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Abstract
Collaborative problem solving (CPS) is viewed as an essential 21st
century skill for the modern workforce. Accordingly, researchers
have been investigating how to conceptualize, assess, and develop
pedagogical approaches to improve CPS. These efforts require
theoretically-grounded and empirically-validated frameworks of
CPS which have been emerging over the past decade with various
levels of validity data. The present paper focuses on validating the
generalized competency model (GCM) of CPS with respect to pre-
dicting individual learning outcomes following CPS among triads.
The GCM consists of three main facets–constructing shared knowl-
edge, negotiation/coordination, and maintaining team function–
mapped to behavioral indicators (i.e., observable evidence). It hy-
pothesizes that scores on all three facets should positively predict
CPS outcomes, including group-to-individual learning transfer. We
tested this hypothesis in a study where 249 students who comprised
83 triads engaged in collaborative gameplay with the Physics Play-
ground game environment remotely via videoconferencing. We
found that the only CPS facet predicting individual physics learning
was maintaining team function, after accounting for pretest scores,
students’ perceptions of team collaboration, and their perceived
physics self-efficacy. This facet was also the only significant pre-
dictor of individual learning regardless of how facet scores were
computed (i.e., reverse coding of negative indicators, separating
the sums of positive and negative indicators, and no reverse coding
of negative indicators). Implications for the GCM and other CPS
frameworks are discussed.
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1 Introduction
Collaborative problem solving (CPS) refers to the collective efforts
of two or more individuals to achieve a solution to a problem [26].
CPS encompasses a collection of social-cognitive skills such as
proposing ideas, sharing knowledge, and building common ground
[2, 20]. It is hypothesized to be a 21st century skill for the modern
workforce where people are increasingly required to come together
to solve complex, nonroutine problems such as fighting forest fires,
designing a rocket for a mission to Mars, or forecasting the weather.
Even more mundane tasks like figuring out where to eat dinner
with fussy eaters, coordinating travel schedules, and organizing
a workshop for an academic conference require CPS. The inclu-
sion of AI in the workforce of the future is expected to result in a
large degree of automation of routine cognitive tasks, which has
the potential to free-up human resources to tackle more complex
problems if they can work together cohesively and productively.

Unfortunately, humans are not very effective at CPS skills, pre-
sumably because they do not receive formal training on developing
these skills. In 2015, the Organization for Economic Co-operation
and Development (OECD) conducted an assessment of CPS across
15-year-old students from 72 global economies. The results revealed
that a mere 8% of the students were characterized at the highest
proficiency level (level 4), with 28% being scored as low perform-
ers (level 1 and below) [27]. This indicates a general insufficiency
of CPS skills among young people to perform effectively in col-
laborative environments. It highlights the need to support young
people to develop CPS skills in order to excel in school and future
workplace.
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Despite the growing importance of CPS, there remains a need
to understand the complexity in assessing and training CPS skills
[16]. This requires rigorous quantification of CPS competencies
(or skills) via validated frameworks, which serve as the basis for
developing effective assessments and interventions. In educational
settings, beyond predicting performance on CPS tasks [3, 38], it is
imperative that engaging in CPS transfers to individual learning
gains, called group-to-individual transfer of learning [28]. Whereas
past work has shown evidence for this type of learning transfer (see
meta-analysis [29]), research has yet to do so in the context of CPS.
Accordingly, the present paper focuses on investigating the predic-
tive validity of a CPS framework on individual student learning
following CPS in a digital game-based learning environment.

1.1 CPS frameworks
There are a number of different frameworks in the literature de-
signed to assess collaborative problem solving (CPS) skills [20, 26].
For instance, the OECD CPS framework comprises a 3x4 matrix
illustrating the interaction between individual problem-solving be-
haviors (e.g., planning and executing) and collaborative processes
(e.g., maintaining team organization), resulting in 12 CPS skills
(e.g., establishing a common understanding of the problem, and
monitoring and evaluating the results of actions). The purpose of
this framework was to develop a large-scale CPS assessment for the
2015 PISA assessment that was used to evaluate CPS in 15-year-old
students across the OECD economies as discussed above.

The ATC21S [17, 20] is another popular framework which dis-
sected CPS into cognitive processes and social skills. The social
skills consist of three main skills including: participation, perspec-
tive taking and social regulation. There are also sub-skills under the
main skills (e.g., adapt responses to individuals). The cognitive skills
are comprised of two main skills of task regulation and learning
and knowledge building. Associated sub-skills include achieving a
shared solution via negotiation, setting up goals, and the like. The
framework aims to inform learning and teaching of CPS, as well as
standardized assessments.

CPS was similarly characterized in terms of cognitive and social
skills in an ontology by Andrews-Todd et al. [2] which targeted
computerized simulation-based tasks. This ontology comprises four
main social skills and five main cognitive skills, such as maintaining
communication, negotiation, planning, and executing. Each main
skill contains specific measurable behaviors related to communica-
tion and log file actions that occur within the context of CPS tasks.
Andrews-Todd et al. [3] investigated domain-generalizability of
their framework by testing it with the same students across two do-
mains, finding moderate correlations across domains. To this point,
the generalized competency model (GCM) of CPS [38] was specifi-
cally designed to be applicable across CPS domains because its three
main facets (constructing shared knowledge, negotiation/coordi-
nation, and maintaining team function) and behavioral indicators
therein were derived in a cross-domain fashion. This framework
has since been applied to one additional domain [21].

It is notable that some frameworks clearly differentiate cogni-
tive and social skills as two main constructs underlying CPS skills
whereas others consider joint socio-cognitive skills. The number

and type of sub-skills also vary across frameworks but some over-
lap such as negotiation and monitoring. Despite similarities and
differences across frameworks, a fundamental issue relates to es-
tablishing their validity relative to assessing CPS skills [6]. Further,
in addition to diagnosing CPS skills and predicting success on CPS
tasks, a valid assessment framework should also potentially fos-
ter understanding of learning processes related to CPS activities
by linking specific CPS skills to individual (i.e., student) learning
outcomes, which is the focus of this paper.

1.2 Factors influencing CPS assessment
Beyond the choice of framework(s), there are several other fac-
tors that influence CPS assessment. One key factor is whether the
collaboration occurs among humans (Human-to-Human; HH) or
among humans and agents (Human-to-Agent; HA) [16, 19]. In HA
communication, students communicate using text-based chats (hav-
ing some freedom in communication) or by selecting pre-defined
messages [12]. Some research has shown that HA collaboration is
not as effective as HH collaboration due to the lack of coordination,
communication, and shared cognition [25]. In HH communication,
students can chat verbally or via a chat box. When students chat
verbally, another factor relates to whether students collaborate
in-person or virtually through videoconferencing [37].

Students can additionally be assigned to work in differently-
sized groups (e.g., dyads or triads or even larger) although dyads
are more common in the CPS literature. Triads, however, can
generate different team dynamics than dyads as there is only one
way for two people to interact with each other in a dyad, but four
ways for a triad to interconnect (i.e., three dyads and the triad) [1].
Another phenomenon that may arise with a larger group size is
the appearance of social loafers who rely on others’ contributions
[15]. Zhan et al. [40] compared the effects of dyads with triads in
terms of their CPS learning in a high-school introductory AI course.
The findings suggested that although group size did not influence
learning outcomes, dyads reported significantly higher cognitive
load, whereas triads had lower quality collaborative behaviors,
presumably due to a social loafing phenomenon [15]. However, in
general, there is little data of triadic CPS in the current literature
since most studies focus on dyads. Accordingly, the present study
focused on examining learning in the context of triadic CPS with
open-ended human-human communications. We conducted our
research in the context of a game-based learning environment
because it provided the opportunity for engaging CPS skills as a
team along with measurement of student learning gains.

1.3 The relationship between CPS and learning
outcomes in game-based learning

Research on the connection between CPS and pertinent outcomes
in game-based learning is fairly sparse. Moreover, CPS outcomes
can be categorized in various ways, such as subjective perceptions
[10, 34], objective task performance [2, 3, 38], and pre-post learn-
ing on individual learning transfer [7, 28, 32]. Some studies have
focused specifically on CPS behaviors that occur during game-
based learning (e.g., [5]), but have not further investigated the link
between those specific behaviors and learning outcomes. For ex-
ample, studies have attempted to detect disengagement behaviors
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(e.g., talking about irrelevant topics), by leveraging multiple data
sources (such as group chat messages and video recordings) and
machine learning techniques [5, 14], based on the premise that
disengagement can negatively impact learning outcomes [4]. In a
recent study, Gupta et al., [18] used machine learning techniques to
predict learning outcomes from in-game actions and group chats,
but more research is needed to reveal what specific behaviors con-
tribute to learning.

Research has examined how CPS behaviors and skills derived
from validated frameworks influences in-task performance. For
instance, Sun et al. [38] examined CPS behaviors that predicted
success in a game-based learning environment, finding that clar-
ifying understanding among team members, actively proposing
potential ideas for a solution, responding to ideas/suggestions from
teammates, discussing results of problem-solving attempts, and
complimenting and encouraging others were all positively predic-
tive of task performance. This study also investigated temporal
patterns in CPS behaviors that distinguished successful from unsuc-
cessful task performance, which was further extended by Zhou et al.
[44]. Andrews-Todd et al. [3] found that social regulation, which
encompasses negotiating among team members and monitoring
the results and progress, to be successful of CPS performance. Sur-
prisingly, the two other key skills of communicative participation
and task regulation were not predictive of task performance.

Despite the initial evidence linking CPS behaviors/skills and
task performance, it is difficult to generalize findings due to the
variation of assessment frameworks and CPS tasks. For example,
whereas social regulation predicted task performance on one task
in Andrews-Todd et al. [3], it did not on a second task in the same
study. It is also unclear whether the improved task performance
can transfer to individual domain learning, where the research is
much sparser. Sun et al. [37] found that the socio-cognitive skill
of shared knowledge construction – which entailed suggesting
ideas/solutions and building on the ideas of others – predicted
posttest scores in the context of CPS in a Minecraft environment.
This general pattern of the importance of sharing knowledge and
building on the knowledge of others has been generally shown
to be beneficial to collaborative learning in traditional classroom
settings [42, 43].
Lastly, the literature suggests that game design can potentially in-
fluence the relationship between collaboration and learning. For
example, Sung and Hwang [39] compared individual learning, col-
laborative learning, and scaffolded collaborative learning of natural
science topics. They found no differences between individual and
collaborative learning, but when compared to a version of the game
that included a scaffolding feature for students to reflect and or-
ganize their knowledge collaboratively, the collaborative version
performed significantly better than the individual learning.

1.4 Current Study, Novelty, and Contributions
Prior research has showcased the need for specific investigations
as to which CPS behaviors relate to pre-post learning outcomes
in game-based learning contexts. Specifically, studies on what
constitutes CPS provide valuable insights on how to assess CPS
skills in educational settings. And although research has attempted

to identify the relationship between CPS skills and performance-
based outcomes like task success [38], there is a need to investigate
the predictive power of CPS assessment frameworks relative to
specific learning outcomes. Moreover, since most studies focus on
dyads, there is a need to validate CPS frameworks in more complex
interactions that emerge in triads and beyond [1].

To address those gaps, we investigated whether CPS skills mani-
fested in triadic interactions predicted individual learning in the
context of remote collaborations in a physics learning game. In
addition, we compared different CPS coding approaches to deter-
mine which was more predictive of student learning. Whereas
all approaches utilized the same three CPS facets of constructing
shared knowledge, negotiation/coordination, and maintaining team
function from the generalized competency model of CPS [37, 38],
they differed at the level of specific indicators used to comprise
each facet. Our hypothesis was that all three CPS facets would
positively predict student learning.

2 Methods
2.1 Participants
Participants were 303 university students from two large public
universities in the US. Participants reported fairly equal gender
distribution, with 56% being female students, 44% male students,
and 0% other genders. The average age across participants was 22
years old, and the self-reported ethnicities showed diversity: Cau-
casian (47%), Hispanic/Latino (28%), Asian (18%), Black or African
American (2%), American Indian or Alaska Native (1%), and “other”
(4%). At the end of the study, participants were either compensated
with a $50 Amazon gift card (96%) or course credit (4%). In the study
a total of 249 students from 83 teams were eligible to be included
in the analysis based on availability of data and completion of all
procedures. All participants provided written informed consent
and all procedures were approved by the designated IRB.

2.2 Physics Playground
Physics Playground is a 2D digital game to facilitate physics con-
ceptual learning, such as Newton’s laws (previously known as
Newton’s Playground) [33]. The game contains game levels with a
wide range of difficulty. The levels are arranged in terms of diffi-
culty level from the easiest to the hardest based on physics experts’
ratings. Players can quit a level and start a different one if they
were struggling with a certain game level. To solve each game level,
players need to guide a green ball to hit a red balloon by drawing
simple physics machines—such as levers and pendulums—which
become dynamic following the laws of physics. Figure 1 shows a
game level where a ramp is drawn in red to lead the falling green
ball to the balloon. The in-game performance has three possible
outcomes: gold coin, silver coin, or unsolved (no coin), with per-
formance measured by the elegance of the solutions manifested as
the number of objects drawn (i.e., a solution with fewer objects is
more elegant [gold coin] than one with many objects [silver coin]).
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Figure 1: A level in Physics Playground – Around the tree

2.3 Measures
We collected several measures, of which we focus here on CPS
skills, physics knowledge (pre-post), physics self-efficacy, and per-
ceptions of team collaboration with the latter two measures serving
as control variables.

CPS measure/coding scheme. Table 1 contains the facets and
associated indicators in the validated GCM framework [38], which
evolved from an earlier version [37]. We adopted an utterance-
based coding strategy in our study, where utterances were tran-
scribed and coded according to the scheme illustrated in Table 1.
For example, the utterance, “How about we draw a weight to pull the
lever down?” was coded as “suggests appropriate ideas” (drawing
a weight) and “provides reasons to support a solution (to pull the
lever down)”.

Utterances generated by the triads were transcribed by IBM Wat-
son speech-to-text recognition software for coding. Three coders
were trained to complete the coding procedure. The coders could ac-
cess the transcripts and video recordings to ensure the accuracy of
utterance transcription and coding within the broader CPS context.
The coders received two rounds of training to establish appropriate
inter-rater reliability at the utterance-level: Gwet’s AC1 (0.91 –
1.00) and percentage agreement (0.89 – 1.00). Then the coders indi-
vidually coded 209 level attempts (randomly split among coders)
selected using a matching procedure that differentiated task out-
comes (gold, silver, none) while approximately matching on other
covariates (detailed in [38]).

Physics learning assessments. The physics tests (i.e., forms A
and B, used as pretest and posttest) were developed by two subject
matter experts. Each of the two forms had 10 multiple-choice items
focusing on two concepts: (a) energy can transfer (EcT), and (b)
properties of torque (PoT). The possible score of each test ranged
from 0 to 10. Figure 2 demonstrates a sample test item on energy
can transfer concept. The test scores were scaled from 0 to 1. The
mean pre-test score was 0.65 (SD = 0.19, n = 234) and the mean post-
test score was 0.69 (SD = 0.20, n = 234). A two-tailed paired-samples

t-test indicated a significant increase from pretest to posttest (t (233)
= 3.06, p = .003).

Surveys on physics self-efficacy and perceptions of team
collaboration. Students’ self-efficacy for physics [24] was mea-
sured by three Likert-scale items, such as “I generally manage to
solve difficult physics problems if I try hard enough.” For each
item, students rated their degrees of agreement from 1 to 7, with
1 representing strongly disagree and 7 representing strongly agree.
Students’ perceptions of past experiences with team collaboration
[9] were also measured with similar Likert-scale items (e.g., “I can
work very effectively in a group setting”).

2.4 Procedure
Participants were assigned to 101 triads based on scheduling con-
straints. The study was conducted in controlled lab settings in two
sites set up for virtual collaboration (Figure 3). The triads came to
a lab at each site equipped with videoconferencing tools such as
Zoom, webcams, and headphones for each team member, which
they used to remotely collaborate with each other to complete
the main game-based CPS activities. Students’ audio, video, and
screen content were recorded, and those recordings were used in
the analyses.

Before coming to the lab, each participant completed a demo-
graphic survey as well as an online pretest covering physics con-
cepts. The pretest had two parallel forms (A and B) counterbalanced
across participants. The participants also familiarized themselves
with the collaborative physics task by going through a game tu-
torial and completing five easy game levels. They additionally
completed a battery of individual differences measures, including
physics self-efficacy and perceptions of team collaboration.

When participants were in the lab, they collaboratively played
the game for three 15-minute blocks: warmup, block 1, and block
2. The warmup block served to help participants get to know each
other with six easy-to-medium game levels. Block 1 and block
2 each contained either seven EcT levels or six PoT levels, with
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Table 1: Details of CPS coding scheme. R indicates a reverse-coded indicator

CPS facets Indicators [Examples]
Constructing shared knowledge Talks about challenge situation [“What is that?”; “Can I delete it?”]

Suggests appropriate ideas [“Draw a weight”; “Make it longer.”]
Suggests inappropriate ideas (R) [“Increase the weight” when it should be decreased]
Confirms understanding [“Is that what you’re asking?”]
Interrupts others (R) [Jumping in when others are talking]

Negotiation/coordination Provides reasons to support a solution [“That’s because . . .”]
Questions/Corrects others’ mistakes [“It would get stuck.”]
Responds to others’ ideas/questions [“yes”, “I’m not sure”]
Discusses the results [“The ball was not high enough to hit it.”]
Brings up giving up the challenge (R) [“Should we try a different one?”]
Strategizes to achieve task goals [“Should we try again and get a gold coin?”]
Tries to quickly save almost successful attempts [“Click the ball now.”]

Maintaining team function Asks for suggestions [“Any ideas?”, “What should I do?”]
Compliments or encourages others [“Great job!”, “Good idea!”]
Provides instructional support [“Do you see the red line? Start from there.”]
Apologizes for one’s mistakes [“Sorry, my bad.”]
Criticizes, makes fun of others (R) [“That was stupid.”]
Initiates off-topic conversation (R) [“Did you have breakfast this morning?”]
Joins off-topic conversation (R) [“Yes, but I’m still hungry.”]

Figure 2: A sample test item on energy can transfer.
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Figure 3: The set up of triadic virtual collaboration - each participant with a headset viewing a shared screen.

medium to high level difficulty. They also contained manipulated
task instructions of focusing on maximizing gold coins vs. solving
as many levels as possible. The assignment of task instructions
(gold vs. silver), content (EcT or PoT), and order of the two blocks
were counterbalanced across participants.

There was also a 15-minute transfer task after completing the
above three blocks (not analyzed here). Then participants completed
the posttest. The test forms were counterbalanced in the study (i.e.,
if a participant received Form A as a pretest, they would receive
Form B as a posttest, and vice versa).

2.5 Analytic strategy
Because we aimed to investigate how CPS processes might relate
to individual physics learning, the analysis was conducted at the
student level (n = 249 with 234 valid data for all measures). We
computed our CPS facet scores at the individual level (i.e., scores
on constructing shared knowledge, negotiation/coordination, and
maintaining team function) using three different methods. The
first method involved reverse coding the negative indicators (anno-
tated with “R” in Table 1). Specifically, the CPS facet scores were
computed by taking the sum of positive indicators minus nega-
tive indicators. The second method, called separate sums, entailed
computing the sum of positive and negative indicators separately.
Thus, each CPS facet would have two sub-scores—one positive and
one negative. The third method involved simply summing the raw
counts of behaviors across all indicators within each facet without
reverse coding the negative ones, referred to as sum total scores.
The goal was to investigate whether positive and negative indica-
tors had additive predictive power or if they canceled each other
out.

Multi-level modeling was employed in predicting learning out-
comes (measured by pre- and posttests), because students were

nested within teams (random intercepts). The outcome was physics
posttest score. The main predictors were CPS facet scores, and
the three covariates were students’ pretest score, their subjective
perceptions of team collaboration, and their physics self-efficacy
scores. We used the lme4 package in R version 4.3.0 with two-tailed
tests with a p < .05 cutoff for significance.

3 Results
3.1 Descriptives and Correlations
Table 2 shows descriptive statistics and correlations for the three
CPS facet scores (computed using reverse-coding method) and the
other variables (i.e., pretest scores, posttest scores, perceptions of
team collaboration, and physics self-efficacy). The CPS facets were
aggregated to participant level by averaging across all utterances
generated by that participant. We found that participants had
slightly higher scores for negotiation/coordination (M = .18) than
the other two CPS facets (M = .14 and .15), which were similar. The
three facets were not significantly correlated with each other (rs
from 0.06 to 0.11), suggesting they are indexing unique information.
Of the three facets, only negotiation/coordination significantly
correlated with both posttest (r = .14) and pretest (r = .19) scores.
Maintaining team function had a non-zero correlation with posttest
scores (r = .09), but constructing shared knowledge had a near zero
correlation with posttest scores (r = -.05). The three facets were
not significantly correlated with perceptions of team collaboration
and physics self-efficacy, but this later variable was significantly
correlated with both pre- and posttest scores.

Note: * p < .05, ** p < .01, *** p < .001



The Relationship between Collaborative Problem-Solving Skills and Group-to-Individual Learning Transfer in a Game-based
Learning Environment LAK 2025, March 03–07, 2025, Dublin, Ireland

Table 2: Means and standard deviations for three CPS facet scores (reverse coding) and the other variables in the statistical
model (diagonal cells). Pairwise Pearson correlation coefficients among variables (the upper diagonal cells).

Constructing
shared
knowledge

Negotiation/
Coordination

Maintaining
team
Function

Pretest score Posttest
score

Perceptions of
team
collaboration

Physics
self-
efficacy

Constructing shared
knowledge

0.14
(0.14)

-0.11 -0.11 -0.04 -0.05 -0.11 0.05

Negotiation/
Coordination

0.18
(0.09)

0.06 0.19** 0.14* 0.00 0.12

Maintaining team
function

0.15
(0.11)

-0.10 0.09 0.08 0.09

Pretest score 0.65
(0.19)

0.58*** 0.08 0.29***

Posttest score 0.69
(0.20)

-0.09 0.28***

Perceptions of
team collaboration

3.96
(1.23)

0.01

Physics
self-efficacy

4.70
(1.29)

3.2 Predictive Models
Table 3 shows the results of three separate models for predicting
posttest scores from CPS facets computed by three methods – re-
verse coding, separate sums, and sum total – after controlling for
pretest scores, physics self-efficacy, and perceptions of team col-
laboration. Regardless of the method used to compute each facet
score, maintaining team function significantly predicted individu-
als’ physics posttest scores. In the separate sums model, only the
sum of positive indicators of the maintaining team function facet
significantly predicted individual posttest scores. In addition, all
three covariates (i.e., pretest score, self-efficacy, and perception
of team collaboration) were significant predictors across all three
models (except for p = .053 for physics self-efficacy in the reverse
coding model). The marginal R squared shows that CPS facet scores
and the covariates together explained between 38% to 39% of the
variance in predicting the physics posttest score. The inclusion of
the random effects (conditional R squared) explained a total of 45%
of the variance.

We also fit separate mixed effects regression models predicting
posttest scores with the individual facets (instead of including them
in the same models as above). The models only included pretest
score as a covariate to address whether the lack of predictive power
of constructing shared knowledge and negotiation/coordination
from the above analyses might be due to the presence of the other
covariates. The results in Table 4 show the coefficients and 95%
confidence intervals for the facet scores only (n = 234). We found
that the predictive results were similar to Table 3 – maintaining

team function was the only statistically significant predictor of
individual learning outcomes.

Note: * p < .05, ** p < .01, *** p < .001

4 Discussion
We explored the relationships between CPS facets from the GCM
and group-to-individual transfer learning in a collaborative game-
based learning environment. Of the three CPS facets tested, main-
taining team function was the only significant predictor for indi-
vidual physics learning, regardless of how the facet scores were
computed. The findings emphasize the critical role of healthy and
functional interpersonal relationships within a team. For instance,
team members should proactively ask for suggestions if they are
stuck, and provide necessary support when others encounter prob-
lems. The zero-order correlations indicated a significant association
between negotiation/coordination and posttest scores, but this as-
sociation was non-significant once the covariates were added. Sur-
prisingly, constructing shared knowledge was not associated with
posttest scores in the study, contrary to our prediction. The findings
that the constructing shared knowledge and negotiation/coordi-
nation facets did not predict individual learning merits further
investigation. For example, CPS facets might interact to predict
learning or there might be nonlinear relationships with learning. It
might also be the case that not all facets predict all CPS outcomes,
but there is differential prediction where some predict task perfor-
mance, others’ perceptions of the collaboration, and others learning
gains. Together, this suggests that the GCM framework may still
be incomplete and further refinement is warranted.
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Table 3: Multilevel modeling predicting posttest scores from CPS facet scores computed by three methods – reverse coding
(upper), separate sums (middle), and sum total (bottom)

FIXED EFFECTS

Predictor Estimates CI p

Model 1: Reverse coding
(Intercept) 0.27 0.16 – 0.39 <0.001
Constructing shared knowledge -0.03 -0.18 – 0.12 0.685
Negotiation/coordination -0.02 -0.24 – 0.21 0.896
Maintaining team function 0.27 0.09 – 0.45 0.004
Pretest score 0.61 0.49 – 0.72 <0.001
Perceptions of team collaboration -0.02 -0.04 – -0.01 0.008
Physics self-efficacy 0.02 -0.00 – 0.03 0.053

Model 2: Separate sums
(Intercept) 0.26 0.14 – 0.39 <0.001
Constructing shared knowledge Positive -0.01 -0.19 – 0.17 0.891
Constructing shared knowledge Negative 0.08 -0.23 – 0.39 0.616
Negotiation/coordination Positive -0.04 -0.27 – 0.20 0.755
Negotiation/coordination Negative -0.93 -2.78 – 0.92 0.321
Maintaining team function Positive 0.27 0.08 – 0.45 0.005
Maintaining team function Negative -0.23 -1.22 – 0.76 0.649
Pretest score 0.62 0.50 – 0.73 <0.001
Perceptions of team collaboration -0.02 -0.04 – -0.01 0.009
Physics self-efficacy 0.02 0.00 – 0.03 0.046

Model 3: Sum total
(Intercept) 0.26 0.14 – 0.39 <0.001
Constructing shared knowledge 0.02 -0.13 – 0.18 0.758
Negotiation/coordination -0.03 -0.26 – 0.20 0.811
Maintaining team function 0.26 0.08 – 0.44 0.005
Pretest score 0.60 0.49 – 0.72 <0.001
Perceptions of team collaboration -0.02 -0.04 – -0.01 0.008
Physics self-efficacy 0.02 0.00 – 0.03 0.047

RANDOM EFFECTS

Parameter Model 1
Reverse coding

Model 2
Separate sums

Model 3
Sum total

f2 0.02 0.02 0.02
g00 team 0.00 0.00 0.00
ICC 0.10 0.10 0.11
N team 81 81 81
Observations 234 234 234
Marginal R2 / Conditional R2 0.385 / 0.449 0.386 / 0.448 0.382 / 0.449

Nevertheless, the paper takes a further step towards developing
a CPS framework given that the current literature lacks evidence
of reliability and validity of guiding frameworks [6]. Further, it is
important that the validation environment resembles real-world col-
laborative situations as much as possible. Some previous validation

studies were conducted in environments devoid of collaboration
with other humans as in the PISA framework [8]. Although the
current study was conducted in a lab setting, it entailed free ex-
change of information with teammates using speech instead of
typing into a chat box. The ever-increasing importance of virtual
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Table 4: The coefficients of each CPS facet (computed by different methods) predicting the posttest scores with pretest as a
covariate

Scoring Method Constructing shared
knowledge

Negotiation/
Coordination

Maintaining Team Function

Reverse Coding -0.02 (-0.18, 0.13) 0.02 (-0.21, 0.26) 0.27** (0.09, 0.45)

Separate Sums Positive -0.01 (-0.19, 0.18) 0.00 (-0.23, 0.24) 0.27** (0.09, 0.45)
Separate Sums Negative 0.08 (-0.24, 0.40) -0.96 (-2.84, 0.93) -0.33 (-1.33, 0.67)

Sum Total 0.01 (-0.15, 0.17) -0.01 (-0.24, 0.23) 0.25** (0.07, 0.43)

collaboration via videoconferencing platforms such as Zoom in
this globalized world makes it necessary to investigate and train
effective collaborations within such contexts as in the current study.
The study has limitations. For one, we focused solely on utterance
analysis, but non-verbal behaviors are also likely to be important for
CPS assessment [41]. Second, the study was conducted in a game-
based learning setting. There is a need to examine whether the
relationship between CPS and learning outcome can be replicated in
other CPS contexts. The diversity of the sample is another limitation
that should be addressed for broader claims of generalizability.
Further, we used a human-coding method in the study because it is
the gold-standard, but it is also time consuming and difficult to scale.
Machine learning techniques such as natural language processing
can be leveraged to automate the assessment process [30, 31, 35].
In addition to automated assessment, AI can also be utilized to
improve assessment accuracy by incorporating multimodal data
[23]
In parallel to framework development and validation, future re-
search should tackle the design and development of learning an-
alytics interfaces [22] aimed to support the enhancement of CPS
skills. Some work on this front is already underway. For example,
CPSCoach [36] is an intelligent system that uses natural language
processing (NLP) to automatically assess students’ CPS skills (based
on the GCM model) from their collaborative discourse to provide
feedback for reflection. This was followed by CPSCoach 2.0 which
included more active learning approaches (rather than passively
viewing feedback), resulting in improvement in CPS skills [11].
Research has also been leveraging validated frameworks like the
GCM and automated assessment to develop collaborative reflection-
support tools in classroom environments [13]. Validated CPS frame-
works such as the GCM considered here serve as the foundation
for automated assessment in digital learning environments and can
guide the design and evaluation of interventions.

5 Conclusions
As research on CPS has been emerging, work is needed to fully un-
derstand it as a unique construct by validating existing frameworks
[16]. There is little evidence on how CPS skills may be associated
with individual learning outcomes post collaboration (group-to-
individual learning transfer). Therefore, this research adopted an
analytical approach to investigate the relationships between CPS
and individual learning outcomes. Specifically, the current study
assessed CPS skills in the context of a remote CPS task embedded

in a digital game-based learning environment. Results indicated
that only one of the three CPS skills (maintaining a positive team
dynamic) predicted student learning outcomes. Findings from this
study can add to the literature on effective assessment of CPS skills
in dynamic and complex learning contexts. Furthermore, this work
can inform researchers and educators on best practices of apply-
ing CPS skills to enhance student learning. By leveraging AI, a
validated framework can not only improve the deployment of au-
tomated CPS assessments but also facilitate the development of
effective interventions for CPS skill development.
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