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There are many and varied intelligent tuloring systems ATS)
described in the literature. Few have been subjected to rigor-
ous, controlled evaluations. This paper addresses what is re-
quired to evaluate the eflicacy of an ITS. Efficacy, in this pa-
per, refers to assessing if the system teaches what it was in-
tended to teach, to what degree, in comparison fo what, and
at what cost, Exhaustive and detailed coverage of this topie
would not be possible in a short article. Instead, we have at-
templed to overview the topic and provide illustrations, as
well as exemplar references, to direct the interested reader to
more delailed coverage. We begin by describing our general
approach to research and development of ITS. Then, seven
principles are presented that are believed to underlie a good
ITS evaluation study:(1) delineate the goals of the tutor, (2)
define the goals of the evaluation study, (3) select the appro-
priate design to meet the defined poals, (4) instantiate the de-
sign with appropriate measures, number and type of subjects,
and control groups, (5) Make careful logistical preparations
for conducting the study, (6) Pilot test the tutor and other as-

. pects of the study, and (7) Plan the primary data analysis as
you plan the study. We use these principles as.a framework
for organizing, discussing, and comparing ITS evaluation
studies.

For a long time, researchers have asserted that carefully-designed, in-
dividualized ttoring produces the most cffective and eflicient learning for
many people (c.g., Bloom, 1956, 1984; Burton & Brown, 1982; Carroll,
1963; Cohen, Kulik, & Kulik, 1982; Lewis, McArthur, Stasz & Zmuidzi-
nas, 1990; Sleeman & Brown, 1982; Wenger, 1987: Woolf, 1987). Auto-
mated instruction has long been: scen as a potentially affordable approach
to the delivery of individualized tutoring (e.g., Pressey, 1926, 1927, Skin-
ner, 1957). As carly as 1926, Pressey described a device which sought to
apply contemporary learning theery to the task of ‘automated instruction.
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The device, loaded with multiple-choice questions and answers by the
teacher, would drill the student on the questions and provide immediate
feedback in order to support learning:

The somewhat astounding way in which the functioning of the appara-
tus seems to fit in with the so-called ‘laws of learning’ deserves men-
tion in this connection. The ‘law of recency’ operates to establish the
correct answer in the mind of the subject, since it is always the last an-
swer which is the right one. The ‘law of [requency” alsa cooperales; by
chance the right response tends to be made most often, since it is the
only response by which the subject can go on to the next question. Fur-
ther, with the addition of a simple attachment the apparatus will
present the subject with a piece of candy or other reward upon his
making any given score for which the experimenter may have set the
device; that is the ‘law of effect’ also can be made, automatically, to
aid in the establishing of the right answer (Pressey, 1926, p. 375).

Today, intelligent tutoring systems (ITS) epitomize this nolion of theo-
ry-based, individualized, automated instruction. Unfortunately, although
such systems have been in existence for over a decade, the degree to which
they have been successful is equivocal because controlled evaluations of
ITS are scarce (Baker, 1990; Littman & Soloway, 1988).

There have been some systematic, controlled evaluations of ITS report-
ed in the literature. A few examples include: the LISP tutor (e.g., Ander-
son, Farrell, & Sauers, 1984) instructing Lisp programming skills, Smith-
town (Shute & Glaser, 1990, 1991), a discovery world that teaches scientif-
ic inquiry skills in the context of microcconomics; Sherlock (Nichols,
Pokorny, Jones, Gott, & Alley, in preparation; Lesgold, Lajoic, Bunzo &
Eggan, 1992), a tutor for avionics troubleshooting; and Bridge (Shute,
1991; Shute & Kyllonen, 1990) teaching Pascal programming skills. Re-
sults from the evaluations show that these tutors do accelerate learning
with, at the very least, no degradation in outcome performance gompared
to appropriate contrel groups.

What can we make of these findings? As always, there is a selection
bias for publication of unambiguous evidence of successful instructional in-
terventions. We are familiar with other (unpubtished) tutor-evaluation
studies that were conducted but were “failures.” In some cases, we fecl
these studies may have provided more information given a better experi-
mental design. Because of the interdisciplinary makeup of the ITS commu-
nily, it is not surprising that among some groups there is a lack of interest
in evaluation, or training in experimental design,

Before presenting the seven principles for evaluating intelligent tutor-
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ing systems, we bricfly present a general approach to research and develop-
ment of intelligent tutoring systems.

A GENERAL APPROACH TO RESEARCH AND DEVELCPMENT OF ITS

Experimental design involves arranging conditions to promolte the va-
lidity of an experimeni—the measure of effect produced by some indepen-
dent variable on a dependent variable. If the causal link between indepen-
dent manipulations and dependent measures is equivocal, the experiment is
said to lack internal validity. 1€ the ability ta generalize from the experi-
mental sample to the papulation of interest is equivocal, the experiment is
said 1o lack external validity. In this paper, we arguc that internal validity
is easier to accomplish in an cvaluation conducted within a controlled, lab-
oratory selting (addressing more basic research questions), while external
validity is easicr to accomplish in an evaluation experiment conducted in
“Ihe field” or natural setting (more applied research questions). [t is gener-
ally rare in research to find a study yiclding results which possess high in-
ternal validity and high external validity, concurrently. This represents a
classic (radeoff between internal and external validity. Figure 1 notionally
depicts this relationship: as internal validity decreases, external validity in-
creases. This relationship is particularly true with regard to research on
pedagogy. Research in field settings (c.g., high school classrooms) is desir-
able because all aspects of the targel seiling are present in the experiment.
Many of these aspects, however, are potential confounds to the experiment,
making it difficult to relate outcome performance measures (o the experi-
mental manipulation. Thus, ficld rescarch on pedagogy can have high ex-
ternal validity, but correspondingly low internal validity. On the other
hand, research in laboratory scttings is desirable because of the extreme ex-
perimental control that is possible in the laboratory. One can control for
prior knowledge, assign subjects to groups, counterbalance for teacher (ex-
perimenter, proctor) effects, and so on. But can these results be generalized
10 others beyond the immediate sample?

Qur approach to managing the trade-ofT between internal and external
validity is to begin with Iaboratory research (high experimental control and
internal validity) and slowly increase external validity, ultimately studying
the intervention in the target instructional context (field rescarch). We be-
lieve that ncither laboratory nor ficld research alone will give a complete
and accurate picture of the instructional clTectiveness of a particular inter-
vention. We further belicve that research on pedagogy should be driven by
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SEVEN PRINCIPLES IN ITS EVALUATION

Keeping in mind the general approach to 1TS research and develop-
ment, at onc or more points along the big arrow, in Figure 2, you will need
to evaluate your ITS. However, the outcome of the evaluation occasionally
rellects the goodness (or poorness) of an experimental design, rather than
the eflicacy of the ITS. In our experience, we have seen evaluation studies
fail due to poor cxperimental design, inadequately operationalized con-
structs and measures, or deficient Jogistical planning and implementation.
In the following seclions, we present seven main principles that may be
used to design, plan, and implement an effective ITS evaluation. These
principles are:

INTERNAL VALIDITY

FIELD

Low

Low High

clincate tl R I t
EXTERNAL VALIDITY (1) Delincate the goals of the tutor,

(2) Define the goals of the evaluation study,

(3) Select the appropriate design to meet the defined goals,

(4) Instantiate the design with appropriate measures, number and type of
subjects, and control conditions,

(5) Make carelul logistical preparations for conducting the study,

(6) Pilot test the tutor and the study, and

(7) Determine the primary data analyses as you plan the study.

Flgure 1. Simple inverse relationship between internal and external validity.

theory and constrained by empirical observation. By theory, we mean a co-
herent, plausible body of ideas about how people acquire, store, retrieve
and apply knowledge and skill. Theory is important in generating poten-
tially fruitful hypotheses about teaching and learning, and in driving gen-
eralizations about pedagogical effectiveness across instructional domains.
Empirical observation is important (o test, often and rigorously, how our
ideas fare in the real world, Empirical data about the clfectiveness of theo-
ry-based instruction provides feedback about how well our implementation
works, and also may cause us (0 rethink our theory. Figure 2 shows this
proposed cyclical relationship between theory and data, whereby research
commences with theory and becomes progressively modified by empirical
findings.

Given the plethora of tutors in the world, the relatively few controlled
evaluations, and the various pitfalls accompanying evaluation attempts,
this paper will describe principles for evaluating ITS. The purpose of the
paper is to provide a [ramework within which to organize, discuss, and
compare evaluation studies, codifly the process of designing and conducting
4 competent evaluation study, and maximize the wtility of future studies
concerned with evaluating ITS. Each of the principles will be addressed, in
turn,

PRINCIPLE 1: DELINEATE THE GOALS OF THE ITS

It is a good strategy to review and carefully delineate the goals of the
ITS prior to designing the evaluation study. In some cases, it may become
apparent that the instructional goals have shifted (subtly or markedly) over
the developmental life-cycle of the ITS. In any event, a clear understanding
of the ITS is useful at this stage. If the designer of the evaluation study is
not intimately familiar with the tutor, then designing a good evaluation is

INTERNAL VALIDITY

Larw kg
EXTERNAL VALIDITY
Figure 2. Cyclical process of experimentation: driven by theory and con-

strained by empirical findings.
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virtually impossible, We believe the evaluation designer should be knowl-
edgeable about the following critical issues.

What instructional approach underlies the tutor? This question ad-
dresses the general and specific instructional approach of the tutor. Is it a
tutoring system with pedagogical intelligence, a coached-practice environ-
ment, or a more free-form discovery microworld? Is the system supposed
to guide learning, or provide a rich environment for the induction of prin-
ciples, or allow students to practice skilts? How does the tutor diagnose
performance and select instructional interventions? What information
about the student is modeled and how is it used?

What learning theory doas it assume? This is an important, but oc-
casionally ignored, part of the ITS-building process. Is there a clear knowl-
edge or skill-acquisition theory in the literature that motivates the instruc-
lional approach of the tutor? Interpreting findings from the evaluation of a
theoretical, or intuition-based, tutors is difficult. Your ability to generalize
findings across instructional domains, or even within domains, is depen-
dent on a theoretical characterization of domain dimensions.

What exactly does it teach? Specific and measurable knowledge or
skills should be expressed clearly as the desired learning outcomes. Some
possible responses to this question include: The student should be able to
apply a mental model of clectricity concepts in solving a DC-circuit prob-
lem, execute procedural and psychomotor skills associated with an astro-
naut’s job of manipulating a robot arm in a weightless environment, solve
high school physics problems, or discover geometry concepts. }

What other impacts is it expected to have? After delineating what
the tutor is supposed to teach, you need to consider other ways that the tu-
tor is expected to effect the student. In some cases, these effects may be the
primary goal of the tutor. Othenwise, they may be considered subsidiary
treatment effects. Examples of such effects include enhancing transfer-of-
skills to another domain, influencing perceived self-efficacy, or modifying
attitudes about compulers.

In what context is it supposed to operata? You need to clearly speci-
fy the environment in which the tutor is intended to operate because evalu-
ation techniques are differentially suitable for various learning cnviron-
ments. Questions to consider in this section include: Is the system intend-
ed lo supplement a lecture or laboratory, or provide stand-alone instruc-
tion? Does the system teach to individuals or small groups? What prior
knowledge is assumed of the students? Is the tutor supposed to be used in
an academic setting to support declarative knowledge acquisition, or in an
industrial training environment to support acquisition of procedural skills?
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PRINCIPLE 2: DEFINE THE GOALS OF THE EVALUATION STUDY

Think carefully about the goals of the study. A clear understanding of
what you want to find out provides the basis for sclecting an experimental
design that will unequivocally address your research goals. You should
think about the difficulties involved in achieving the goals, and adjust your
goals at the outset to ones {hat are realizable. Consider the following ques-
tions.

What would you like to know after the study is completed? You
may simply want to sce if the ITS results in students learning something
beyond their incoming knowledge and skills. Or, you may want to test the
degree to which your tutor affects students’ capabilities to perform some
task. Another possible question you could pose concerns how the tutor in-
fluences learning in relation (o classroom instruction on the same
material—a comparative study. A different comparative study might ad-
dress how your tutor affects learning in rélation to a colleague’s tutor, in-
structing the same subject matter. This second kind of comparative study
would be of interest if there were different design principles motivating the
(utors, or different underlying learning theories. You should clearly specify
your research questions and hypotheses before you conduct the study and
analyze the data.

By what standard will you measure succass? Suppose you want stu-
dents to learn 12 problem-solving strategies. After working with your ITS,
students can state 6 aof these strategics, on average. Have you succeeded?
This question is intractable without some standard of comparison. If you
learn that a simple mnemonic allows students lo state 11 of the 12 strate-
gics, you may assume your ITS is relatively ineffective. Alternatively, sup-
pose you find that students learning from your ITS can both state and reli-
ably apply 6 of the 12 strategics, whereas students trained with the mne-
monic approach can state, but not apply, 11 strategics. Would you now as-
sume that your ITS is effective? This, of course, depends on your tutor’s
goals. After you've answered the question “What exactly does the ITS
lcach?” you need to identify ways (o measure whatever is being taught
(c.g., indices to assess the veracity of knowledge, or successful application
of problem-solving skills) and to whom your students will be compared on
these measures.

What are potential confounds, and which of these can you con-
trol? There are numerous ways in which unwanted influences can contam-
inate the results of your study. Pinpointing potential confounds before con-
ducting the study makes it casicr to control them (beforchand, by altering



252 Shute and Regian

the design, or afterwards, statisticatly). For example, suppose you are inter-
ested in testing your ITS in two scparate schools. You suspect that the
schools may difTer in terms of one or morc¢ important dimensions (¢.g., stu-
dents’ mean 1Q, faculty training, per capita income, ethnicity). You may

choose to create treatment and control groups at bath schools, statistically ;

control for these dimensions, sclect four schools and counterbalance the de-
sign, and so on. All of these arc options if you identify the potential con-
founds, in advance.

Will you usa quantitative indices, protocols, or observational data?
These three types of data represent the most prevalent means of capturing
what a student is learning from the ITS. Because your subjects arc working
at computers, it is particularly easy to capture on-line, quantitative mea-
sures of performance, such as latencies, accuracies, and counts as learning
indicators. With some effort and creativity, protocol analyses can also yield
a wealth of information about learning that cannot be captured directly by
the computer (see, for example, Shute & Glaser, 1991). Trained observers
may also ascertain aspects of learning and performance that arc impossible
to apprehend by other means (Schofield & Evans-Rhodes, 1989).

PRINCIPLE 3: SELECT AN APPROPRIATE DESIGN TO MEET DEFINED
GOALS

After you have delineated the goals of the tutor and the goals of the
evaluation study, you are ready to choose 2 design to test your rescarch
questions. First, are you conducting a formative or a summalive evaluation
of your system? The basic distinction between the two is that formative
evaluations have an internal control condition, and ask the question: How
can we make the system better? In comparison, summative cvaluations
have an external control condition, and ask the question: How does this
system compare to some other systems or approaches? Examples of both
types of evaluations are provided.

Formative Evaluations

Formative evaluations arc conducted during the developmental phasc

of an ITS to find weaknesses early enough so that design changes can be
implemented. For example, very early on, one should verify that there is
support in the literature for the instructional approach and theoretical basis
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underlying the tutor design. At a later stage, formative evaluation might
involve novices interacting with the ITS and experts commenting on the
completeness and accuracy of curricular clements, as well as the validity of
the feedback provided by the tutor (where feedback can either be explicitly
ofTered by the computer, or implicitly occurring, as in discovery worlds un-
der “natural feedback” conditions). Results from the formative evaluation
can inform the tutor’s designer and programmer about bugs in the sofl-
ware, other software-related problems that students encountered, sugges-
tions from students and experts for modifying the interface, and conceptual
or procedural problems with the curriculum (e.g., an inaccurate depiction
of current flow through a parallel DC-circuit). Two examples of formative
evaluations follow, representing our own experiences with evaluating ITS.

Pilot study of the Bridge tutor. Prior 10 running a large-scale evalua-
tion of the Bridge tutor (Shute, 1991; Shute & Kyllonen, 1990), a pilot
study was conducted to determine if the tutor actually worked with “real”
subjects (i.c., not laboratory-related personnel). Approximately 200 pilot
subjects were run on the tutor, and, to our dismay, we discovered that many
of them had significant difficultics learning the programming curriculum
because they lacked (or forgot) some prerequisite knowledge presumed by
the system (c.g., not knowing what an integer or variable was). Findings
from the pilot study highlighted about 10 weak concepts in programming
and math; integer, real number, string, data, sum, product, constant, vari-
able, expression, and value assignment. Conscquently, we built a “pre tu-
tor,” an approximatcly 2-hour computer-assisted instruction (CAI) module
(hat instrucied those 10 concepts. Subjects received on-line definitions of
concepts, followed by a serics of questions pertaining to the concept (c.g.,
Is 7.34 an example of an integer?). After each response, feedback was pro-
Lided on both the accuracy of the response and the item in question (¢.£.,
“No, 7.34 is not an example of an integer because integers are positive or
negative whole numbers without decimal points, and 7.34 contains a deci-
mal™). This pre tutor presented items in a learning-by-doing format with a
strict mastery learning criterion. That is, the learner had to successfully an-
swer 16 consecutive questions about each concept (two blocks of 8 ques-
tions) before it would drop out of the learning cycle. In the large-scale
study, once subjects encountered the Bridge tutor, no longer did hands
wave and subjects lament, “What is a real number??” The problem was
solved, and learning Pascal programming skills was not confounded by in-
adequate knowledge of necessary concepls.

Protocol analyses with Smithtown. During the course of developing
Smithtown, we collected protoco! data on effective and less-effective inter-
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rogative stralegics from individuals interacting with Smithtown (Shute &
Glaser, 1991), This pilot data formed the basis for the diagnostician that
subsequently monitored learners’ inquiry skills. The diagnostician evaluat-
ed how a student was interrogating the guided-discovery world of micro-
cconomics, and determined whether he or she was proceeding in a system-
atic, efficient manner. By collecting think-aloud protocols from a heteroge- i"‘r
neous group of subjects as they interacted with Smithtown, we were able to
delineate a large group of effective and incffective inquiry behaviors that ,
the diagnostician should monitor (see Shute & Glaser, 1991 for a complele
listing of these behaviors). For example, the first inquiry behavior was
Baseline data collection: For an initial exploration of Smithtown (where
“initial” refers to time unit 1 in any student-created experiment), were data
collected from the market in equilibrium, before any variables. were al-
tered? TFailing to do this (i.e., changing a variable without first viewing the
market in equilibrium) would increment the counter for the corresponding
“paseline data collection critic.” If this count exceeded some specified
threshold (e.g., three times), then the coach would address the learner
about the problem (e.g., “I see that you've been changing too many vari-
ables before looking at the market first...™).

Summative Evaluations

At the end of ITS development, or at the end of major development
stages, summative evaluations serve 1o assess various aspects of the fin-
ished product. The appropriate summative cvaluation depends on how you
answer the questions underlying Principles 1 and 2, above. This paper out-
lines five different designs that are suitable for summative evaluation stud-
ies:

(1) Within-system Design—How do two or more alternative versions of a
single tutor compare to one another?

(2) Between-system Design—How effective is your tutor in relation to an-
other one teaching the same subject matter?

(3) Benchmark Design—-How docs your tulor fare in relation to some
standard instructional approach?

(4) Hybrid Design—A combination of the above options, and

(5) Quasi-experimental Design—How well docs your system operate in a
real-world setting?
Suppose that you have just completed the development of an intelli-
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gent tutoring system (ITS), and you believe it will teach subject matter X
effectively and efficiently. You have exhaustively combed the literature and
based the tutor's design on valid and general learning and instructional de-
sign theories. You have articulated the intentions of the tutor, the goals of
the evaluation study, and have identified the target population. It has been
developed on a fairly standard computer, and the pilot test has shown it to
run bug-free. You may even have (wo or more versions of the tutor imple-
mented (¢.g., one version with extensive feedback, and one with only natu-
ral feedback). Now it is time 1o ascertain its true worth. How do you objec-
tively evaluate the ITS ina controlled experimental setting? Five types of
summative evaluation studics are now described.

Within-system Designs. This kind of cvaluation provides the opportu-
nity (o develop alternative versions of one tutor and see (a) which version
is, overall, more effective and/or efficient, and (b) il there are differential
benefits of the versions, depending on characteristics of the learner (i.e., 2
classic test of aptitude-treatment interaction, ATI). Thus, it represents a
comparison against itscl{ rather than against some other approach. This
evaluation is accomplished by manipulating critical aspects of the tutor
(c.g., the instructional approach or interface features) to generate separalc
versions of the tutor. These separate versions arc then compared for. in-
structional effectivencss on subjects with diverse aptitudes and back-
grounds. Onc strength of this design is the provision of various treatment
conditions that are identical except for the independent variables of inter-
est. A wilhin-system design might well be part of a formative cvaluation,
allowing the designer to sclect among promising design alternatives.

To illustrale the within-system approach, an Electricity tutor (Shute, in
press-n) was used in an experimental study, instructing basic principles of
#lectricily 1o about 400 heterogencous subjects. Two instructional environ-
ments were created from the one tutor, differing only in the computer-gen-
crated feedback. All other aspects of the tutor were identical. In the rule-
application environment, the ITS told the learncrs what the relevant princi-
ples were, and in the rule-induction environment, learners had to induce
principles on their own, only given information about what variables were
relevant, One learner characteristic that was examined was “exploralory
behavior,” a quantified measure of on-line tool usage (e.g., taking a meter
reading from a circuit). Results showed that learners evidencing a lot of ex-
ploratory behaviars learned significantly faster and scored significantly
higher on outcome tests if they had been assigned to the inductive environ-
ment than the applied environment. On the other hand, less exploratory
learners performed significantly better from the more structured, applica-
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lion environment compared to the inductive environment. It is interesting
1o note that there was no significant main effect due to [earning environ-
ment on any of the many outcome or efficiency measures used in that
study, thus there was no clear “winner,” overall,

Betwoen-system Designs. This type of evaluation sceks to identify
one or more optimal instructional approaches for a given task from a sct of
distinct ITS. This kind of design may be called for il you wanted (0 test
your chess tutor versus some other chess tutor. The separate systems arg
compared for instructional effectiveness on subjects with matched (and di-
verse) aptitudes. Instructional time is fixed, after which performance is
measured in a variety of ways. An example of the belween-system ap-

proach to evaluation is the Defense Advance Research Project Agency

(DARPA) Learning Strategies Project (Donchin, 1989). In this project,
DARPA funded several groups of learning theorists to develop theory-
based, guided practice environments for a standard criterion task. The cri-
terion task was Space Fortress, a complex video game developed at the
University of Illinois involving the coordinated application of cognitive,
perceptual, and psychomotor ckills, Although the Learning Strategics
Project was mostly a success (in terms of knowledge gained and publica-
tions), there were two shortcomings. First, because data were collected in
diverse locations worldwide, populations exposed to the various treatments
differed. This is known because baseline data disagrees among the groups
(Gopher, Weil & Siegel, 1989). Second, because only one task was admin-
istered, and that task was not designed to selectively assess performance
types, it is not known how general the derived principles are, But this docs
typify a between-system approach with a standard criterion task.

Benchmark Designs. This kind of design is the mest common in the
literature, and jumps to mind when we hear of an 1TS evaluation. How did
the tutor fare in relation 1o a classroom or training center? This bench-
mark design seeks to test the effectivencss of an ITS against conventional
or existing instructional approaches, such as a classroom environment with
a human teacher and 30 students in a room. In this case, the appropriate
“control condition” would be the classroom, and the “treatment condition,”
the tutor. OF the tutors mentioned earlier that have been cvaluated, three of
the four used this kind of benchmark design: Smithtown, the LISP tutor,
and Sherlock.

To illustrate, Anderson and his colleagues at Carnegic-Mellon Univer-
sity (Anderson, et al., 1984) developed a LISP tutor which provides stu-
dents with a series of LISP programming exercises and tutorial assistance
as needed during the solution process. In one evaluation study, Anderson,
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Boyle, and Reiser (1985) reported data from three groups of subjects: hu-
man-tutored, computer-tutored (LISP tutor), and traditional instruction
(subjeets solving problems on their own). This study employed two bench-
marks for comparing the efficacy of the LISP tutor: human (one-on-one)
tutoring and traditional instruction. The time to complete identical exercis-
cs were: 11.4, 15.0, and 26.5 hours, respectively. Furthermore, all groups
performed cqually well on the outcome tests of LISP knowledge. A second
evaluation study (Anderson, Boyle & Reiser, 1985) compared two groups
of subjects: Students using the LISP tutor and students completing the ex-
ercises on their own. Both received {he same lectures and reading materi-
als. Findings showed that it took the group in the benchmark (i.e., tradi-
tiona! instruction) condilion 30% longer to finish the exercises than the
computer-tutored group. Furthermore, the computer-tutored group scored
43% higher on the final exam than the control group. So, in two different
studies, the LISP tutor was successful in promoting faster learning with no
degradation in outcome performance compared (o traditional instruction.

Hybrid Designs. Given adequate resources, it is, of course, possible to
develop hybrid designs. For example, you may want 10 compare i variety of
approaches to teaching clectronics troubleshooting (e.g., two versions of an
ITS, a desktop drill-and-practice device, and classroom instruction). In
fact, we have just started collecting data from an exploratory study employ-
ing such a hybrid design, The study (Shute, Gawlick-Grendell, and Young,
1992) compares the following four groups of subjects learning statistics
(where the curriculum is Probability):

(a) Stat Lady, an ITS teaching statistics in a graphics-rich experiential
learning environment;

(b) a paper and pencil version of Stat Lady consisting of all the same
problem sets as the computer version, but all instruction and problem
solving is on paper,

(c) a classroom environment consisting of identical curricular elements as
contained within Stat Lady, but with a different presentation of materi-
als; and

(d) a no-treatment control group to determine baseline measurements of
pretest to post-test changes in learning.

The simple, main cffects hypothesis regarding learning oulcome is:
no-treatment control group lecture group
£ the paper and pencil version of Stat Lady

£ computerized version of Stat Lady. Further-
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more, we plan to investigate the data for possible aptitude-treatment inter-
actions, whereby some individuals may benefit from the computer environ-
ment, while others may learn better from the more structured, lecture envi-
ronment.

Quasl-oxperimental Designs. A truc experimental design in evaluaz,
tion studies calls for randomly assigning subjects to treatment conditions
Sometimes, however, random assignment in not feasible (i.c., impractical
or impossible), such as when subjects self-select or when intact classroomg
are studied. In these instances, the internal validity of the evaluation may
be suspect. This means that there is a reduced ability to affirm that any ob-
served outcome differences arc causally linked to the treatment manipula-

tions. On the other hand, this reduction in internal validity with field stud-

ies can sometimes buy you an increase in external validity. This would
mean an increased ability to affirm that the treatment works in the field (as
opposed to the lab) because it was evaluated in the field.

It is possible to conduct “true” experimental evaluations in the field if
you are able to randomly assign subjects (or groups, under certain circum-
stances) to treatments, In cases where quasi-experimental designs are
called for, there are several issues (or threats) relating to internal validity
that must be addressed. Some of these include: history (external events
that influence outcomes), maturation (changes in subjects that occur over
time), testing (changes causcd by your measurement procedures), mortality
(biased loss of subjects over time), and selection (biased assignment of sub-
jects to treatments). Campbell and Stanley (1968) provide an excellent dis-
cussion of these and other threats to internal validity, along with a presen-
tation of quasi-experimental designs to minimize such threats.

Reiterating, we prefer theory-driven laboratory evaluations with true
experimental designs, followed by data-constrained ficld evaluations. The
laboratory offers a level of experimental control difficult to achicve in a
ficld study, while the field offers a level of external validity not possible in
a laboratory. Figure 3 depicts the complete representation of these relation-
ships among;: internal and external validity, formative and summative eval-
uations, different design types, and true vs. quasi-experiments. Finally, the
area in the lower-left quadrant of the graph (i.c., low internal validity and
low external validity) can be likened lo a “research wasteland” as there is
nothing that can come out of those studies. In contrast, studies possessing
high internal validity and high external validity (i.c., studies conducted in
{he field but with a true experimental design) are the kind of studics we
dream about. However, given the constraint of reality, these results may al-
ternatively be obtained at different times, across progressively more finely-
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Figure 3. Relationships among internal and external validily, iterative experi-
mentation, and design types.

tuned research studies, and again: driven by theory and modified by empir-
ical findings.

PRINCIPLE 4: INSTANTIATE DESIGN WITH APPROPRIATE MEASURES,
NUMBER & TYPE OF SUBJECTS, AND CONTROL GROUPS

While the preceding principles may be likened to the “skeleton” of an
evaluation study, Principle 4 constitutes the “viscera.” You’ve now select-
ed one of the several design types that suits your needs and research ques-
tions. The next step is to carefully plan the details of the design by consid-
cring and instantiating the dependent (cutcome) and independent mea-
sures, the number and type of subjects needed in your experiment, and the
appropriate control group(s).
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Learning Outcomes (or Dependent Measures)

A very common problem in ITS evaluations has to do with the inade-
quate sclection, or poor implementation, of criterion tasks and other depen-
dent measures assessing knowledge and skill acquisition (collected before,
during, and following instruction). It is extremely important to give careful
consideration to the dependent measures you will use in your evaluation.
Ask yourself how the dependent measures reflect the goals of the ITS, then
relate the measures specifically to the issues mentioned in the goals of the
study. If, for example, the goal of your tutor is to teach particular knowl-
edge and skills associated with introductory statistics, and the goal of your
evaluation study is to test the efficacy of your tutor in relation to traditional
classroom instruction, then your learning criteria should measure the ac-
quisition of the specified knowledge and skills associated with intreductory
statistics. To illustrate, we are currently evaluating an 1TS for introductory
statistics, Stat Lady (Shute, Gawlick-Grendell, & Young, 1992) that in-
cludes multiple instruments and measures (o assess understanding (and en-
joyment) of the course material. Some of these measures include:

(2) Open-ended questions (e.g., Why is random sampling from some pop-
ulation so important?),

(b) Survey (e.g. How well do you feel you learned statistics?),

(c) Final “rescarch project” (Students pose a research question, use the
on-line “number scoop” to collect computer-generated data, compute
appropriate data analyses, summarize results, and type a paragraph
about what it all means),

(d) Concepts post-test (e.g., The “variance accounted for” in regression
analysis is represented by ___and refers to _n

(e) Skills post-test (e.g., From the following data, compute the correlation
between number of hours a person sleeps and their income. Is this sig-
nificant? What does it mean?)

() Final statistics “exam” (Students, in pairs, compose an on-line exam,
allegedly to administer to other students to measure their understand-
ing of statistics.

Students are encouraged to include in their “test” a varicty, and sufli-
cient number, of questions covering a range of material. In addition, they
need to include an answer key for all items). These measures, collectively,
will really reflect the degree to which students learned the course material.

There are at least two good reasons why you should use multiple de-
pendent measures. First, because ITS instruction is done on computers, you

:it
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have the option to capture as much data, of whatever kind, you choose.
You should crr on the side of gathering too much data. You do not have to
analyze it all at once, but if you don’t collect it, you will not have the op-
tion of poing back to look at something you may later realize is important.
Second, it is the nature of learning and instructional research that the ef-
fectiveness of an intervention will depend, in part, on the aspects of perfor-
mance you arc trying to teach, and how you measure these indicators of
performance.

In summary, multiple dependent measures arc better than fewer mea-
sures, and they should reflect the goals of the tutor and the evaluation
study. Some possible learning or performance measures that can be collect-
ed in an ITS evaluation study include: performance latency, performance
accuracy, declarative knowledge, procedural knowledge, procedural skill,
automatic skill, secondary task performance, higher-order knowledge, as
well as measures of near transfer, far transfer, and skill retention (decay).
Teaching one thingtand measuring another is bound to result in a failed
study. .

Independent Measures {Individual Differences)

In addition to collecting learning and performance measures, you
should also consider collecting individual differences measures. Individu-
als come to any new learning task with differing profiles of knowledge,
skills, and traits (i.e., individual difference dimensions). Some common in-
dividual differences measures include general intelligence, GPA, and SAT
scores. In addition, you may want to collect data on cognitive process mea-
sures (c.g., working memory capacity, information processing speed), per-
sonality measures (c.g., impulsivity, aggression, introversion), and demo-
graphic information (gender, age, years of school, experience with comput-
ers). If you don’t collect these data and then discover some potential con-
found in your experimental design (c.g., two schools with different mean
1Qs for enrolled students), you can’t casily correct it. For instance, having
1Q data from the students would allow you to statistically control for this
variable in the equation, and then test for differences between the two sites
with 1Q pareeled oul. Another problem associated with not collecting these
data arises when you conduct 2 ireatment-cfTects study and find, overall, no
difTerences between (wo approaches across a variety of outcome measures.
You would probably conclude that there are no differences between the ap-
proaches (e.g., Sleeman, Kelly, Martinak, Ward, & Moore, 1989). Howev-
er, when aptitudes are considered in the cquation, then you may find in-
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stances of aptitude-treatment interactions, where one kind of person per-
forms better in one environment, and another performs better in a different
environment (e.g., Shute, 1992, in press-a, in press-b). Because ITS are in-
tended to adapt instruction to the learner, it makes sense to understand the
learner as thoroughly as possible. Thus, aptitude data can be as theoretical-
ly important in analyzing learning from an ITS as traditional, lowcr—]cva
performance data used in cognitive diagnosis and remediation. ‘

In summary, collecting individual differences measures in your experiy
mental study is a good idea, for several reasons. First, you can be sure that
your treatment effects are real, and not simply an artifact of differential
learner traits. Second, if you have collected aplitude data and find that they

do impact the treatment condition, if necessary, you may then statistically -

contrel for those data that affect the treatment condition. Finally, if you

don’t have any aplitude data, then you cannot investigate aptitude-treat-
ment interactions.

Control Conditions

One of the biggest problems in designing “rigorously controlled” eval-
uation studies is identifying suitable control conditions. The choice of
treatment condition, as well as the proper control condition(s), must be
principled, based on a theoretical approach to performance. Historically
(see Cronbach & Snow, 1977), one of the main reasons that treatment ef-
fects were difficult to find was because of various uncontrolled conditions
and unanticipated interactions across scttings (c.g., different instructional
materials, classroom dynamics, and teachers’ personalitics) (sec also
Shute, 1992). Lessons learned from these older studies conducted with
classroom environments yield certain conventions that may be adapted to
eliminate control-condition problems in ITS evaluation research:

(a) Use tutors that arc based on a theoretically principled approach to
learning and instruction;

(b  Give preference to data collected at a single site (rather than multiple
sites) with standard procedures and measures;

(c) Ob(;ain a range of demographic and aptitude measures from subjects;
an

(d) Pre-specify a standard criterion task along with multiple dependent
measures (o be taken at various intervals during the course of learning.

) W? are moving in the direction of designing and validating standard-

ized criterion tasks (see Shebilske, Regian, Arthur, & Jordan, 1992).
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Another problem concerning control conditions for 1TS research is the
creation of Hawthorne effects. Similar to placebo eflects, Hawthorne effects
are treatment differences due only to the fact that one group (i.e., the group
receiving instruction on the tutor) is receiving special attention and consid-
eration. These cffects are casily obtained, and thus, must be carefully
avoided. One should be wary of treatment and control groups that are treat-
ed differently from bascline, or if the control group is primarily a no-treat-
ment control.

A third important decision concerns time. Two main options include:
(2) Should time be allowed to vary across subjects, as with self-paced and
mastery learning (e.g., Levin, 1974), or (b) Should time be held constant,
allowing achievement to vary (¢.g., Shebilske, et al., 1992)7 If the end-
user of the ITS evaluation research is an adherent to lock-step instruction,
one recommendation is to fix time and sce how the system reduces individ-
ual differences in outcome performance. This decision is less critical for
criterion-based instruction because the learner or trainee becomes employ-
able as soon as he or she reaches criterion on task performance.

Finally, suppose you are interested in the relative costs and benefits of
the ITS versus alternative approaches. Your control conditions (or histori-
cal data) must similarly be based on cost/benefit data from the alternative
approaches.

Subjects

Another problem area in ITS evaluation has to do with obtaining the
right fype and number of subjects for the experiment. First, it is imperative
10 identify the target population for whom the tutor is intended (e.g., uni-
versity students taking an introductory Astronomy course, jet-engine me-
chanics, or students beginning 8th grade alpebra). Then, be sure that the
sample you are testing matches your target poputation. That is, if the pur-
pose of your ITS is to teach university students a certain curriculum, and
your test subjects come from a different population, you won’t be able lo
accurately assess the effectiveness of your tutor. Different populations of
subjects vary across an assortment of dimensions. For example, Smithtown
was created as a guided-discovery microworld for college students to in-
duce principles of microcconomics (Shute & Glaser, 1990). We conducted
a series of studies using Smithtown, first with a group of university stu-
dents (N=10), and then with 530 U. 5. Air Force recruits on their 6th day
of basic training. For the most part, the university students enjoyed the
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freedom of the environment to conduct experiments in Smithtown, collect
and record data, and make gencralizations about their findings in inducing
microeconomic laws and principles. In comparison, the majority of recruits
did not enjoy the unstructuredness of the system, and their relative perfor-
mance and acceptance of the system was considerably less positive.

Second, you need to figure out how many subjects are needed for the
study. As a rule-of-thumb, ITS evaluations should have at least 30 snbjcc@
per condition for simple treatment comparisons. Ideally, if one condition
takes place in a group setting (e.g., classroom environment for the contrdl
condition), then the treatment condition should similarly take place within
a group setting. Often, however, this is not possible, due to a shortage of

computers on which to run the treatment (ITS) cendition all at the same

time. In this case, analyses of outcome should take into consideration the
fact that the two groups differed in testing/lcarning environment, and test
for differences in variability between groups on select measures. Usually,
this is not a problem in a well-controlled experiment.

Third, aptitude-treatment interaction (ATI) studies, using individual
difference measures as independent variables, should use about 100 sub-
jects per treatment (Cronbach & Snow, 1977). This rule-of-thumb can be
relaxed somewhat for sufficiently powerful designs involving extreme
groups, or malched cases. Most investigators in the ATI tradition before
1980 used 40 or fewer subjects per treatment, and may have lacked the
power to pick up even moderate cffects. Keep in mind the relationship be-
tween sample size and power. The ability to pick up a given treatment cf-
fect goes up as sample size increases. It is thus possible to estimate the re-
quired sample size for picking up a treatment cffect of some hypothesized
magnitude. Also keep in mind the weak relationship between statistical
significance and real-world importance. With enough power (large enough
sample), you can pick up tiny, but reliable, treatment effects, even though
the effect size may be too small to be of practical importance.

Finally, random assignment of subjects to conditions is critically im-
portant and should be achieved whenever possible. If subjects are not ran-
domly assigned to treatment or control conditions, then any ensuing treat-
ment effects may be attributable to a host of confounds. Possible confounds
include self selection, site differences, experimenter bias, and so forth. If it
is not possible to randomly assign subjects, then it is important to think
carefully about potential confounds, and then measure and control them, as
necessary.
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PRINCIPLE 5: MAKE NECESSARY LOGISTICAL PREPARATIONS FOR
CONDUCTING THE STUDY

Many potentially good studics are ruined because of poor logistical
preparations. Some examples include: subjects failing to provide a critical
picce of data (and omissions weren'l caught in time to rectify), a proctor
not execuling an important step (given an ambiguous or incomplete
“seript” by the researcher), sufficient materials were unavailable at the data
collection site, or other reasons, unrelated to design. These kinds of disas-
ters can render expensive data useless. They can be avoided with careful
planning, training, and general preparation. Be sure you have quatified,
trained personnel to implement the study. Provide the proctors with clear,
complele scripts and procedural checklists, Ensure that subjects are being
treated the same at all locations.

You should also consider, in advance, possible “worst-case™ Scenarios,
such as what you would do in case your hardware or software fails. Specifi-
cally, do you require computer analysts o technicians at each data collec-
tion site? What plans do you have for rescheduling subjects in the event of
some computer-related problem? Itis a good idea to have extra computers
at the site as backup systems.

PRINCIPLE 6: PILOT TEST THE TUTOR AND THE STUDY

This principle is very important. There may be a very large gap be-
tween the way you believe students will interact with your system and the
way they aclyally interact. It is important to find these things out before
commilting to the expense and trouble of a full evaluation. Pilot testing of
the tutor is simply a form of formative evaluation, and “an ounce of pre-
vention is worth a pound of cure.”

Some things to look for during the pilot test of the tutor include:

(a) Isthe tutor running bug-free?

(b) Do subjects know what they should be doing at all times?

(c) Arc subjects learning anything?

(d) Do subjects indicate that they like the system?

(¢) Did you estimate the learning time appropriately, or do subjects take
longer (or less time) than you had anticipated? and

{f) Were all subjects able to complete the tutor?



266 Shute and Regian

It is also a good idea to run pilot subjects through each condition in the
study. During this “dress rehearsal,” watch the subjects within each phase
of the study, interview them afterward, and take a look at the data. Some
things to look for during the piloting of the study include: (1) Arc your
time estimates accurate? (b) Are your manipulations having the desired ef-
fect? (c) Are the data recorded and stored as you intended? iﬂ‘%

’
PRINCIPLE 7: PLAN YOUR PRIMARY DATA ANALYSIS AS YOU PLAN THE
STUDY

As you design your study, you should concurrently be considering how .

you will analyze the data. This section bricfly outlines possible statistical
techniques, organized by experimental design for illustration purposes only
(c.g., types of confirmatory data analyses for conducting a benchmark eval-
uvation study). Each ITS evaluation study will have its own unique require-
ments for data analysis. Some kinds of statistical analyses are better suited
to certain classes of design types than others. Although we recommend you
include an appropriately trained individual in your design team, some
rules-of-thumb for common analyses follow.

Confirmatory Data Analyses, When you have a specific hypothesis
you want to test, you should employ 2 confirmatory data analysis tech-
nique. Data arising from some of the evaluation designs discussed in this
paper, such as a benchmark evaluations, could be analyzed by (-tests, cor-
relations, Chi-square, confirmatery factor analysis, or analysis of variance,
depending on the focus of the research questions. Some statistics books
even offer decision trees for choosing appropriate analyses (e.g., Howell,
1982).

Exploratory Data Analyses. Too often, rescarchers fall into the trap of
equating “data analysis” with confirmatory analysis—seeking answers o
questions like, “Do my data confirm the hypothesis that Treatment A is
better than Treatment B?" But that position closes the door on exploring
alternative patterns that may exist in your data. Exploratory data analysis is
interactive and iterative with ne fixed procedure to analyze the data. In
terms of the experimentation cycle depicted in Figure 3, exploratory analy-
ses (theoretically-driven) would occur at the starting point of the big arrow,
progressing toward more confirmatory analyses (empirically-constrained).
Thus, exploratory analyses tend to suggest rather than confirm hypotheses,
and both confirmatory and exploratory techniques have important parts to
play in ITS evaluation studies. As an histerical illustration of the impor-
tance of exploratory methods, consider the evolution of our current theories
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of intelligence and abilitics (e.g., Ackerman, 1988; Anderson, 1987; Kyl-
lonen & Christal, 1989). They began as results from exploratory factor
analyses (e.g., Thurstone, 1938; Guilford, 1967), and thus contributed to
the development of these theories.

So, for studies that are exploratory in nature, (e.g., pilot studies, for-
malive within-system evaluations), exploratory techniques are suitable.
Some relevant data analysis methods include: exploratory factor analysis,
cluster analysis, multiple regression analysis, and structural equation mod-
eling (e.g., Shute, 1992, in press-a, Shute & Kyllonen, 1990).

Cost-Benefit Analyses. If you are interested in evaluating other as-
pects of the ITS, there are many standard methods documented to estimate
both cost and utility of systems (e.g., Stone, Turner, Fast, Curry, Looper, &
Engquist, 1992). For instance, you may want to assess whether the pro-
gramming costs associated with implementing various bells and whistles
are justified in terms of increased learning outcomes. One study (Shute, in
press-a) found that differential usage of some computerized exploratory
tools in an clectricity tutor (c.g., tools allowing subjects to change circuit
component values, meter on parts of the system, view the hypertext dictio-
nary of electricity concepts) did nof enhance learning (in fact, there was an
overall negative correlation between tool usage and outcome). However,
use of the on-line tools was optional, thus most learners elected not to use
them. One suggestion would be to make on-line tool usage mandatory dur-
ing the early stages of learning (where there was a positive relationship be-
tween tools and outcome), then gradually reduce that requirement. Other
aspects of the ITS, such as the cost of the hardware and software should be
entered into the cost-benefit equation, as well. Finally, we recommend that
you automate the moving, recoding, and formatting of data as much as pos-

" sible, and carefully check your automated procedures. Try to keep human

recoding to a minimum (o reduce errors, It is possible to be very efficient
managing data that is initially collected on the computer. Think ahead.

CONCLUDING REMARKS

This paper was motivated by the fact that many ITS presently exist,
but there are correspondingly few controlled evaluations. We have been in-
volved with a number of large-scale 1TS evaluations, and know about re-
sults from many more evaluation studics, some successes and some fail-
ures. A lot of the failures could have been avoided, we believe, had the ex-
perimental design been better planned, operationalized, and implemented.
As an attempt to reduce future flawed ITS studies, we have proposed a list
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of seven main principles that should be considered when copducling an

evaluation study:

(1) Delineate the goals of the tutor,

(2) Define the goals of the evaluation study,

(3) Select the appropriate design to meet the defined goals, )

(4) Instantiate the design with appropriate measurcs, number and type ol 4
subjects, and control groups, '

{5) Make necessary logistical preparations for conducting the study, (6) R
Pilot test the tuter, and )

(7) Plan your primary data analysis as you design the study. For each of
the principles, we defined a set of issues (o contemplate.

In addition, we included a collection of experimental designs that
serve different research purposes. This paper also describes various rules-
of-thumb for selecting the appropriate design for your garliculnr research
questions, determining the appropriate dependent and mdcpcnd‘cr'\t mea-
sures, and deciding on the correct sample size and control conditions for
your experiment, ) ) B

There are a few “take home” messages from this paper (in addition to
the seven principles). First, it is not possible to be ovcr-prcparcc} for a ma-
jor study. Second, for your dcpendent and independent variables, you
should use validated instruments, if they are available. If you have thor-
oughly read the literature, you will know what is available. Talk to experts
who are more knowledgeable in certain areas and domains than you are. In
addition, be creative, It may be better to adapt something to suit your par-
ticular needs rather than to make something up, from scratch. However,
given an intimate knowledge of the tutor’s curriculum, as wclll as what you
want the learners to walk away with, you can design appropriate tutor-spe-
cific outcome measures, provided they adhere to basic psychometric tencls
(e.g., enough problems in the tests/surveys to determine reliability).

Building a tutor and not evaluating it is like building a boat and not
taking it in the water. We find the evaluation as exciting as the process of
developing the ITS. Oflen, the results are surprising, and sometimes they
are humbling. With careful experimental design, they will always ‘bc; infor-
mative.
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