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Simulation and game-based assessments generate lots of data; however, 
those data only become useful if they can be turned into evidence by con-
necting them to aspects of proficiency that are of interest to an educator. 
The fundamental principle is simple: A behavior which is likely to occur 
at high proficiency states and unlikely to occur at low proficiency states is 

CHAPTER 9
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164  R. ALMOND et al.

good evidence for that proficiency state. Simulation and game-based assess-
ment cause students to exhibit a large stream of behaviors, most of which 
have low evidentiary value. The challenge is one of evidence identification: 
isolating and recording the behaviors which have high evidentiary value.

As a running example for this paper, we will use the game Physics Play-
ground (Shute & Ventura, 2013). As the name implies, the goal of the game 
is to teach physics. In the game the players interact with a 2-dimensional 
world which follows the laws of physics. Their goal in each case is to get the 
ball to a target, represented by a balloon. Figure 9.1a shows a typical level 
from Version 1 of the game. Figure 9.1b shows a possible solution. Here 
the player has created a springboard with a weight attached. Detaching the 
weight will cause the ball to fly up in the air and strike the balloon.

Although the goal of the game-based assessment is to infer knowledge 
about qualitative physics (Ploetzner & VanLehn, 1997), what the game 
provides is a stream of events: mouse clicks and button presses. The game 
engine converts these low-level events to higher level events: for exam-
ple, shapes drawn on the screen, movements of the ball and the ball strik-
ing the balloon. A recent field trial involving around 300 players playing for 
approximately 5 hours each generated over 4.5 million logged events. From 
this stream of high-level events it is difficult to determine which sequences 
of events correspond to an understanding of physics. However, if inferences 
can be drawn about the players’ ability relative to the dimensions of inter-
est, those inferences could be used to guide the selection of levels in the 
game or learning supports to the players.

There are a number of approaches to processing these game logs. One 
approach is to ignore all but the highest-level events. In Physics Playground, 
the game awards a gold or silver coin for a successful solution of a level 
(gold for a solution that is both successful and efficient). Using only the 

Figure 9.1 Example level and solution from Physics Playground Version 1. Player 
Goal: Get the ball to the balloon by drawing ramps, levers, springboards, and pendulums.
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Identifying Observable Outcomes in Game-Based Assessments  165

coin events to make inferences about proficiency is easy to implement, but 
potentially leaves a lot of valuable evidence unevaluated.

A second class of approaches involves using machine learning tech-
niques to extract relevant evidence from the game logs. Machine learn-
ing techniques come in supervised and unsupervised flavors. Unsupervised 
techniques merely require large data sets; however, like exploratory factor 
analysis, they produce unlabeled patterns of events that are seen in many 
logs. Sometimes these may make sense from a cognitive perspective and 
other times they may be artifacts of the particular sample used for training. 
The construct validity argument for inferences from these unsupervised 
models is weak: It relies on correlations between the presence of a particu-
lar pattern and the construct being assessed. Supervised machine learning 
techniques require a human to label patterns of interest, and the algorithm 
attempts to find ways of recognizing those patterns. The labeling process is 
almost always expensive.

This chapter takes a third approach: the use of rules of evidence to parse 
the event stream and set the values of observable variables. The terms rules 
of evidence and observables come from evidence-centered assessment design 
(ECD; Mislevy, Steinberg, & Almond, 2003). HyDRIVE was a simulation-
based assessment that was one of the exemplars used in the formulation of 
ECD (Mislevy & Gitomer, 1996). The rules of evidence for HyDRIVE were 
written in the logic-based programming language, Prolog, so they were lit-
erally if–then style rules. These rules were used to set the value of observ-
able variables in a Bayesian network which was then used to draw infer-
ences about the student competencies. This is the same architecture we are 
implementing for Version 2 of Physics Playground. These if–then style rules 
can be written by the physics experts and students in instructional design 
who are working on the game levels and learning supports; team members 
with minimal exposure to formal computer programming.

This chapter looks at the construction of a scoring model for an updated 
version (Version 2) of Physics Playground. Section 2 presents a simplified ver-
sion of ECD, focusing on the relationship between the elements of the de-
sign and the requirements for the scoring software. Section 3 describes the 
process used to establish the design elements for Version 2 of Physics Play-
ground. Section 4 introduces a language for describing rules of evidence. 
Section 5 summarizes observations on how these algorithms performed in 
a recent moderately sized field test.

FOUR ELEMENTS OF ASSESSMENT DESIGN

The ECD process (Mislevy et al., 2003) centers assessment design around a 
construct validity argument for the assessment by forcing the designers to 
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166  R. ALMOND et al.

explicitly state how observable outcomes from each task (or item) produces 
evidence for the construct of interest. This argument is built first at a qualita-
tive level in the domain model, and then in a more quantitative way in the 
conceptual assessment framework (CAF; for details see Chapters 2 and 12 of Al-
mond, Mislevy, Steinberg, Yan, & Williamson, 2015).

The CAF contains four elements as shown in Figure 9.2. The arrows are 
drawn in a counterclockwise direction, as the reasoning for design often 
travels in this direction. It is shown as a circle because this is an iterative 
process.

The four elements, going counterclockwise from the left, are:

1. The Construct map defines the space of possible patterns of skills
that a student (in the target audience) might possess. (This was
called the proficiency or competency model in older ECD papers.)
The word “skill” is used for one dimension within the construct
map with the understanding that the construct to be measured
might not normally be described as a skill (e.g., engagement might
be a target “skill”).

2. The evidence describes observable outcome variables that could pro-
vide evidence for the skills of interest. (This was called the evidence
model in older ECD papers.) The evidence is linked with a statistical
model to the skill variables in the construct map, and with rules of evi-
dence, or a scoring rubric, to the outcome space of a particular task.

3. Task Designs provide the description of a class of environment in
which the evidence can be observed. (These were referred to as
task models in older ECD papers.) Note that each design corre-
sponds to a collection of different tasks which can be manipulated
by changing features of the task (Kim, Almond, & Shute, 2016).

Assessment
Plan

Construct
Map

Evidence
Rubrics

Task
Designs

Figure 9.2 Four elements of the conceptual assessment framework.
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Identifying Observable Outcomes in Game-Based Assessments  167

4. The assessment plan is a set of rules for constructing a complete form 
of the assessment. (This was called the assembly model in older ECD 
papers.) Note that in an adaptive assessment, this is described by a 
series of rules: Rules describing how the collection of tasks must span 
the construct and rules for determining when sufficient evidence has 
been gathered for the purpose of the assessment.

Two of the original six ECD models were left out of Figure 9.2, the pre-
sentation model and the delivery system model, but the design considerations 
they represent remain important. The presentation model describes the 
capabilities of the simulator or game engine. In Physics Playground 1, the 
ball was always the same mass. That made it difficult to assess the students 
understanding of the relationship between force, mass, and acceleration 
(Newton’s Second Law). So for Version 2, the capability of changing the 
mass of the ball was added. The delivery system model describes among 
other things, the population targeted by the assessment. In our case as the 
target population is usually middle and high school students, so they had 
not been exposed to vectors in their mathematics classes. This was an im-
portant design consideration for the assessment.

Four Processes of Assessment Delivery

A completed conceptual assessment framework should provide complete 
specifications for building the assessment. The four process architecture 
for assessment delivery (Proc4; Almond, Steinberg, & Mislevy, 2002) pro-
vides an idealized model of the processes (human or computer) necessary 
to implement the assessment. The four processes can be placed in between 
the four elements as shown in Figure 9.3.

Assessment
Plan

Construct
Map

Evidence
Rubrics

Task
Designs

Activity
Selection

Evidence
Accumulation

Presentation
Process

Evidence
Identification

Figure 9.3 Four processes for assessment delivery.
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168  R. ALMOND et al.

Starting from the upper left, the activity selection process (AS) consults 
the assessment plan to determine the first task to present to the student. 
Then the presentation process deliveres that task and logs the student inter-
actions. (Note that this could either be an assessment task, designed to 
gain knowledge about student skills as well as allowing the student to exer-
cise the target skills, or a learning support task designed to more passively 
convey knowledge. In either case, the system logs the interaction, even if 
that merely consists of pressing “OK.”) Next, the evidence identification pro-
cess (EI) applies the rules of evidence appropriate to the task context to the 
stream of events. The EI it sets the values of key observable variables and 
passes them along. The evidence accumulation process (EA) takes the stream 
of observables from the EI process and attempts to locate the student on 
the construct map. Control then returns back to the AS process, which 
chooses the next level. In an adaptive assessment, it chooses the level based 
on the current estimate of the students skills; in a linear assessment, the 
tasks are presented in a predetermined order.

There are any number of ways that these processes can be implemented. 
For Physics Playground 2 the following implementation strategies were used:

• Presentation Process—The game engine was written in Unity 2D® (Uni-
ty Technologies, 2019) and implemented as a client–server system 
where the game levels were displayed in the player’s web browser. The 
game would send logging information back to the Unity server, where 
the events would be logged in a Learning Locker® (“Learning Locker 
Documentation,” 2018) record store. In addition to presenting the 
game level, the presentation process presented learning supports 
often by streaming videos from YouTube® .

• Evidence Identification—The EIEvent package (Almond, 2019a) ran 
on a separate scoring server. It periodically downloaded events from 
the Learning Locker record score from the Unity server, filtered 
those events, and then ran the rules of evidence (described in Section 
4 to determine the value of the observables. The observables were 
logged in a database collection which served as the input queue to 
the EA process.

• Evidence Accumulation—We employed a Bayes net based system that 
followed the algorithm described in Chapter 13 of Almond et al. 
(2015). It fetches the observables from the queue in the database, 
and uses this information to update the student model—the player 
specific copy of the construct map which locates that particular 
player in the skill space. When the updating was complete, the EA 
process would save statistics summarizing the player’s location in the 
skill space to the database. This could be queried by both the game 
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Identifying Observable Outcomes in Game-Based Assessments  169

engine (for displaying student progress on the scoreboard) and for 
the activity selection process. The code ran on the same server as 
the evidence identification code, and used the Peanut (Almond, 
2019b) package and the Netica® Bayes net engine (Norsys, 2012).

• Activity Selection—The original plan was to use the expected weight 
of evidence algorithm used in ACED (Shute, Hansen, & Almond, 
2008) and described in Chapter 7 of (Almond et al., 2015). Because 
of time constraints, a simpler algorithm was used and implemented 
inside the game engine. The levels were assigned to topics cor-
responding to skills in the construct map. If the corresponding 
statistic was high then the system would deliver difficult levels within 
the topic, and if it was low, then easier levels were delivered. If the 
corresponding variable became sufficiently high then the player 
would graduate from that topic and move to the next. When a play-
er graduated from all topics, they would go into an endgame where 
the AS process would select unplayed levels in an arbitrary fashion.

The four processes are not meant to be a rigid partitioning of the work 
necessary for the assessment, but rather a guideline for organizing the work. 
Physics Playground required code for identifying whether an object a player 
had drawn on the screen was a ramp, springboard, lever, pendulum, or 
something else. Although this could be regarded as an EI task, it was easier 
to accomplish within the game engine as it required detailed state informa-
tion about the position and motion of the object in the two-dimensional 
world. Similarly, it proved more efficient to put the entire activity selection 
process inside the game (the presentation process) than create a separate 
process.

Proc4 Messages

The four process (Proc4) architecture assumes that the processes commu-
nicate with each other through a series of messages. In the implementations 
we have worked with, these messages are divided into a header and a data 
portion. The header has a series of standard fields which are used to route 
and prioritize the message. The data portion can be anything, and in general 
its value will be determined by the message. Listing 9.1 shows a prototypical 
message in JSON (java script object notation; Bassett, 2015) format.
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170  R. ALMOND et al.

The data field is the body of the message. The other fields are headers. 
They have the following meaning:

app A globally unique identifier (guid) for the assessment 
application. The URL-like structure is intended to allow 
each organization to issue its own app IDs.

uid An identifier for the student or player.
context An identifier for the context in which the message was gen-

erated. In Physics Playground this corresponds to game levels, 
but it might have other meanings in other applications.

sender Which process generated the message.
mess A subject line for the message indicating its content.
timestamp A timestamp for the message. Generally, messages for the 

same uid need to be processed in chronological order.
processed A flag that can be set after the message has been processed.

In Physics Playground these messages were stored in a Mongo® database 
(“The MongoDB 4.0 Manual,” 2018). This document-oriented database al-
lows indexes to be built for the header fields, while allowing the data fields 
to be unrestricted (unlike a relational database, formal schemas are not 
required). This allowed the database to serve as queue for the other pro-
cesses, as they could simply extract the oldest unprocessed message and 
process them.

LISTING 9.1: A typical Proc4 message in JSON format

 1 {
 2 app: "ecd://epls.coe.fsu.edu/PP",
 3 uid: "Student 1",
 4 context: "SpiderWeb",
 5 sender: "Evidence Identification",
 6 mess: "Task Observables",
 7 timestamp: "2018-10-22 18:30:43 EDT",
 8 processed: false,
 9 data:{
 10   trophy: "gold",
 11   solved: true,
 12   objects: 10,
 13   agents: ["ramp","ramp","springboard"],
 14   solutionTime: {time:62.25, units:"secs"}
 15   }
 16 }
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Identifying Observable Outcomes in Game-Based Assessments  171

Note that fields such as context, mess, and sender as well as the data 
field can take on arbitrary values. In practice, the three header fields will be 
limited to a certain vocabulary—set of legal values with specific meanings in 
the context of the operation. The set of legal data values will depend on the 
other fields. The app field controls the vocabulary, defining what values are 
legal for the other fields. This allows the same generic software to work with 
assessments with potentially quite different requirements.

PHYSICS PLAYGROUND CONCEPTUAL ASSESSMENT 
FRAMEWORK

Physics Playground is a moderately large game, with over 150 game levels, 
learning supports, and associated pretests and posttests. This effort has in-
volved a large number of people (over 20), many of whom have joined 
the project in progress. Here, a formal assessment design is necessary to 
co-ordinate the efforts of all the people, as well as pass on the knowledge of 
key players who graduate from the project team. Physics Playground has a full 
conceptual assessment framework, but this chapter will concentrate on the 
pieces relevant to the development of the evidence rules.

The first step is to get clear definitions of the target constructs (Section 
3.1), including defining evidence for them. When the first inventory was 
complete, it was clear that the existing sketching tasks were insufficient to 
span the construct, so new manipulation tasks were created (Section 3.2). 
Section 3.3 describes some other features of the game environment that 
need to interact with the EI process.

Contstruct Variable Definition Spreadsheet

A critical part of any assessment design is clearly defining the construct 
to be measured. After all, how can an assessment have construct validity if 
the construct is ill-defined? Table 9.1 is an excerpt from the spreadsheet we 
used in defining the competency variables for Physics Playground 2. At this 
stage the model is a three level hierarchical model, with and overall phys-
ics construct broken down into competencies and sub-competencies. The 
work was done primarily by the physics educators on the team, with other 
team members facilitating the progress, and asking clarifying questions.

Even though the focus was on defining the competencies, it was impor-
tant to think about how the game could provide evidence for the compe-
tencies. The evidence column was in the spreadsheet from the beginning. 
This column would be later used to inspire task design and observable 
definitions.

AU: “an” ?
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172  R. ALMOND et al.

The next task was to organize the proficiencies into a statistical model 
of the construct space. Physics Playground uses a Bayesian network (Almond 
et al., 2015) for this purpose. The Bayesian network expresses not only the 
possible skill profiles for the players, but the probablity that a player chosen 
from the target population will have a particular skill profile. Figure 9.4 
shows the final competency network for Physics Playground 2. The graph is 
similar to a structural equation model, with nodes in the graph representing 
the competency variables, but has additional conditional independence re-
strictions. These restrictions allow efficient computations that make Bayes-
ian network an ideal candidate for the EA process (Almond et al., 2015). 
Again, the student model, which tracks the skill profile of each player, is a 
player-specific copy of the competency network.

In additional to the graphical structure, conditional probability tables 
are requried for all nodes. This was initially done using input from the 
physics educators with the plan to estimate them from data after the field 
testing was complete.

TABLE 9.1 Construct Variable and Evidence Spreadsheet (excerpt)

Competency
Sub-
Competency Description Evidence

Force and 
Motion

Newton’s 1st 
Law

Static equilibrium 
(a = 0 and v = 0)

Player applies or adjusts a force 
(e.g., nudge, blow, gravity, air 
resistance) to keep an object 
stationary in at least one 
dimension.

Force and 
Motion

Newton’s 2nd 
Law

Net force and 
acceleration are 
directly related

Player applies or adjusts a force 
acting on an object to cause it to 
accelerate at a desired rate.

Linear 
Momentum

Properties of 
momentum

Momentum is 
directly related to 
mass

Player adjusts the mass an 
object to affect the amount of 
momentum it transfers to a 
second object after the two collide.

Energy Energy can 
transfer

Energy can 
transform from 
one type to another 
(e.g., GPE to KE)

Player changes parameters 
(e.g., mass, position, speed) to 
transform more or less energy 
of one type to another (e.g., KE, 
GPE, EPE) of the same object.

Torque Properties of 
torque

Force and torque 
are directly related.

Player adjusts the magnitude of 
a force to cause a corresponding 
change in the magnitude of a 
torque.

Science and 
Engineering 
Practices

Use iterative 
design to solve 
a problem

Solve a problem by 
making variations on 
previous strategies

Player makes successive 
adjustments of the same 
parameter to solve a level.
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Identifying Observable Outcomes in Game-Based Assessments  173

In addition to the competency network, the EA process needs an evi-
dence net for each game level. This is a Bayes net fragment which links the 
observable variables from the current level to the competencies measured 
in that level. Figure 9.5 shows the evidence net for the Spider Web level 
(Figure 9.1). Note that this is actually a fragment of the complete network 
as the orange nodes are references to the competency network.

The pale yellow nodes are observables, and rules of evidence are needed 
to define how their values are calculated. Section 4 addresses this task.

Energy can Transfer

Linear Momentum

Force and Motion

Energy

Torque

Physics Understanding

Newton’s First Law

Newton’s Second Law

Newton’s Third Law

Properties of Torque

Properties of momentum

Conservation of momentum

Energy can Dissipate

Static Equilibrium

Figure 9.4 Final Competency Network.

Energy can Transfer Duration to solve level

Number of attempts

Agent Type

Level solving statusProperties of Torque

Figure 9.5 Evidence Net for Spider Web level.
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174  R. ALMOND et al.

Manipulation Levels

Version 1 of Physics Playground had only one type of game mechanism: 
the sketching interface shown in Figure 9.1. In building the initial compe-
tency distributions, it became clear that it would be difficult to get evidence 
for certain competencies within this environment. For example, the “Lin-
ear Momentum” competency required players to adjust the mass of the 
ball. However, this was not possible using the Version 1 game mechanics. 
Consequently, Version 2 added a new type of level: manipulation levels. In 
manipulation levels, players can adjust the mass of the ball, the force of 
gravity, the air resistance, as well as the force exerted on the ball by blowers 
(steady force) and puffers (momentary force). Figure 9.6 shows a typical 
manipulation level. The key step in this level is changing the coefficient of 
restitution (i.e., bounciness) of the ball and adjusting the other parameters 
so that the ball bounces off the alligators and into the balloon.

These new types of tasks required new evidence nets, with new types 
of observables (e.g., counting slider manipulations rather than classifying 
types of objects drawn). Consequently, we classified the tasks (levels) into 
sets that would require similar evidence rules. Figure 9.7 shows the evi-
dence net fragment for the Florida level.

Learning Supports and Other Game Features

Version 2 of the game included an incentive system, game store (Fig-
ure 9.8), and an extensive system of learning supports. Solving a level the 

Figure 9.6 A sample manipulation level (Florida). Goal: Get the ball to the bal-
loon by manipulating the ball’s mass, gravity, air resistance, and/or bounciness.
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first time would earn a player $10 (silver coin) or $20 (gold coin). The 
player could spend the money in the game store to make cosmetic changes 
to the game (e.g., change the ball to a soccer ball, change the background 
image or background music). However, this added a new requirement that 
the game be able to keep track of which levels the player had solved and 
their bank balance across playing sessions.

The learnings supports included interactive definitions of physics terms, 
videos illustrating physics concepts using the game mechanics as well as 
hints and worked examples (i.e., short videos of expert solutions). Learning 

Newton’s Third Law Slider

Level solving status

Check Bounciness

Number of slider adjustmentEnergy can Dissipate

Figure 9.7 Evidence Net for Florida level.

Figure 9.8 My Backpack Physics understanding scores (top) and Store (bottom)
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support was tied into the reward structure. Viewing the physics videos or 
definitions would earn money (+$10 or +$5, respectively), but looking at 
worked examples cost money (–$60).

The reward system generated a challenge for the browser-based game 
engine. When the player logged off from the system and returned the next 
day, all locally cached information about the player’s progress would be 
lost. The game engine needed to consult the server to restore the state of 
the system (i.e., landing the student on the last level they solved and restor-
ing the player’s bank balance).

Through the use of special trophy hall observables (a list of what levels 
the player had compeleted as well as the player’s bank balance), the EI pro-
cess could track the needed information. It then saved that information to a 
database on the scoring server which was consulted when the player logged 
in to restore the state of the game.

The end result of all of this modeling is a list of observable variables that 
form the output of the EI process. This included some human language de-
scription of the observables. The challenge was to transform these human 
descriptions into computer code—rules of evidence—that can set the value 
of the observables.

EVIDENCE RULES

The goal of EI is to filter the raw stream of events that comes from a game 
into a few key observable outcomes. These then become inputs to the sta-
tistical models in the EA process. Observables can be divided into final ob-
servables that are reported out by the EI process and intermediate observables 
(called flags and timers, see below), which are used to calculate the final 
observables.

In general, final observables are defined for one of three reasons.

• They are used as input to the EA process. (In Physics Playground, 
these are nodes in the Bayes Nets).

• They are used for context-level feedback. In Physics Playground, the 
player’s bank balance was a feedback observable. It was not used in 
scores, but it was stored in the database, so the game engine could 
restore the bank balance when the player resumed play.

• They are logged for research purposes. In Physics Playground the 
complete sequence of simple machines constructed in a sketching 
level was logged for later inspection, but not scored. Note that these 
observables do not need to be calculated in real-time, but can be 
done by post-processing.



©
 2

02
0 

IA
P

All 
rig

ht
s 

re
se

rv
ed

©
 2

02
0 

IA
P

All 
rig

ht
s 

re
se

rv
ed

Identifying Observable Outcomes in Game-Based Assessments  177

Defining Observables

The first step in defining the evidence rules is defining the observables. 
In Physics Playground these definitions were kept in a spreadsheet. The ob-
servable definitions must be sufficiently precise that they can be used as 
requirements for the evidence rules. This often requires the design team to 
work through some possibly tricky questions. Some examples from Physics 
Playground include the following:

• When is a drawn object considered a lever? This question involved 
identifying torques and rotation done by the object, so it proved 
easiest to include lever identification code in the game engine.

• What constitutes an “attempt” at a task? Is restarting the game level 
without leaving it an attempt, or does the attempt require navigat-
ing to a different level and then returning?

• Where should we setting cut scores for counts and continuous vari-
ables used as ordinal variables in Bayes nets? For example, what are 
long, medium, and short completion times for level? What are low, 
medium, and high numbers of manipulations for a slider? Note that 
these cut scores can be implemented in either the EI or EA process.

The following examples span the types of observables used in Physics 
Playground :

Obs 1 What is the maximum value coin (gold, silver, or none) that 
the player has earned for this level?

Obs 2 Did the player manipulate the gravity slider?
Obs 3 How many objects did the player draw?
Obs 4 How much time (excluding time spent on learning sup-

ports) did the player spend on the level?
Obs 5 Did the player attempt to draw a springboard?

Obs 1 and 2 can be read directly from the event stream. Obs 3 and 4 re-
quire keeping track of the state of the system (Section 4.4). Obs 5 requires 
detailed knowledge of the internal state of the game engine. To solve this 
problem, the EI code was put in the game engine and the output of the 
identification code was logged to the event stream.

Learning Record Store

While observables are the output of the EI process, the events in the 
learning record store are the input. This is an extension of the simple Proc4 

AU: Unclear.
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178  R. ALMOND et al.

message (Listing 9.1) adding two new fields verb and object (described 
below). A learning record store is simply a database which accumulates such re-
cords. Learning Locker is a learning record store which provides additional 
services (such as buffering logging requests, and some reporting function-
ality). Part of the specifications of the presentation process (game engine) 
is that it should log to the learning record store when certain events occur.

While most of the fields are inherited from the general Proc4 message, the 
verb and object are borrowed from the xAPI format (Betts & Smith, 2018). 
The idea is that the verb and object should give a good idea of the content 
of the message. Some example verb–object pairs from Physics Playground in-
clude “initialized” “game level” (new level started), “identified” “game ob-
ject” (game engine identified a ramp, lever, springboard or pendulum), and 
“manipulated” “control” (player adjusted one of the sliders). The verb–ob-
ject pairs are useful because events can be filtered on these fields, reducing 
the number of events that need to be more carefully processed.

The Proc4 event format (Listing 9.2) is a simplification of the xAPI for-
mat in several ways. First, xAPI makes the verb and object fields more 
complex objects, including long url-like globally unique identifiers (guids), 
instead of simple strings. In the Proc4 version, the app field is a guid, but 
the other fields can be simple strings. Thus, the database can build indexes 
on those fields. Furthermore, while xAPI has several places where exten-
sions can be added, in the Proc4 events, all extensions are added to the free 
form data field.

In the Physics Playground 2 implementation, a daemon process periodically 
(several times per minute) grabbed new events from the Learning Locker 
store on the game server, translated them to the Proc4 event format, and did 
some filtering to remove unused verb–object pairs. The results were put into 

LISTING 9.2: A typical event record

 1   {
 2   app:"ecd://epls.coe.fsu.edu/AssessmentName/StudyCondition",
 3   uid:"Student/User ID",
 4   timestamp:"Time of event",
 5   verb:"Action Keyword",
 6   context: "Context ID",
 7   object:"Object Keyword",
 8   data:{
 9    field1:"Value",
 10    field2:["list", "of", "values"],
 11    field3:{part1:"complex", part2:"object"}
 12   }
 13 }
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Identifying Observable Outcomes in Game-Based Assessments  179

a Mongo database collection. The EIP used that collection as an input queue, 
processing messages starting with the oldest unprocessed message.

Determining Tasks From Event Traces

One other key difference between xAPI and Proc4 event format is the 
context field (which is optional in xAPI and required in Proc4 although null 
values are allowed). While the meaning of context is vague in the xAPI speci-
fication (“An optional property that provides a place to add contextual in-
formation to a Statement [event],” xAPI Specification, Section 2.4.6, Betts 
& Smith, 2018), in the Proc4 context it is designed as an ECD task identifier.

The term task was introduced in ECD (Mislevy et al., 2003) to convey 
the idea that some assessment tasks, particularly in simulations and game, 
are more complex than simple items. Such tasks might have complex work 
products (e.g., an event stream) and multiple observed outcome variables. 
Each assessment would need to define what a task was for that application, 
but the basic rule was that a task was a unit of activity at which messages 
would flow around the four process architecture (Almond et al., 2002).

The term context is used instead of task, because in game and simulation 
based assessments, the task might emerge from the state of the game or 
simulator (Mislevy, 2013; Mislevy et al., 2015). In particular, actions of the 
player or changes in the system state might change the assessment context 
(the appropriate evidence processing instructions), even though the player 
is still following one task, such as the set of instructions and ultimate goal 
of the game.

Consider a flight simulator. The player (or pilot trainee) might work on 
a single task : fly the plane from one airport to another. However, within 
this single task, there are a number of different contexts in which the pilot 
needs to focus on different kinds of actions and instruments. A partial list 
might include:

1. Pre-flight Checks
2. Take-off
3. Cruising
4. Thunderstorm
5. Cruising (return to this context)
6. Approach
7. Landing

The same event might have different evidentiary value in different con-
texts. For example, lowering the landing gear is necessary during landing, 
but probably a bad idea during a thunderstorm.
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180  R. ALMOND et al.

This puts another requirement on the EI process. If the context is not 
(or cannot be) supplied in the logged event, then the EI process must infer 
it from the stream of events resporting the state of the game or simulator. 
In Physics Playground the context is the game level, but the game level was 
not present in all of the messages logged to Learning Locker®. In particular, 
the EI process used the “initialized” “game level” message to identify that 
the context had changed.

It also was convenient to define context sets—sets of contexts for which 
similar evidence identification logic could be used. For example, sketching 
levels (where the player draws objects) and manipulation levels (where the 
player manipulates simulation parameters to solve the level) are two natu-
ral context sets. Similarly, “bounciness levels,” where the player must make 
the ball bouncy to solve the level, are the only ones in which events involv-
ing the bounciness control are relevant.

Tracking System State

Consider Obs 3 (number of objects drawn) and Obs 4 (duration of time 
on task) defined above; both require summarizing over multiple events. 
Obs 3 requires the EI process to maintain an object counter within a con-
text (game level). Obs 4 requires the EI process to maintain a timer which 
is paused when the player enters a learning support and resumed when 
they return to the game context. In both cases, separate counters/timers 
are needed for each player and the counters and timers must be reset when 
the player enters a new level.

To store this person–context specific status information, the EI process 
needs to maintain a state object for each person. This is not a complete 
reproduction of the state of the player inside the game, but rather just con-
tains the intermediate observables need to calculate the final observables. 
Listing 9.3 gives the JSON schema for a state.

LISTING 9.3: A high-level schema for a state object

 1 {
 2   app:"Global identifier for the application"
 3   uid: "Identifier for player",
 4   context: "Task or context identifier",
 5   oldContext: "Task or context identifier.",
 6   timestamp: "Timestamp of last event processed."
 7   timers:{...},
 8   flags:{...},
 9   observables:{...}
 10 }
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Identifying Observable Outcomes in Game-Based Assessments  181

The state object contains three collections of special variables: flags, ob-
servables, and timers. Flags and observables are similar in many ways, the only 
real difference being that observables are usually reported out from the EI 
process, and flags are usually internal to it. They could be numeric or char-
acter values, or lists of such values or even more complex object structures. 
The idea is that the various evidence rules will update their values. Timers 
are special variables meant to calculate the time spent in various kinds of 
activities. Rules can stop and start the timers as well as reset their values. 
All flags, observables, and timers have a name, so their values can be ref-
erenced by name in rules (e.g., state.flags.gravityChanged, state.
observables.objectsDrawn, state.timers.levelTime).

Note that the state has both a context and oldContext. This allows the rules 
to determine when the state has changed from one context to another 
(e.g., “initialized” “game object” message). Often this is a trigger that the 
EI process needs post the observables for another process.

Rules of Evidence

A rule of evidence is a rule that defines how the player’s state should 
change in response to a given event. It takes a state and an event as input 
and outputs an updated state. These are if–then type rules, which contain 
a set of conditions that must be met for the rule to fire. If the conditions are 
met, then the rule’s predicate is executed to update the player’s state.

Listing 9.4 describes the basic structure of a rule (with Listing 9.5 and 
Listing 9.6 detailing the condition and predicate parts of the rule). The app 
field is used to associate a rule with a particular assessment, and the name 

AU: EI process needs 
to post ?.

AU: unclear.

LISTING 9.4: The basic Rule Schema (condition 
and predicate are detailed below)

 1  {
 2  app:"Global identifier for the application",
 3  ruleName:"Human readable identifier",
 4  doc:"Human language description",
 5  context:"Context or Group Keyword",
 6  verb:"Action Keyword or ALL",
 7  object:"Object Keyword or ALL",
 8  ruleType:"Type Keyword",
 9  priority:"Numeric Value",
 10  condition:{...},
 11  predicate:{...}
 12 }
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182  R. ALMOND et al.

and doc fields are there to aid in maintaining the rules. The ruleType and 
priority fields are used to control the sequencing of the rules (see be-
low). The verb, object, and context are technically part of the condition, 
however, they are separated so they can be used for filtering.

A rule is applicable to a given event if the verb and object fields of 
the rule and event match (or have the special value “ANY”). It is also only 
applicable when the current context of the state matches the context of 
the rule. Note that the rule’s context could be a context set, so any con-
text within that set matches, including the set of all contexts, “ALL.” The 
condition and predicate fields of the rule are effectively an interpreted 
programming language that is described below.

Rule Types and Priority
Although the rules are similar to rule-based programming languages like 

Prolog, the sequencing of the rules can actually be important to their cor-
rect functioning. In order to make the sequence predictable, the rule ex-
ecution is divided into five phases, with a different type of rule executed (if 
the conditions are met) in each phase. The priority field is used to establish 
the sequence within each phase: with rules being run in the order of the 
numeric priority variable.

The five types of rules are in sequence:

1. State Rules—Update flags and timers.
2. Observable Rules—Update observables.
3. Context Rules—Check for changes in context.
4. Trigger Rules—Send messages to other processes.
5. Reset Rules—Clean up state when context changes.

State and observable rules are actually identical (except for the order in 
which they are run). Although the intention is that state rules update flags 
and timers, and observable rules update observables, both types of rules can 
update all three kinds of values. The context rules are specifically for updat-
ing the context field. Note that the oldContext field is not changed until 
all rules are run, so that the later rules can check whether or not the context 
was updated. The reset rules, in particular, are designed to be run only after 
the context changes (so that context-specific flags and timers can be reset).

The trigger rules play a special role in the EI process. These indicate that 
the process should send an outgoing message. In particular, EI needs to send 
a “New Observables” message to the EA process, to indicate that new ob-
servables are ready to be processed, but it may send other messages to other 
processes (e.g., learning support systems). By default, the data field for that 
message will be the observables of the current state for the player; however, 
a subset of observables can be selected in the predicate of the trigger rule.
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Identifying Observable Outcomes in Game-Based Assessments  183

Conditions
The condition is the “if” part of the if–then rule. It lists a number of fields 

in either the event (referenced as event.data.<name>) or in the state ob-
ject (referenced as state.flags.<name>; state.observables.<name>; 
or state.timers.<name>). Instead of an exact value, the rule can specify 
a comparison operator ?op, inspired by the query documents used by the 
Mongo database (“The MongoDB 4.0 Manual,” 2018). Listing 9.5 shows a 
few possible query syntaxes.

There are a number of possible query operators including: ?eq, ?ne, ?gt, 
?gte, ?lt, and ?lte, ?in, ?nin, ?exists, ?isnull, ?isna, ?any, ?all, 
?not, ?and, ?or, and ?regex (which matches regular expressions). If the 
operator is omitted, ?eq (equals) or ?in (is in) are used as the operator 
depending on whether the value is a single value or a list. The ?where opera-
tor is an extension operator: it runs a function in the host language (in the 
current implementation R (R Core Team, 2018). This can be used for more 
complex queries that are not easily expressed in the simple query language.

If multiple conditions are present in the condition field of the rule, then 
all of them must be satisfied for the rule to be applied. This includes the 
implicit conditions established by the verb, object, and context fields of the 
rules. This is effectively a logical conjunction. A logical disjunction can be 
created with multiple rules.

Predicates
The predicate is a set of instructions that is run only if the condition (in-

cluding the implicit conditions of the verb, object, and context fields) is 
satisfied. The instructions usually involve setting one of the flags, timers, or 
observables of the state object. In each case, the operator is followed by a 
list of field value pairs that indicate which fields are to be updated and how. 
Listing 9.6 shows the general syntax along with a few common examples.

The most basic operators are !set and !unset, which set the value of 
a particular field. The field to be set must be in the state, but the value 
can reference a data field from the event. The operators !incr, !decr, 
!mult, !div, !min, and !max manipulate numeric fields, and the operators 

LISTING 9.5: Several example condition clauses from a rule

 1 condition:{
 2   <field 1>:<value 1>,
 3   <field 2>:[<value-list>],
 4   <field 3>:{"?op":<value3>},
 5   "?where":<function>,
 6   ...
 7 g

ralmond
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184  R. ALMOND et al.

!addToSet, !pullFromSet, !push, and !pop operate on list-valued fields. 
For timers, the subfields state.timers.name.running and state.timers 
.name.time, or the special operators !start and !reset can be used. The 
extension operator !setCall runs a function in the host langauge (R); al-
lowing the set of operators to be expanded as needed.

Because the current EIEvent implementation is written in R (R Core Team, 
2018), the set of query and update operators is straightforward to extend. R 
is a reflexive language, that allows functions to call other functions by name 
(Chambers, 2004). In EIEvent, there are R functions bound to the query 
operator (e.g., ?eq) and update operator (e.g., !set) names. The condition 
checking and predicate execution code calls these functions by name (using 
the R do.call function). Thus, the set of query and predicate operators can 
be easily extended by simply writing functions for the new operators.

Extended Example: Counting Air Slider Manipulations

Consider the problem of counting how many times the player has ma-
nipulated the air resistance slider within a given level. The goal is to set an 
observable variable—state.observables.airManip—to the number of 
manipulations. We will assume that at the beginning of the level, a reset 
rule sets this observable to zero. The rule shown in Listing 9.7 increments 
the counter when appropriate.

The name and doc fields describe the rule, and the app field shows which 
application uses this particular rule instance. The verb, object, and context 
field allow the EI process to filter out this rule when it is applicable. The 
condition will only be checked if the verb of the event is “Manipulate” and 
the object is “Slider.” Also, the context of the current state must be a game 
level that is in the “Manipulation Levels” set.

Assuming that the event is applicable to this event and context, the condi-
tions will be checked. Here there are two requirements. First, the slider that was 
moved (the gameObjectType) must be the “AirResistanceValueManipulator.” 

LISTING 9.6: Several examples of the predicate part of a rule

 1 predicate :f
 2   <update operator1>:{ <field1>: <value1>, ... },
 3   "!set":{ state.flags.<logical>: true},
 4   "!set":{ state.timers.<name>.running: true },
 5   "!incr":{ state.flags.<count>: 1},
 6   "!setCall":{ state.flags.<name>: <function>},
 7   ...
 8 }

ralmond
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Identifying Observable Outcomes in Game-Based Assessments  185

Second, the oldValue cannot be equal to the newValue; that is the player must 
have actually moved the slider and not just kept it in the same place.

If the conditions are met, then the predicate is executed. In this case the 
airManip observable is incremented by one. As this rule sets an observable, 
its type is “Observable,” and as it is independent of other rules, it is given a 
moderate priority of 5.

To see this rule in action requires an event (Listing 9.8) and an initial 
state (Listing 9.9).

LISTING 9.8: Event for testing Air Manipulation Rule

 1   {
 2   app:"ecd://epls.coe.fsu.edu/PPTest",
 3   uid: "Test0",
 4   verb: "Manipulate",
 5   object: "Slider",
 6   context: "Air Level 1",
 7   timestamp:"2018-09-25 12:12:28 EDT",
 8   data: {
 9    gameObjectType: "AirResistanceValueManipulator",
 10    oldValue: 0,
 11    newValue: 5,
 12    method: "input"
 13   }
 14 }

LISTING 9.7: Count Air Resistance Manipulations Rule

 1  {
 2  app: "ecd://epls.coe.fsu.edu/PPTest"
 3  name: "Count Air Resistance Manipulations",
 4  doc: "Increment counter if slider changed.",
 5  verb: "Manipulate",
 6  object: "Slider",
 7  context: "Manipulation Levels",
 8  ruleType: "Observable“,
 9  priority: 5,
 10  conditions: {
 11   event.data.gameObjectType:"AirResistanceValueManipulator",
 12   event.data.oldValue:{"?ne":event.data.newValue}
 13  },
 14  predicate: {
 15   "!incr":{state.observables.airManip:1}
 16  }
 17 }
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186  R. ALMOND et al.

Note that the verb is “Manipulate” and the object is “Slider”; thus, the 
rule is applicable to this event.

Presuming that “Air Level 1” is in the set of manipulation levels, so this 
rule is applicable to this event and state. Next the EI process checks the 
conditions. Here gameObjectType is indeed “AirResistanceManipulation-
Slider” and oldValue is indeed different from newValue so the condition 
is satisfied.

As the rule is applicable and the condition is satisfied, the EI process 
runs the predicate. In this case, the value of the airManip observable is 
incremented. Other flags and observables remain the same. Listing 9.10 
shows the result.

LISTING 9.9: Initial State for testing the air manipulation rule

 1  {
 2  app:"ecd://epls.coe.fsu.edu/PPTest",
 3  uid: "Test0",
 4  context: "Air Level 1",
 5  timers:{},
 6  flags:{
 7    airUsed: true ,
 8    airVal: 5,
 9  },
 10  observables:{
 11    airManip:1
 12  }
 13 }

LISTING 9.10: Final state after running Air Manipulation rule

 1  {
 2  app:"ecd://epls.coe.fsu.edu/PPTest",
 3  uid: "Test0",
 4  context: "Air Level 1",
 5  timers:{},
 6  flags:{
 7    airUsed: true,
 8    airVal: 5
 9  },
 10  observables:{
 11    airManip:1
 12  }
 13 }
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Identifying Observable Outcomes in Game-Based Assessments  187

This example is more than a simple illustration: It is part of a proof of 
correctness of the rule (Dijkstra, 1976). The rule is the program, and the 
input state and event are the preconditions. The output state is the post-
condition. Thus, this set of JSON objects can be used to test that the rule is 
functioning properly. Note that while this shows a positive instance, a more 
complete test would include both positive and negative instances (places 
where the conditions are not satisfied). Producing an exhaustive set of tests 
requires a disciplined programmer.

However, even an incomplete set of such tests provides the advantages of 
unit testing (Runeson, 2006) to the design of the EI process. In particular, 
running this test suite can help discover regression problems if a rule was 
changed, or possible negative interactions among rules. Also, as play test-
ing uncovers problems in the rules, new tests can be added to the suite to 
prevent the problems from reoccurring.

FIELD TESTING

In May of 2019, we conducted a large-scale field trial using 271 students. 
The students each played the game for approximately 5 hours, generating 
over 4.5 million statements in the learning record store. The students were 
assigned to four study conditions, one of which was a no-treatment control 
group, with approximately an equal number (70) of students per condition. 
The three treatment conditions differed in how the game levels were se-
quenced: (a) a user controlled sequence (user control), (b) a computer-con-
trolled sequence arrayed from easy-to-difficult (linear), and (c) a computer-
controlled adaptive sequence. The adaptive sequence controlled which level 
was delivered next based on the estimated ability of the player, so it required 
the output of the EA process. The scoring was done on a dedicated scoring 
server (different from the Unity server) running Red Hat Enterprise Linux 
7.5 with 16 cores available. The three conditions were assigned different ap-
plication IDs, so that the EI and EA processes for those groups could be run 
on different CPUs on the server; so six of cores were used for scoring (while 
others handled communications and database tasks).

The adaptive sequencing algorithm required nearly real-time processing 
from both EI and EA processes, as the decision about which level to present 
next should be determined on the basis of the student’s estimated ability on 
the skill which was the current focus topic. If the EI and EA processes have 
not completed by the time the game engine needed to determine the next 
level, the server would return a cached version of statistics. However, if the 
EI and EA processes fell badly behind, then the adaptive system would not 
be responsive to differences in student abilities. The other two branches of 
the study required the trophy hall observables (e.g., bank balance) from the 
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188  R. ALMOND et al.

EI process to restore the game state at the start of a new playing session; but 
this only happened once a day, so there was more time to complete the task.

The initially deployed system had 15 observable outcome variables used 
by the EA process, and 23 rules of evidence to calculate those variables. In 
addition, six more rules of evidence were used to track the players’ prog-
ress through the game (trophy hall observables), to aid in restarting on 
the next day.

Unfortunately, due to set backs in the development processes, the rules of 
evidence were not thoroughly tested. This resulted in numerous errors the 
first half day of testing. (Note that the initial day of testing included a pretest, 
so the subjects had only 1/2 class period of game play.) Some of the prob-
lems were inevitable, and could have been easily fixed with more testing. (For 
example, the name of a level was called “Rabbits’ hole” in one data file and 
“Rabbit’s Hole” in another. Others were bugs in the EIEvent code.

Another problem, however, had to do with the incomplete nature of the 
test sets. In particular, the people writing rules were not programmers, so 
they had little experience in writing test cases. Also, while the rules were 
tested in isolation (similar to the test in the previous level), there were few 
tests of the entire rule set to look at interactions. One efficient way to gen-
erate test cases is to have level designers play through the level, and then 
to capture the events generated by that user in the context of that level 
(the events can be captured with a simple database query). Making a tool 
that allowed a play tester to play a game level and then compare the ob-
servables immediately would help spot problems earlier. In addition to the 
bugs in the rules and the EI software uncovered by the serious testing from 
the first day, another problem arose related to timing. The first half day of 
testing produced several hundred thousand events for the EI process to 
work through, and it was moving much too slowly. One problem was the 
amount of logging turned on (it was still at the debug level for testing), 
which caused lots of time consuming disk writes. But by far the biggest 
problem was the number of events that were processed for which no rules 
were applicable. We set the debugged EI to reprocess the data from Day 1’s 
testing on the evening of that date and it was unclear that process would be 
finished in time for Day 2 testing.

To expedite the process, we made some hasty changes to the scoring 
model. First the number of observables was reduced from 14 to four: the 
trophy received for the level, the time spent on the level, the last agent 
used (for sketching levels), and the number of attempts per level. This in 
turn dropped the number of rules of evidence required from 23 to 9. More 
importantly, it enabled the events to be filtered before coming into the EI 
process. The number of events dropped from hundreds of thousands to 
several thousand: a 500/1 reduction.
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Although there are many ways the EIEvent engine can be rewritten to 
improve its efficiency, because of the real-time requirements, it is important 
to consider multiprocessing. Our initial deployment used only 3 of the 16 
available processors for EI (and another 3 for EA), with one dedicated pro-
cess for each of the three branches of the study. Unfortunately, R (R Core 
Team, 2018) provides only limited tools for multiprocessing. Although mul-
tiple threads could be assigned to each branch, it is important to make sure 
that the events for a single player are processed in sequence: Thus, more 
sophisticated resource queuing is needed.

As EI does not use any of the data analysis capabilities of R, a different 
programming language which offers more multiprocessing tools should be 
considered for the next version of EIEvent.

REFLECTIONS

The EIEvent package used in Physics Playground 2 demonstrates the feasibil-
ity of using a rule-based approach to evidence identification in game-based 
assessments. The JSON-based rules described in Section 4.5 provide a solid, 
extensible starting point for writing custom code for this approach. Writ-
ing, testing, and debugging the rules for a particular observable takes on 
the order of one day (after the designer learns the system). Most impor-
tantly, the observables used in this model, unlike those used in machine 
learning approaches, can be justified from a construct validity standpoint.

The goal of designing the system so that level designers and not cod-
ers can write the rules was only partially successful. Although a number of 
members of the level design team contributed to the rule making, the test 
sets created with the rules were incomplete. Also, more co-ordination was 
needed between the game engine design and the rule design. Specifically, it 
was necessary to know what events were logged and when. Better documen-
tation could have helped this process.

It is worth spending a fair amount of time on planning how the scoring 
process should be tested. A graphical tool that allows a tester to run simple 
test cases would enable nonprogrammers to do more of the testing. Also, a 
version of the game where the game engine displays the observables after a 
tester completes a level would help testers identify problems along with test 
cases for those problems.

The use of event filtering to speed up EI is important for systems which 
require real-time scoring. In particular, observables which are needed for 
the real-time adaptivity should be given precedence over observables for re-
search purposes. The more events which can be pre-filtered before getting 
to the EI process, the faster the process will run.
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Although these tools are still fairly early in their development, the R 
packages are available from the web sites listed below.

• Game demo and level editor: https://pluto.coe.fsu.edu/ppteam/
pp-links

• Peanut and RNetica [Bayesian Network Tools]: https://pluto.coe 
.fsu.edu/RNetica

• Proc4 (General message and database functions), EIEvent (Rule-
based Evidence Identification), and EABN (Bayes net Evidence 
Accumulation): https://pluto.coe.fsu.edu/Proc4
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