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SUMMARY

_ The Air Force's Learning Abilities Measurement Program (LAMP) conducts basic research on the
nature of human learning abilities, with the ultimate goal of contributing to an improved personnel
selection and classification system. To date, studics in the program have investigated the relationship
between aptitude measures and performance on simple learning tasks. One limitation to these studics
is that it may be inappropriate to generalize results obtained to an operational setting. Thus, future
cfforts will validate the aptitude tests against more complex learning such as computer programming,

clectronic troubleshooting, flight engineering, and air traffic control.

Before the newer effort is underway, it is critical to give serious attention to the question of how
learning might be measured in more complex environments. In this paper, we demonstrate how
learning indicators may be derived from a taxonomy of learning to ensure that a wide range of learning
outcomes will be assessed during instruction. The paper first reviews existing taxonomics, and points
out their limitations. A taxonomy is then proposed based on a synthesis of current thought regarding
the forms of knowledge, the types of learning activitics, the importance of the domain, and the effects
of the learner's style. The taxonomy is applied to analyze some computerized instructional programs
that atiempt to measure student lcaring, and show how the programs might be improved by

measuring a broader variety of learning outcomes. The paper concludes by speculating about how the
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taxonomy aids considcration of a broad variety of questions concerning the relationships between basic

PP

cognitive skills and learning outcomes, and the relationships among different kinds of learning

experiences.
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Development of this paper was supported by the Air Force Learning Abilities Mcasurement
Program (LAMP), a multi-year program of basic research conducted at the Air Force Human
Resources Laboratory and sponsored by the Air Force Office of Scientific Research. The goals of the
program are to specify the basic parameters of learning ability, to develop techniques for the
assessment of individuals' knowledge and skill levels, and to explore the feasibility of a modcl-based

system of psychological assessment.

Support was provided by the Air Force Human Resources Laboratory and the Air Force Office of
Scientific Research, through Universal Energy Systems, under Contract No. F41689-84-D-
0002/ 58420360, Subcontract No. S-744-031-001. We thank Raymond Christal of Universal Energy
Systems, Wesley Regian, Dan Woitz, and Wiliiam Alley of the Air Force Human Resources
Laboratory, and Stephanic Rude, Bruce Britton, and Shawn Glynn of the University of Georgia, for
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L. INTRODUCTION

What is the relationship between intelligence and learning ability? This question engaged
contributors to the original Leaming and Individual Differences, and we believe (and hope to show
how) the sophistication of the answer to this qucstion highlights, perhaps as clearly as to any other

question, cxactly how far our theories have come over the last 20 years,

Until recently, and certainly in evidence throughout that previous volume, the typical tesponsc to
such a question might very well have been "there is no relationship between intelligence and the ability
to learn” or "the relationship is weak at best.” This position reflects conclusions drawn from the widely
cited series of studies by Woodrow (1946), who found that with extended practice on a variety of
learning tests (¢.g., canceling tasks, analogics, addition), the performance of brighter students did not
improve at a rate substantially greater than that shown by poorer students, Woodrow's studics are no
longer vicwed as incontrovertible in addressing the intelligence-learning issue, primarily because of
problems with the measures of lcarning ability he cuiployed: His lcaiiing tasks may have been (oo
simple (Campione, Brown, & Bryant, 1985; Humphreys, 1979) and his conception of learning as
improvement due to practice was too simplistic. Had he selected other kinds of learning tasks, and
measurcd learning with other performance indices, his results might have been quite different, as

subscquent investigation has shown (¢.g., Snow, Kyllonen, & Marshalek, 1984),

A geacral conclusion may be drawn here: To address questions regarding learning ability, such as
the question of its correlates, and its dimensionality, it is important to have a clear idea of exactly what
is meant by learning ability, to the point of being able to specify learning indicators. Problems and
confusions such as those introduced by Woodrow could have been resolved by selecting learning

indicators from an agreed-upon taxonomy of learning skills',

"For the purposes of this paper we distinguish lcarning abilities from learning skills. We define
abiliiies as individual-differcnce dimensions in a factor analysis of learning tasks. We define skills as
candidate individual-difference dimensions which are presently only conceptually distinet. In this way,
we believe that proposing learning skills is logically prior to establishing the individual differences
dimensions underlying learning, Proposing a learning skills taxonomy should assist in determining the
dimensions of learning ability. We realize that our usc of the teems abilitics and skills may be
somewhat idiosyncratic.
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Indecd, there arc many potential benefits to having a widely accepted taxonomy of lcarning skills.
Consider Bloom's (1956) Taxonomy of Educational Objectives. lts primary purpose was Lo serve as an
aid, especially to teachers, for considering a wider range of potential instructional goals and for
considering means for evaluating student achievement consistent with those goals. Although the
taxonomy has been criticized for vaguencss (Ennis, 1986), it has served teachers well over the last 30
years, at least as demonstrated by its continued inclusion in teacher training curricula. Its main effect
has probably been 0 cncourage instructing and testing of higher-order thinking skills (analysis,
synthesis, cvaluation). A taxonomy of learning skills could have a parailel etfect in encouraging the

development of instructional objectives concerncd with teaching higher-order learning skills.

Fleishman and Quaintance (1984) have outlined a number of ways, both scientific and practical, in
which a performance taxonomy in psychology would be beneficial. The main scientific benefit would
be rhat results from different studies using differing methods could more easily be compared and
synthesized. Study A finds that some manipulation drastically affects performance on task X whereas
study B finds that the same manipulation has no effect on performance of task Y, Are the studies

contradictory or compatible? A taxonomy could help one decide.

The main practical benefit of having a taxonomy of lcarning skills is that consumers of rescarch
ﬁndiﬁg,s could more casily determine the limits of generalizability from current research findings to an
immediatc practical problem. For cxample, it would be convenient to be able to produce lcarnability
metrics for any kind of learning task, either in the classroom (¢.g., a particular algebra curriculum) or
outside the classroom (e.g., a new word processing system). A taxonomy of learning skills would be an

important first step toward achieving a generally useful learnability metric system.

There are also more specific motivations for the immediate development of a taxonomy of learning
skills. The National Asscssment of Educational Progress is a bieanial survey of student achieverent in

areas such as mathematics, science, and computer scicnce, designed to provide information to
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Congress, school officials, and other policy makers regarding tho state of Amorican cducation. In
recent yéars there has been increasing attention given to the assessment of higher-order skills in these

subject areas (e.g., Fredericksen & Pine, in press). It is likely that, due to political pressures, this cffort

will continue with or without a taxonomy, but a taxonomy of icarning skills could assist in the

development of new, more refined test items to measure learning skills relevant to math and science.

Perhaps the most conspicuous benefits of having a viable taxonomy of learning skills would be

realized in the burgsoning domain of intelligent computerized tutoring systems (ITSs). A number of

such systemis have been developed (Yazdani, 1986), and the potential for gencralizing and synthesizing

!

'= results across the different systems is seen as increasingly critical (Soloway & Littraan, 1986). Too

E often, rescarchers caught up in the excitement of developing powerful, innovative instructional systems

; have ncither the interest nor the expertise for systematically evaluating those systems. ‘There have been

: a few small-scale evaluation studies of global outcomes (¢.g., Anderson, Boyle, & Reiser, 1985), but the

E fieid could obviously bencfit from an accepicd taxonomy. Sysiem developers could siaie what kinds of

: learning skills were being developed, and evaluators could dotermine the degree of success achieved. :::i

E In this way, a taxonomy could provide a uscful metric by which to compare and cvaluate tutors as to %}%

. their relative effectiveness, not only in teaching the stipulated subject matter but also in promating :':*-’Q

' morc general learning skills, S-":
e

: B

t The intelligent tutoring sysiem context is a natural beneficiary of a learning taxonomy in a sccond :\'
o

E way. Because of the precision with which instructional objectives may be stated, the degree of tutorial

control over how these objectives guide instructional decisions, and the precision with which student

lcarning may be assessed, the I'TS environment cnables the examination of issues on the nature of

learning that were simply not addressable in the past. Educational research has been plaguced with .,
noisy data, due to the very nature of field research and the inherent lack of control over the way ::-:::
instructional treatments are administered and learning outcomes measured. The controlled ITS ,.:
'A"ﬂ
cnvironment thus offers new promise as the ideal testbed for evaluating fundamental issucs in learning, ! )
With ITSs, we now have the capability of gencrating rich descriptions of an individual learner's progress -
N
3 Y
P
Y
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during instruction. A taxonomy should help in determining exactly what indicators of learning progress ANY

and lcarner status we ought to be producing and cxamining. So, a test of the utility of any lcarning \
t

taxonomy is whether it could be used to actally assist in such an endeavor. Qur goal for this chapter is A,

1] \
1o propose such a taxonomy. We begin by looking at what has been done thus far, {\'_“

II. A TAXONOMY OF LEARNING TAXONOMIES :

Various approaches to the development of learning taxonomies have been cmployed. One way of A
ovganizing these approaches, which we apply here, is by the categories of (a) designated/eational, 4
bascd on a conditions-of-learning; analysis; (b) cwmpirical-correlational, based on an individual )

diffcrences analysis; and (¢) model-based, from formal computer simulations of learning processes, R‘:.p

Designated/Rational Taxonomics i

Designated/rational taxonomies are by far the most common. Examples of this type are .
taxonomiecs proposed by Bloom (1956), Gagne (1965; 1985), Jensen (1967), and Melton (1964). ,
Proposed taxonomics are based on a speculative, rational analysis of the domain, and frequently, the o
analysis applicd is of a conditions-of-learning nature. That is, the proposer defines task categorics in vy

terms of characteristics that will foster or inhibit learning or performance. v

2

One of the first altempts to organize the varictics of learning was Mclton's (1964) proposal of a .

oy
e (3

1)
4
4

simple taxonomy based primarily on clusters of tasks investigated by groups of researchers. The

categorics, roughly ordered by the complexity of the learning act, weee conditioning, rote leaming, KR

probability leaming, skill learming, concept leaming, and problem solving. This general scheme was AN

updated by Estes (1982), who examined conditions that facilitated and inhibited these and related : -f.:-j
classes of learning, and looked for evidence of individual differences in each class.

A task-based scheme was also the basis for learning taxonomies proposed by Jensen (1967) and

Gagne (1965; 1985). Jensen proposed a theee-faceted taxonomy: a Leaming-type facet incorporated ’

Mclton's seven categories; a Fiocedures tacet indicated variables such as the pacing of the task, stage of ;’;':_':\

..

q‘\.v.

L
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learning, whether the task consisted of spaced or massed practice, and the like: and w Content/Modality

A
. e i } ' . . . LR,

facet indivated whether the task consisted of verbal, aumerical, or spatial stimuli. Jensen proposed that .“-':'.-,
3

ARV

his taxonomy could be used as an aid in interpreting some rescarch findings, such as why arbitrarily ,--'J'v_:‘j
b

. . . BN

sclected learning tasks do not intercorrelate very highly (answer: because they do not share apy (acet 2l

valucs). He hoped that his taxonomy would suggest a more systematic approach to selecting lewning
tasks for future studies, but there is not much evidence that researchers have subsequently followed his

suggestions.

Gagne's taxonomy (1965; 1985), on the other hand. has been widely taught and put to use in the
arca of instructional design (Gagne & Briggs, 1979). Gagne proposes five major categories of learned
capabilities based on a rational analysis of common performance characteristies. Intellectual skills
(procedural knowledge) retlect the ability to use rules; this capability in turn depends on the ability to
make discriminations and to use concepts, and the rules themselves combine to form higher-order
rules and procedures. Cogritive serategies (executive control processes) reflect the ablity to govern
one's own learning and pettormance processes, Verbal information reflects the ability to recall and use
labsels, facts, und whole bodies of knowledge., Motor-skills and Attitudes arc two additional learned

capabilitics Gagne included to round out the list,

These categories serve various purposes. They assist the investigator in detining and analyzing ;'E:v'

BN

instructional objectives during task analysis, and later, in cvaluating an instructional system to '-;?:
»”

determine whether its objectives have been met. For example, if the goal is to have the student acquire ._

RS ‘R

a conceptual skill, then the objective that the student be able to "discriminate” one thing from another ':‘_"j

L

may be indicated. L the design phase, the categories suggest ditferent approaches for delivering
instruction, since, according to Gague, the five capabilitics differ as to the conditions most favoruble for

their learning. For example, with verbal information, order is not important but providing a

mecaningtul context is; for motor skills, providing intensive practice on part skills is critical.

.

4

!

All of these taxonomic systems--Gagne's in particular--are beneficial, but it is important to

>

.-

N
acknowledge their limitations. One problem inherent in the rational approach is the degree to which it o
" N
<
$ R,
e
-, ‘.I
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is subject to imprecision, which makes for communication difficulties and violates one of the main
motivations for developing the tzxonomy ia the first place. Without a strong model of learning

requirements in a task, and without a foundation of empirical relationships, task analysis is still

x*

primarily an art rather than a technology.

:
ot
'-4‘04‘1.

A second major problem with the rational approach was apparent to Melton (1964, 1967), who, in

. a_a,
Ay

fact, argued thet it should be abandoned. The problem is that a taxonomic scheme based primarily on r“;:
a rational analysis of task characteristics will only incidentally include actual psychoiogical process f;’;

<
£

dimensions. And presumably the process dimensions are what govern the most important aspect of the

taxonomy: information regarding predicted task-to-task gencrality. Melton suggested that while the

task-based approach might be initially useful, it was preferable ultimately to base the taxonomy on iA
process characteristics rather than "a mish-mash of procedural and topographic (i.e., perceptual, motor, e

e

verbal, ‘central’) criteria® (p. 336). Although it was preliminary at that time to have actually suggested

replacements to the task-bascd categorics, we will show later how cognitive science now provides

)L.-" E B R
»

AR,

snggestions for what they might be.

g
» . (] 3 ’\'
Empirical-Correlational Taxonomies 0
hv
»
A second approach, less commonly used in the domain of learning skills, has been primarily N
N
empirical. The history of individual diffcrenc=s research can be seen largely as an attempt to develop ::
",
I
taxonomies of intelligence tests based on performance correlations (e.g., Thurstoae, 1938), and there :
]
have been some atteinpis to develop similar taxonomics of learning tasks (e.g., Allison, 1960; Malmi, Ty
el
Underwood, &. Carroll, 1979; Stake, 1961; Underwood, Boruch, & Malmi, 1978). 3=
The empirical-correlational approach has oue critical advantage over the rational approach as a ’N
means for taxonomy development: It directly addresses the issue of the transferability of skills among =
tasks. That is, if we know that performance on learning task X is highly correlated with performance i
A
L
“It is historically interesting that it was at Melton's (1964) conference that Fitts (1964) proposed a -’:
highly process-oriented taxonomy of psychomotor skills which was only much later adapted by v
Anderson (1983) as the basis for a cognitive learning thcory. j::
6 o
>
5
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on task Y, then a natural proposal is that a high proportion of the skills task X requires are also
required by task Y. Further, training on task X should transfer at least somewhat to task Y. Thus,
patterns of correlations among performances on learning tasks could, in principle, be the basis for the

construction of a taxonomy of learning skills.

A very closely related idea--that individual differences investigations could serve as testbeds in
constructing general theories of learning--was developed by Underwood (1975). His proposal was that
if a theory assumed some mechanism, and the mechanism could be measured in a context outside that
in which it was initially developed, then the viability of the mechanism could be tested by correlational

analysis.

These ideas were applied in an ambitious investigation that examincd the intercorrelations among a
wide variety of verbal memory tests (Underwood ct al, 1978). The purpose was to determine whether
theoretical notions developed in the general (Romothetic) learning literature, such as the idea that
memories have imaginal and acoustic attributcs, or that recognition processes are distinct from recall

processes, could be verified with an individual differences analysis.

The memory task stimuli were primarily words. In some tasks, words were randomly selected, but
in others, words were chosen to clicit particular psychological processes. For example, concrete and
abstract words were mixed, under the assumption that recall differences would reflect the degree of
imagery involvement. Words were embedded in various kinds of memory tasks (paired-associates, free
recall, serial learning, memory span, frequency judgment). It was expected that clear word-attribute
factors would emerge, thus supporting certain theoretical notions regarding properties of memory, but
Underwood and colleagues discovered two somewhat unanticipated results. First, most of the variance
was due to general individual differences ia associative learning; only a small percentage was due to any
subject-by-task interaction. Second, the two factors that did emerge were not associated with word
attributes, as might have been expected, but with type of task (free recall vs. paired-associates and

serial learning); but even this apparently was not a robust task division. A followup study (Malmi et al,,
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1979) found the same evidence for a general associative-learning factor, but the two extracted factors

split tasks in a slightly different way (free-recall and serial learning vs. paired-associates).

What is the implication for a taxonomy of learning skills? Association formation rate apparently is
a general, and perhaps fundamental, learning parameter. It may be that further subtle distinctions
could be made among types of association formation, but the evidence in both these studies suggests

little practical payoff in searching for such distinctions.

Underwood and colleagues were primarily interested in memory per se; thus, their tasks
represented a fairly narrow range of learning. A useful complement to their analysis would be a study
that more systematically sampled learning tasks from something like Melton's or Gagne's taxonomy. In
this regard, we consider a pair of studies by Allison (1960) and Stake (1961), who administered a
diverse variety of learning tasks to large samples of Navy recruits and seventh-graders, respectively.
Allison's learning tasks were four paired-associates tasks (verbal, spatial, auditory, and haptic stimuli),
four concept formation tasks (spatial and verbal stimuli), two mechanical assembly tasks consisting of a
short study film followed by an assembly test, a maze tracing task; a standard rotary pursuit task, and a
task that involved learning how to plot quickly on a polar coordinates grid. Stake's learning tasks were
listening comprehension (repeated study-test trials of the same story), free recall (words, numbers),
paired-associates (words, dot patterns, shapes, numbers), verbal concept formation, and maze learning,

In both studies a variety of aptitude tests were also administered.

The original analyses of these data were somewhat problematic (sece Cronbach & Snow, 1977), but
a reanalysis conducted by Snow et al. (1984) using multidimensional scaling (MDS) revealed a number
of dimensions by which the learning tasks could be organized. First, in both studies, learning tasks
varied systematically in complexity. This was indicated by two findings: The learning task varied
substantially (a) in the degree to which performance on them correlated with measures of general
intellectual ability, and (b) in how close to the center of the multidimensional scaling configuration they
appeared. Centrality reflects the average correlation of a test with other tests in the battery and may be
taken as a measure of complexity (Marshalek, Lohman, & Snow, 1983; Tversky & Hutchins, 1986).

8
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Snow et al. suggested that the complexity relationship could be due either to some tasks
subsuming others in terms of process requiremeants or to increased involvement of executive control

processes such as goal monitoring,.

_ : Second, in both analyses, there was evidence for a novel vs. familiar learning task dimension, which
Snow et al. (1984) interpreted as supporting the classical distinction between fluid and crystallized
intelligence (Cattell, 1971), but which might also be seen as supporting an inductive vs. rote learning
distinction. In the Allison analysis, the paired-associates tasks and some of the concept formation tasks
appeared on one side of the scaling configuration. The concept formation tasks so positioned were
those which repeatedly uscd the same stimuli, thus enabling the successful use of a purely rote strategy.
On the other hand, the assembly tasks and the aovel plotting task, which required subjects to assemble

a new solution procedure essentially from scratch, appeared on the opposite side of the configuration.

The MDS analysis of the Stake (1961) data (learning rate scores) similarly suggested a
fluid/inductive vs. crystallized/rote dimension. Listening comprehension, verbal paired-associates, and
verbal free recall tasks appeared on the crystallized side of the configuration. The verbal concept
formation task--along with the spatial and number pattern paired-associates tasks, which were partially
amenable to an inductive learning strategy (response patterns could, but did not have to be induced)--

fell on the fluid/inductive learning end.

The Snow et al. (1984) reanalysis thus provides a number of ideas that could facilitate taxonomy
development. In particular, it suggests task complexity and learuing envizonment (inductive/novel vs.
rote/familiar) dimensions. Does this suggest we ought to continue along these lines to develop a full
taxonomy? Unfortunately, we see two problems with the approach. One is simply practicality.
Because of the time and expense iavolved in collecting data on performance of learning tasks, which i -‘:\;
typically require many more subject hours than do other cognitive measures, there have not been the X
same kind of large-scale empirical analyses of learning task batteries as there have been of intelligence -tl
test batteries (although data sets reviewed in Glaser (1967) and Cronbach & Snow (1977) could be Y73
reanalyzed along the lines of the Snow et al. approach. Even with the well-designed studies Snow et al. ;\:.;i
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reanalyzed, there is considerable under-determination of process dimensions, due to the fact that not
enough varieties of learning tasks were (or could bave been) administered by Allison (1960) and Stake
(1961). Thus, although the dimensions revcaled in the Snow et al. reanalysis are suggestive, they
certainly do not seem a sufficient basis fpr proposing a taxonomy of learning skills. It might take more
like a few hundred diverse learning tasks to be able to sce something that might serve as the basis for a

true full-blown taxonomy. Obviously, such a study would be prohibitively expensive.

A second problem with the empirical-correlational approach to taxonomy building is onc inhcrent
in a purely bottom-up approach to theory development. That is, on what basis should learning tasks be
selected for inclusion in a to-be-analyzed battery in the fizst place? Factor-correlational structures or
categories directly reflect the nature of the tasks included in the analysis--and only those tasks; thus, the
empirical approach is inhercntly analytic and, in some sense, conscrvative. Correlational analyses
certainly may be useful for initial forays, or purely exploratory work, in suggesting underlying task
relationships that might not have been anticipated at the outset. But it cannot be complete in any
sense. One cannot simply be sure to "sample a broad range of tasks." A sampling scheme for choosing
tasks alrcady implies a taxonomy. Clearly, some means for generating original taxonomic categorics is

required.

Information Processing Model-Based Taxonomies

T A L

The two classes of learning taxonomies thus far discussed have their roots in schools of thought-- '
behaviorism in the case of rational taxomomies, psychometrics in the case of the empirical-correlational . Q«’::

-

o
[ I;l. W

taxonomics--that are historically prior to modern cognitive psychology. One unfortunate side-effect of

™

the cognitive revolution had been a decline of interest in lcarning phenomena. Until the mid-1960s, : 4

[

when behaviorism was still largely predominant, learning issues held center stage. With the subscquent :\
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rise of cognitive psychology and the information processing perspective, theories of memory and

performance came to dominate. Only recently has there been a rather sudden and dramatic upsurge of
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interest in learning from aa information processing perspective. Although many of the same issues
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remain, these second looks at learning through newer theorics (e.g., Anderson, 1983; Rosenbloom &
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Newell, 1986; Rumelhart & Norman, 1981) have resulted in a richer theoretical picture of learning

phenomena.

Corresponding to this rise of interest in learning, there have been proposals for model-based

~ categories or taxonogxiqs pf lgaming types. These attempts differ from the empirically based individual

differences taxonomies in that they have not yet been completely validated, at least not as taxonomics
of learning skills. However, we do see a correspondence between some of the dimensions that have
cmerged in the individual differences analyses and some of the proposed learning mechanisms and
categories, which we will point out as we go along. The model-based taxonomies differ also from the
rational taxonomies in that they arise not simply from speculation and rational task analysis (although
they certainly incorporate such methods) but from systematic information processing models of
learning that have been demonstrated to be specified to a degree of precision sufficient for
implementation as operational computer programs. Thus, taxonomics in this category are those
investigations that have entailed the use of computer simulation of learning processes as a means of

developing learning theory.

One modcl-based taxonomy is suggested by Anderson's (1983) ACT*® theory. The theory proposes
two fundamental forms of knowledge. Procedural knowledge (knowledge how) is represented in the
form of a production system, a set of if-then rules presumed to control the flow of thought. Declarative
knowledge (knowledge that) is represented in the form of a node-link network of propositiouns, which

are presumed to embody the content of thought.

The ACT* theory in its most recent formulation (Anderson, 1983; 1987a) specifies three basic types
of learning: one to accommodate declarative (fact) learning, one specific to procedural learning, and
one applicable to both types. Learning in declarative memory is accomplished solely by the
probabilistic transfer to long-term memory of any new proposition (that is, a set of related nodes and
links) that happens to be active in working memory. It is worth noting that Underwood et al.'s (1978)
finding of a broad and general associative learning factor lends empirical support to Anderson's claim

for a single declarative learning mechanism.
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A second learning mechanism, knowledge compilation, accounts for procedural learning,
Knowledge compilation actually consists of two related processes. Learning by composition is the
collapsing of sequentially applicd productions into one larger production. This corresponds to the
transition from step-by-step execution of some skill to "one-pass” or all-at-once execution. Learning by
proceduralization is a related process in which a-production becomes specialized for use in a particular
task. This corresponds to the transition from the use of general problem-solving skills on novel
problems to the employment of specialized, task-specific skills tuned to the particular problem at hand.
Anderson’s third learning mechanism, strengthening, opcrates somewhat analogously to tae traditional
learning principle of reinforcement. Both facts and procedures are presumed to get stronger, and

hence more easily and more reliably retrieved, as a function of repeated practice.

To appreciate Anderson’s theory, it is important to note that it models the dynamics of skill
transition, and is not simply a list of the different ways in which learning can occur or a categorization
of learning tasks. The basic idea is that upon initial exposure to novei material, such as a gcomeiry or
computer programming lesson, the learner first engages in declarative learning, forming traces of the
various ideas presented. Then, when given problems to sclve later in the lesson, the learner employs
very general methods such as analogy, random search, or means-ends analysis, which operate on the
declarative traces to achieve solution. Employing these very general methods is cognitively taxing in
that it severely strains working memory (to keep track of goals and the relevant traces), and thus initial
problem solving is slow and halting. But portions of the process of using these general methods and
achieving particular outcomes (some of which actually lead closer to solution) are automatically
compiled while they are being executed. This is the procedural learning component. The learner
essentially remembers the sequence of steps associated with solving a particular problem, or at least
parts of the problem. Then when confronted with the problem again at some point in the future, the
learner can simply recall that sequence from memory, rather than have to rethink the steps from
scratch. With practice on similar problems, the compiled procedure is strengthened, which produces

more reliable and faster problem solving. With continued practice, the skill ultimately is automatized, =5
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A in that it becomes possible to execute the skill without conscious awareness and without drawing on

working memory resources.
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Again, there may be a correspondence betwcen an empirically based individual difference k:- ’
dimension and a distinction implicit in the model-based taxonomy. Snow et al.'s novel learning tasks,

presumed to tap fluid intelligence, may be likened to Anderson's novel learning situations, which

-

presumably tap very general problem-solving skill. On the other side, Snow et al.'s familiar learning

W

20

tasks, which call on crystallized skills, can be characterized in ACT*® terms as engaging the declarative ‘.‘h
!

learning mechanism or involving the retrieval of already-compiled procedures. It is noteworthy that N o '

s,

despite rather major differences in methodology inherent in the individual differences vs. model-based

approaches, there is some convergence in the categories of learning skills, Although Anderson (1983;

)
. Pt
1987) views the emergence of the learning dimeasion as the result of the transition of skill, rather than E:}'\
Y
perhaps as an array of fundamentally different kinds of lcarning tasks, there is a basic compatibility ! \\‘ %
5,
e

between the conclusions of the reseaich approaches.

4
P
A second approach to building a model-based taxonomy is based on an integration of the literature {:_\'
T
from the Artificial Intelligence subspecialty of machine learning. Taxonomies of research in machine 3"\
learning (Carbonell, Michalski, & Mitchell, 1983; Langley, 1986; Michalski, 1986; Self, 1986) have been :_ ;
L \
proposed, and there even exists something of a consensus in the field regarding the categories in the ';-g."".,j
e
taxonomy. S“xﬁ
One dimension of machine learning rescarch particularly relevant to our concerns here is leaming _,‘ft i
\- 1
™ ]
strategy, which Michalski (1986) defines as the type of inference employed during learning, and which he ;':
f.,
characterizes as follows: ':'.r
In every learning situation, the learner transforms information provided by a teacher (or ';ﬂ-:
environment) into some new form in which it is stored for future use. The nature of this
transformation determines the type of learning strategy used.... These strategies are *:'S
ordered by the increasing complexity of the transformation (inference) from the T
information initially provided to the knowledge ultimately required. Their order thus Ca
reflects increasing effort on the part of the student and correspondingly decreasing effort 1
on the part of the teacher. (p. 14) :J:‘::‘
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It is interesting that the classification of machine learning research yields such a nice process
classification and thereby scems promising as a realization of Meltor's ultimate hopes for a taxonomy
of learning. The kinds of inferencing strategies Carbonell et al. and Michalski suggest are listed in
Table 1. (We have added an additional category, Learning by Drill & Practice, to the list, because we
use the list as the basis for one of our proposed taxonomy categories, and it is convenient to denote
that here.) Note that while there may be some similarity between Carbonell et al. and Michalski's
categories and those proposed by Mclton, Gagne, and others, the basic difference is the fact that in the
Carbonell-Michalski system, the underlying motivation for distinctions is necessarily the existence of
differcnces in cognitive processing requirements. We will return to a more thorough discussion of

these categories in the next section.

We believe that Anderson's (1983) and Carbonell-Michalski's (1983; 1986) model-based attempts to
propose varieties of learning represent an advance beyond either the rational or empirically based
iaxonomics and go a long way toward abating some of the most severe criticisms of earlier taxonomies.
Yet all three approaches yield ideas on the varicties of learning skills that might be fruitfully

synthesized. The remainder of this paper represents our initial attempt to integrate these ideas.

IIl. A PROPOSED TAXONOMY OF LEARNING

Thus far we have discussed why a taxonomy of learning is important, and what cthers have done in
the way of proposing taxonomies. Our goal for this section of the paper is to propose a taxonomy
based on a synthesis of some of the ideas just reviewed, with an cye toward two major objectives. First,
the taxonomy should be useful as a learning task analysis system. That is, it should be useful in
answering questions like: What are the component skills involved in learning to disassemble a jet
engine, or operate a camera, or program a computer, or make economic forecasts? Second, the o
taxonomy should serve to focus our rescarch. Specifying the ways people learn may suggest where we &N
ought to be expending more research energy. We do not see this as dictating research directions, as -
some critics of psychological taxonomies have suggested (Martin, 1986), but as suggesting potentially

high-payoff research directions. For example, we already know much about declarative learning, such b
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Table 1. Learning Strategics From a Taxonomy of Machine Learming Research

Rote Learning: Learning by direct memorization of facts without generalization.

Learning from Instruction: The process of transforming and integrating instructions from an external W
source (such as a tcacher) into an internally usable form.

Learning by Deductlon
Knowledge Compilation: Translating knowlcdge from a declarative form that cannot be used ¢
directly into an effective procedural form; for example, converting the advice “Don't get wet*

into specific instructions that recommend how to avoid getting wet in a given situation. e

Caching: Storing the answer to frequently occurring questions (problems) in order to avoid a
replication of past efforts. v

Chunkdng: Grouping lower-level descriptions (patterns, operators, goals) into higher-level
descriptions,

Creating Macro-Operators (Composition): An operator composed of a sequence of more
primitive operators. Appropriate macro-operators can simplify problem solving by allowing

a more "coarse-grained” problem-solving search. ;.

Learniug by Drill and Practice: Rcfining or tuning knowledge (or skill) by repeatedly using it in 2
various contexts, allowing it to strengthen and become more reliable through generalization and -
specialization. R

Inductive Learning: Learning by drawing inductive inferences from facts and observations obtained .i
from a tcacher or an environment. -

Learning by Analogy: Mapping information from a known object or process to a less know but
similar one.

Learning from Examples: Inferring a gencral Concept Description from examples and (optionally)
counterexamples of that concept. by

Learning from Observation & Discovery: Constructing descriptions, hypotheses, or theories about a :
given collection of facts or observations. In this form of lcarning there is no a prion classification -
of observations into sets excraplifying desired concepts, p

Note. All categories except Deductive Learning (Michalski, 1986) are from Carboncll et al. (1983).
The definitions are taken from the glossary in Michalski, Carbonell, and Mitchell (1986). Leaming by
Drill and Practice was not a category included in these sources, but we included it in the taxonomy and
thus, for economy, we describe it here.




VW RN L T RGNl T eI RTRTATA TR TR MW MR T e e e i T N T e el T L T LT IR TR U R W U LN MU MU AR M ENY R MMM WL AM AT RAE Y AR

as what kinds of individual differences to expect and its relation to other cognitive skills. We know
considerably less about procedural learning skills. The taxonomy may pinpoint other learning skills on

which reszarch attention may productively be focused.

— We have selected four dimensions, illustrated in Figure 1, as particutarly important in classifying
| learning skills. The two dimensions shown in Figure 1a--knowledge type and instructional
environment--are motivated primarily by onr discussion of the Anderson and Carbonell-Michalski
8 systems, respectively, although Gagne's ideas on learned capabilities served to broaden the range of
categories included in knowledge type. The crossing of these two dimensions (Figure 1a) defines a

space of general learning tasks.

The motivation for the other two dimensions, illustrated in Figures 1b and Lc--domain and leaming style--
became apparent when we began exammmg applications of the taxonomy, which we discuss in the next
section of the paper. Figure 1b illustrates a hypothetical doingiii-space as the crossing of the degree of
quantitativeness and the importance of quality vs, speed in decision making. The idea is that any
domain can be located in such a space, and that the set of learning skills defined by the first two

taxonomy dimensions (Figure 1a) may prove to be empirically distinct from parallel learning skills in

:
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i other domains. We represent this idea in Figure 1b by scattering knowledge type by instructional

: ¢nvironment matrices over the domain space, for various occupational-training domains. The two

E dimensions portrayed in the domain space arc only suggestive, and are meant only to express how
domain interacts with the first iwo taxonomy dimensions. Finally, Figure 1c lists a varicty of possible

.

f learning styles, which, we propose, must be considered in conjunction with the first three taxonomy

b

k dimensions in determining what skills are being tapped by a particular learning task.

Knowledge Type

IR
.
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The declarative-procedural distinction is fundamental. Further refinements are possible:

declarative knowledge can be arrayed by complexity, from propositional knowledge to schemata

Laiw
<

(packets of rclated propositions). Similarly, procedural knowledge can be arrayed from simple
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Figure 1. Learning skills taxonomy; a) Environment by knowledge-type matrix: cell entries would be -
various learning tasks; b) Eavironment by knowledge-type matrices plotted in 2 hypothetical two- I
dimensional domain-space: proximal matrices should show relatively greater transfer among Te

parallel learning skills; <) Suggested learning styles that might interact with other taxonomy .
dimensions in determining what learning skill a particular learning task measures.
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productions, to skills (packets of productions that go together), to antomatic skills (skills executed with
minimal cognitive attention). Productions and skills can also be arrayed by generality, from a narrow

(specific) to a broad (genceral) range of applicability. A final knowledge type is the mental model,

which requires the concerted exercise of multiple skills applied to claborate schemata. Knowledge

g

types are dynamically linked: Acquisition of a sct of propositions may be prerequisite to acquisition of

g4

ceT e
&
C4giey, Sy

arclated schema, or 10 a procedurai skill; both in turn may be prerequisite to acquisitiont of some .:':',_
2
mental model. "

A

5% 5

In cognitive science circles, the declarative-procedural distinction is sometimes said to be formally

problematic in that declarative knowledge can be mimicked by procedures (Winograd, 1975). One can

Rl
y g

declaratively know that "Washington was the lirst president™; alternatively, one can have the procedure

to respond "Washington”™ when asked “Who was the first president?® We finesse the problem here by

..
L ag A

.0
50
£

keeping close to an operational definition of knowledge type: We define knowledge in termns of how it

B

is tested. Declarative knowledge can be probed with a fact recognition test (seatence recognition, word
matching, etc.), of in the case of schemata, with clustering and sorting tasks (¢.g., Chi, Feltovich, &
Glaser, 1981). Procedural knowledge requires a demonstration of the ability to apply the knowledge to
predict the output of some operator (operator tracing) or to generate a set of operators to yield some
output pattern (operator selection). Possession of skills and automatic procedures may be
aperationally determined by examining the degree of performance decrement under imposition of
secondary tasks (Wickens, Sandry, & Vidulich, 1983) or through other methods of increasing

processing demands (Schaeider & Shiffrin, 1977; Shiffrin & Schneider, 1977; Spelke, Hirst, & Neisser,

g .

‘..
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1976). Possession of an appropriate meatal model might require testing performance oa a complex o
simulation of some target task. An illustrative (not cxhaustive) list of tests for the various knowledge >
’
types is given in Table 2. o
YN
Instructional Environment -
A
N
: . oy . )
Instruction delivered in a classroom sctting or even on a computer will mevitably provide the R
student with opportunities 1o incorporate the material in multiple ways. Real instruction occurs in 3 ;:t:“
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‘Tuble 2. Sumple Tests for the Various Knowledge Types (from the Domain of Logic

Gate Circuits)

Knowledge Type

‘Type of Test

Sample Item

Proposition

Schema

Rule

Generul Rule

Skint

Ceneral Skill

Automutle Skill

Mental Model

Sentence Venfication

Stimulus Matching
Paired-associates

Free Recall (components)

Free Recall (structure)
Sorting
Classification

Sentence Completion/

Cloze
1.exical Decision

Operator Tracing

Qperator Selection

Transfer-of-Training

Multiple Operator
Tracing/Selection

Transfer-of-Teaining

Dual-task

Complexity-increase

Process Quicome
Prediction

*AND yiclds High if all inputs are high, Low
otherwise--True or False?"

"AND D--Match or Mismatch?"

"Which symbol is associated with AND?
“What are the diftcreat types ol logic gates?”

"Reproduce the circuits you just studied”
"Sort the circuits into categories®
"Pair circuit diagrams with these devices”

"AND yiclds ---- if all «--- are ----"
"XAND is a legal logic gate=-True or False?”

-Determine vutput of logic gato
(AND, HIGH, LOW) = ?

.Choose an operator to achicve a result
(2, HIGH, LOW) = HIGH

-Learn and be tested on other kinds of logical
relations such as those introduced in symbolic logic

“T'race through (or select) a series of linked togic
gates in a circuit (could also use hicrarchical menus
methodology)

-Learn and be tested on constructing of verifying
logical proofs

-Trace logic gates while monitoring a secondary
signal

“T'race logic gates that become increasingly
complex

-Troubleshoot a Simulated Target Task; Walk-
Through Performance Test
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diverse environment from the standpoint of student vs. teacher control and consequeatly in the kinds of
inferences students are required to make. Even in the iecture cnvironment, students may ¢ngage a
variety of inferencing strategies. Nevertheless, it is useful to differentiate instructional ¢nvironments in
~ alocal sense: It should be possible to tag a specific instruction segment as to the form in which itis
delivered and the kinds of inference processes or learning strategies it is likely to invoke. Following .
Carbonell ¢t al. and Michalski (Table 1), we propose to characterize local instructional environments
according to the amount of student control in the learning process. At one end, rote learning (¢.g.,
memorizing the timcs table) involves full teacher control, little student coatrol. Didactic learning (by
textbook or lecture), learning by doing through practice and knowledgc compilation, learning by
analogy, learning from examples, and learning by observation and discovery, offer successively more

student control, and less teacher control.

Note that we modify the Carbonell-Michalski list slightly by combining their learning by deduction
(compilation) category with a learning by refinement category (suggested to us by W. Regian, personal
coinmunication, May 4, 19R™). What we are pinpointing is the ability to refine one's skill (by
strengthenisg, gencralization, and discrimination) based on feedback following performance. Before
one is engaged in this kind of learning, we as: *me the skil! has already been acquired (perhaps in a
rote fashion) and compiled, and is now at the phase of being refined. But because compilation and
refinement are probably hopelessly intertwined in actual learning coitexts, we combine them into a

oingle learning-by-doing (Practice environment) category.

Domain (Subject Matter)

The inclusion of subject matter as a taxonomy dimension reflects the fact that much of learning has
a strong domain-specific character. One can be an expert learner in onc domain and a poor learner in
another. Certainly there is some generality in learning skills over domains. Glaser, Lesgold, and
Lajoie {in press) suggested that metacognitive skills might be fairly generalized. But even here, there is

not much evidence that metacognitive skill in mathematics (Schoenfeld, 1985) predicts metacognitive

skill in writing (Hayes & Flower, 1980).
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It is appropriate to ask the question of the topic range over which some general learning skill is
likely to be useful. It may be that the degree to which a subject matter taps quantitative or technical
knowledge, and the degree to which it taps verbal knowledge, captures some of the transfer relations
among academic subjects. The degxcq of socnal jgyolyemcnt may also play a rolg, cspgcially whea one
considers the universe of occupational training courses rather than simply academic training, Asis
suggested in Figure 1b, it may be that the relative importance of speed vs. quality in decision-making
may be a critical domain dimension. But again, the dimensions portrayed in Figure 1b are orly meant

to be suggestive.

More generally, we envision a complete domain-space. The underlying dimensionality of such a
space could be discovered through a study of the similarity (either judged or as shown in transfer of
performance relations) among all jobs, courses, or learning experiences in any specifiable universe of
interest, and could be represented as a multidimensional scaling of the jobs or courses so rated. An
empirically determined domain-space would specify the likelihood that (or the degree to which) a
particular taxonomic skill, defined by the environmexst and the knowledge type, would transfer to or be
predictive of a parallel skill (i.e., one defined by the same environment and knowledge type) in another
domain. Proximal domains, in the multidimensional space, would yield high transfer among parallel
skills; distal domains might yicld only minimal transfer. For example, assuming the importance of the
quantitative dimension, skill in learning mathematics propositions through didactic instruction might
predict skill in learning physics propositions through instruction; but neither may be related to the

ability to learn history propositions through instruction.

Learning Style

All sorts of subject characteristics--aptitudes, personality traits, background experiences--affect
what is learned in an instructional setting. But we focus on characteristics of the learner's preferred
mode of processing, or learning style, because our primary concern is characteristics over which the
instructional designer may exercise control. Because style implies a choice by subjects as to how to

orient themselves toward the learning expericnce, it should be manipulable through instruction.
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A considerable literature on cognitive style exists (Messick, 1986). Among those that have received
the most attention are field dependence-independence (Goodenough, 1976) and cognitive complexity
(Linville, 1982), but these are now p’ ¢ 1med primarily to reflect ability (e.g., Cronbach & Snow, 1977;
Linn & Kyllonen, 1981). Impulsivity-reflectivity (Baron, Badgio, & Gaskins, 1986; Meicheabaum,
1977) ;nore clearly fits our criteria for inclusion in the taxonomy, in thai it is mﬂeable: Subjects can be
trained to be more reflective in problem solving, and this improves performance. Other styles we
consider in our analyses of learning environments are holistic vs. serial processing, activity level,
systematicity and exploratoriness, theory-driven vs. data-driven approaches, spatial vs. verbal
representation of relations (Perrig & Kintsch, 1984), superficial vs. deep processing, and low vs. high
internal motivation. Some dimensions may affect learning outcomes quantitatively: Active students
may learn more, Others may affect outcomes qualitatively: Spatial vs. verbal representations will result

in different relationships learned.

Cognitive style may interact with other taxonomy dimensions in determining what learning skill is
being tapped in instruction. A study by Pask and Scott (1972), which identified holist vs. serialist
processing styles, can illustrate this interaction. In this study, serialists, who focus on low-order
relations and remcmber information in lists, were contrasted with holists, who focus on high-order
relations and remember the overall organization among items to be learned. Pask and Scott showed
that presenting a learning task (i.c., learning an artificial taxonomic structure) in a way that matched
the learner's style resulted in better cverall learning, A critical point for this discussion is that the
presentation of material should tap different skills for subjects who differ on this style dimension.
Presenting a long list of principles may be a difficult memory task for serialists, who attempt to
memorize cach relationship presented. For holists, the same task may tap conceptual reorganization

skill rather than memorization skill.

Summary

The first three dimensions of the taxonomy define a space of learning tasks (Figure 1a sct in the

domain-space of Figure 1b). Each cell represents a task that teaches a particular subject matter (e.g.,
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physics principles: Newton's second law), by a particular means (¢.g., by analogy), resulting in 2
particular kind of knowledge outcome (¢.g., a schema). A particular taxonomic learning skill then may
be defined by performance on a particular taxonomic learning task. Taere will be interactions among
dimensions: Some subject matters lend themselves more readily to certain kinds of knowledge
outcomes. For example, proposiiions are emphasized in non-quantitative ﬁelﬁs; proéedurcs are the
focus in quantitative fields. And knowledge outcomes covary with instructional method; we more

commonly learn propositions than procedures by rote.

As an illustration of some of these ideas, consider the instructional goal, extracted from a
programming text, of teaching the concept of electric field (Glynn, Britton, Semrud-Clikeman, & Muth,
in press). A rote approach might be to have students simply memorize the definition: "an electric field
is a kind of aura that extends through space.” A didactic approach might specify that students read the
definition embedded in the context of a larger lesson, then to have the student demonstrate
understanding by having him or her paraphrase the definition. The diffsrence between the two
approaches could be reflected in the way in which the knowledge was tested. The appropriate rote test
would be verbatim recognition or recall; the appropriate instruction test would be paraphrase

recognition or recalt3

The electric field concept could be instructed by having students practice using it; following a
discussion of properties of force, such as how an electrical force holds an electron in orbit around a
proton, students would be given an opportuaity to solve problems that made use of the concept. One
could also lead students to induce the concept, by pointing out how it is analogous 1o a gravitational
field, by providing them with examples and counterexamples, or by having them discover it with a

simulator or ia a laboratory.

Unlike the first three dimensions, the fourth dimension--learning style--refers to characteristics of

the person rather than the environment. Inclusion of the learning style dimension is an admission that

“Interestingly, test-question type has been shown to determinc a learner’s subsequent processing
strategy (Fredericksen, 1984: Sagerman & Mayer, 1587).
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providing a particular kind of environment guarantees ncither the kind of learning experience that will &

}
result nor the kind of learning skill being tapped. Person characteristic by instructional treatment 04

interactions ex’st (Cronbach & Snow, 1977, especially Chapter 11); thus, as we tried to illustrate in the
example on holist vs. serialist processing, the style engaged at the time of learning and testing will

7 pardy determine what icming skill is being measured.

IV. APPLYING THE TAXONOMY: THREE CASE STUDIES

Our goal for this section of the paper is to consider how the learning taxonomy might facilitate the
development of indicators of learning skill in actual practice. We consider this a kind of test run for the
taxonomy. We have proposed a taxonomy; it is now appropriate to demonstrate how it might be
applied. We discuss three computerized instructional programs, each of which includes some capability
for determining what and how students are learning. We suggest ways in which additional learning

indicators might be generated in light of our taxonomy.

,,..-...,—
- ] .

We see the taxonomy playing two roles here. One, though not the focus of the paper, is to help us

«

S

classify instructional programs. By our taxonomy, similar programs are ones that teach the same type

Y,
of knowledge (propositions, skills, etc.), provide the same instructional environment (rote, discovery, ,\._._‘

)
etc.), teach the same domain material (computer programming, economics, etc.), and encourage the ‘:’fq

i
same kind (style) of learner interaction (reflectivity, holistic processing, etc.). Programs are dissimilar e

« as

to the degree that they mismatch on these dimensions. An important part of our discussion of the e,
)

three tutoring systems then is to indicate at least informally what learning skills are being evercised, f::ﬁ,?l

SN

and to what degree. ;:::'

LN

N

The second and (for current purposes) more important role for the taxonomy is to assist us in )

thinking more broadly about learning skills and outcomes. The taxonomy with its specified methods ""'

and tests, can pinpoint what potentially important learning ¢vents are simply not being measured by .‘f}'_:
.
existing instructional programs. We can imagine generating alternative instructional programs by '
varying the degree to which different kinds of lcarning skills are exercised. j-
':‘u'
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The three programs we discuss in this section are intelligent tutoring systems, and so we begin by

providing a few preliminary remarks on their general organization.

General Comments on Intelligent Tutoning Systems

Figure 2 illustrates the components of a hypothetical and somewhat generic intelligent tutoring
system. In this system, the student learns by solving problems, and a key system task is to generate or

select problems that will serve as good learning expericaces.

The system begins by considering what the student already knows (the STUDENT MODEL), what
the student needs to know (the CURRICULUM), and what curriculum clement (lesson or skill) ought
to be instructed next (the TEACHING STRATEGY). From these considerations the system selects
(or generates) a problem, then either works out a solution to the problem (with its DOMAIN
EXPERT) or simply retricves a prepared solution. The program then compares its solution to one the

student has prepared, and performs a diagnosis based on the differences between the solutions.

The program provides feedback, based on STUDENT ADVISOR considerations such as how long
it has been since feedback was last provided, whether the student was already given a particular bit of
advice before, and so forth. After this, the program both updates the student skills model (a record of
what the student knows and does not know) and increments learning progress index counters. These
updating activities modify the STUDENT MODEL, and the entire cycle is repeated, starting with

selecting (or generating) a new problem.

Not all ITSs include all these components, and the problem-test-feedback cycle does not adequately
characterize all systems. But this system fairly describes many existing I'TSs and perhaps most
interactions with human tutors. Thus, an examination of the components of the generic tutor should
yield some ideas on how learning progress and the current status of the learner may be indicated. Note
that much of this information is contained in the dynamic student model. We now discuss three

instantiations of this generic tutor.’
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START
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GENERATE-A-PROBLEM
domain expert ‘

PRESENT-A-PROBLEM

o~ e

COMPUTE SOLUTION STUDENT SOLUTION

<

| COMPARE-SOLUTIONS

(DIAGNQOSE)
!

PRESENT-FEEDBACK

o ~

UPDATE UPDATE
STUDENT SKILLS LEARNING PROGRESS

MODEL INDICES

N

student model

student advisor

Figure 2. Componeats of a gencric intelligent tutoring system. (Boxes represent decisions the program :
makes; cllipses represeat knowledge bases the program consults.) .“'.j
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(1) BIP: Tutoring Basic Programming

General System Description

The Basic Instruction Program (BIP) was developed at Stanford University's Institute for
Mathemaﬁcal Studies in the Social Sciences and was one of the first operational intelligent tutorhg
systems (Barr, Beard, & Atkinson, 1976; Wescourt, Beard, Gould, & Barr, 1977).‘ BIP tcaches
: students how to write programs in the language BASIC, by having the studeat solve problems of
increasing difficulty. The system selects problems according to what the student already knows (based
on past performance), which skills it belicves ought to be taught next, and its understanding of the skills

required by the problems in its problem bank.

BIP's architectm:e is consistent with the generic tutor. BIP's Curmiculum Information Network
represents all the skills to be taught and the relations among ther. Skills are represented quite
narrowly; for example, "initialize a counter variable” or "print a literal string,” The relations specify
whether skills are analogous to other skills, whether they are easier or harder or at the same difficulty
level as other skills, and whether there are any prerequisite skills. As an example, printing a numeric
literal (or constant) is considered conceptually analogous to, but also easier than, printing a string
literal; both are considered easier than printing a numeric variable; and printing a aumeric literal is

considered a prerequisite to printing the sum of two numbers.

A programming task is represented in terms of its component skill requiremeants. For cxample, a »
i
%]
BIP task might ask the student to compute and print out the number of gifts seat on the 12th day of :CS:
Wy
Christmas, given that: On the first day 1 gift was sent; on the second day 1 + 2 gifts were seat; on the ".?‘-:_
oA
third day, 1 + 2 + 3 were sent; and so on. The student is expected to write a program that computes »
SN
the sumof 1 + 2 + ... + 12. Based on a task analysis conducted by BIP's authors, BIP knows that the i\a
S
component skills required for solving this particular problem are initialize numeric variable, use for next Eé
loop with literal as final vaiue, and so forth. Each task is assumued to tap a number of skills. »
*Barr et al. developed BIP-1; Wescourt et al. developed its successor BIP-I1. The two systems are "-‘-\
fairly similar. but we assume the newer system where there are discrepancies. Mot
27
S
i




W T e AUV M AA A A AAR AN D LN LY W R W v M W H LA RN AR SRASIH TASS 8 F a2V e N UG N AT d T e Tt d TRl dlan sl

DiePal ot MY

eV I QRIS Lo ol dp @] R RS O e

AL
Ay

<

,‘l "‘

PLAL I RPS SUN SLE Pl o

A TR A

- v
L

AL L SN FEEENANANNNPY £ R e ANFN A

BIP's student model is a list of the student's status with respect to each of 93 skills in the
curriculum. There are five discrete status levels: UNSEEN (student has not yet seen a problem that
required the skill), TROUBLE (student has seen but has not solved a problem that required the skill),
MARGINAL (student has learned to a marginal degree), EASY (student has not yet scen but problem
requires an easy skill to learn), and LEARNED (student has learned to a sufficient degree). After
each problem, skill status is updated as a result of the student's self-evaluation and through two
DOMAIN-EXPERT-like components to BIP: a BASIC interpreter which catches syntax errors, and a
solution evaluator which determines whether the program is producing correct outputs, Finally, BIP
also provides a number of aids to the student. The studeat may request help, a model solution in

flowchart form, or a series of partial hints.

BIP selects prot;lems by first identifying skills for which the student is ready (oncs that do not have
any uniearned prerequisites) but that need work, which means (in order of priority) (a) skills which the
student has found difficult (i.c., from tasks not completed), (b) skills analogous to LEARNED skills, or
(¢) skills postrequisite to LEARNED skills. Skills so identified are called NEEDLED skills. BIP then

identifies a task with NEEDED skills but no unlcarncd prerequisites,

If the student successfully solves the selected task, BIP updates the student mode! by crediting the
associated task skills. If the student fails the problem or gives up (i.c., requests a new task), BIP
determines which skills to blame, according to criteria such as the student's self-evaluation, whether the
student already LEARNED some of the skills or analogous ones, and whether any task skills or

analogous ones are in an unlearned state.

There are a number of ways in which aptitude information guides problem sclection. For the fast
lcarner, if two skills are linked by difficulty (one is harder than the other), the system assumes that the
casicr one is not a NEEDED skill; BIP also will select tasks with multiple NEEDED skills. 1f the
student is consistently having trouble, BIP opts for a slow-moving approach and minimizes the number

of NEEDED skills introduced in a single task.
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Learning Indicators

Snow, Wescourt, and Collins (1986) collected aptitude and other personal data from 29 subjects
who had used BIP, and performed a number of analyses on the relationships among those data and
BIP variables. Table 3 shows the list of lcaraing indicators used by Snow et al. We have divided the
list into three categories: learning progress indices, learning activity variables, and time allocation

variables,

The sample was too small to draw definitive conclusions about relationships, but there were some
suggestive findings worthy of further pursuit. First, the best learning progress index secemed to be the
slope of the number of skills acquired over the number of skills possible (skills slope). Determination
of best is based on two considerations: Skills slope was most representative of other learning progress
indices in that it had higher average intercorrelations with those indices (centrality), and it had higher
average corrclations with the learning activity variables (a validity of sorts), Particulatly intriguing was
that skills slope, along with a global achievement posttest, was more highly related to the activity
variables than was the raw number of skills acquired. Snow et al. (1986) suggested this may have been

due to the skills slope’s capturing more about the progress of learning over time.

The second major finding concerned the role of the activity variables in predicting learning
outcome. As it turned out, most of the tool usage indicators, such as requests for demonstrations,
hints, and modcl solutions, were associated with poor posttest performance. Poor performers also
spent more time debugging and less time planning than did others, and were more likely to quit the
task or start over. In contrast, good performers requested fewer hints, speat more time implementing
rather than debugging, and were more likely to test different cases after a successful run of their
program (Indicator 15). This may have reflected good students' desire to perform additional tests of

their knowledge, perhaps to probe the boundaries of their understanding, even after passing the test.
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Table 3. Learning Indicators from BIP, the Programming Tutor
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LEARNING PROGRESS INDICES

. Number of problems seen

. Mean time per problem

. Number of skills acquired

. Skills acquired per problem (slope, intercept, standaed error)

. Skills acquired per time on task (slope, intercept, standard crror)
Skills acquired per skills possible (slope, intercept, standard error)

[ WY B SN N

LEARNING ACTIVITY VARIABLES

(Counts of activities, to be divided by number of problems seen)

. Student produces correct solution
. Student has difficulty on the task (according to BIP)

1
2
3. Student admits not understanding the task <
4. Student disagrees with solution evaluator b
5. Student requests solution model <
6. Studeat requests solution flow chart A
7. Student requests model program -
8. Student starts problem over
9. Student requests at least 1 hint before starting K
10. Student requests at Icast 1 but not all hints N
11. Student requests all hints (0 - 5 on a problem) N
o 12, Student quits the problem T:
~ 13. Student quits the problem after sceing all the hints -‘_.
14. Student quits the problem without sccing any hints
g 15. Student tests different input cases after successful solution )
" 16. Student tests different input cases after lailed solution :j
- 17. Student uses BIP input data after failed solution o
» 18. Student runs program parts rather than complete program ~
’ 19. Student requests aid (model, help, hint) after an error o
b )
i n
- TIME ALLOCATION . }:
e '
- 1. Planning: Proportion of time spent before coding o
- 2. Implementing: Proportion of time spent writing code t,;
'- 3. Debugging: Proportion of time spent debugging code o/
= =
2 N
3 K
N N
;: Note: Time on the tutor must fall into one and only one of the three time allocation portions. N
u
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Applying the Taxonomy

In cvaluating the BIP tutor with respect to the taxonomy, we ask two questions: (a) What learning
skills docs BIP ¢xercise (i.e., how can BIP be classified)? and (b) How comprehensive are the
indicators used by Wescourt et al. (1977) and Snow ct al. (1986) in mcasuring studeats’ learning skills

and their learning progress?

To address the first question, consider a distinction between what is tested and what is taught, BIP
primarily tests for fairly specific skills, in that virtually all its tests are of the multiple operator selection
variety (i.c., students write programs). The posttest also undoubtedly taps some propositional,
schematic knowledge, but not extensively. Other knowledge outcomes could be tested, but they are
not. BIP teaches skills by having students first read a text (Learning from Instruction, in taxonomy
terminology), then apply the studied skills in a problem-solving context (Learning through Compilation
and Learning by Diill & Practice). Some students also request help and thersby engage in Learning
from Examples. The good students also tend to invoke Obscrvational Learning when they perform

additional tests of their programs.

Figure 3a summarizes our asscssment of (a) what skills are being exercised by BIP, indicated as the
solid bar, and (b) what skills are being tested, indicated as the striped bar. Bar size represents the
proportion of time spent cither engaging the learning skill (solid) or having the skill tested (striped),
relative to engaging or testing other skills, It is important to keep in mind that this analysis is rather
informal. We made some rough computations of the times students engaged in the various activities,
based on a review of Saow et al's (1986) data on the learning indicators, and on Wescourt et al.'s
(1977) reporst of some other summary statistics. Our analysis is mcant to be mercly suggestive. A
more rigorous, systematic analysis of BIP could produce a precise breakdown of the time spent
exercising and testing various learning skills, scparately for cach student. Also note that only the
knowledge type and instructional environment dimensions are indicated in Figure 3. Domain is
indicated in Figure 1b (computer programming is highly quantitative /technical and quality of decisions
is cmphasized). Learning style is not directly assessed in BIP.
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An approach to the second question, concerning indicator comprehensiveness, is suggested by
Figure 3a: Which skills are being exercised and not tested?  First, we can sce that although students
are learning rules, they arc not tested for them. This could be remedied by including operator tracing
or selection tests. Second, students als » are probably acquiring some general rules and skills regarding
program writing strategies, but BIP does not directly test for these. Transfer-of-training tests inserted
into the program (as part of the curriculum) would help determine the generality of the skills learned
in BIP. Third, students read text, and get tested on their knowledge during the posttest, but it would be
possible to test the propositional and schematic knowledge rosulting from reading the text more
dircctly by administering scntence verification tests, sorting tasks, and the like (sce Tuble 2). Finally,
the task of writing programs is an operator sclection task and thus is more difficult than a task that
would require students merely to understand the workings of a program (an operator tracing task).
Students may understand a program they are unable to write. ‘The inclusion of a program
undeestanding task would tap knowledge that would be missed otherwise and thus, should enhance the

accuracy of the student model.

In sum, BIP gencrates many indicators of student status and learning progress. Application of the
taxonomy suggests a aumber of additional ways in which a student's knowledge and learning skill could
be assessed. Expanding the breadth of learning skill probes should affect the overall quality of any
intelligent tutoring system, both in its role as 2 training device and as a research tool. The performance
of an ITS with a student-modeling component is highly dependent on the quality of the student model
insofar as the system's main job is to select appropriate-level problems. Thus, an ITS should improve
with 3 better student model, and we made suggestions here for refining a student model. As a rescarch
tool, an ITS can serve as an savironment in which to examine the interrelationships among learning
skills and learning activitics. Snow ct al's analysis of BIP relicd on a rich set of learning indicators.

But we think that the taxonomy can be used to provide an additional psychological basis for expressing

those indicators,

l’t"
P
L)

R L f'l.d -

L) ‘.',l [ |
L4 1
K /./J.‘-.‘.‘t SR



(2) Anderson's LISP Tutor

General System Description

Anderson and his research group have developed intelligeut tutoring systems for geometry, algebra,
and the programming language LISP, We focus here onthe LISP tutor. Descriptions of the tutor are
available (Anderson, ct al., 1985); thus, we only summarize some of the main features of the system--

cspecially as they contrast with BIP.

The LISP tutor follows the generic architecture fairly closely. Students read some material in a
textbook, but then go on to spend most of their time interacting with the program. The program
selects problems, gives the student help or advice when asked, and interrupts if the student is

floundering.

An innovation of the LISP tutor is its use of what Reiser, Anderson, and Farrell {1985) called the
model-tracing methodology, the process by which the tutor understands what the student is trving to do
while the student attempts to solve a problem. Whenever the studeat types in an expression (as nart of
a solution attempt), the rutor evaluates the expression as to whether it is the same as what the ideal
student would type in, or whether it indicates a misconception (or bug). If a misconception is

indicated, the tutor intervenes with advice.

For a tutor to analyze the student's response so microscopically, it has (o know essentially every
correct step and every plausible wrong step in every problem. The LISP tutor does not incorporate
enough domain knowledge to be able to interpret cvery action a student might take, but it does have
enough knowledge to be able to interpret all correct solutions and approximately 45% to 80% of
students errors (Reiser et al., 1985). (In cases wherc the tutor cannot interpret a studeat's behavior, it

typically probes the student with a multiple-choice question.) When the LISP tutor poses a problem, it

goes about trying to soive the problem itself, simultancously with the student. It solves the posed
problem with its owa production system, which consists of approximately 400 production rules for

correctly writing programs (Anderson, 1987b). It also solves the problem in various plausible incorrect
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ways, through the action of about 600 incorrect or buggy production rules. Determining what the

student is doing is a matter of comparing student input with its internal production system results.

Leamning Indicators

The LISP wtor keeps a record of the student's status with respect to each skill being taught, where
skills are the 400 correct production rules. An indicator of how well the student knows a rule is
incremented when the student uses the rule correctly, and decremented when the student makes an

error. Remedial problems may be selected to give a student experience in using a troublesome rule.

Unfortunately, studies have not been done on the relationships among learning indicators and
outcomes. Most of the evaluation studies have simply compared LISP-tutored students with
classroom- or human-tutored students on a standard achievement test administered at the end of the
course. However, one study did investigate individual differences in acquisition and retention of
individual productions over a series of 10 lesson-sessions (Anderson, in press). In this analysis, each
production was scored for the number of times it was used incorrectly in problem solving, separately
for each scssion. A series of factor analyses was performed on these data to determine whether
production factors would emerge. For example, it could be that productions associated with one kind
of learning (e.g., learning to trace functions, planning) would form a factor separate from some other
kind of learning (e.g., learning to select functions, coding). Or lesson-specific factors could have
emergéd. In fact, Anderson found evidence for two broad factors: An acquisition factor captured
individual differences in speed of production acquisition, and a retention factor captured individual

differences in the likelihood that acquired productions were retained in a later session.
Applying the Taxonomy

Consider first how we might classify the LISP tutor. Students spend most of their time learning
specific production rules and skills and are continually tested for their ability to apply them in writing

LISP functions. Every student action can be viewed as a test response because the system is
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interpreting that response as an indication of whether the student knows a particular production rule.

‘Thus, lcarning and testing activities in the LISP tutor arc almost completely integrated.

Although studnts are learning skills, insofar as writing functions is a muitiple operator selection
task, the LISP tutor is testing for students' knowledge of the rylesrunderlyjirn’g tl;osc ;killsf But this
merely reflects the fact that skills in the LISP tutor are defined precisely in terms of their constituent
rules. Interestingly, the fact that the LISP tutor can represent a student's skill without directly
evaluating that skill (i.c., the system never cvaluates whether the function works, per se) is evidence
against the taxonomy's suppositio;l of skill as a separate knowledge type. However, this presumes a
rule-level understanding of skill. In domains for which such a detailed understanding is not yet
available (most domains imaginable at this time), skill probably ought to be considered a functionally

distinct category, even if only for pragmatic rcasons.

The instructional environment is one in which students learn initially through brief instruction (a
pamphlet or a textbook), but then go on to compile and refine that knowledge by engaging in extended
problem solving. Figure 3b summarizes our assessment of what learning skills are being exercised and

tested in the LISP tutor.

Note that in addition to indicating that students arc learning declarative knowledge by instruction,
and procedural knowledge by compiling and practicing it, we have izdicated other learning products
and sources. The other produsts are the general rules and skills probably being taught by the LISP
tutor, even though that is not a goal for the tutor. The other sources have to do with the fact that the

LISP tutor is capable of delivering context-sensitive tutorial advice and, through its coaching

capabilities, can readily change the naturc of the instructional environment. On one occasion ‘. might

)
correct a student's attempt through direct instruction, but then it might later suggest an analgy to a f*{;_?
Y
student, or provide examples of a concept. s
o
Now consider the testing comprehensiveness issue. As can be seen in Figure 3b, we consider all of !"“]
the LISP tutor's testing to be for Rule knowledge, either in the Compilation or the Drill and Practice .-\'.‘:
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environments. (We could also consider Automatic Skills to be tested, but that would requite a rather

L
detailed analysis of the LISP tutor's entire production collection for how big, compiled productions : \
subsume their smaller precursors.) Note that first, as with BIP, students’ success at propositional i\%
learning and their ability to acquire general rules and skills are not tested. This situation could be g«i:
- -remedied with-the insertion of sentence verification and transfer-of-training tests. .But a more L(_,
intriguing suggestion from the standpoint of research derives from the fact that the LISP tutor's multi- g:_‘

et
AL

faceted coaching capability, which offers various kinds of tutorial remediation, greatly expands the

»
Ry
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range of learning events that may be investigated. For exampic, it would be possible (and interesting)

W e,

1

to keep track of production strength modification separately for cach of the various instructional

cavironments, That is, one could trace the growth in rule indicators over time as a function of whether

pre st

those rules were taught (or remediated) with instructional advice, analogies, examples, and so on. One

‘T 3w

o

could ask the question of whether instruction using analogics results in greater subsequent ability to

use the rule(s) so instructed, for example.

In summary, because of the way in which it models students' knowledge as production rules, and ;-{‘:
carcfully controls the learning environment, the LISP tutor is ideally suited for measuring learning ‘.!,:-‘E
skills such as the rate at which productions are composed, or the probability of compiling a sequence of ::é
productions as a function of exposure to that sequence. Augmented with the additional tests and E‘—’:
performance records suggested by the application of the taxonomy, the LISP tutor could serve as an E'E
excellent research tool for investigating the time course of learning and individual differences therein. F‘\fé

(3) Smithtown: Discovery World for Economic Principles

General System Description
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Unlike the other two systems, Smithtown's main goal is to enhance students’ general problem-

solving and inductive learning skills. It does this in the substantive context of microcconomics in

TE AR

teaching the laws of supply and demand (Shute & Glaser, in press). Smithtown is highly interactive.
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Students pose questions and corduct experiments within the computer environment, testing and

enriching their knowledge of functional relationships by manipulating various economic factors.

As a discovery environment, Smithtown is quite different from BIP and the LISP tutor in that there
is no fixed curriculum. The student--not the system--gencrates problems and hypotheses. After
generating a hypothesis (such as "Does increasing the price of coffee affect the supply or demand of
tea?"), the student tests it by exccuting a series of actions, such as changing the valucs of two variables
and observing the bivariate plot. This series of actions, or behaviors, for creating, executing, and

following-up a given experiment, defines a student solution.

Despite having no curriculum, Smithtown does have the instructional goal of teaching gencral
problem-solving rules and skills (called good critics) such as "collect baseline data before altering a
variable” or "gencralize a concept across two unrelated goods.” Instead of a curriculum guiding
instructional decisions, Smithtown relies on a process of constantly monitoring student actions, looking
for evidence of good and poor behavior, and then coaching studeats to become more effective problem
solvers. The system kesps a detailed history list of all student actions, grouping them irto (i.c.,
interpreting them as) behaviors and solutions, Smithtown diagnoses solution quality in two ways. It

looks for overt errors by comparing student solutions with its buggy cntics, which are sets of actions (or

non-actions) that constitute nonoptimal behaviors (¢.g., "fail to record relevant data in the online ::
notebook®). It also compares student solutions with its own good critics (expert solutions). E:'
Discrepancies between the two are collected into a list of potential prcblem arcas and passed on to the ::
Coach for possible remediation. To illustrate, if the student failed to enter data into the online S{%
!

notebook for several time frames and had made some changes to variables, the system would recognize

Rt n

this as a deficient pattern and prompt the student to start using the notebook more consistently.

N

v

Smithtown's student model is based on two statistics: (a) the number of times the student

57?'

demonstrates a buggy critic (errors of commission), and (b) the ratio of the number of times the

student uses a good critic over the number of times it was applicable (errors of omissicn). Coaching is

e
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based on the heuristic of first advising about buggy behaviors, then advising on any blatant errcrs of
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omission. Advice is always given in the context of a particular experiment, so, like the LISP tutor, it is
context-sensitive. For example, the coach might say,

You haven't graphed any data yet and 1 think you should try it out. This is often a good

way of viewing data. It lets you plot variables together and some surprising relationships

may become appareat.

However, the coach is fairly unobtrusive: After advice is given, there is no further coaching for some

time.

Smithtown also knows about variable relationships that constitute economics principles (such as
“Price is inversely related to quantity demanded®). If a student uses the system's hypothesis menu and
states this relationship (e.g., "As price increases, quantity demanded decreases”), the studeat is
congratulated and told the name of the law just discovered (c.g., "Congratulations! You have just

discovered what economists refer to as the Law of Demand™).

Learning Indicators

Shute, Glaser, and Raghavan (in press) conducted an extensive evaluation of differeaces among
students in what the students learned and how they interacted with Smithtown. Two data sources were
used: a list of all student actions, and a set of verbal protocols in which students justificd their actions

and predicted outcomes of the actions.

Table 4 shows a set of 29 learning indicators constructed for analyzing individuals' performance.
Indicators are clustered into three general behavior categories: (a) activity - exploratary level skills
(indicators relating to activity level and exploratory behaviors), (b) data management level skills
(indicators for data recording, efficient tool usage, and use of evidence), and (c) thinking and planning
level skills (indicators for consistent behaviors, effective generalization, and cffective experimental

bebaviors).

Shute ct al.'s sample (N = 10) was too small to analyze formally, but the indicators were examined

for which ones discriminated successful from unsuccessful learncrs. Two subjects--one who performed
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Table 4. Leaming Indicators from Smithtown, the Economics Tutor

[V I REV N

ACTIVITY/EXPLORATORY LEVEL SKILLS

L. ACTIVITY LEVEL

V1.

1. Total number of actions
2. Total number of experiments
3. Number of changes to the price of the goods

EXPLORATORY BEHAVIORS (Counts; i.e., cumber of ...)

Markets investigated

Independent variables changed

Computer-adjusted prices

Times market sales information was viewed
Baseline data observations of market in equilibrium

NN,

DATA-MANAGEMENT LEVEL SKILLS
DATA RECORDING
9. Total number of notebook entries

10. Number of bascline data entries of market in equilibrium
11. Entry of changed independent variables

. EFFICIENT TOCL USAGE (Ratios of number of cffective uses over aumber of uses)

12. Number of relevant notebook entries / total number of notebook entries
13. Number of correct uses of table package / number of times table used
14. Number of correct uses of graph package / number of times graph used

USE OF EVIDENCE

15. Number of specific predictions / aumber of general hypotheses
16. Number of correct hypotheses / number of hypotheses

THINKING AND PLANNING LEVEL SKILLS
CONSISTENT BEHAVIORS (Couats; i.., number of ...)

17. Notebook entries of planning menu items
18. Notebook eatries of planning menu items / planning opportunitics
19. Number of times variables were changed that had been specified beforehand in the

planning menu
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Table 4. Leaming Indicators from Smithtown (cont.)

VIl. EFFECTIVE GENERALIZATION (Event counts; i.c., number of times ...)

20. Anexperiment was replicated

21. A concept was generalized across unrelated goods
22. A concept was generalized across related goods
23. The student had sufficient data for a generalization

VIll. EFFECTIVE EXPERIMENTAL BEHAVIORS (Event counts; i.e., number of times ...)

24. A change to an independent variable was sufficiently large
25. Oue of the experimental frames was selected

26. The prediction menu was used to specify an event outcome
27. Avariable was changsd (per experiment)

28. Anaction was taken (per experiment)

29. Ancconomic concept was learned (per session)

poorly on the pretest but well on the posttest (a successful learner), and one who who did poorly on

both tests (an unsuccessful learner)--were selected for more careful scrutiny.

The two subjects differed mostly on indicators of thinking and planning skills (i.c., effective
experimental behaviors). In particular, the better subject collected and organized his data from a more
theory-driven perspective, which contrasted with the more superficial and less theory-driven approach
used by the poorer subject. The better subject generalized concepts across multiple markets (which the
poorer subject did not do), engaged in more investigations within a given market, and did aot move
randomly among markets as did the poorer subject. The better subject also made large changes to
variables so that any repercussions could be detected, This contrasted with typically small changes
made by the poorer subject, who justified her choices by claiming they were more “realistic.”
Replicating experiments to test the validity of results is an important scieatific behavior and similar to
BIP's Indicator 15. The better subject conscientiously replicated experiments whereas the poorer
subject did not. One other indicator, data management skills, distinguished the two subjects. The

better subject recorded more notebook entries, and the ones that he recorded consistently included
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relevant variables from the planning menu. The poorer subject used the notebook sporadically and

often failed to record important information.

Applying the Taxonomy

Again, we first consider the classification of Smithtown. Knowledge types taught are primarily
general skills (i.e., lcarning effective inquiry strategies for a new domain), domain-specific skills
pertaining to cconomics knowledge, and domain-specific mental models of the functional relationships
among microeconomic factors. Students also are presumed to acquire some declarative knowledge and
rules about ecoaomics while interacting with the cnvironment. The instructional environment is a
discovery microworld and thus most of the learning that occurs results from students inducing
knowledge and skills through observation and discovery, then perhaps compiling those skills by
practicing them in the conduct of experiments. There is tutorial assistance if a student is judged to be
floundering in discovery mode, however; we indicate this in Figure 3c as learning propositions and skills
by direct instruction. Figure 3c shows that in overall emphasis, Smithtown is quite distinct in both goals

and approach from BIP and the LISP tutor.

Regarding the issue of testing comprehensivencss in Smithtown, we consider two kinds of tests: (a)
the online indicators used by the system in diagnosis, and (b) the separate posttest that measures
economics knowledge gained during the tutorial. For the purpose of filling out Figure 3c, we
considered half the total testing to be online and the other half to be the posttest; the striped bars arc
marked as to the testing source. Figure 3c shows that as in the LISP tutor, the online indicators
primarily reflect rule and skill knowledge, but in Smithtown, the testing context is the discovery
environment. Another key difference is that the rule and skill knowledge is not related to the
economics domain but rather, to the subject’s ability to manipulate the environment and use its tools to
test hypotheses. The posttest did tap domain knowledge. One part of the posttest battery was a
multiple-choice test that measured declarative knowledge. A second part was a “scenarios test” that

had subjects reason through various economics scenarios. The scenarios test illustrates a means for
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assessing mental models; it was designed to assess students’ ability to run mental simulations of

complex economics scenarios (see Shute & Glaser, in press, for a detailed discussion of the test).

Figure 3c suggests that perhaps the greatest mismatch between what learning skills were exerciscd
and what were tested occurs in the General Rule and Skill cells. A shortcoming of the Smithtown
evaluation is that one of its stated primary goals is to help studeats become more effective in
conducting experiments in a microworld environment, acquiring general skills as a result of their
investigations. But this instructional goal was measured only indirectly on the posttest, which relied on
declarative tests of economics knowledge. A more direct assessment of the degree to which the stated
goals could be reached would require a transfer of skills in a system structured similar to Smithtown
but containing different domain knowledge (interestingly, there is such a system, but the transfer
experiment has not );ct been conducted). Truly general inquiry skills developed in Smithtown would

presumably transfer to the new environment.

Another smaller mismatch is that declarative knowledge of basic economics principles was tested at
posttest, but not while students were interacting with the tutor. It seems reasonable, both from a
research standpoint and from the standpoint of enhancing the student model, to integrate declarative

knowledge tests with tutoring.

A major factor missing here and throughout our discussion of the three tutors is the style
dimension, Iaspection of Table 4 shows that the set of indicators Smithtown collects and monitors are
really not direct indicators of learning skill per s¢ but rather, are style indicators in the sense that they
reveal how an individual organizes his or her learning environment. From this perspective, a key
question addressed in the Shute et al. analysis had to do with style interrelationships (the
“dimensionality of style” question) and the relationship between style and learning outcome (the validity
question). In one sense, this is exactly the study needed to understand learning skills in the most
natural, ecologically valid context. It is also a preliminary question to one of the goals we are pushing
for here: to be able to assess basic learning skills, controlling for learning style. Smithtown may be
best suited for analysis of the style issue. But before style variables are better understood, more
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structured eavironments such as BIP and the LISP tutor, which by forcibly directing learning activities
designatc a less important role for individual variability in learning style, may be more conducive to

research on basic learning skills.

V. LEARNING INDICATORS FOR VALIDATION STUDIES

To this point, we have discussed how the taxonomy might be applied so as to enable a more
thorough cvaluation of student lcarning skills and outcomes. The applications discussed above might
have the flavor of suggestions for improviang the tutors. That is not the intention. We see the main
function of the taxonomy as primarily a resecarch one. By more thoroughly examining what students
lcarn in instruction, it should be possible to conduct more-refined studies on individual differences in
lcarning. Snow et al. (1986) geacrated and analyzed a set of learning indicators, Anderson (in press)
did a similar analysis, and a similar analysis is underway for Smithtown. Our claim is that the taxonomy
should suggest additional ways in which to record learning skills, and this should result in a
psychologically rich and principled set of additional lecarning indicators. Each cell in the full four-
dimensional taxonomy defines a proposed learning skill. An important next question, open to
empirical investigation, has to do with the true reduced-space dimensionality of learning skills (see
footnote 1). From an individual differenccs perspective, how many learning abilities must we posit, and

al what level of detail, to characterize skill differences among learners over all taxonomy cell tasks?

There is also a second, related application. The taxonomy should help us develop for instructional
programs learning indicators that can serve as criteria against which other individual difference
measures, such as aptitude and basic abilities tests, might be validated. That is, our taxonomy-derived
indicators can scrve as supplements or even replacements for the conveational criteria of post-course
achicvement tests, course grade-point-average, on-the-job performance tests, and supervisor/teacher
ratings, in the conduct of construct validation studics. Indecd, it was this goal of creating more
extensive criteria against which new aptitude tests might be validated that led us into the taxonomy

project ia the first place.
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Learning Abilities Measurement Program (LAMP)

Over the past several years, the Air Force has supported a program of basic research designed to
explore the possibility of using contemporary cognitive theory as the basis for a new system of ability
mecasurement (Kyllonen, 1986; Kyllonea & Christal, in press). Currently, the Air Force, as well as the
other Scrvices, sclects and assigns applicants at lcast partly on the basis of their performance on a
conventional aptitude battery, which includes tests of reading comprebension, arithmetic reasoning,
numerical operations, and so forth. The goal of the Learning Abilitics Mcasurement Program
(LAMP) is to provide the research base that might lead to supplementing or even replacing those

conventional tests with new measures more closely aligned with an information processing perspective.

What might these new tests be? The project has thus far investigated measures of working memory
capacity, information processing speed, breadth and depth of declarative knowledge, availability of
strategic knowledge, and other such abilitics. It would go beyond the scope of this chapter to review
the project's rescarch (see Kyllonen, 1986; Kyllonen & Christal, in press, for current reviews), but the
prototypical study investigates the relationship among various kinds of cognitive measures (such as
working memory capacity) and learning outcome measures (list recall) under various instructional

conditions (such as variatioas in study time).

A major focus of the research is examining the relationships between ability measures and learning
outcomes. But the range of learning outcomes investigated thus far, not only on our project but on
others' as well, has been quite limited, in two ways. First, the range of learning skills examined has
been rather narrow; this is especially apparent given the breadth of potential lcarning skills suggested
by the taxonomy. But second, and perhaps even more importantly, the lcarning tasks we have
employed have tended to be short-term laboratory tasks, and therefore may not be truly representative
of real-world learning activities. This inhibits the transition of research to application, insofar as
generalization from narrow laboratory tasks o real-world learning tasks is tenuous. And as Greeno
(1980) has argued, use of ecologically valid learning tasks is defensible from the standpoint of leading
to better basic rescarch as well,
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Thus, for both applied and thcoretical reasons, a decision was made recently to expand the range of
learning criteria employed. A laboratory has recently been built at Lackland Air Force Base that
accommodates 30 work stations capable of administering intelligent computerized instruction such as
that reviewed peeviously. Intelligent tutoring systcms in the domains of computer programming,

B clectronic troubleshooting, and flight engineering have been developed or are-currently underway,
Over the next several years, we will investigate lcarning on these tutors and conduct studies that
examint the relationships among basic cognitive abilitics and various learning skills and outcomes. We
cxpect the taxonomy as described here to assist us in developing learning indicators for the tutorial

environments.

Applying the Taxonomy: A Practical Guide

Thus, we arc employing a two-pronged approach in generating learning skill indicators for LAMP :::‘..
A
£
validation studies. We design instructional programs capable of producing rich traces of learner '{t:‘
P
el
activitics, then we intend to analyze and categorize those activities so as produce psychologically ;“ N

F g
rept et

"
7.

oy

meaningful learning indicators. Tables 5 and 6 present the gencral outline for our approach. Note that

s

we have writtea the design and analysis steps in such a way as to be broadly uscful. Although our

o
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: application is in the design and (especially) analysis of intclligent tutoring systems, the steps suggested

:
| o
' could be adapted to any kind of instructional system, computerized or cven classroom, ;j
: ]
' V1. SUMMARY AND DISCUSSION “
) '-\\i':h
' )
' We have presented a taxonomy of learning, bascd on previous rescarch and on contemporary O
» ‘.‘ h"
. o
. cognitive theory. We have also proposed how the taxonomy can be applied to generate indicators of N
4 ‘\- {::
: what a studcnt in an instructional situation is learning, and how well he or she is learning it. But just RS
4 3
' how well does our proposed taxonomy-indicator system work? :"::..
. N
. ]
v Consider four major uscs for the system (these and a fifth research application ate listed in Table '\f
; .
. R
) 7). First, the taxonomy can suggest what kinds of skills are being exercised and tested in an )
B : N
. . . . . . . \ R
" instructional sctting. In this capacity, the taxonomy scrves in much the same way Bloom's or Gagne's -
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Table 5. Applications of the Taxonomy: Suggestions for Design

INSTRUCTIONAL SYSTEM DESIGN STEPS
1. Determine desired knowledge outcomes:
. a, State the instructional goals (c.g.. acquisition of a mental modcl, a st of propositions, a
set of skills).
b. Specify the particular facts/skills/mental models to be taught.
¢. Dctermine tests to be used for asscssing particular knowiedge outcomes (‘Table 2).
2. Determine environment for achieving knowledge outcemes:

a, Consider the kind of learning strategy desirable to invoke (Table 1),

b. Consider alternative means for achieving knowledge outcome (could be used as a
remediation strategy, or simply as a variation (o avoid instryetional monotony).

¢, Record student learning success with respect to the knowledge-outcome-by-
instructional-environment matrix. This allows morc precise statements of the
effectiveness of the instruction.

3. Consider tearning style issues:

a. Consider whether to encourage particular types (styles) of interaction,

b. If learning style is left free, make provisions to record the manner in which the student
intcracts with the instructional environment (for suggestions see Tables 3 and 4). This
also allows more precise statements of the effectiveness of the instruction,

¢. If particular learning styles are encouraged through feedback and suggestions, consider

varying the kinds of styles encouraged so as to allow experimental compatisons of the
relative cffectiveness of various styles.
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Table 6. Applications of the Taxonomy: Suggestions for Analysis

LEARNING TASK ANALYSIS STEPS
1. Determine the knowledge outcome goals for the instruction:

a. Determine the nature of the stated instructional goals (e.g., acquisition of a nicﬁtal ' e
model, a set of propositions, a set of skills).

b. Determine what kinds of tests are embedded within the instruction (consulting Tablc 2). -

¢. Determine the match between the tests used and the knowledgs outcomes inteaded (as
in Figure 3).

2. Determine the nature of the instructional eavironment;

a. For every instructional exchange (every student-instructor interaction episode), consider
what learning strategy is invoked (consulting Table 1) during the exchange, Generate
learning activities profiles for the eatire instructional program (as in Figure 3).

b. Organize records of student learning success with respect to the knowledge-outcome-by-
instructional-environment (KO x IE) matrix. That is, devise a means for assigning each
student a separate learning success score for cach cell in the KO x IE matrix. Scores
would be based on tests following particular instructional exchanges.

R
3

5o
' b

i

3. Consider learning style issues:

L‘l

a, Consider whether particular types {styles) of interaction are encouraged.

b. If learning style is left free, and there is between-student style variability, but no within-
studeat style variability, then separate students by style before conducting any analyses of
the KO x IE matrix.

c. 1f learning style is left free, and there is within-studens style vaniability (e.g., students
engage in holistic processing some times, serial processing at others), create separate
KO x IE profiles scparately for the various style orientations.
4. Considerations for transfer studies: -

a. Degree of transfer should be a function of the similarity of the learning activities profiles
for two learning task..

b. Similarity is computed over the KO x IE matrices (possibly for separate styles), and
domain.,
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Table 6. Applications of the Taxonomy (cont.)

a. Expected global outcome for a particular student will depend on the match between the
student's personal learning skill profile and the learmng skills the instruction exercises
- - - - -~ - (the learning activities profile, Figure 3).. . . . _

b. Optimizing global outcomes for a particular student can be sezn as a linear
programming problem. Instructioa should maximize exercising the student's strongest
‘g . skills subject to the cost (e.g., in time) for exercising those skills.

(Y

[ ]
N
.
5
[
\
5
i
% 5. Considerations for optimizing or predicting global outcomes:
v
E

é Table 7. Applications of the Taxonomy: What It Can Be Used For
.
N

INSTRUCTIONAL SYSTEM EVALUATORS

(Teachers and Administrators)

- Facilitates analysis of what kinds of learning skills are being exercised and tested in an
instructional setting (see Figure 3)

INSTRUCTIONAL SYSTEM DESIGNERS

- Suggests a range of possible instructional eavironments for achieving particular knowledge
outcomes (see Table 1/Figure 1)

- Specifies techniques (tests) for probing a wide range of knowledge and learning skill
outcomes (sce Table 2)

¢
O
A

COGNITIVE RESEARCHERS

NN
o P

A

- Suggests predictions about transfer relutions among learning experiences (see Figure
1/Table 6)

L I D
.
LR o

P4

- Suggests indicators (dependent variables) of what and how well a student is learning (see '
Figure 3/Tables 2, 6) oy
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taxonomies do. The advantage to our proposal is that it is more closely tied to current cognitive theory,
which we hope will enable us to apply the system more easily in analyzing learning in routine
instructional settings. A second use for the system concerns primarily the environment dimension.

The specification of multiple instructional environments permits the assessment of a range of means
for achieving particular knowledge outcomes. If an-instructor's goal is to teach a mental model of some
system, the instructor can simply instruct it, or use an analogy, or have the student discover the model
through observation of the system, and so on. A third use for the system is to make predictions about
transfer relations among learning experiences. We would predict that the closer, taxoromically, two
learning situations are, the more likely that whatever is learned in one will transfer to the other. Of
coursc, this is an open empirical question. A benefit of the taxonomy is that it suggests a

straightforward ressarch program for addressing this kind of question.

While all three of these applications may be useful, we believe that the most important role of the
taxonomy is in establishing the means for probing a much wider range of knowledge and learning skill
outcomes. This capability is obviously important for research purposes, but it is also important for
evaluating educational systems. Consider a general probiem in evaluating innovative educational
programs (discussed by Nickerson, Perkins, & Smith, 1985). Over the years, many such programs--
such as ones for teaching creative thinking or ones for teaching general thinking skills--have been
developed. All too often, casual observation suggests that such programs are having desirable effects
on studeuts, but such effects do not show up under the scrutiny of carefully conducted evaluation
studies. Creators of such programs typically complain that the scicntific model of evaluation is
inappropriate because the true gains students experience are somehow missed. One role for the
taxonomy might be to suggest how additional learning outcomes and skills can be assessed in order to

cnable a more thorough cvaluation.

Even among the three instructional programs we reviewed here, a rather conservative approach to

assessing the impact of the tutoring system was taken. To some extent, the LISP tutor, BIP, and

Smithtown all depend on standard achievement outcome tests as a means for their validation. Though
50
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it is important to establish that these tutors do affect overall achievement, it is not sufficient. While

interacting with a tutor, or in any instructional environment, studeats can be learning many different

things. A major role for the taxonomy is to suggest a richer testing system for evaluating a troader

range of student outcomes.

Finally, the taxonomy-indicator system should facilitate pursuit of both applied and basic research

questions. Our major practical application for the taxonomy is to have it assist in the specification of
variables that indicate what and how well a subject is learning as the subject interacts with a tutor over
a lengthy serics of lessons. These variables then will serve as criteria against which newly developed

measures of cognitive ability will be validated. Additionally, a wide range of basic rescarch issues

W AAL Y L. e v ® v

emerges. Are the different knowledge types affected by the same variables? Are fast propositional
learners also fast production rule learners? Are there interactions between knowledge type and the
instructional environment? Are individual differences in learning more dependent on the knowledge
type or the environment? Our rescarch programs are only at the very beginning stages in addressing

these kinds of fundamental questions about the nature of learning and individual differences therein.
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