject
selected the relevant ones and arranged them in the solution window. The score reflected
how many errors subjects committed in their rearranged solution (e.g., missing begin/end loop,
wrong command, wrong command argument, failure to initialize a variable, line missing, misplaced
line, unnecessary line).

Generalization Test. Finally, the third test (generalization) involved writing Pascal solutions
to programming problems from scratch, going beyond what was required by the menu-driven
tutor. Subjects were shown a problem statement (e.g., "Write a program that computes the
sum of integers from 10 to 50. After calculating the result the program should print it out.").
Then they were required to type the solution into an on-line text editor, without any tutor
support. The scoring procedure was similar to that from the Application test, except that there
were additional types of errors that were possible (e.g., incorrect loop, missing quotes, missing
identifier, using unnecessary variable, wrong use of an operator, forgetting to declare a variable,
missing quotes on a string). A rational weighting scheme reflecting error severity was employed.

III. RESULTS

Means and standard deviations of the major variables are presented in Table 2. Accuracy
(percent correct) on the Pretutor was fairly high (M = 84.4%; SD = 8.7). However, the overall
accuracy on the final transfer tasks (i.e., average of the three tests) showed large individual
differences. The range in scores was 17.3% to 96.7%, with a mean of 56 and a standard
deviation of 19. These data were normally distributed and showed almost a 6:1 ratio in
performance differences. The time to complete the Pretutor ranged from 23 minutes to 2.8
hours (7:1 ratio between fastest to slowest learners). Even more extreme, time to complete
the tutor ranged from 2.8 hours to 29.2 hours (10:1 ratio).

Throughout the ITS curriculum, programming problems became progressively more difficult
while subjects became progressively more facile with the Pascal constructs and system interface.
Because individuals could not proceed to the next problem until completely successful in the
current problem, their total time to go through the ITS curriculum was a rate measure of
learning, involving both speed and accuracy. When the time data were clustered by problem
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types, they showed a general time reduction for subsequent, similar problems. Figure 5 shows
the first 19 Pascal problems of the tutor, separated by problem type. Only the first 19 of 25
total problems were used in this graph because the remaining problems involved combinations
of earlier problem types.

Table 2. Summary Statistics (N = 260)

Variable Mean SD Min Max
Pretutor time (minutes) 100.5 36.3 22.6 168.1
Pretutor accuracy (% correct) 84.4 8.7 48.4 96.8
ITS time (hours) 12.2 5.2 2.8 29.2
Hints total (across 3 phases) 755.8 613.1 4.0 3131.0
Hints slope (across 3 phases) 30.1 24.7 0.2 133.9
Errors total (across 5 error types) 991.1 741.6 20.0 3791.0
Errors slope (across 5 error types) 39.7 29.7 0.8 156.0

Transfer (% correct)
retention 38.4 23.3 0.0 100.0
application 76.1 15.7 12.0 99.0
generalization 52.3 24.5 0.0 99.0
average 55.8 19.0 17.3 96.7

Note. For the descriptive data on errors, we report total number of errors across the five
error types and the total slope of the errors. Factor analysis (principal axis factoring with varimax
rotation) on the five errors produced one general error factor. Factor loadings on ths general
error factor were used in the structural equations modeling with standard values (I.e., mean - 0,
SD = 1).

We tested path models with latent factors using structural equations modeling. Alternative
models were contrasted that reflected different psychological assumptions. Maximum likelihood
estimates of model parameters and goodness-of-fit indices were obtained between the sample
variance/covariance matrix for all variables and the best-fitting recovered matrix, using the EQS
3.0 computer program (Bentler, 1989). EQS implements the Bentler and Weeks (1980) approach
to the analysis of linear structural equation systems and is similar to the USREL computer
program (Joreskog & Sorbom, 1988). This program allows for multiple regression, path analysis,
simultaneous equations, first-and higher-order confirmatory factor analysis, as well as regression
and structural relations among latent variables.

In the first model tested, Model 1, all of the cognitive ability factors have been linked with
each learning factor. The research questions to be answered include: (a) What are the relative
contributions of incoming knowledge and cognitive abilities in determining learning factors? (b)
Are declarative and procedural learning factors distinct or best defined as a single, general
learning factor? and (c) Is transfer predictable? If so, what underlies it?

As seen in Figure 6, under the declarative and procedural learning factors, arrows point
from the factors to their indicators. A hierarchical structure was created involving the declarative
learning factor with arrows emanating to all five indicators. This may be viewed as a general
associative learning factor, assumed to underlie all indicators. That is, performance on any
indicator was assumed to depend partly on how much declarative knowledge has been acquired
about the skill being learned. A second factor, procedural learning, was posited, involving an
individual's ability to apply knowledge in creating more efficacious procedures. The procedural
learning factor was assumed to underlie only the indicators of problem solving in the ITS and
to be orthogonal to the declarative learning factor.

11



Time (Minutes)

LOODS
Co ndo c, ais

3RV eads L:C-C

Wrtes

c:r LCOCS

0 1 2 3 4 5 6 7 8 9 10 11 12 3 14 15 --V1 ~ I

Pascal ITS Problems: 1 - 19

Figure 5. Time on Pascal Problems Separated by Problem Type.

Knowledge and Ability Correlates of Programming Skill Acquisition

Figure 6 shows the results of data applied to Model 1. Solid arrows convey significant
relationships while dashed arrows depict nonsignificant relations. The numbers on the arrows
are regression coefficients.4  The Bentler-Bonett Nonnormed Fit Index (NNFI) = .964, N = 260,
thus the model fits the data rather well.

'These numbers denote both the strength and directionality of relationships s well as the unique influence of one elemnent
on another (partial correlations).
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There appear to be two answers for the question addressing the relative contributions of
incoming knowledge versus ability in determining learning. First, with regard to declarative
learning, both knowledge and cognitive abilities are important. Working-memory (WM) capacity,
general knowledge (GK), and specific knowledge (SK) together accounted for a considerable
amount of variance in the latent declarative learning factor (R2 = .74).5 This analysis also
indicated that: (a) information processing speed was not an important predictor of declarative
learning; and (b) of the significant predictor variables, WM played the more important role in
predicting declarative learning evidencing twice the strength of both general and specific
knowledge measures. Second, in contrast to declarative learning, only 10% of the variance in
the latent procedural learning factor was accounted for. Only WM was significantly related to
this factor.

5 Note that we are not claiming that we accounted for 74% of the variance in the observed measures (i.e., the criteria usually
associated with the reporting of R values), only 74% of the variance in the latent factor (a criterion less often discussed in
reference to R2 

values). Factor variance represents the elimination of two sources of variance in indicators: variance due to test
unreliability (measurement error) and variance due to test uniqueness. Thus, unless indicators are perfectly reliable (no error)
and perfectly intercorrelated (no uniqueness) R2 for a factor will be higher than R 2 for an indicator of that factor.
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The next question focused on the uniqueness of the declarative and procedural factors.
With EQS, it is possible to test alternative models and compare goodness-of-fit indices. Model
2 was defined exactly the same as Model 1 only with procedural learning removed as a factor.
EQS was computed for Model 2, and the data compared. For Model 1, X2 (101) = 182.2, and
for Model 2, X2 (107) = 263.9. The difference between these two models was X (6) = 81.7,
p < .001. Therefore Model 1, specifying procedural learning as a separate, additional factor,
turned out to be more appropriate -- significantly fitting the model better for these data.

Another observation supported the hypothesis that declarative and procedural learning are
distinct. Different patterns of predictors defined the two learning factors. Only WM predicted
procedural learning whereas WM, GK, and SK predicted declarative learning. This indicates
two different factors, each being predicted by a different arrangement of cognitive measures.
Finally, the factor loadings on the procedural learning factor were all significant. This lends
additional support for the distinctiveness of the procedural learning factor, apart from a general,
declarative (or associative) learning factor.

The last question was whether transfer was predictable. The answer is an unequivocal
"yes.* Three factors, general working-memory (WM) capacity, incoming domain-specific knowledge
(SK), and domain-specific learning proficiency accounted for almost all (R2 = .86) of the variance
in the latent retention/transfer factor.6  The SK and WM factors alone accounted for 70% of
the variance in the transfer factor. Thus, a large pat of programming skill acquisition is due
to knowledge and ability factors brought to the learning task! Furthermore, the efficiency by
which an individual acquires domain-specific declarative knowledge is a strong predictor of
transfer while procedural learning efficiency did not predict transfer in these analyses.

Learning Behavior Correlates of Programming Skill Acquisition

Another way of looking at the research question of *who did well and why" involves
characterizing successful versus less successful learners by their learning behaviors. In other
words, what did the more successful individuals do during the learning process? To address
these issues we conducted a series of exploratory analyses of the relationships between
indicators of learning behavior and performance scores from the tutor and transfer tasks.
(Because these were exploratory analyses, we report simple and multiple correlations with
observed rather than latent variables throughout this section.)

As indicated earlier, learning indicators were tallied across 25 problems, in each of three
phases per problem. Often, the value of a collapsed learning indicator turned out to be
misleading or inadequate in isolation, failing to capture potential changes across time. For
example, one gross level indicator, *busy," was defined as the number of actions made (i.e.,
keystrokes or menu item selections) per minute. The correlation of this measure with an overall
transfer index (i.e., mean of the three criterion tests) was r = -.31 (p < .001). Being generally
busy, it seemed, was not conducive to success on the criterion test battery. Similarly, the
correlation of busy to total time on the tutor was .08 (ns) leading to the inference that activity
level is simply not linearly related to learning efficiency in this environment. However, when
a slope value for busy across the 25 problems was derived, the correlations between the slope

81n Figure 6, the arrow from declarative learning to transfer comes from the part of the factor (to the left of the 'crack)
representing the proportion of variance not accounted for by cognitive abilities or knowledge. Because 74% of the variance of
declarative learning was accounted for, 26% remains unexplained. So, it wa this residual variance of declarative and procedural
learning used to predict transfer. Note that the residual variance in procedural learning did not significantly predict transfer.
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of "busy" and both transfer and time-on-tutor were -.64 and .54 (p < .001), respectively.
Furthermore, when the two parameters of busy (i.e., slope and mean) were entered into a
regression equation predicting transfer, both remained in the equation (p < .001) after backwards
elimination (R2 = .44).

One aspect of successful learning is that it is better to be busy early, engaging in orienting
behaviors (e.g., exploring, testing) but becoming more focused over time. This pattern is clearly
illustrated in the following correlations. Data from the 25 programming problems were divided
into fifths yielding five blocks, five problems per block. A "busy" value was computed for
each block. In Table 3, correlations are shown between blocks (first to last) with overall
transfer and time-on-tutor.

Table 3. Correlations Between "Busy" with Transfer and Time on Tutor

Variable Transfer Time

Busyl .33"* -.48*
Busy2 -.02 -.17*
Busy3 -.30** .11
Busy4 -.40** .24**
Busys -.so** .33**

Note. N= 260; *p < .01; '"p < .001.

What is striking about this pattern is the reversal of correlations for each dependent measure.
Initially, being busy is a positive behavior, associated with significantly higher transfer scores
and less time on the tutor. But later, significant negative relationships are seen between busy
and these same dependent variables.

Requesting hints from the system (total number of hints) and asking for hints over time
(slope of hints) showed the same kind of differential patterns of relations with a general transfer
score. When a collapsed transfer accuracy score was regressed on these two variables, both
remained in the equation (p < .01) after backwards elimination (R2 = .46). Here, fewer total
hints requested were associated with better performance on the criterion test battery (r = -.64;
p < .001 between total hints and overall transfer). Moreover, if a subject needed to request
hints from the system, it seems to have been more fruitful to have asked for them early on
in the tutor (r = -.67; p < .001 between slope-of-hints and overall transfer). Again, a negative
slope measure predicted successful Pascal learning.

The third learning behavior showing differences across time concerns running programs (i.e.,
in Phases 2 and 3 of the tutor). The simple correlations between total number of runs and
the slope of runs were .27 and .31, respectively (p < .001). The slope measure correlated
positively with transfer task performance, suggesting that running a program was a relatively
productive behavior, especi-illy for the more complex problems in the latter stages of the tutor
(i.e., the better students would run their problem solutions, especially the more complex problems).
As with the hints and busy variables, when transfer was regressed on runs and the slope of

2runs, both remained in the equation (p < .001) after backwards elimination (R = .16).

Knowledge, Cognitive Abilities, Learning Behaviors, and Transfer

Ability factors predict transfer and learning behaviors predict transfer. What is the relationship
between ability factors and learning behaviors? Perhaps learning behaviors predict transfer by
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virtue of their correlation with ability factors. That is, people may take hints (which negatively
predicts transfer) because of insufficient WM capacity (which also predicts transfer). Simple
correlations are shown between abilities (WM and PS), incoming knowledge (GK and SK) and
activity level (Busy 1 to 5) in Table 4. Do any of the ability factors show pattern(s) of relations
with "busy" over time?

Table 4. Correlations of Abilities and Knowledge by
Activity Level Across Time

Variable WM PS GK SK

Busyl .14 -.31" .06 .24**
Busy2 -.09 -.05 -.19* -.08
Busy3 -.29* -.08 -.33* -.27*
Busy4 -. 33** .02 -.36** -.32.*
Busy5 -.45** .11 -.44* -.44*

Note. N= 260; *p < .01; **p < .001.

Consider the pattern of correlations over time with the specific knowledge (SK) factor. At
the outset of learning (Busyl), learners with more specific knowledge were significantly more
active in exploring the environment. Across time they engaged in progressively fewer exploratory
activities, perhaps becoming more focused and careful. As Table 4 shows, the other cognitive
factors showed similar reversals.

Is there any correlation between learning behaviors and transfer once the variance associated
with knowledge and abilities is removed? The unique relationship between busy, hints and
runs to overall transfer task performance is illustrated in Table 5, below. Transfer, in this
analysis, was the average score from the three post-tutor outcome tests (retention, application,
and generalization). Semi-partial (i.e., part) correlations were computed to represent the
relationship between each learning behavior and transfer when individual correlations to WM,
PS, GK, and SK were removed from the predictor variables.

Table 5. Semi-partial Correlations of Learning Behaviors with

Overall Transfer, Controlling for Ability

Time Busy Hints Runs

Time 1 .15* -.18" .02
Time 2 .04 -.17* .15*
Time 3 -.08 -.21* .15*
Time 4 -.15* -.27** .15*
Time 5 -.16* -.28** .28**

Note. N= 260; 'p < .01"; p < .001.

Several observations are worth noting from this table. First, even when all four of the
cognitive ability factors were partialled out of the predictor variables, there still remained
significant relationships between the learning behaviors and transfer. Second, the activity level
behavior (busy) still showed a reversal pattern whereby initial levels of activity were positive,
but later, more actions were negatively correlated with transfer performance. This represents
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a more "pure" learning style measure after the knowledge and cognitive ability variance was
removed. Hints and runs showed opposite correlation patterns with one another. Asking for
hints was progressively more harmful and running programs was progressively more productive
in relation to programming skill acquisition.

Analyses of relations among incoming knowledge, cognitive ability factors, learning behaviors,
and transfer suggest that Pascal programming skill acquisition is mediated by incoming knowledge
and abilities differentially at different times during the learning process. Specific learning
behaviors, like asking for hints or running programs, appear to mediate cognitive skill acquisition,
being more influential at certain times during the learning process than at other times. Moreover,
learning behaviors appear to influence transfer over and above that of the cognitive ability
measures.

IV. DISCUSSION

The main research question explored in this paper concerned the nature and magnitude of
relationships among cognitive ability measures, incoming knowledge, and the learning processes
underlying programming skill acquisition. First, consider the debate involving incoming knowledge
versus cognitive abilities as determinants of learning a new cognitive skill. For this task, the
answer was that both factors were almost equally important. Furthermore, the pattern of
relationships indicated that for declarative learning, WM, GK, as well as SK were significant
predictors of efficient knowledge acquisition while only WM seemed to impact procedural learning.
An explanation of these findings would be that the more knowledge one has at the outset of
learning, the richer the network of concepts and associations into which new declarative
knowledge may be incorporated, subject to mediation by working-memory capacity. In accord
with the findings of Ackerman (1988) and Woltz (1988), there was a significant effect of
working-memory capacity on declarative learning -- the early stage of cognitive skill acquisition.
Unlike their findings, however, in the latter stages of skill acquisition, subjects in the current
study never became functional automatic, nor did PS ever enter as a significant predictor of
the procedural learning factor.

Why was there such a low accounting of procedural learning (R = .10)? One explanation
is that the tutor's curriculum was structured so that subjects were constantly learning new
concepts and procedures. Thus they never quite reached expertise for any given procedure
before being confronted with something new to learn (e.g., the construction of a "While loop").
About every third or fourth problem (see Figure 5), the tutor introduced a new programming
construct or procedure. Past research (e.g., Woltz, 1988) has shown that the unique aspects
of procedural learning do not usually emerge until WM decreases and PS increases in predictive
importance. This changing pattern of relations only happens following sufficient time and
consistent practice with a new skill. The reason for the low prediction of procedural learning,
as well as the fact that PS did not enter into the predictive equation was most likely due to
the constant introduction of new procedures by the tutor. And, as mentioned earlier, if subjects
are not allowed to fully proceduralize task knowledge, then WM demands remain high and it
is primarily working-memory capacity that determines task success (Ackerman, 1986). A second
explanation is that procedural learning was defined in this study quite narrowly: as learning
orthogonal to associative learning.

7 However, we computed two new variables: "first' and 'last' - sums of the time spent in the first and last problems of each
different problem type. We hypothesized that the correlation between WM and 'first" would be higher than with 'last,' while the
correlation between PS and *last* would be higher than with "first' These hypotheses were not supported. For WM, the
correlations to first and last were: .51 and .47. For PS, the correlations to first and last were: .38 and .41.

17



We found that associative (declarative) and procedural learning are distinct factors. First,
to account for learning on the tutor itself, it was necessary to posit a procedural learning factor
in addition to the general associative learning factor. Removing the procedural learning factor
from the model resulted in significantly poorer fits for the model. Moreover, the procedural
learning indicators had significant factor loadings on the procedural as well as on the general
(declarative) learning factors. Second, the two factors were predicted by different cognitive
veriables. Incoming knowledge predicted declarative learning, but was unrelated to procedural
learning. Third, the two factors influenced transfer in different ways. Only declarative learning
predicted transfer.

Certain learning behaviors were also shown to be differentially important at various stages
of cognitive skill acquisition. For instance, being "busy" (i.e., number of actions per minute)
early in the tutor had a positive relationship to transfer. Being busy later in the tutor was
negatively related to transfer. Anderson (1987) similarly found a negative "busy" function while
investigating transfer among different text editors. While the actual time per keystroke in the
execution of a text-editing procedure did not decrease over the course of the experiment, there
was a reduction in the number of keystrokes made per edit. This reflected the acquisition of
more efficient procedures over time. The busy index discussed in this paper showed the same
pattern of attenuation over time associated with more efficient procedures (or acquisition of the
cognitive skill).

In summary, findings showed that a high proportion (86%) of variance in a factor governing
the acquisitioi of a new complex cognitive skill (i.e., Pascal programming) could be accounted
for by just three factors: working-memory capacity, domain-related knowledge, and efficiency
of acquiring declarative knowledge. Because so much of the learning variance is explained
by incoming knowledge and cognitive abilities, as well as by certain learning behaviors, this
information can be used in designing ITSs to really enhance learning. For instance, the tutor
could provide supplemental instruction (comparable to the Pretutor's declarative knowledge
instruction) to individuals with less incoming domain-specific knowledge. Or the system could
be programmed to encourage various learning behaviors found to be important at different
stages of learning (i.e., hints and runs). To illustrate, freedom to request unlimited hints (as
was possible in this ITS) yielded poorer transfer performance as learners failed to work out
solutions themselves. But hint-asking seemed not as detrimental in the early compared to the
later stages of learning. Tutoring systems could employ some heuristic to wean subjects off
the hint option if they tended to be overusing it. Along the same lines, subjects not running
the more complex programs but who experienced difficulties in the tutor, could be encouraged
to run the programs and see the flow of control. Finally, the implications of the "busy" findings
for ITS design include having the system encourage activities in the early stages of the tutor,
and support more focused activities later on. It remains an empirical question whether learning
behaviors can, in fact, be instructed.8  Does progressively reducing the number of hints subjects
may receive from an ITS significantly increase transfer task performance? Do suggestions to
run complex programs affect learning? Are they even heeded? Our fac' 1ies provide an easy
test for these questions.

Although ITSs are usually created to serve as instructional systems, they are extremely well
suited to investigate cognitive learning principles and instructional strategies (Anderson, 1983;
Kyllonen & Christal, 1989; Recker & Pirolli, 1990; Shute, 1990; Woolf & Cunningham, 1987).
ITS programs can provide detailed traces of learning performance, states of knowledge, and
rates of progress through the curriculum. Through these controlled yet rich research vehicles,
we can continue to test psychologica! and instructional theories that could not have been tested
before.

8 Note that Shute and Glaser (1990) did investigate teaching learning behaviors (i.e., scientific inquiry skills) via an ITS,
Findings implied that behaviors can be instructed if they can be specified into rules and presented at the appropriate times.
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APPENDIX: BATTERY OF CAM-1 TESTS

I. WORKING MEMORY (Percent correct)

A. Quantitative
1. ABC Recall: Subjects must learn and remember numeric values assigned to the

letters A, B, and C. Statements (e.g., A = B/2) are presented one at a time, and subjects are
permitted to look at each one for as long as desired before going on to the next statement.
They are then asked to recall the values of the letters one at a time. Some of the problems
are more difficult than others since values must be computed (e.g., A = 2 x 8 or, A = 16).
Still other values cannot be computed until the value of another letter is known (e.g., B = A
+ 4). Even-odd reliability = .95.

2. Mental Math: This task requires subjects to calculate a subtraction or division problem
mentally, and then choose the correct answer from 5 alternatives. A problem appears on the
screen for 2 seconds (preceded by a warning asterisk) and then disappears. Subjects mentally
solve the problem for as long as they wish. When they have the answer, they hit the space
bar to see the five alternatives. They have 4 seconds to type in the number of the correct
answer. Even-odd reliability = .88.

3. Slots Test: This test presents simple math equations (e.g., 5 + 2) in five sequential
positions on the screen. Subjects must calculate the equations as they are presented and
remember the answer for each position. Following the presentation of all equations, a question
mark appears in one of the positions, and subjects must type in the corresponding answer.
The five positions are marked by horizontal lines, one next to the other. Problems are presented
from left to right, one at a time. Two rates of presentation exist (i.e., slow and fast) and before
each trial, subjects are warned to get ready for either a slow or fast item. Each problem
presents between 1 and 10 math equations. In the more difficult items, new math problems
may be presented in a slot where a problem was already presented. Subjects are required to
remember the most recent answer. Even-odd reliability = .91.

B. Verbal
4. ABCD Test: Subjects are presented with five rules:

Rule 1 - Set 1 = A and B.
Rule 2 - Set 2 = C and D.
Rule 3 - Set 1 can either precede or follow Set 2.
Rule 4 - A can either precede or follow B.
Rule 5 - C can either precede or follow D.

Each problem consists of three instructions presented one at a time concerning Sets 1 and 2.
For example: 1) A precedes B. 2) Set I follows Set 2. 3) C precedes D. Each instruction is
presented one at a time, and subjects may look at each one as long as desired before going
on to the next one. They must determine the appropriate order of the letters and then hit
the space bar to see the choices of answers. They then choose the number for the correct
answer (e.g., CDAB). Even-odd reliability = .81,

5. Word Span Test: Subjects are required to memorize a short list of words and answer
questions about them. A "Get Ready!!" warning precedes the words, which are presented one
at a time. The questions are asked in an equation-like format. For example, if the list were
'neat, burp, inn', a possible question is 'neat + 1 = ?'. This question asks for the word which
is one position after 'neat'. Answers are presented in a multiple choice format; alternatives
are synonyms to the actual words on the list. Subjects must type in the number for the
synonym which matches the word from the list. Any given word list is between 3 to 5 words
long. Subjects answer three questions about each list, after which they are told how many
questions they had correct for that word list. Even-odd reliability = .93.

6. Reading Span: This task tests subjects' ability to classify true/false statements and
their short-term memory capacity. Subjects are presented a list of sentences of general
knowledge which they must determine to be true/like (L') or false/different ('D'). Concurrently,
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they must memorize the last word in each sentence (this word is highlighted a different color
from the other words). Sentences are presented one at a time, after which they are asked
to type in the first two letters of each word in the order that they appeared. Subjects receive
partial credit if the correct letters are typed in, but in the wrong sequence. Even-odd reliability
= .93.

C. Spatial
7. Figure Synthesis: Two geometric figures are presented for subjects who are instructed

to imagine the shape if the pieces were rearranged to form one figure. These figures are
then replaced by a third figure. The subject must determine whether or not the third figure
could be formed from the combined figures. Reaction time is presented when subjects give
the correct response. Even-odd reliability = .65.

8. Spatial Visualization: This task requires 3-dimensional visualization. Subjects read
descriptions of blocks and visualize how they appear before and after various manipulations
(e.g., colors, initial size, ensuing size, number of blocks it may be cut into, etc.). The subject
is allowed to study the description for 30 seconds before the first question is asked (although
the description remains on the screen throughout the problem). Subjects work the problems
mentally and then choose one of the multiple choice answers using the letters A through 0.
Subjects are given 60 seconds to respond, at which time they are told to enter their response
(within another 10 seconds). If no response is entered during that time, the item is counted
wrong. For each description, three or more questions may be asked in this multiple choice
format. Even-odd reliability = .84.

9. Ichikawa: This test presents a 5x5 matrix of squares containing 7 asterisks. The
placement of the asterisks is random. Subjects see a warning asterisk, the matrix filled with
asterisks, and then a blank matrix with a question mark in one of the squares. Subjects are
to determine whether or not an asterisk was in that square, and respond with '1 (correct) or
'D' (not correct). Subjects have 3 seconds to respond, and then a new blank matrix appears
with another question mark in it. For each matrix, three positions are questioned. The computer
provides accuracy feedback. Subjects are allowed to study the initial matrix for 2 seconds,
followed by a 1 second delay before questions are asked. Even-odd reliability = .73.

I1. INFORMATION PROCESSING SPEED (Latencies)

A. Quantitative
10. Number Fact Reduction: Subjects are given four sets of simple arithmetic problems,

each set containing only one type of operation (i.e., addition, subtraction, multiplication, or
division). Each problem is preceded by a "Get Ready!" warning and asterisk. Subjects must
quickly determine whether or not the problem is correct (type in 'L') or incorrect (type in 'D').
The computer gives accuracy feedback. Even-odd reliability = .98.

11. Larger-Smaller Test: Subjects are presented with two single-digit numbers on separate
sides of the screen to determine which of the two is larger. If the one on the right is greater,
' is the correct response; and if the one on the left is greater, 'D' is the correct response.

Each set of numbers is preceded by a warning asterisk and a one second delay. The test
contains four sets of 36 trials. Even-odd reliability = .98.

12. Odd-Even Test: In this test subjects must decide as quickly as possible whether two
numbers presented are odd or even. The two numbers (between 1 and 20) are presented
one above the other. Some numbers are presented as digits and others as English words (e.g.,
5 or five). Subjects respond with L' if both numbers are either odd or even. If one number
is odd and the other is even, then 'D' is the correct response. Reaction time is shown when
a response is entered. Even-odd reliability = .97.

B. Verbal
13. Meaning Identity: Two words are presented and the subject must decide whether they

have the same or different meanings. Subjects type in 'L' if they have the same meaning,
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and 'D' if they have different meanings. Some of the pairs of words are repeated exactly
and some are repeated with different pairings. Each pair is preceded by a warning asterisk.
The goal is to respond as quickly as possible and still try to get 95% of the items correct.
After each set, the student's percent correct and average response time are shown. Even-odd
reliability = .98.

14. Category Identification: Subjects are presented with three words: one on the left,
one on the right, and one centered above the other two. The subjects must determine which
of the lower words belongs in the same class or category as the word at the top. If it is the
one on the left, 'D' is the correct response, and 'L' if it is the one on the right. Three warning
asterisks are presented where the words will appear for the subjects to focus their attention.
The computer responds with whether their answer is correct or incorrect in addition to reporting
their reaction time. Even-odd reliability = .98.

15. Semantic Relations Verification Test: Subjects must determine whether or not simple
sentences are true ('L') or false ('D'). Key words in the sentence are colored. For example,
in the sentence 'Theft is a crime', 'theft' and 'crime' might be colored differently from the default
color of white like the rest of the sentence. The computer responds with whether or not the
subject made the correct response, and the reaction time if the response is correct. Even-odd
reliability = .98.

C. Spatial
16. Santa's Figures: Subjects are presented with 2 sets of geometric figures to determine

if they have the same parts ('L') or different parts ('D'). Each set consists of three geometric
shapes or figures (e.g., circle, arrow, diamond, square) next to each other. The first set appears
for 2 seconds, disappears, and then the second set appears. Subjects then make their decisions.
The order of the figures is not important, only whether or not the two sets contain the same
figures. Even-odd reliability = .93.

17. Palmer's Figure Comparison: Subjects are presented with two 3x3 dot-matrices with
5 interconnecting lines forming different geometric patterns. These matrices are presented side
by side until a response is entered. The subject must respond as quickly as possible whether
the two line figures are the same ('L') or different ('D'). The computer responds with either
Icorrect' or 'wrong'. At the end of each set the computer provides summary performance feedback.
Even-odd reliability = .96.

18. String Matching: This task presents two strings of letters, symbols, or digits for
subjects to determine if they are the same ('L') or different ('D'). The strings may be upper or
lower case letters, numbers, or any other symbol from the keyboard (e.g., * & % $). Each
string is between 2 to 5 characters long. The two stimuli comprising a comparison are always
the same length and composed of the same character type (e.g., upper case with upper case,
symbols with symbols, etc.). Strings may be made up of the exact characters, but if the
sequence is different, then it is not a match. In all cases, the two strings will either be identical,
transposed, or just one value may be different. Subjects are presented a warning asterisk and
then the two strings. The strings stay on the screen until a response is entered. At that time,
the computer responds with whether the response was correct and the reaction time. Even-odd
reliability = .97.

III. GENERAL KNOWLEDGE (Percent correct)

A. Verbal
19. General Knowledge Survey: Subjects are asked general questions (e.g., San Antonio

is in what state?), and must respond by typing in the first two letters of the answer (e.g., 'TE'
for Texas). The computer responds with 'correct' or 'wrong'. Even-odd reliability = .93.

20. Reading Span True/False: This task tests subjects' abilities to classify statements
as either true or false. Subjects are presented a list of sentences of general knowledge which
they must determine to be true/like ('L') or false/different ('D'). Even-odd reliability = .72.
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21. Meaning Identity: Two words are presented and the subject must decide whether
they have the same or different meanings. Subjects are to type in 'L' if they have the same
meaning, and 'D' if they have different meanings. Even-odd reliability = .80.

22. Semantic Relations Verification Test: Subjects must determine whether or not simple
sentences are true ('L') or false ('D') (e.g., 'Theft is a crime' would be a true sentence). The
computer responds with whether or not the subject made the correct response, and the reaction
time if the response is correct. Even-odd reliability = .84.

23. General Science score from the ASVAB: This test asks basic questions about the
biological and physical sciences. For example, "A rose is a kind of ." Of the four alternatives
(i.e., animal, bird, flower, fish), *flower" best answers this question. Subjects are allowed 11
minutes to answer the 25 items in this subtest. Even-odd reliability = .81.

24. Word Knowledge score from the ASVAB: Items consist of a sentence or a phrase
with a word or phrase underlined (e.g., It was a small table). Subjects are to determine which
of the four lettered alternatives has the same/similar meaning (e.g., a. sturdy, b. round, c. little,
d. cheap). This subtest was developed to assess subjects' knowledge of commonly used words.
Subjects are allowed 11 minutes to answer the 35 items in this subtest. Even-odd reliability -

.89.

III. SPECIFIC KNOWLEDGE (Percent correct)

25. Test 1 -- Examples: There are ten concepts investigated (e.g., integer, string, variable).
In this test, the subject has to decide whether an item is or is not an example of a particular
concept (e.g., Is 9.7 an example of an integer?) Each of the 10 concepts have 8 corresponding
items for a total of 80 items on this test. Half of the items are examples and half are not.

26. Test 2 -- Definitions: The second test requires the subject to decide whether a
statement about a concept is true or false (e.g., A variable can only have numeric values).
There are 4 related questions per concept for a total of 40 test items (half true, half false)

27. Test 3 -- Bugs: The last test presents a problem statement, then a corresponding
program solution (in Pascal code), and a menu of possible error types, or 'Program OK'. The
subject indicates the type of error present in the code, if applicable, then must draw a line in
the program indicating the faulty or missing line of code. There are five possible error types:
1 line missing, 2 lines missing, error in line, misplaced line, or unnecessary line. Five of these
problems are given.
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