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Abstract. The goal of this paper was to explore the possibility of generalizing 

face-based affect detectors across multiple days, a problem which plagues phys-

iological-based affect detection. Videos of students playing an educational 

physics game were collected in a noisy computer-enabled classroom environ-

ment where students conversed with each other, moved around, and gestured. 

Trained observers provided real-time annotations of learning-centered affective 

states (e.g., boredom, confusion) as well as off-task behavior. Detectors were 

trained using data from one day and tested on data from different students on 

another day. These cross-day detectors demonstrated above chance classifica-

tion accuracy with average Area Under the ROC Curve (AUC, .500 is chance 

level) of .658, which was similar to within-day (training and testing on data col-

lected on the same day) AUC of .667. This work demonstrates the feasibility of 

generalizing face-based affect detectors across time in an ecologically valid 

computer-enabled classroom environment. 

1 Introduction 

Students experience various affective states that influence learning in striking ways 

[1, 2]. For example, boredom has been shown to be negatively related to learning in 

multiple computerized learning environments [3, 4], while engagement has been 

shown to be positively associated with learning [4]. Affect has also been shown to 

influence learning by modulating cognitive and motivational processes in striking 

ways (see [5] for a review). Given the importance of affect to learning, researchers 

have been creating computerized learning environments that automatically detect and 

respond to students’ affective states [6]. For example, one experiment comparing an 

affect-sensitive intelligent tutoring system (ITS) to a the same ITS without affect 

sensitivity found that learners with low prior knowledge learned significantly more (d 

= .713) from the affect-sensitive version compared to the plain version of the ITS [7]. 

Despite the success of such affect-sensitive learning environments, work remains to 
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be done to enable affect-sensitivity to function in contexts outside of a laboratory 

study, such as a noisy classroom. One key challenge involves the development of 

accurate affect detectors that can function in computer-enabled classrooms. Some 

work is being done in this area ([4, 8]). 

Another important issue is temporal generalizability (generalization over time), 

which seeks to ascertain whether a detector trained on data from one day will still 

work well when classifying data from a different day. Such a detector might not work 

well because the features it uses may be influenced by factors specific to a day. Phys-

iology-based sensors have been shown to suffer from such differences [9]. For exam-

ple, a student’s average skin conductance (a physiological feature) may change from 

one day to the next. Thus, detectors created using skin conductance data from one day 

may not work well on a different day unless specific measures are taken to compen-

sate for the day-to-day differences. 

In this paper we focus on face-based affect detection. Potential causes of day dif-

ferences in face-based affect detection include lighting in the classroom (which can 

change how well computer vision algorithms detect facial features), students’ mood 

(which might alter their affect and facial expressions), number of students (which 

might influence how distracted students are by their friends and how much they con-

verse with each other), and perhaps other factors. However, whether day-to-day dif-

ferences impact face-based affect detection accuracy (as they do physiology-based 

detectors) is currently unknown, and is the central focus the current paper.  

Related Work. Many different modalities (e.g., facial features, physiology, audio) 

have been proposed and evaluated for affect detection [10]. To keep the scope man-

ageable, we focus on affect detection efforts in educational contexts and those testing 

differences across days. 

Interaction data from log-files has shown promise for building affect detectors that 

generalize across time. Pardos et al. [4] used interaction data collected over the span 

of a few days in 2010 to build affect detectors. These detectors were then applied to a 

separate, previously collected dataset from two school years (Fall 2004-Spring 2006). 

The detectors’ predictions were correlated with students’ scores on a standardized 

test. Several of these correlations demonstrated the consistency of detectors across 

two school years. Predicted boredom (r = -.119 for year 1, r = -.280 for year 2), con-

fusion (r = -.165, r = -.089), and gaming the system (r = -.431, r = -.301) negatively 

correlated with test score in both school years, while engaged concentration (r = .449, 

r = .258) positively correlated in both years. However, they did not directly test cross-

year generalization by building detectors on one year of data and testing on the other. 

Physiology has been used for affect detection with channels such as skin conduct-

ance and heart rate [8, 11]. However, multiple studies have observed degraded affect 

detection performance using physiological data when models trained using data from 

one day are tested using data from another day [9, 11]. In a classic study, Picard et al. 

[11] found that physiological data were more tightly clustered by affective state with-

in data from the same day than were data from another day. The data distribution 

parameters become less reliable due to changing factors like mood and attention, and 

the decision boundaries for classifiers became less effective for discriminating in-

stances of affect from a later day. 



 

 

Cameras are a ubiquitous part of modern computers, from tablets to laptops to 

webcams, so face-based affect detection is an attractive option compared to modali-

ties that require special equipment like skin conductance sensors or heart rate moni-

tors. A variety of approaches have been used for face-based affect detection [10, 12]. 

Frustration [13, 14], engagement [13, 15], confusion [16], and other learning-centered 

affective states can be detected using facial features. However, many of these and 

other studies have taken place in a lab environment where data were collected one or 

two students at a time over the course of a few months. The conditions in lab-based 

studies are typically tightly controlled in an effort to reduce outside influences on the 

outcomes of studies. Changes like lighting and mood, and differences in classes (e.g., 

number of students, teaching strategies) that could influence affect detection may not 

be salient, unlike in a more ecological data collection setting such as a computer-

enabled classroom. Thus, temporal generalizability of face-based affect detectors is 

currently an open question with important practical implications. 

Current Study. To assess the ability of face-based affect detection to generalize 

over time in the ecologically valid setting of a computer-enabled classroom, the cur-

rent paper attempts to answer three novel questions: 1) how does performance change 

when affect detectors are trained on one day and tested on another? (cross-day) com-

pared to training and testing on data collected on the same day (within-day); 2) how 

do model and data parameters differ between the best-performing models built using 

data from different days? and 3) how much do different cross-day models rely on the 

same features for affect detection? The novelty of our contribution is that, to the best 

of our knowledge, this is the first paper to attempt to explore the possibility of face-

based affect detection generalizing across time.  

This paper uses a dataset that has been used for previous work on face-based affect 

detection [17]. Face videos were recorded in a noisy computer-enabled classroom 

environment where up to thirty students at a time played an educational physics game. 

Students talked to others and themselves, gestured, and occasionally left for bathroom 

breaks. Factors such as number of students in a class, lighting, and time of day varied 

as well. A subset of learning-centered affective states (boredom, confusion, delight, 

engagement, frustration, and off-task behavior) were detected using in a student-

independent fashion to ensure generalization to new students. Detection was success-

ful with average Area Under the ROC Curve (AUC) of .709. Data were collected over 

two days (with a 3-day interval). However, data from two days were pooled together 

for building detectors, and thus there was no evidence of generalization across days. 

In the current study we compare results of generalization against the baseline stand-

ards established in this previous work by training detectors on data collected on one 

day and testing them on data collected on a second day [17]. 

2 Method 

A more thorough treatment of the data collection procedure and the model building 

method used in this study can be obtained by examining [17]. In this paper, we focus 

on only the most important aspects and those closely related to the goals of this paper. 



 

Fig. 1. Ramp solution in Physics Playground. 

2.1 Data 

The data were collected from 137 8
th

 and 9
th

 grade students (57 male, 80 female) who 

were enrolled in a public school in a medium-sized city in the Southeastern U.S. Stu-

dents were tested in groups of about 20 students per class period (55 minutes per peri-

od). The study took place in one of the school’s computer-enabled classrooms, which 

was equipped with about 30 desktop computers. Inexpensive webcams ($30) were 

affixed at the top of the monitor on each computer. 

 Students played Physics Play-

ground [18], a two-dimensional game 

that requires the player to apply prin-

ciples of Newtonian physics in an 

attempt to guide a green ball to a red 

balloon (key goal) in many challeng-

ing configurations. Fig. 1 illustrates a 

configuration requiring a ramp drawn 

to build up speed before launching up 

to red balloon. Everything in the game 

obeys the basic laws of physics relat-

ing to gravity and Newton’s three 

laws of motion. Students’ affective 

states and on-task vs. off-task behaviors were coded using the Baker-Rodrigo Obser-

vation Method Protocol (BROMP) field observation system [19]. The affective states 

of interest were boredom, confusion, delight, engaged concentration, and frustration. 

This list of states was selected based on previous reviews on affect during learning 

with technology [1] and from observing students during pilot data collection (these 

data were not used in the current models). Delight was only added to the list of affec-

tive states on the second day, so cross-day generalization testing could not be per-

formed for delight. In addition to affect, students were coded as being: on task when 

working on their own computer, on-task conversation when conversing with other 

students about the task, and off task in other situations (e.g., task-unrelated conversa-

tion, watching other students without conversation, using a cellphone). 

We consider data from two days of game-play (Day 1 and Day 2). Day 2 data were 

collected three days after Day 1. We obtained 1,767 observations of affective states 

and 1,899 observations of on-task/off-task behavior across these two days. Engaged 

concentration occurred most frequently (73.0% Day 1, 78.6% Day 2), followed by 

frustration (16.4%, 11.3%), boredom (6.7%, 2.7%), and confusion (3.9%, 1.2%), after 

removing instances of delight. Despite slightly increased off-task behavior on Day 2 

(5.3% vs. 4.3% on Day 1), there appeared to be a general trend toward more engage-

ment and less of the other affective states on Day 2.  

2.2 Building the Affect Detectors 

Machine learning methods, used to build the affect detectors, proceeded in three 

phases: feature engineering, supervised classification, and detector validation. 



 

 

Feature Engineering. The Computer Expression Recognition Toolbox (CERT) 

[20] is a computer vision tool used to automatically detect the likelihood of 19 differ-

ent action units (AUs, facial muscle movements; [21]) in any given frame of a video 

stream. Estimates of head pose and head position information are given by CERT as 

well. CERT has been tested with databases of both posed facial expressions and spon-

taneous facial expressions, achieving accuracy of 90.1% and 79.9%, respectively, 

when discriminating between instances of the AU present vs. absent [20]. 

We used FACET, a commercialized version of the CERT computer vision software 

(http://www.emotient.com/products), for facial feature extraction. Features were cre-

ated by computing the median, and standard deviation for the frame-level likelihood 

values of AUs and head position obtained from FACET in a window of time leading 

up to each observation. For example, we created three features from the AU4 channel 

(brow lower) by taking the maximum, median, and standard deviation of AU4 likeli-

hoods within a six second window leading up to an affect observation. Window sizes 

of 3, 6, 9, and 12 seconds were explored. We also used two features (median and 

standard deviation) computed from gross body movement in the videos. Body move-

ment was calculated as the proportion of pixels in each video frame that differed from 

a continuously updated estimate of the background image generated from the four 

previous frames using a motion silhouette algorithm [22]. 

Poor lighting, extreme head pose or position, occlusions from hand-to-face ges-

tures, and rapid movements can all cause face registration errors; these issues were 

not uncommon due to the game-like nature of the software and the active behaviors of 

the students in this study. A third (34%) of the instances were discarded because 

FACET was not able to register the face for at least one second (13 frames) during an 

observation (a common problem in face-based affect detection), and thus the presence 

of AUs could not be estimated. 

Tolerance analysis was used to eliminate features with high multicollinearity (vari-

ance inflation factor > 5) [23]. RELIEF-F feature selection [24] was used to obtain a 

sparser, more diagnostic set of features for classification. Feature selection was per-

formed using nested cross-validation on training data only. 

Supervised Learning. A two-class approach was used for each affective state, 

where that affective state was discriminated from all others. For example, engaged 

was discriminated from all frustrated, bored, delighted, and confused instances com-

bined (referred to as “all other”). Behaviors were similarly grouped into two classes: 

off-task and both on-task and on-task conversation. Weka, a popular machine learning 

tool, was used to train supervised classifiers [25]. Bayes net, updateable naïve Bayes, 

classification via cluster, and logistic regression classifiers were chosen based on our 

prior results [17]. Synthetic oversampling (with SMOTE; [26]) was used to equalize 

class sizes on the training data only. The distributions in the testing data were not 

changed, to preserve the validity of the results. 

Model Validation to Test Generalization. Testing the generalization of models 

across days was performed with a nested cross validation approach to ensure general-

ization to new students and new days. First, data from one day were chosen as train-

ing data. Then, 67% of students were randomly selected from that day and their data 

were used to build a model. This model was then tested using data from the remaining 



33% of students in either the same day (same-day generalization: e.g., train on Day 1, 

test on Day 1) or on the opposite day (cross-day generalization: e.g., train on Day 1, 

test Day 2). Student-level independence was thus ensured for both testing on the same 

day and testing on a different day. Fig. 2 illustrates the validation process.  

The process of randomly selecting students for training and testing was repeated 

150 times for each model (train-test: Day 1-Day 1; Day 1-Day 2; Day 2-Day 1; Day 

2-Day 2) and the results were averaged across iterations to ameliorate random sam-

pling error. 

 

 

Fig. 2. Example of same-day and cross-day testing with student-level independence. 

3 Results and Discussion 

Results are organized with respect to the research questions listed in the Introduction. 

Research Question 1: Cross-Day Generalization. To explore the performance of 

models trained on one day and tested on another, we compared performance against 

the model trained and tested on data from the same day. The same-day results were 

averaged across both of the same-day models (e.g., train on Day 1, test on Day 1; 

train on Day 2, test on Day 2). Likewise, the cross-day results were obtained by aver-

aging both cross-day models (train Day 1, test Day 2; train Day 2, test Day 1) for each 

affective state. Table 1 contains the results for each affective state. Previous work 

with both days of data combined is also provided as a reference point [17]. 

Table 1. Results of cross-day compared to same-day detection. 

Classification Cross-day 

AUC 

Same-

day AUC 

Change 

(Cross-day - 

Same-day) 

Combined-days 

AUC 

Change 

(Cross-day - 

Combined-days) 

Boredom .577 .574 0.23% .610 -3.34% 

Confusion .639 .665 -2.61% .649 -1.02% 

Engagement .662 .679 -1.72% .679 -1.70% 

Frustration .631 .643 -1.21% .631 0.02% 

      
Off Task .781 .774 0.72% .816 -3.48% 

Mean .658 .667 -0.92% .677 -1.90% 

 Note. Cross-day change is percentage of change in AUC, which is bounded on [0, 1]. 
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The key result is that the cross-day models performed with similar accuracy (aver-

age AUC = .658) to same-day models (average AUC = .667). Though there was a 

slight decrease overall in classification accuracy (< 1%), no detector suffered notably. 

The largest drop (2.61% drop in AUC) occurred for confusion. 

Compared to previous work with combined-days models, same-day models had 

0.99% lower performance and cross-day models had 1.90% lower performance. De-

creased performance may be attributable to the fact that the combined-days models 

have the advantage of twice as much training data. With more data, cross-day model 

performance might improve and approach the combined-days models’ performance. 

Research Question 2: Comparison of Model Parameters. In addition to number 

of instances, we compared other data and model parameters to illustrate potential 

differences between the individual day models. Window size (3, 6, 9, or 12 seconds), 

feature selection (yes or no), and classifier were compared. Table 2 shows the differ-

ences in the best-performing Day 1 and Day 2 models. 

Table 2. Differences between Day 1 and Day 2 models. 

Classification Window Size Feature Selection Classifier 

 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 

Boredom 12 sec 12 sec Yes Yes CVC CVC 

Confusion 12 sec 12 sec Yes Yes BN UNB 

Engagement 9 sec 9 sec No No BN BN 

Frustration 9 sec 6 sec No No BN BN 

       

Off Task 12 sec 12 sec Yes Yes UNB UNB 

Note. Bold indicates parameters that differed between models. Classifiers listed were Classification Via 

Regression (CVC), Bayes Net (BN), and Updateable Naïve Bayes (UNB). 

 

Of the 15 parameters for each individual day model, only two differed (denoted in 

bold in Table 2). The close similarities between the data and model parameters of the 

best-performing detectors suggest that the particular day does not make a notable 

difference in parameters, and thus the chosen parameters are not the result of over-

fitting models to day-specific attributes.  

Research Question 3: Comparison of Feature Selection Rankings. We exam-

ined correlations of feature rankings between the Day 1 models and Day 2 models to 

determine how similar the set of selected features might be on different days. Feature 

rankings were recorded during each iteration of RELIEF-F feature selection [24] in 

each model of the three that used feature selection (boredom, confusion, and off-task). 

RELIEF-F uses L1 distance to rank a feature based on within-class distance vs. be-

tween-class distance, so rankings are subject to substantial variation unless data are 

tightly clustered within that feature. Thus, correlations were expected to be modest 

provide a measure of how similar the data clustering is within features between days. 

The correlation between Day 1 and Day 2 feature rankings was lower for the affec-

tive states than for off-task behavior. Confusion was correlated least (r = .248), fol-

lowed by boredom (r = .270). However, feature rankings for both affective state mod-



els were correlated between days in the positive direction, demonstrating that at least 

some of the same clustering present in the features was detected by RELIEF-F in both 

days. Off-task behavior was correlated more highly and in the expected direction 

between days (r = .402). 

We also examined the correlations between each feature rankings from each indi-

vidual day and the combined-days models. Both affective states’ feature rankings 

correlated with the combined-days models (r = .595 for boredom, r = .654 for confu-

sion). Off-task feature rankings were also correlated (r = .613). The comparatively 

large magnitude of these correlations was not surprising given that half of the data in 

the combined-days models matches the data in each individual day model. 

4 General Discussion 

Creating affect detectors that generalize across time is important if intelligent educa-

tion environments are going to be useful for learning across multiple sessions. We 

tested if affect detection models built using facial features and machine learning tech-

niques could be generalized across days with reasonable accuracy for several affective 

states (boredom, confusion, engagement, and frustration) that are important to learn-

ing, as well as off-task behavior.  

Main Findings. We built student-independent cross-day affect detection models 

and compared them to same-day and combined-days models. Cross-day detection was 

successful using training data from one day and testing data from another day with 

AUC = .658. Compared to performance of the same-day models (AUC = .667) and 

combined-days models (AUC = .677) for these affective states, the cross-day general-

ization models show similar performance, though marginally lower for some affective 

states. We also found some similarity (and difference) in the feature selection rank-

ings between days of data (average r = .249 for affective states, r = .402 for off-task 

behavior). Cross-day models could still successfully classify data from a different day 

at levels well above chance despite differences in feature selection rankings. 

Limitations and Future Work. This study is not without its limitations, particu-

larly with regards to the breadth of data used. Though we collected data from multiple 

class periods and two days, all data were collected in the same computer-enabled 

classroom and learning environment. Lighting conditions and the students who partic-

ipated varied somewhat between days, but more variation (such as could be obtained 

from different learning environments at multiple schools) might make the task even 

more difficult and produce new insights on generalization of face-based affect detec-

tion. Similarly, the amount of time represented in this study (two different days) is 

enough to explore the first steps of cross-day generalization, but not enough to ex-

plore larger differences such as cross-seasonal generalization (i.e., train models in fall 

test in spring). Future work will address these issues by expanding data collection to 

encompass more geographical areas and extended periods of time. 

Concluding Remarks. We took the first steps in studying the temporal generaliza-

bility of face-based affect detectors in classroom contexts. With affect detectors that 

generalize well across time and work in noisy school environments, affect-sensitive 



 

 

computerized education environments can respond to the affective needs of students 

with confidence that detections are not simply the result of factors specific to a partic-

ular day. The next step is to study temporal generalization across extended time 

frames, such as months or years, so that seasonal differences can be better understood. 
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