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Abstract 

 
Stealth assessment, like all assessments, must have three essential psychometric properties: validity, 

reliability, and fairness. Evidence-centered assessment design (ECD) provides a psychometrically 

sound framework for designing assessments based on a validity argument. This chapter describes 

how using ECD in the design of a stealth assessment helps designers meet the psychometric goals. 

It also discusses how to evaluate a stealth assessment’s validity, reliability, and fairness after it is 

designed and implemented. 
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Introduction 

 

The field of psychometrics in education is mainly concerned with quantitative and qualitative 

methods, techniques, and guidelines leading to designing and developing high-quality 

measurements and assessments. According to Messick (1994), “…validity, reliability, 

comparability, and fairness need to be uniformly addressed for all assessments because they are 

not just measurement principles, they are social values that have meaning and force outside of 

measurement wherever evaluative judgments and decisions are made” (p. 13). In this chapter, we 

focus on reliability, validity, and fairness in stealth assessment (Shute, 2011). First, we review 
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what these three psychometric parameters mean, and later in this chapter we discuss common 

methods for evaluating these parameters. 

Reliability refers to the consistency of an assessment. For example, a highly reliable 

bathroom scale shows a person’s weight as about 140 lb. in the morning, afternoon, and evening. 

Conversely, a scale with low reliability shows that same person’s weight as 140 lbs in the 

morning, 80 lbs. in the afternoon, and 190 lbs. in the evening. Reliability is an inherent property 

of a measurement. The question is not whether a measure is reliable, but whether it is sufficiently 

reliable for a given purpose (American Educational Research Association et al., 2014). The 

extent to which an assessment is reliable (consistent) can be evaluated using various techniques 

(e.g., correlations between two parallel test forms). We will discuss some of those techniques 

later in this chapter. 

Validity refers to the extent to which an assessment is assessing what it claims to assess 

(Messick, 1994; Shute, 2009). Similarly, the Standards for Educational Psychological Testing 

(American Educational Research Association et al., 2014) indicates that, “validity refers to the 

degree to which evidence and theory support the interpretations of test scores for proposed uses 

of tests.” (p. 11). One might say, “I am assessing creativity,” but are they? If they are, how 

accurately are they assessing creativity (or any other competency), and how accurate are they 

interpreting the results of their assessment (Shute, 2009)? An alternative word for validity could 

be accuracy. Kane (2006) approaches validation as constructing a formal argument, 

accumulating evidence for why the scores support the proposed interpretation. There are several 

types of validity argument (e.g., content, construct, and criterion validity) and a complete validity 

argument will use multiple types. Note that reliability is a prerequisite for validity; an assessment 



3  

cannot consistently measure the target construct (high validity) if it is not consistent (low 

reliability). 

Fairness refers to the extent to which an assessment is equitable and unbiased for various 

subgroups (DiCerbo et al., 2016; Dorans & Cook, 2016; Mislevy et al., 2013). To say what is 

fair, one can start by saying what is not fair (Dorans & Cook, 2016). For example, from the 

assessment-design perspective, an assessment is not fair if it includes items that include 

culturally sensitive concepts seen as appropriate for some people and inappropriate for others. 

From the assessment-administration perspective, if an assessment requires certain equipment that 

some people have and others don’t (e.g., the need to have a computer and Internet access for an 

assessment in a remote village in Africa), that assessment is not fair. Fairness can also be seen as 

a factor affecting the validity of an assessment. For example, suppose some construct-irrelevant 

variance exists in the assessment estimates/scores (e.g., the ability to work with a computer 

mouse affecting learners’ score on a math assessment). In that case, both fairness and validity of 

the assessment are questionable (Dorans & Cook, 2016). Or suppose a literature exam was going 

to have questions on a Shakespeare play, and teachers from one school learned which play and 

instructed their students to read it before the test, but teachers from other schools did not. Then 

which school the student went to would relate to performance in a way that was independent of 

student learning. 

To assess fairness, it is not sufficient to compare the average performance of different 

demographic groups on the assessment (Holland & Wainer, 1993). Statistically, any two groups 

almost never have exactly the same performance, and in the case where there has been a history 

of discrimination against one group, lower scores could be due to lack of access to resources. 

Thus, average score differences would be a sign that additional remedies are needed to correct 
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resource availability problems. A better test for fairness would be to look at differential 

performance by individuals at about the same ability level but from different groups. 

There are best practices that assessment designers can follow to make sure their 

assessment is valid, reliable, and fair. The purpose of this chapter is to explore these best 

practices in the context of stealth assessment, drawing examples from our work on a game called 

Physics Playground (PP; Shute et al., 2019). 

 
 

Stealth Assessment 

 

As discussed in other chapters of this book, stealth assessment is an assessment technique 

empowered by the evidence-centered design framework of assessment (ECD; Almond et al., 

2015). Stealth assessment is usually embedded within a digital game but can be used in other 

types of interactive environments, so that the learner focuses on engaging with the environment 

and not on being assessed. The learner’s interactions with the game environment are captured in 

log files, and the stealth assessment machinery processes and accumulates their activities into 

estimates ability level per targeted skill. These estimates are continuously updated as the learner 

progresses through the game, allowing the game to track current knowledge and skills, then 

adapt the environment accordingly. For instance, the game can adjust the difficulty of challenges, 

the sequencing of activities, and/or provide appropriate supports (e.g., cognitive or affective) 

based on each learner’s current ability level. Although stealth assessment is intended to be an 

assessment for learning (i.e., formative assessment), it still can provide reliable and valid 

summative estimates of the competencies (i.e., assessment of learning) (e.g., Shute, Hansen & 

Almond, 2008). 
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Like traditional assessments, stealth assessment must be valid, reliable, and fair; using 

ECD as the design framework provides a mechanism for documenting the evidentiary argument 

underlying the assessment. We start by discussing ECD core models. 

 
 

ECD Core Models 

 

The evidence-centered design framework of assessment (ECD; Almond et al., 2015) facilitates 

the design of high-quality assessments. ECD includes four main models (see Figure 12.1). The 

Competency Model (CM) defines and displays the construct that we want to assess, which is 

usually latent and unobservable. The Evidence Model (EM) delineates the evidence that’s 

needed to make claims, in terms of all targeted indicators, behaviors, or interactions done by the 

learners that can be observed and we call them observables—and asserts (a) how those indicators 

will be scored (evidence rules), and (b) how the scored evidence will be statistically linked and 

accumulated to inform the competency model. The Task Model (TM) describes the particular 

features of a situation or task which permit one to elicit the necessary evidence to assess the 

competency of interest. Task model variables are often related to the stimulus material provided 

with the task, for example, the length and complexity of the instructions. These variables are also 

associated with how the responses are collected, for example, whether the student selects an 

option from a list, or enters a free text response. Task description (which involves task model 

variables) include two main categories: (1) presentation materials (i.e., what will be shown to the 

learner, like a prompt or certain media), and (2) work products (i.e., learners’ actions or 

responses that will be recorded in the log files). Task authors (game designers) manipulate these 

variables when building game levels. The ensemble of tasks must span both the breadth and 

depth of the target competencies. The Assembly Model (AM) describes the final collection of 
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tasks and how they are sequenced. The AM ensures that sufficient evidence is collected for a 

reliable and valid assessment. 

 

 

 
Figure 12.1: Four main models of an ECD (adapted from Mislevy et al., 2003) 

 

The information in the ECD models becomes specification for the four processes used to 

implement an assessment (Almond et al., 2002; Almond, 2020). A digital game that uses stealth 

assessment must have capabilities for these four processes: (1) presentation and evidence capture 

(EC)—the game interface which captures (logs) learner interactions with the game, (2) evidence 

identification (EI)—the task-level scoring system which identifies the key observable outcomes 

(often from learner-generated log data; referred to as observable[s] in this chapter), (3) evidence 

accumulation (EA)—the part of the assessment system which combines observables from the EI 

process (task-level scores) and uses them to estimate competency levels (often using a statistical 

model such as Bayesian Networks, BN), and (4) activity selection (AS)—the algorithm 

responsible for selecting and sequencing the game levels as well as determining when enough 
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evidence has been gathered to stop. Shute, Lu, and Rahimi (2021) listed nine steps to design and 

develop a stealth assessment, to which we have added a tenth (see Table 1). 

Table 1 

Stealth Assessment’s Steps (adapted from Shute et al., 2021). 

Step Qual / Quant Description ECD Model 

1 Qual Develop competency model of targeted knowledge, skills, or CM 

other attributes based on full literature and expert reviews. 

2 Qual Determine which game (or learning environment) the stealth 

assessment will be embedded into. 

3 Qual Delineate a full list of relevant gameplay actions/indicators that EM 

serve as evidence to inform the CM and its facets. 
 

4 Qual Create new tasks in the game, if necessary. TM 
 

5 Qual Create Q-matrix to link actions/indicators to relevant facets of 

target competencies. 

6 Qual (Not in Shute et al., 2021) Decide on the collection of activities 

(both assessment tasks and learning activities), rules for 

navigating between them, and stopping rules for when there is 

enough information. 

7 Quant Determine how to score indicators using classification into 

discrete categories (e.g., yes/no, very good/good/ok/poor 

relative to quality of the actions). This becomes the “scoring 

rules” part of the evidence model. 

8 Quant Establish statistical relationships between each indicator and 

associated levels of the CM variables. 

EM and AM 

 
 

AM 

 

 

 

 
EM 

 

 

 

 
EM 

 

9 Qual & Quant Pilot test scoring model (e.g., BN) and modify parameters. EM 
 

10 Qual & Quant Validate the stealth assessment with external measures. 
 

11 Quant Use the current learners’ competency estimates to provide 

adaptive game challenges or adaptive learning support. 

Note. CM = Competency Model, EM = Evidence Model, TM = Task Model, AM = Assembly Model, 

Quant = Quantitative, Qual = Qualitative. 
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Although sometimes omitted from summaries of ECD, the assembly model critically 

determines the reliability of an assessment. That is, an assessment is a collection of tasks for the 

learner to perform, and in a game-based assessment these are often levels or challenges in the 

game. The reliability of the game is determined both by the number and evidentiary strength of 

the challenges (if we have very few observations for a competency, we can’t make a claim that 

our assessment is consistent). The best way to improve the reliability of an assessment is to 

manipulate the number and types of challenges offered. The validity of the assessment is 

established by producing a collection of challenges that span both the depth and breadth of the 

competencies being measured. If an assessment does not cover all the competencies (and their 

sub-facets), it will not be accurate. We discuss considerations related to fairness later in this 

chapter. 

Note that ECD models can be specified at two layers of detail. The first is the more 

qualitative layer (called domain modeling in Mislevy, et al., 2003) which entails the basic 

evidentiary argument being laid out. In particular, the targeted competencies are given 

measurable definitions and linked to specific tasks that can provide evidence about them. The 

designers must then create a collection of challenges (game levels) that will provide evidence 

about the target competencies adequate to the purposes of the assessment (formative or 

summative). In the second, more quantitative layer (called the conceptual assessment 

framework), the actual statistical models and code used to implement the assessment must be 

specified. This includes both the population model for competencies in the target population and 

the statistical portions of the evidence models linking observations to competencies. Eventually, 

these statistical models can be refined or calibrated using data from pilot testing to improve the 

reliability and validity. 
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As reliability and validity are typically numeric values, the first domain modeling step 

determines the first digit of accuracy. Again, it is nearly impossible to get a reliable measurement 

with too few tasks, or a valid measurement with a collection of tasks that do not span the depth 

and breadth of the competencies. The second more quantitative step involves choosing a 

statistical model for scoring, which comprises the second digit of accuracy. Elaborate 

mathematical modeling cannot save an assessment that does not contain the right collection of 

tasks. However, the quantitative design can build on a good qualitative design foundation to 

improve the accuracy. Refining the models, both qualitatively and quantitatively, using pilot 

testing data can further improve the accuracy. 

The first six steps shown in Table 1 are focused on the qualitative layer of the design: the 

first decimal of accuracy. The next two steps describe the quantitative layer of the design, the 

second decimal of accuracy. Steps nine and ten refer to the refinement of the assessment design, 

which can improve both the qualitative and quantitative layers. Finally, step eleven refers to 

using the results of a stealth assessment (i.e., learners’ competency estimates) for adaptive 

purposes (e.g., tailored learning supports per learner or adaptive challenges). This chapter revisits 

the first ten steps with a focus on maximizing the validity and reliability of the assessment to at 

least two decimal points of accuracy, drawing on experiences with the development of the game 

Physics Playground to illustrate the design considerations. 

 
 

The Qualitative Design: How to Get the First Decimal Right 

 

The qualitative steps of the stealth assessment design process focus on building the ECD domain 

model. Filling out the details of the domain model documents the central validity argument of the 

assessment. Information herein suggests that the learner does (or does not) have the target 
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competencies because their work exhibited (or did not exhibit) certain observable features, and 

the assessment provides sufficient evidence of those competencies to be useful for the specified 

purpose. 

The following discussion suggests that the design is a waterfall process, moving from one 

step to the next. However, in practice it is much more iterative, as later steps will uncover fuzzy 

places in the previous design which need better specification. Thus, although the sequence 

presented is Step 1, 2 and 3, the actual sequence is more like 1, 2, 1 again, 2 again, 3, 1 again, 

and so on. 

 
 

Step 1. The Competency Model (CM) 

 

The first step in any assessment design is identifying the target competencies and population. It 

is not sufficient to define what a competent person looks like, but the CM must also describe the 

typical paths learners take to reach competency. For this reason, Almond, Hernandez, and Turner 

(2021) refer to the CM as a skill map; the assessment must be able to locate the learner on their 

journey from base camp to the top of the mountain. 

A key question to ask subject matter experts assisting in the design of the CM is: What 

are expected differences in observable properties of learner work—especially for those close to 

and distal from the goal state? It is helpful to think of the competency variables as ordered 

categorical variables at this stage, and have the experts apply Russell’s Rule, which states that 

there should be at least one claim that can be made about learners in a higher level that cannot be 

made about learners at a lower level. 

To produce a high-quality CM, assessment designers should (a) conduct an in-depth 

literature review about the targeted competency, and (b) consult with domain experts who know 
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the competency and its pedagogy well (Step 1 in Table 1). When designing the stealth 

assessment of physics understanding in PP, we first identified standards in the Next Generation 

Science Standards (NGSS) relevant to the game and the target grade levels. To operationalize 

the competencies, we asked two experts to identify game behaviors they expected from learners 

who were high in the competency that they did not expect from learners low in the competency. 

In many cases, we could see those behaviors manifest within existing game levels. In other 

cases, new kinds of game levels were needed to capture evidence of the competencies. 

Once the individual competencies were defined, we asked the experts to define the 

relationships among the variables. These relationships are generally of two types. The first 

reflects the natural hierarchy of the field of consideration. For instance, from a hierarchical 

perspective, Newton’s laws are part of the larger concept of Force and Motion which in turn is a 

part of the larger concept of conceptual physics understanding. Not all relationships are 

hierarchical. For example, Properties of Momentum is a prerequisite to Conservation of 

Momentum because it is difficult to understand the conservation of momentum if momentum 

itself is not well understood. Other types of relationships may concern the way the skills are 

ordered in the curriculum; for example, students typically learn about force and motion before 

learning about energy, so there is a correlation between the two competency variables. The 

Bayesian network in Figure 12.2 (still qualitative at this stage) was our physics experts’ best 

expression of the relationship among the targeted competency variables. To encourage the 

experts to discuss these relationships more fully, the design team presented them with two 

alternatives for Figure 12.2. The final figure captures the features that the experts thought best 

represented the space of learner competencies (Almond et al., 2017). 
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Figure 12.2: Physics understanding competency models. 

 

 

Step 2. Selecting vs. Designing the Right Game 

 

The second step in designing and developing a stealth assessment is to either choose an existing 

game or create one from scratch (see Table 1). Each of these options constrains the design and 

development process (see Smith et al., in press from this book for a detailed discussion on those 

constraints). For a game to serve as a stealth assessment, the actions required to distinguish 

between levels of competency must be a natural part of the mechanics. For example, open-ended, 

sandbox games such as Minecraft allow learners to express creativity through gameplay. In 

contrast, puzzle-based games such as Plant vs. Zombies are more suitable for assessing problem- 

solving skills (see Rahimi & Shute, 2021 for a systematic review on this topic). 

When creating a game from scratch, choosing the right game genre, narrative, and game 

mechanics are crucial. For example, Physics Playground, a puzzle-based game equipped with a 

physics engine demonstrating the laws of physics, was specifically developed to assess middle 
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school learners’ physics understanding. In Sketching levels (Figure 12.3a), learners can draw 

objects, create simple machines, and employ physics laws all toward reaching the goal of each 

level (i.e., to move a green ball so that it hits a red balloon). In Manipulation levels (Figure 

12.3b), learners can adjust some sliders (altering the mass of the ball, gravity, and air resistance) 

or manipulate objects that can exert a force (i.e., a puffer or a blower) to solve the levels, similar 

to a simulation. An advantage of developing a new game instead of using an existing one is that 

specific capabilities can be added to the game to match evidentiary needs. In PP, the experts 

identified that understanding how the mass of the ball affects its interaction with other game 

objects was critical to understanding force and motion, and energy. Thus, the capability to 

manipulate the mass of the ball was added to certain game levels. 

 

 
Figure 12.3: A Sketching level (a) and a Manipulation level (b) in PP. 

 

Another example of a game designed from scratch to measure and support a competency 

is Engage (Min et al., 2020). Engage is a 3D game developed to teach computer coding (i.e., 

loops, conditions, variables) in a block-based manner. Learners need to progress through the 

game, unlock doors, and move their character (avatar), using block-based coding. The challenges 

of the game increase as the learner moves from one room to another. Again, the game designers 

of Engage first thought about what game genre, narrative, and mechanics can be suitable for 
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assessing and supporting programming or coding skills. Then, the game developers started 

developing the game and called it Engage. 

Apart from the affordances that a game can provide for assessing a particular 

competency, stealth-assessment designers should consider their target audience’s reaction. 

Themes and/or graphics which strongly appeal to one demographic group may not appeal to 

other groups, or worse, may be culturally insensitive, which would damage the stealth 

assessment’s fairness and hence validity. Feedback on the game design from designers and 

reviewers from various backgrounds, ethnicities, genders, and levels of education can spot such 

issues which can be overlooked by an insufficiently diverse design team. Seeking feedback both 

formally (via focus groups) and informally (from colleagues) can help here. However, the most 

essential is that projects’ leadership must produce a climate where reviewers feel comfortable 

discussing potentially sensitive issues. A climate where comments about potentially sensitive 

issues are welcome and respected. 

Another critical part of game design is the difficulty of the challenges. According to 

Csikszentmihalyi’s flow theory (1990), there is an optimal difficulty at which flow (and hence 

optimal focus on the competencies measured by the game) will be induced. If the game is too 

hard or too easy for the target population, the learning and information gathered from the game 

will be sub-optimal. A complication here is that the word difficulty means different things in 

game design and psychometrics. Game difficulty is any game-related factor which makes the 

learner less likely to solve the game challenge (e.g., more obstacles between the ball and the 

balloon in PP); in psychometrics, difficulty generally refers to the amount of the target 

competencies required to solve the problem (e.g., a level whose primary concept is Newton’s 

third law should be more difficult than a level with Newton’s first law as its primary concept). In 
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addition, many games rely on motor skills (e.g., pressing a key at the right time) to solve the 

challenge, but for an educational game, psychomotor skills would produce construct irrelevant 

variance in the measurement. Thus, alignment between the scoring mechanism of the game and 

the competencies to be assessed is key to getting reliable measurement. 

 
 

Step 3. Evidence Models (EM) 

 

Evidence models serve as the bridge between the competencies in the competency model and the 

task model (i.e., task work product). The observables are the pylons that support the bridge. Step 

3 in Table 1 involves identifying such observables (or indicators), which represent the things that 

a person does (or says) in the game that provides evidence for some parts of the CM. For 

example, consider the evidentiary statement, “If the learner realizes they need to add energy to 

the ball to get it to the target (which is higher than the ball), then they will draw a springboard or 

a lever to add the energy.” In this case, the competency in question is the understanding of 

potential energy, the task is a sketching level with the target (the balloon) higher than the starting 

position of the ball, and the observable is whether or not the learner drew a lever or a 

springboard. 

At this stage, the observables (which are associated with tasks or task families) must be 

linked to the competencies they were intended to measure. This is often done with a Q-matrix—a 

matrix where rows correspond to observables and the columns to competencies. The entry to a 

cell in the matrix is 1 if that observable provides evidence for that competency, and 0 otherwise. 

Eventually (Step 7 in Table 1), somebody will need to produce computer code (or a human 

coding system) that will identify the exact value of the observable; defining observables 

precisely is required to provide specifications for computer software or human raters. Identifying 
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a complete and informative set of observables is key to good assessment design. The stronger the 

evidence provided by the observables, the higher the information content of the assessment, and 

hence its reliability and validity. Note that the process of identifying the observables began when 

they were used to characterize the competencies but is now extended to cover all of the 

challenges within the game. 

While designing the latest version of PP, the design team assigned a primary and a 

secondary competency to each game level. These competencies were chosen from the nine low- 

level competencies in the CM (the orange nodes in Figure 12.2), and assignments were reviewed 

by the physics experts. Looking at the numbers of entries in each column of the Q-matrix 

provides information about the amount of potential information for each competency. In the 

initial collection of levels, there were insufficient game levels targeting Newton’s third law, so 

the design team created new game levels to fill this gap and ensure breadth of content coverage. 

Although the final specifications of the observables (and the evidence rules that define 

them) will be established later, at this point in the design they should be at least tentatively 

identified. Identifying some of the observables in PP were straightforward. For instance, in terms 

of level solution, learners could earn a gold coin for an efficient solution (if the solution was 

conducted under a predefined condition such as using less than X number of objects in solving 

level Y), a silver coin for an inefficient solution (when the gold condition was not met but the 

learner solved the level), or no coin at all (when the learner quit a level without solving it). The 

amount of time spent on each level was also an obvious observable (although this proved to have 

little evidentiary value in pilot tests). For sketching levels, if the learner’s drawing was an 

attempt at making a simple machine (i.e., a ramp, lever, springboard or pendulum), it provided 

evidence of physics understanding. This was challenging because extensive information from the 
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physics engine was necessary to classify the learner drawings. That is, we required a 

classification system to be added to the game engine so it could log information about which 

simple machines were created and used. For example, to identify a pendulum in PP, the game 

engine checks if the object (e.g., a drawn line which might be a pendulum) touched the ball, if 

the object has a pin (which affixes the object to another object and is necessary for a pendulum), 

if the object rotated more than 20 degrees, and if the object has non-zero rotational velocity. If all 

the mentioned conditions are true, the game engine identifies the object as a pendulum. 

The process of choosing appropriate observables when designing a stealth assessment 

requires extensive discussion among the design team (i.e., assessment designers, game 

developers, game-based learning researchers, subject matter experts, and developers responsible 

for the scoring systems). An alternative process is to use AI-based methods to automatically 

identify appropriate observables (e.g., Min et al., 2020). However, many machine learning 

algorithms are black-boxes. That is, machine learning models can identify a relationship 

(correlation) between a certain observation and a target competency, but cannot offer any 

explanation as to why that relation would hold. ECD, in contrast, is a glass-box method, thus 

intentionally transparent. The chain of reasoning that links an observable outcome variable and a 

latent competency variable is documented as part of the process, providing a strong construct 

validity argument. Machine learning techniques may be used at the cost of a weaker validity 

argument, but may be used to supplement experts’ opinions. 

 
 

Step 4. Task Models (TM) 

 

In PP, tasks correspond to the game levels. Task models are descriptions of collections of tasks 

with an emphasis on the features that game designers can manipulate. Almond et al. (2014) 
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describe the various roles these features can play. Of particular importance are the features the 

affect the difficulty or evidential focus of the task. For example, if the balloon in PP is higher 

than the ball, then the learner must find a way to add energy to the ball, to counter gravitational 

forces. Designers must play particular attention to the features that affect both psychometric 

difficulty and game difficulty. While in more conventional assessments the goal is to maximize 

psychometric difficulty while minimizing game difficulty, in a stealth assessment the game 

difficulty may add to the challenge in a way that helps maintain a state of flow. As flow resides 

at the sweet spot between a learner’s current ability and the game level’s current difficulty. In 

PP, game designers coded each game level giving it a ranking on both the physics and game 

difficulty. Thinking about the game levels’ difficulty using both physics and game difficulty 

helped us order the levels by using an incremental composite level of difficulty (i.e., the sum of 

the two difficulty scores per level). 

There are two other key roles for task variables, the first being that they determine which 

competencies are relevant. For example, to provide evidence about understanding Newton’s 

second law (F = m × a), the learner needs to be able to manipulate an object’s mass (e.g., in PP 

the manipulation levels allow for the manipulation of mass). This type of task variable is used to 

match the task with the appropriate evidence model. The second role for task variables is to 

ensure that all facets of the competency are explored. For example, in PP’s manipulation levels 

(see Figure 12.3b for an example), forces could come from the gravity slider or from puffers and 

blowers. A given level could choose any of those sources of forces, but the final collection of 

tasks should include multiple examples of each source. 
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Steps 5 and 6. The Q-matrix and the Assembly Model 

 

A game consists of a series of challenges (e.g., levels in PP, but these could be expressed 

in different ways and in different game types) and rules for forming the sequence of challenges 

for the learners. These series of challenges and sequencing rules determine the narrative structure 

of the game, but also the quantity of evidence available for estimating learners’ competencies. In 

particular, the reliability with which the stealth assessment can measure each competency is 

largely determined by how many tasks provide evidence for each competency. To maximize 

validity, the collection of tasks must span the breadth and depth of the competency. These 

psychometric needs must be balanced with the time constraints and the need for the game to hold 

learners’ interest. 

One of the tools for managing the collection of levels is the Q-Matrix (steps 5) in Table 

1). Table 2 shows a portion of the Q-Matrix used for PP. In this Q-matrix, a 1 denotes the 

primary competency and 2 a secondary competency (e.g., in Table 2, Level 1 has NFL as its 

primary competency and NSL as its secondary competency). The Q-matrix included columns 

indicating the game mechanics difficulty (GM) and physics understanding difficulty (PU) of 

each game level. The composite difficulty score was the sum of GM and PU (discussed in more 

detail later). Counting the number of entries in each column provides a quick estimate of the 

amount of evidence available for the corresponding competency ensuring a complete coverage of 

the competency model. Including the difficulty information in the Q-matrix allows the project 

manager(s) to ensure that the tasks span the relevant depths of competencies of interest and that 

the game will not be too challenging and hence not provide useful information. 
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Table 2 

Example of the Q-Matrix 

 NFL NSL NTL POM COM ECT ECD POT Equil. GM PU Comp. 

Level 1 1 2 0 0 0 0 0 0 0 2 3 5 

Level 2 0 0 0 0 0 1 0 2 0 3 5 8 

… … … … … … … … … … … … … 

Level n 1 2 0 0 0 0 0 0 0 2 2 4 

 

Note. NFL = Newton First Law; NSL = Newton Second Law; NTL = Newton Third Law; POM = 

Properties of Momentum; COM = Conservation of Momentum; ECT = Energy Can Transfer; ECD 

= Energy Can Dissipate; POT = Properties of Torque; Equil. = Statis Equilibrium; GM = Game 

Mechanics difficulty; PU = Physics Understanding Difficulty; Comp. = Composite difficulty. 
 

 

In a typical stealth assessment development process, the full Q-matrix defines the 

complete collection of all available tasks or game levels. Then, for a given use of the stealth 

assessment (e.g., assessment of two rather than all nine competencies in PP), the game designers 

pick a subset of the tasks. In that case, it is the selected subset Q-matrix that must be properly 

balanced; that is, have complete coverage and enough levels per competency to meet the needs 

of the assessment. 

In addition, using the assembly model (AM) the assessment and game designers must 

specify how the game levels are sequenced. Three common sequences include: (a) linear 

sequencing in which all learners see the game tasks in the same sequence; (b) random selection 

where the game tasks are drawn (without replacement) from a pool of potential tasks; and (c) 

free choice where the learner chooses from a menu of possible tasks. Combinations of these 

strategies are also possible, often accomplished by grouping tasks in stages. For example, there 

could be a linear sequence of stages and free choice within each stage. Although free choice 

seems like it would be valued by learners, in most cases, the learners do not have enough 
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information about the tasks to make informed choices and default to the order in which the tasks 

are presented to them. 

Another way to present game levels to learners is via adaptive sequencing or selection. 

Here the next game level is chosen by the system based on the current estimate of learner ability 

from the stealth assessment. There seems to be some evidence that sequences chosen to optimize 

information about learners’ ability also optimize learners’ learning. The current version of PP 

has linear, free choice, and adaptive sequencing options. The adaptive option grouped game 

levels into stages corresponding to the nine lower-level competency variables (the primary 

classification in the Q-matrix). The stages were then sequenced with the advice from the physics 

experts. Learners would be given game levels from the current stage until (a) sufficient evidence 

was gathered that the learner had mastery of that competency, (b) sufficient evidence of lack-of- 

mastery was gathered that it would be best to move to a different stage, or (c) the game ran out of 

levels in that stage and the learner moves to a new stage. If the learner completed all of the 

stages, they reached an end-game where the system would give them unsolved levels from any 

stage or they would be encouraged to go back and earn gold coins for levels where they had only 

earned a silver coin. 

Finally, the assembly model must also determine when it is time to stop. Often 

(particularly in experimental settings) this is determined by task duration. Another common 

termination condition is completing all available levels. If the game is adaptive, an adaptive 

selection system could use the amount of evidence gathered about the learner to terminate the 

game as well. It is important to ensure that the learners have enough time to provide sufficient 

evidence. For instance, if the learners only have time to complete 3 of 25 planned levels, the 

estimates are unlikely to be sufficiently reliable for the intended purpose and scores should not 
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be reported (at least without strong warnings). Note that when the purpose of a stealth 

assessment is summative, an end point is relevant; however, when the purpose of stealth 

assessment is formative (for learning), determining a stop point may not be relevant. 

 
 

Quantitative Model: How to Get the Second Decimal Right 

 

Getting the collection of tasks right is the first decimal place of accuracy because if the tasks do 

not provide the right evidence, no amount of statistical modeling can save the assessment. 

However, the statistical model can only improve the reliability and validity of the assessment 

within the limits set by defining the competencies, tasks and evidence. Therefore, statistical 

modeling can only provide the second decimal of accuracy. Designers can choose between a 

data-driven approach (e.g., either using statistical models like item response theory, regression, 

and factor analysis, or machine learning approaches like neural networks), or an expert-driven 

approach (e.g., such as number right scoring or expert systems). Data-driven approaches have 

two disadvantages: (1) they require a lot of data (in many cases, thousands of subjects), and (2) 

they can be difficult to explain, taking advantage of correlations between competencies and 

observations without explaining their causes. Bayesian networks (BNs) share the benefits of 

expert-driven and data-driven approaches. Expert opinion can be used to form initial models, and 

these models can be updated and validated when data are available for BNs’ training. 

Furthermore, BNs provide an explanatory structure to allow them to be reviewed by outside 

experts (i.e., using a graphical representation of the network). 

The specification for scoring machinery (steps 7 and 8 in Table 1) is mostly in the EM 

with some important contributions from the other ECD models. The EM has two parts: (1) the 

evidence rules, which along with the specifications of the work products (event logs) from the 
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TM, provide the specifications for the evidence identification process; and (2) the statistical 

model, which along with the description of the population distribution of the competencies (CM), 

provide the specifications for the evidence accumulation process. 

 
 

Implementing the Rules of Evidence 

 

Step 7 of the ten-step process (see Table 1) is about clearly defining the observables. These 

observables will be the output of the evidence identification process and the input to the evidence 

accumulation process. For example, if duration to solve a level in a game is one of the 

observables, one can score this observable as 0 if the duration is beyond the acceptable range 

(showing that the student struggled), 1 if the duration is between the acceptable range (showing 

that the student is doing good), and 2 if the duration is below the acceptable rage (showing 

mastery and excellence). Note that duration might not always be a good observable and it 

depends on the competency and the game. Once this observable is scored (evidence 

identification), it is ready to be used by the evidence accumulation process which includes the 

statistical modeling. Observables are often ordered, categorical variables; where the first step is 

often to write a rubric, a set of descriptions for each possible value of the observable. It is 

possible for human raters to be involved in the evidence identification process, although usually 

scores are needed more quickly than human raters can provide them. Even so, human scored 

examples of learner work may be important in training machine learning approaches or testing 

algorithmic scoring approaches. 

PP used an approach that combined elements of a finite state machine with elements of a 

rule-based system (Almond et al, 2020). While the goal was to allow a simpler translation from 

natural language to computer instructions, in practice only people with coding experience could 
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easily write the rules. According to our experience, the coordination between the team coding the 

evidence identification and presentation processes if crucial for a smooth implementation process 

(e.g., the location of various kinds of information in the log files needs to be clearly 

documented). 

An alternative approach at this stage is to use machine learning algorithms to identify 

“features” of the output. Again, a lot of pilot data is needed for the data-driven approaches, and 

work on the statistical model cannot really begin before the observables are identified. In PP, we 

used some data driven techniques in revising the models after all the data were available; 

particularly setting cut points for turning continuous measurements into ordered categories based 

on quantiles of the observed quantities. 

 
 

Choosing the Right Statistical Modeling Approach 

 

De Klerk, Veldkamp, and Eggen (2015) conducted a systematic review of the statistical 

modeling approaches used in game-based assessment. The results of their review included 

various modeling approaches: confirmatory factor analysis, educational data mining techniques, 

item response theory, artificial neural networks, cluster analysis, and Bayesian networks (BNs). 

De Klerk and colleagues concluded that the most frequently applied modeling approach to 

analyze performance-based data in games and simulations was BNs. 

There are several advantages to using BNs for statistical modeling of learners’ 

performance estimates. Almond et al. (2015) provide four main points: (1) BNs provide an easy- 

to-view graphical representation of the CM (direct and indirect relationships among variables); 

(2) BNs can initially be built using expert opinion and then refined using Bayesian learning as 

more data become available, which is essential when designing a stealth assessment; (3) 
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Updating BNs happens quickly, as observables come directly from the evidence identification 

process thus providing real-time competency estimates which can be used for adaptive task 

selection and learning support presentation; and (4) Enhancements to BN software permit large 

and flexible networks with as many variables and connections among them as wanted. For these 

reasons, we recommend choosing BNs for any stealth assessment design. 

Graphical Structure of BNs 

 

Again, designing a stealth assessment needs a team with diverse backgrounds and expertise. The 

measurement team, in charge of creating the statistical model and BNs, should communicate 

crucial pieces of information to other team members in a way that they understand—especially 

the subject matter experts—for getting their feedback. For instance, at least two versions of the 

general graphic BN model should be created and shown to the experts for feedback and model 

selection. 

To create the general BN in PP, we first conducted a review of relevant research and 

consulted with our physics experts to identify the most important variables (i.e., the 

competencies and their sub-facets related to physics understanding). Then, using the experts’ 

input coupled with our review, we created two graphical models using Netica (Norsys, 2021), 

and showed them to our experts to edit and then choose one. This stage includes no technical 

prerequisite knowledge about BNs. Showing at least two candidate models is helpful, as giving 

only one model to evaluate may limit deep thinking about the variable’s relationship (e.g., 

pedagogical order of physics concepts). Moreover, when showing two models to the experts, it is 

crucial to talk about the conditional independence of each variable. For example, we asked our 

physics experts if Newton’s laws should be conditionally independent or dependent on force and 

motion (i.e., if understanding force and motion is dependent or independent of Newton’s laws of 
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motion). The lines from force and motion to Newton’s laws in Figure 12.2 shows that 

understanding force and motion is conditionally dependent given Newton’s laws. Once the BN 

model’s graphical structure is finalized, the measurement team can start working on another 

critical aspect of the BNs—the conditional probability tables (CPTs). To specify the CPTs, the 

measurement team needs to specify the type of relationship existing among CM variables (i.e., 

conjunctive, disjunctive, or compensatory), difficulty, and discrimination values for each task in 

the network. 

 
 

Conjunctive, Disjunctive, and Compensatory Models 

 

In traditional statistical modeling approaches (e.g., simple Item Response Theory), only one 

parent node is allowed for the higher-level competency (e.g., reading or writing on an English 

test). To solve a particular task, only one skill is needed (e.g., writing skill is needed for doing 

well on an essay). However, BNs allow for multiple parent nodes at competency level (aka, 

proficiency level; Almond et al., 2015). Thus, when BNs are used for statistical modeling, it is 

possible to have a task that requires more than one skill. When a task requires more than one 

skill, the relationship among those skills should be specified. For instance, does the learner need 

both skills at the same time to be able to perform a task (i.e., solve a game level)? Do either of 

the skills suffice for a successful performance? There are three ways that the parents of a node in 

a BN (i.e., an observable linked to more than one competency variable) can relate to each other: 

conjunctive, disjunctive, compensatory relations. First, a conjunctive relationship indicates that 

all skills (i.e., parent nodes) are needed for a high probability of a successful performance in the 

task at hand (e.g., when both reading and writing skills are needed to write an essay). The 

conjunctive relationship of the parent nodes are understood as the “and” operator. Second, the 
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disjunctive relationship indicates that the presence of one of the skills associated with the task at 

hand is enough for successful performance. The disjunctive relationship of the parent nodes may 

be viewed as the “or” operator, and disjunctive tasks can be solved with alternative solutions. 

Third, the compensatory relationship indicates that being high on one skill compensates for being 

low or medium on the other relevant skills. In this case, the effect of the skills is additive and the 

probability of a successful performance can be computed as the sum of the skills. 

In a BN, each observable needs to have a conditional probability table (CPT). Before 

computing each CPT, assessment designers need to specify these relationships. This means that a 

BN can have multiple observables that have more than one type of modeling (e.g., a mixture of 

conjunctive and disjunctive relationships for different observables). In other words, any of the 

modeling approaches discussed above can be included in a BN, making the model more 

complex, yet more accurate. Choosing the most theoretically meaningful relationship among the 

required skills (i.e., the appropriate modeling) for an observable has ramifications for generating 

an accurate CPT. Thus again, consultation with subject matter experts is warranted. Getting these 

relationships wrong can lead to inaccurate estimates of learners’ competency levels. Next, we 

discuss the difficulty and discrimination of tasks or observables that must be included in each 

CPT specification. 

 
 

Difficulty and Discrimination 

 

Generally, in the world of assessment and measurement, item difficulty directly relates to item 

discrimination. An item which is too difficult (i.e., a small percentage of learners can answer it 

correctly) or too easy (i.e., a large percentage of learners can answer it correctly) is an item with 

low discriminating power (i.e., discriminating between learners who are high and low on the 
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targeted competency). Item discrimination indicates to what extent correctly responding to the 

item relates to general success on the whole test. The items (observables) with good 

discrimination tend to correlate well with the total score of the learner on the competency of 

interest—also known as item-to-total correlation (DeVellis, 2006). Therefore, assessment 

designers need to conduct pilot tests and evaluate their items in terms of difficulty and 

discrimination parameters. 

The same concept can be applied to stealth assessment. Game levels and any observable 

can be seen as test items. Each game level has a difficulty index. Each level’s difficulty in an 

educational game can be a function of the composite of two difficulty indices: game mechanics’ 

difficulty and the concept difficulty. We have investigated the effects of these two types of 

difficulty on learners’ persistence (Rahimi et al., 2021) and frustration (Karumbaiah et al., 2018) 

in PP. In both cases, concept difficulty showed more predictive power in predicting learners’ 

persistence and frustration. Identifying the difficulty of each level needs rigorous qualitative and 

quantitative approaches. For example, to derive our two difficulty indices for each game level in 

PP (i.e., related to game mechanics and physics understanding), we first brainstormed the criteria 

for game mechanics difficulty (GM). The following are the main criteria: relative position of the 

ball to the balloon (e.g., if the ball was above the balloon, it was easier to solve the level than 

when the ball is below the balloon, as one need to defy gravity); the number of obstacles between 

the ball and the balloon (e.g., a level with no obstacles between the ball and the balloon was 

easier to solve than a level with several obstacles); the degree of precision for the level’s solution 

(e.g., if the balloon was trapped in a pipe and the pipe’s exit hole was small, it was more difficult 

to solve the level than when the balloon was on a flat surface); and if the level’s name provided 
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any hint for the solution (e.g., Perfect Pendulum). Each of these criteria would receive a score 

(some 0 or 1; others 0 to 2). 

For physics understanding difficulty (PU), we consulted with our physics experts. We 

asked them to identify each game level’s primary and secondary concepts. They provided the 

criteria for identifying the difficulty of each level based on the primary and secondary concept(s) 

or competencies associated to that level. For example, if the primary and secondary physics 

concepts of a level arose from the same parent node in the CM, the game level is easier than a 

game level with two concepts from two different parent nodes. The other criteria for PU, 

suggested by our experts, was the order of the topics. In general, our physics experts rated the 

force and motion concepts (i.e., Newton’s laws) easier than the torque concepts (e.g., 

equilibrium). Once the criteria (rubric) for rating game levels’ GM and PU was established, two 

raters independently rated the difficulty of each game level. Then, the two raters resolved their 

disagreements and came to a 100% agreement. Finally, we summed GM and PU to get a 

composite difficulty score for each game level. Table 2 shows examples of game levels with 

various difficulty values. 

There are other methods to compute the difficulty indices of each game level or 

observable in a game environment. For example, one can average the time it takes for learners to 

solve a game level, positing that the more time it takes to solve a game level, the more difficult 

that level. We tested this hypothesis. The average time it takes to solve game levels in PP is 

significantly correlated with our composite difficulty index (r = .60). From a game design 

perspective, when including various game levels with various difficulties in a game, it is a 

recommended to array the levels from easy to difficult. It is important to note again that in stealth 
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assessment we treat each observable just like a test item. That is, each observable has its own 

difficulty and discrimination values. 

One can think about the difficulty and discrimination in terms of the intercept and the 

slope of a line, respectively. Consider a graph with learner proficiency level on Skill A on the x 

axis, and the probability of the learners correctly responding to that item on the y axis. If the task 

(i.e., a game level or any observable) is highly difficult, the intercept is high, and the slope 

probably becomes very steep. Alternatively, an easy task has a low intercept and again steep 

slope. In both cases, we have low discriminating power. An ideal situation occurs when an item 

has a medium to high difficulty and a reasonably steep slope. When specifying the CPT, 

measurement team members need to think carefully about parameters, consult with the experts, 

and choose the difficulty and discrimination indices carefully, per observable. These two metrics 

directly impact the CPTs—discussed next. 

 
 

Conditional Probability Tables 

 

Setting up the conditional probability tables (CPTs) of the Bayes net should include input from 

the content experts. For example, when creating the CPTs for PP, our subject-matter experts 

were physicists, and they were very familiar with our targeted competencies/concepts. However, 

even when the experts are familiar with those concepts, the stealth assessment designers need to 

come up with understandable statements that can help the experts think in probabilistic terms. 

To help facilitate setting up CPTs, the measurement team needs to first compute initial 

CPTs. While this process can be done with software (e.g., Netica), we recommend using the 

open-source Peanut package (Almond, 2021), which provides functions that compute the 

conditional probability tables in the R language (R Core Team, 2021). To read more about this 
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process, see Almond et al. (2017). If the conditional probability distributions for all nodes in the 

BN model are expressed using R statements, the experts might not understand the language. 

Therefore, the measurement team needs to translate those statements into natural language. 

Below, in Table 3, you can see an example from PP. 

 
 

Table 3 

An Example of Translating the CPT to Natural Language (from Almond et al., CITE) 

R Code for the Force and Motion CPT Translated CPT for Force and Motion 

 
 

eng <- PP.High$Energy 
PnodeRules(eng) <- "Compensatory" 
PnodeLink(eng) <- "normalLink" 
PnodeLinkScale(eng) <- sqrt(.2) 
PnodeLnAlphas(eng) <- 
log(c(Physics=sqrt(.7),ForceAndMotion= sqrt(.9))) 
PnodeBetas(eng) <- 0 

Force and Motion: its parent is physics only. 

We are setting a regression of force and 

motion on physics understanding. 
 

Link scale parameter only gives us R-squared, 

which is the percent of the explained variance 

by the predictors on the outcome variable. The 

value of R-squared is 0.8 (1 – the variance 

unexplained which is 0.2). 

 

The shift of about half of the standard 

deviation (0.5) up towards more people having 

the skill. The shift is telling us a person who is 

medium on the parent variable is going to be 

somewhere about halfway between medium 

and high. Most of the weights were split 

between medium and high. 
 

 

 
 

Other than providing the translated version of a CPT, the computed CPT can also be 

generated and shared with the experts for input. For example, the CPT of Force and Motion is 

shown in Table 4. Note that Force and Motion is dependent on Physics (i.e., general physics 

understanding), and the probability distributions of Force and Motion are computed given the 

probability distribution of Physics. 
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Table 4 

The CPT for Force and Motion and Physics Generated by the Peanut package 
 

 Force & Motion  

Physics High Medium Low 

High 0.98 0.02 0.00 

Medium 0.56 0.42 0.02 

Low 0.04 0.52 0.44 

 
 

According to Table 4, almost all of the learners who are high on the overarching Physics 

variable will also be high on force and motion. Moreover, learners who are low on Physics tend 

to be divided between medium and low on Force and Motion. Giving these pieces of information 

to the physics experts and asking them, “Do these values make sense to you? If not, what 

changes would you make?” can help a lot with establishing the BN’s initial state at a more 

accurate level relevant to the learner population of interest. Note that the process of consulting 

with the experts on CPTs can be an iterative process rather than a one-time event. When the BNs 

start running with accurate CPTs, they will learn faster from the data coming in. Alternatively, 

starting the BNs at an inaccurate state can inflate the final stealth assessment estimates. 

 
 

Evaluating the Validity, Reliability, and Fairness of a Stealth Assessment 

In this section, we provide suggestions to evaluate the psychometric features of stealth 

assessments in terms of validity, reliability, and fairness (steps 8 and 9 in Table 1). These 

evaluation ideas generally apply to all types of statistical models used for assessment, including 

IRT and Bayes nets. 

As discussed in the introduction, validity and reliability usually go hand in hand. The 

ECD framework that underlies stealth assessment serves to ensure the reliability and validity of 
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the assessment starting from the conceptualization and design processes. One common practice 

is to check the convergent validity of a stealth assessment by correlating the results generated 

from gameplay with external established measures. For example, to validate the stealth 

assessment of learners’ physics understanding, Shute et al. (2020) correlated the estimates from 

the game’s BNs with validated, expert-created physics test scores. Results showed that the 

stealth assessment of physics understanding correlated with both pretest (r = .36, p < .01) and 

posttest (r = .40, p < .01). In another similar study, Shute and Rahimi (2021) reported that the 

stealth assessment of creativity in PP significantly correlated with the external measures of 

creativity ranging from .18 to .23. Other studies have reported a range of correlations from .40 to 

.67 (DiCerbo et al., 2016). Note that finding large correlations between stealth assessment 

estimates and traditional tests may not be expected (DiCerbo et al., 2016). That is, stealth 

assessment aims to assess learners’ knowledge and skills on a deeper level (e.g., including the 

process data) compared to the traditional assessments (e.g., multiple-choice tests). Therefore, one 

should not consider small but significant correlations as evidence for lack of convergent validity 

of a stealth assessment; Significant, small to moderate correlations tell us we are going in the 

right direction (DiCerbo et al., 2016). 

In terms of reliability, the split-half reliability method can be conducted (Shute et al., 

2008) where a test is divided into two halves and the correlation between learners’ scores on the 

two halves of the test is computed. Ideally, this correlation should be significant and positive to 

indicate a highly reliable test. In a game like PP, which is level-based, we can split levels into 

halves. Thus, researchers dealing with similar games should define what a meaningful chunk of 

the game is when doing split-half reliability checks. Issues arise when a game is not level-based, 

such as sandbox games (e.g., open-ended games such as Minecraft) or simulations (e.g., a flight 
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simulator). It is critical to define the boundary of a task, context, or item in those cases. One idea 

is using cross-validation, where a portion of levels is used to predict the performance of other 

levels on estimating learners’ competency. Cross-validation can be suitable, especially for 

predictive models, such as Bayes nets. 

Traditional reliability coefficients can also be computed using the stealth assessment 

estimates. DiCerbo et al. (2016) discuss how Cronbach’s alpha can be used to establish the 

reliability of game-based and performance-based assessments. They also indicate that 

Cronbach’s alpha assumes that all items in an assessment load on a single construct. This 

assumption, if violated, can produce bias in assessment results. Therefore, other coefficients such 

as omega can be considered for assessments that examine more than one construct (e.g., stealth 

assessment). 

Moreover, differential item functioning has been frequently used to statistically evaluate 

the fairness of assessments when Item Response Theory modeling was used (Holland & Wainer, 

1993). One method to test the bias of an assessment between matched groups is called the 

Mantel-Haenszel test (Holland & Thayer, 1986). To compare the performance of two groups (the 

focal and reference groups), first the students are split into strata on the basis of their ability (this 

might be categories from the scoring model, or cuts on the number of game levels solved). 

Within each stratum, the probability of success for all score categories on the task should be the 

same. If the difference is larger than can be explained by random variation in performance (i.e., 

the Mantel-Haenszel test is significant), then the corresponding task should be investigated to see 

if it depends on information possessed by the reference group and not the focal group. 

Specific to stealth assessment, Almond et al. (2015) proposed conducting differential task 

functioning and observable characteristic plots to evaluate fairness. Differential task functioning 
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is intended to check whether the assessment behaves the same way for all subgroups of learners. 

Ideally, the evidence model should capture all performance differences among subgroups of 

learners. That is, conditioning on learners’ competency, the performance elicited by a certain 

task should be the same across all subgroups of learners. Performance on tasks should be 

conditionally independent given the competency variables. For example, boys and girls with the 

same ability in physics should have the same performance. 

An observable characteristic plot introduced by Almond et al. (2015) is a graphic 

representation used to detect possible bias impacting subpopulations. Such plots group learners 

based on their competency profiles and each group of learners has an estimated probability of 

their competency given their observed performance. The plots can serve multiple purposes: (a) 

researchers can plot observable variables against the competency variables to determine whether 

the observable variables provide relevant evidence to the associated competency variables; (b) 

researchers can compare two different models using the plot by adding a comparison value as 

another competency variable; and (c) the plots can compare focal and reference groups (e.g., 

boys vs. girls). Finally, before quantitative evaluation, fairness should also be considered during 

subject recruitment and data collection procedures. For example, researchers can try to recruit 

people who have various backgrounds, such as minorities, non-gamers, and learners with low 

prior-knowledge or low computer skills. 

Conclusion 

 

In this chapter, we defined the three important psychometrics features of an assessment – 

validity, reliability, and fairness. If assessment designers focus attention on enhancing these 

three aspects in any assessment (including stealth assessment), the quality of their assessment 

will increase. Alternatively, insufficient attention to these assessment qualities can lead to poor 
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assessments with unexpected and undesirable consequences. For instance, if a stealth assessment 

is designed poorly, the estimates will likely be inaccurate. Then, if those estimates are used to 

provide relevant learning supports during gameplay, low-performing learners who need supports 

may not receive them, while high-performing learners who do not need supports may receive 

them. In this case, low-performing students can get frustrated and quit, while high-performing 

students may get frustrated due to the unnecessary and bothersome interruptions. 

To ensure the estimates of a stealth assessment are accurate, stealth assessment designers 

need to use psychometrically sound frameworks to design their assessments (e.g., ECD). In this 

chapter, we grouped our recommendations into two categories: considerations to get the first and 

the second decimals of an estimate right, emphasizing the importance of the first decimal. This 

chapter represents just the tip of an iceberg on how to design high-quality stealth assessments 

using ECD. Please note that designing a stealth assessment is a complex yet promising task that 

needs to be done by a team of researchers—game designers, learning scientists, measurement 

and subject matter experts. We believe that the future of education will benefit from assessments 

such as stealth assessments that can improve how we learn. Thus, researchers and educators need 

to work on increasing the quality of such assessments. 
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