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Computerized learning environments can be characterized by the amount of
learner control supported during the learning process. This dimension can be
viewed as a continuum ranging from minimal (e.g., rote or didactic environ-
ments) to almost complete learner control (e.g., discovery environments). Two
differing perspectives, representing the ends of this continuum, have arisen in
response to the issue of the most optimal learning environment to build in
intelligent tutoring systems (ITS). One approach is to develop an environment
containing assorted tools and allow the learner freedom to explore and learn,
unfettered (e.g., Collins & Brown, 1988; Shute, Glaser, & Raghavan, 1989;
White & Horowitz, 1987). Advocates of an opposing perspective argue that it is
more efficacious to develop straightforward learning environments that do not
permit “garden path” digressions (e.g., Anderson, Boyle & Reiser, 1985; Cor-
bett & Anderson, 1989; Sleeman, Kelly, Martinak, Ward, & Moore, 1989). This
disparity between the positions becomes more complicated because the issue is
not just which is the better learning environment; but rather, which is the better
environment for what type(s) of persons, a classic aptitude-treatment interaction
question (Cronbach & Snow, 1977).

Many kinds of learner characteristics (e.g., incoming knowledge and skills)
affect what is learned in an instructional setting. This chapter focuses on another
individual differences measure, learning styles. Baron (1985) defines styles as,
*. . . general behavioral dispositions that characterize performance in mental
tasks; they are intellectual personality traits” (p. 366). Thus, learning styles may
be seen as reflecting different approaches to learning and may include such traits
as being holistic versus analytic, verbal versus spatial, reflective versus im-
pulsive, or exploratory versus passive (e.g., Baron, 1985; Glushko & Cooper,
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1978 Hunt & MacLeod, 1979: Kyllonen & Shute, 1989; Pask & Scott, 1972,
Peilegrino, Mumaw, & Shute. 1985).

To illustrate individual differences on one of these style dimensions, explora-
tory versus passive disposition, compare the following hypothetical persons.
After receiving a new word-processing program, Ann immediately loads the
program onto her COmputer, osses aside the manual, and learns the new knowl-
edge and procedures by trial-and-error. In contrast, Bob studies the accompany-
ing manual, reads it cover-to-cover, and only then loads the software onto his
computer. After 2 weeks, both are using the new word-processing program with
comparable efficiency. Which method is better? Which should be supported by a
tutor’s learning environment? [s there a trade-off between learning time and
quality of learning? These questions become very important when developing
computerized instructional systems.

This chapter systematically explores the possible interaction between learning
environment and learner style on various learning outcome measures. This ex-
perimental method has, in the past, been referred to as aptitude-treatment interac-
tion (ATI) research (see Cronbach & Snow, 1977) where aptitudes are defined in
the broadest sense of a person’s incoming knowledge, skills, personality traits,
and so on. The point of ATI research is to provide information about initial
learner states that can be used to select the best learning environment for a
particular student. To justify such an approach, evidence is needed that indi-
viduals do perform better or worse under different learning conditions (or en-
viropments).

ATI research was very popular in the 1960s and 1970s, then popularity de-
clined. The main reason contributing to the decline was that the older ATI
research typically involved studies conducted in classroom environments. Data
were confounded by many extraneous variables (e.g., personality of the teacher,
instructional materials, classroom dynamics) making ATIs hard to find and diffi-
cult to interpret. The current study circumvents this problem of “noisy data” by
using a rigorously controlled learning environment.

An ITS instructing basic principles of electricity was used as the learning task,
manipulated to yield two learning environments. These environments differed
only in the type of information provided by the tutor to the student. I posited that
active, exploratory learning behaviors would facilitate knowledge and skill ac-
quisition, especially in conjunction with the environment supporting inductive
learning behaviors. Less exploratory behaviors were hypothesized to be better
suited to the structured learning environment.

Learning Task. The intelligent tutoring system used in this study taught
basic principles of electricity: Ohm’s and Kirchhoff’s laws. it was originally
developed at the Learning Research and Development Center, University of
Pittsburgh (Lesgold, Bonar, ivill. & Bowen, 1989} and then modified exten-
sively at the Armstrong Laboratory, Human Resources Directorate. In particular,
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I created the two learning environments, developed learning indicators, rewrote
the feedback, established the mastery criterion, and modified the interface. Sub-
jects learned by solving problems presented by the computer. They also could
read definitions about concepts that were written in a hypertext structure (i.e.,
nested concepts within concepts), but that was optional. Another optional ac-
tivity included using a meter with positive and negative leads to obtain readings
from different parts of a circuit {(e.g., measuring voltage drop, current). Addi-
tionally, learners were free to change component values (e.g., increase a re-
sistor’s value) to see the effects on the circuit.

The two environments differed solely in terms of the feedback provided to
learners. In both environments, following the solution of each circuit problem,
learners were informed of the correctness of their solution. I called the first
environment “rule application™ because after the “right” or “wrong” feedback
was given, the computer presented the relevant rule. Subjects then applied this
rule or principle in solving subsequent problems. To illustrate, the computer
would comment, “Great! (or Sorry!) You are correct (or incorrect). The princi-
ple involved in this kind of problem is that current is the same before and after a
voltage source.” Thus the principle was explicated after each problem solution
{for both correct and incorrect responses) until learners reached the mastery
criterion, which [ set as three consecutively correct answers for a given problem
type.

[ labeled the second learning environment “rule-induction.” Here, the cor-
rectness of the problem solution was again provided to learners, in conjunction
with the relevant variables in the problem. but not their relationship(s). For
learners in this environment, the computer might respond. Great! (or Sorry!} You
are correct (or incorrect). What you need to know to solve this problem is how
current behaves—both before and after a voltage source. The inductive environ-
ment thus required subjects to generate for themselves the relationships among
variables during the solution of problems.

The curriculum consisted of a set of basic principles. Some of these principles
were: {1} The current at one point in an uninterrupted wire is equal to the current
at another point in an uninterrupted piece of wire, (2) The current before a
resistor is equal to the current after a resistor in a parallel net, (3} Voltage is equal
to the current multiplied by the resistance (V = [*R). There were a total of 26
different principles or “problem types” to be learned.

Problems were generated by the computer based on each of these principles.
Each problem was unique to each individual, not preprogrammed, based on the
particular subject’s response history. For example, if a student needed more work
on current flow across resistors, the systern would generate a problem satisfying
specific constraints such as it must be a “current problem” involving at least one
resistor, perhaps requiring 2 more quantitative solution, and so forth.

Figure 2.1 shows an example of the main screen. On the screen’s left, a
parallel circuit is depicted with various component values. The upper right of the
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screen presents the learner with his or her main options (e.g., look at definitions,
take a measurement on the circuit). Problems are presented in the lower right
quadrant of the screen with feedback given in the same window. In this problem,
the student was supposed to determine the current (in amps) from points a to b.
The values from ¢ to d and from e to f were given. A notebook present at the
lower left of the screen allowed for the storage of information. If a student chose
10 explore the circuit, he or she could store new information in the notebook and
compare it to the old data. Finally, an on-line calculator was always available for
the solution of more complex, quantitative problems.

Optional (Exploratory) Behaviors. Some individuals like to control what
they do and when they do it during the learning process. In this tutor, in addition
to solving a problem, there were three different elective activities: viewing defi-
nitions, taking measurements on a circuit, and changing circuit component val-
ues. The first exploratory behavior was declarative (i.e., looking up terms and
definitions) while the second and third activities were procedural. That is, taking
measurements and changing components actually required the learner to do
something to the circuit rather than more passively reading definitions.

if the subject chose to see definitions, the screen would clear and a menu of
items would appear: ammeter, ampere, charge, circuit, current, ohm, resistance,
resistor, parallel circuit, series circuit, voltage, voltage source, and voltmeter.
Selecting any of these terms would cause a large window to open that would
contain three parts: a relevant diagram, a definition (formal), and an explanation
(informal). Bold-faced words would appear within the definitions and explana-
tions. Selecting a bold-faced word would move the learner to the related concept
{see Fig. 2.2). In come cases, simulations were available for the learner to run:
(a) Comparison between current flow in a series versus a parallel circuit (see Fig.
2.3), and (b) Comparison between voitage drop in a series versus a parallel
circuit. A dynamic display would appear on the computer screen illustrating how
current (or voltage) operated differentiaily in the two circuit types, presented
side-by-side.

Following problem solution, a subject could elect to rake measurements on the
circuit. For instance, Fig. 2.4 shows what happens when someone chose to
measure the voltage drop across a resistor, from point g to point h. Positive and
negative leads allow the learner to meter on two parts of the circuit and obtain a
reading. Subjects could employ either the voltmeter (giving readings in volts) or
the ammeter (giving readings in amps). This option was available at all times.
However, if the subject had not yet answered the immediate problem, he or she
was not allowed to take measurements that would yield the answer. For example,
if the problem to be solved involved “current across a resistor in a series circuit,”
the learner could only take a voitage reading. After the problem was solved, then
it was possible to obtain readings for both voltage and current.

Another optional activity involved changing component values. Again, after
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FIG. 2.2. Example of a definition (ammeter).

solving a problem, a component value (i.e., voltage source or resistor) on the
circuit could be modified. Subjects could then observe how that particular
change effected other parts of the circuit. To make a change, the subject would
button on, for instance, the voltage source. He or she would then type in the new
value (e.g., from 76 volts to 55 volts). Results from the changes appear automati-
cally on the screen and in the notebook (see Fig. 2.5).

Tt Do Wimdow i § i

if you wouid ke 1o see some basic definitions or exampiles you can select from |
the menu below. After selecting a definition, you may see some boldfaced words |
or phrases. You can select any boldfaced word or phrase to see other
definitions and examples.

St Series dimutation Start Paatie! Jimelanon

This simulation ilustrates the motion of clectrons in a series
and parsilel circuit. Both circuits have the same voltage source.
Both resistors have the same resistance.  For simplicity, we

Back To The Tutor | -

show only two charges carrying electrons moving through the
circuit only once.

Show Last Detinition

FIG. 2.3. Example of a simulation {(comparing movement of charges
in series and parailel circuits).
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FIG. 2.4. Using the voltmeter on a circuit to obtain a reading between

two points,

Notebook Old
SOURCE VOLTAGE VO = 55 voits. |76
lhe Current flowing from a to b = 7 amps. |z
The Current flowing from c to d = 1.19 amnps. | 1.65
The Voltage across g to h = 16.74 voits. 23.13

i i

FIG. 2.5. The on-line notebook after the voltage source was changed
{from 76 to 55 volts).
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The computer tallied data on subjects’ use of these elective activities. At a
global level, I distinguished two kinds of exploratory indices. I computed the
first one, “declarative exploration,” as the time spent looking at definitions
divided by the total time spent on the tutor (because time-on-tutor differed for
everyone). The second index was “procedural exploration.” This too was a
proportion involving the time spent using a meter plus the time spent changing a
component’s value divided by the total time on the tutor.

Subjects. There were 309 subjects (84% males, 16% females) who com-
pleted this study on the acquisition of basic principles of electricity. Each subject
participated for 7 days (45 hours). All subjects were high school graduates (or
equivalent) with a mean age of 22 and an age range from 18 to 28. Subjects were
obtained from two local temporary employment agencies and none had any prior
electronics instruction or training. All subjects were paid for their participation.

Subjects were tested in groups of 15-20 at Lackland Air Force Base, Texas.
They occupied individual testing stations and all instructions, testing, and feed-
hack were computer administered with proctors available to answer questions.
The ITS was administered on Xerox 186 computers with standard keyboards
and high resolution monochromatic displays on 19" monitors. On the morning of
Day I, subjects were given a brief orientation to the electricity study and then
randomly assigned to one of two learning conditions.

Pretests. Two pretests were included in the study to assess individuals’
incoming domain-related knowledge. The first pretest measured declarative
knowledge of different electrical components and devices involved in elec-
tronics. The concepts that were covered included: ammeter, ampere, charge,
circuit, current, ohm, parallel circuit, resistance, resistor, series circuit, volt,
voltage, voltage source, and voltmeter. This test included multiple choice and
true/false questions. An example multiple choice item from the test asked:
Which statement is most true about a voltage source? (a) It supplies electricity to
4 circuit. (b} It cannot store electricity for later use, {¢) It does not have to be
a physical device, (d) It is necessary to measure the current flowing through a
circuit, or (e) It restricts the amount of current going through a circuit. Some
example true/false items were: A parallel circuit requires two voltage sources,
Unlike charges are attracted to one another, and Resistance is measured in amps.

The second pretest measured conceptual understanding of Ohm’s and
Kirchhoff’s laws. These questions did not require any computations. Half of the
items in this test contained pictures of circuits along with the questions, and the
other half did not have pictures. To illustrate a question without a picture: if
current was measured before and after a resistor in a series circuit, would the
measurement before the tesistor be higher, lower, or equal to the measurement
after the resistor? The questions with circuits were sirnilar, but referred to actual
points on the circuits.
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Postiests. 1 developed a four-part criterion test battery to measure the
breadth and depth of knowledge and skills acquired from the tutor. The four-part
battery was administered on-line at the end of the tutor. The first two tests in this
learning outcome battery were identical to the two pretests discussed earlier (i.e.,
declarative knowledge and conceptual understanding). ' )

The third posttest assessed the degree to which procedural skills were ac-
quired. This test involved the application of Ohm’s and Kirchhoff’s laws in the
solution of different problems. These questions did require computations in order
to solve them. An on-screen calculator was provided to help solve these items.
There were two types of questions, half with accompanying pictures of circuits
and the others without pictures. Each question corresponded to a principle of
Ohm’s or Kirchhoff’s laws. Problems with pictures displayed a circuit and the
subject was required to compute what the reading was at some point for some
component. The subject was required to apply the correct formula (e.g., V =
[*R). Two of the three values were given and the solution required computing the
unknown value. An example test item was: If the resistance in a circuit s 16
ohms and the current is 30 amps, then what is the voltage?

The fourth posttest in the criterion battery measured a subject’s ability to
generalize knowledge and skills beyond what was explicitly instructed by the
tutor. The subject was required to generate or design circuits to do specific
things. Thus, the test required not only a functional understanding of the laws
and principles, but also the ability to compute solutions to novel problems. An
example item from this test is included in Fig. 2.6.

In summary, the four tests were designed to measure different aspects of
electronics knowledge and skill acquisition, from declarative knowledge under-
standing to quantitative understanding and ability to apply and transfer Ohm’s
and Kirchhoff’s laws.

Learning Efficiency. 1 defined two learning efficiency measures. Because
instruction in this tutor was self-paced, subjects could take as long as they needed
to complete the curriculum. Some subjects were faster acquiring the new mate-
rial, and others were slower. So the first index was defined as total time on turor.
The tutor was also open-ended as far as the number of problems generated per
principle. That is, the number of problems a person received was a function of
how many problems were needed to reach the mastery criterion (i.e., correctly
solving three consecutive problems) per principle. Thus the minimum number of
problems that would be created for a given principle was three. So the second
learning efficiency index was defined as the total number of problems received.
Although these two efficiency measures are somewhat related (i.e., it generally
takes longer to complete the tutor if there are more problems to solve) they
measure slightly different aspects of learning efficiency: speed and accuracy.

Hypotheses. In an earlier study, Robert Glaser and I (Shute & Glaser. 1990)
found that individuals demonstrating systematic, exploratory behaviors (e.g.,
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Enter resistor values for R1, R2 and R3
that will give a voitage drop fromc to d
of 10.80 volts, a current from e to f of
1.80 amps and a current fromatob of 3
amps, while the voliage source is 30
volts.

- R2 e

Compute
RESISTOR

FIG. 2.6. Example test item from posttest 4: Generalization of knowl-
edge and skills.

recording baseline data before any changes were made, limiting the number of
variables changed in an experiment) were significantly more successful in a
discovery microworld than those individuals evidencing less systematic behav-
iors. On the basis of this finding, I believed there would be a main effect of
exploratory behavior on outcome where “more exploratory” would be associated
with “better outcome” across criterion measures. Furthermore, 1 hypothesized
this main effect of exploratory behavior to be even more pronounced in the rule-
induction environment which supported inductive activities. In other words, I
predicted that learners evidencing a lot of exploratory behaviors (procedural and
declarative) should perform better on the outcome measures if they learned from
the inductive environment than if they learned from the application environment.
Conversely, less exploratory learners would benefit from the structured, applica-
tion environment rather than the inductive environment.

RESULTS

Learning Outcome. The first criterion | investigated was learning outcome,
defined as the percent correct scores on the four posttests. Although I originally



2. A COMPARISON OF LEARNING ENVIRONMENTS 57

created these tests to measure different facets of knowledge and skill acquisition,
they turned out to be significantly correlated with one another: Posttests | and 2
(r=33), land 3 (r=76), L and 4 (r = 58), 2 and 3 (r= 41}, 2and 4 (r =
44y, and 3 and 4 (r = .66). Because of this interdependence among the test data,
as well as a desire to keep analyses fairly simple, [ computed a factor analysis
(principal components) on the four posttest scores and a single factor was ex-
fracted, accounting for 65.1% of the posttest variance. The factor scores were
saved for each individual (postfac) with loadings per test as follows: Posttest |
(.85), Posttest 2 (.62), Posttest 3 (.90}, and Posttest 4 (.84). Similarly, I com-
puted a factor analysis ( principle components) on the pretest data and one factor
was extracted (prefac) accounting for 60.2% of the pretest data. Factor loadings
for the pretests on this factor were both .78,

The composite learning outcome measure, postfac, was then examined as a
function of learning environment and exploratory behavior—declarative and
procedural. In addition, [ wanted to look at the results of Jjust the exploratory
behaviors and environment on learning outcome without confounding the resuits
with incoming knowledge ( prefac correlates highly, .61, with postfac). By hold-
ing incoming knowledge constant (i.e., included as an independent variable in
the regression equation), | can isolate the influence of specific behaviors on
outcome.

I computed a multiple regression analysis using postfac as the dependent
variable. The independent variables included: prefac, learning environment, pro-
cedural exploratory behavior (i.e., the proportion of time spent using the meter
and changing components in relation to the total time on the tutor) and de-
clarative exploratory behavior (i.e., proportion of time spent viewing definitions
in relation to the total time on the tutor}. Also the two interactions between the
exploratory behaviors and environment were tested.

Results from this analysis showed that 42% of the variance of the outcome
factor could be accounted for by these few variables ( multiple R = .65). Not
surprising, there was a main effect of prefac whereby individuals with more
incoming domain-specific knowledge performed better on the outcome measures
than those with less incoming knowledge: Loy 299y = 13.03, p << 001, But there
was no significant main effect of learning environment on learning outcome
{3 209y = —1.83, p = .07). As seen in Table 2.1, the pretest and posttest factor
scores were similar (i.e., close to the mean of 0} in the two learning environ-
ments so neither environment showed a distinct learning advantage. But there
was a slight advantage of the rule-application environment over the induction
environment. There was a significant main effect of procedural exploratory be-
havior predicting the outcome factor: 7, 49, = —2.16, p < .05. In this case,
high procedural exploratory behaviors were associated with poor outcomes.
There also was a significant main effect of declarative exploratory behavior on
OULCOME: 1y Hg9y = 3.57, p << 001, But here, the proportion of time ailocated to
reading definitions was a positive predictor of learning outcome. Finaily, and of
grestest interest, there was a significant interaction involving procedural (but not
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TABLE 2.1
Summary Statistics of Learning and Behavioral indicators by Environment

Variable Mean SD Min Max

Rule-Application [N = 152)

Behaviors
METER {minutes) 74.14 46.54 4.23 208.13
CHANGE (minutes) 9.45 9.39 0.00 40.00
DEFINITIONS (minutes) 13.21 9.43 0.68 46.62
TIME {(MINUTES) 656.21 222.74 311.38 1230.58
METER + CHANGE (minutes) 83.59 51.03 4.23 220.83
PREFAC (factor score} .08 1.06 -1.82 3.41
Proportions
METER = CHANGE / TIME 0.12 0.05 0.01 0.29
DEFINITIONS /TIME 0.02 0.01 0.0 0.08
Criteria
POSTFAC {factor score) 0.08 1.08 -1.81 2.75
TOTAL PROBLEMS 140.16 45.95 79.00 291.00
TIME (hours) 10.93 3.71 5.19 20.51

Rulg-Induction (N = 154}

Behaviors
METER (minutes) 82.14 52.81 4.30 243.48
CHANGE (minutes) 9.41 9.07 0.00 51.43
DEFINITIONS (minutes) 12.96 8.53 0.00 43.60
TIME {minutes) 887.60 201.74 382.52 1218.33
METER + CHANGE (minutes) 91.55 55.94 10.47 243.48
PREFAC (factor score} -0.07 0.93 ~1.87 2.33
Proportions
METER + CHANGE / TIME 0.13 0.07 0.01 0.31
DEFINITIONS /TIME, 2.02 0.01 0.00 0.08
Criteria
POSTFAC (factor score) -0.08 0.93 -1.81 2.58
TOTAL PROBLEMS 151.73 51.18 89.00 337.00
TIME (hours) 11.47 3.37 5.38 20.32

declarative) exploratory behavior and learning environment predicting learning
QUICOME: £ Hgg, = 2.44, p < .02,

To illustrate this interaction, expected values were computed from the regres-
sion equation for four groups of subjects: Individuals one standard deviation
above and below the average “procedural exploration™ score in each of the two
learning environments. These results can be seen in Fig. 2.7. Error bars are
included in the plots of these expected values—approximate standard error mea-
sures for each group (i.e., square root of mean-square error divided by N). As
can be seen in the figure, subjects who spent a large proportion of time engaged
in procedural exploratory behaviors performed much better on the posttests
{postfac) if they had been assigned to the rule-induction environment than the
rule-application environment. But subjects showing fewer exploratory behaviors
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FIG. 2.7. Interaction of procedural exploratory behavior and fearning
environment on posttest factor score {expected values).

learned much more if they had been in the rule-application environment rather
than the rule-induction environment.

Learning Efficiency: Time on Tutor. Similar to the preceding analyses with
the outcome data, I computed a multiple regression analysis using time on tutor
as the dependent variable and the same predictor variables as above (viz., prefac,
learning environment, procedural and declarative exploratory behaviors, and the
two interactions between behaviors and environment), and accounted for 26% of
the efficiency variance (multiple R = .51). Again, prefac was included in the
equation to control for differences in incoming knowledge that might impact
learning rate. There was a significant main effect due to prefac: Iy 299y = —8.38,
p < .001 (i.e., more incoming knowledge associated with less time on tutor).
There also was a significant main effect of environment on efficiency I .209) =
2.93, p < .005. Individuals in the rule-application environment completed the
tutor in less time than did those in the rule-induction environment. There also
was a significant main effect of procedural (but not declarative) exploratory
behavior on learning efficiency: Yt 209y = 4.34, p < .001. In this case, using the
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FiG. 2.8, Interaction of procedural exploratory behavior and learning
anvironment on total time on tutor {expected values).

on-line exploratory tools was costly in terms of tutor completion time, and
despite this increase in time, there was no payoff in increased outcome. On the
contrary, from the results with postfac, above, we see that procedural tool usage
was associated inversely with learning outcome factor. Finally, there was a
significant interaction involving procedural behaviors and learning environment
on learning efficiency 7 yoq, = —3.43, p < O0L

1o sllustrate this interaction, I computed expected values from the regression
equation for four groups of subjects: Individuals one standard deviation above
and below the mean procedural exploration score in each of the (wo jearming
environments. The results seen in Fig. 2.8 were as follows: Procedural explorato-
ry behaviors were unrelated to hours on the tutor for individuals in the rule-
induction environment, but positively related for the rule-application environ-
ment (where more behaviors = more time on tutor).

Learning Efficiency: Total Number of Problems Required. A final regres-
sion analysis was computed using total number of problems as the dependent
variable and the same set of predictor variables as used above. About one third



2. A COMPARISON OF LEARNING ENVIRONMENTS 81

(33%) of the variance was accounted for by the set of independent variables
(Multiple R = .38). There was a significant main effect due to prefac:ty; o, =
—8.61, p < .001. More incoming knowledge, again, was associated with fewer
problems required to reach mastery criterion. There was a significant main effect
of environment on efficiency iy 299y = 3.63, p < .001. Similar to the findings
using time on tutor as the dependent variable, individuals in the rule-application
environment required fewer problems, overall, compared to individuals in the
rufe-induction environment. And there was a significant main effect of de-
clarative (but not procedural) exploratory behavior on number of problems:
1200y = —2.89, p < .005. People who looked at many definitions required
fewer problems to reach criterion, so it was a facilitative activity. There was also
a significant interaction involving procedural behaviors and learning environ-
ment on learning efficiency 1, ,oe, = —3.15, p < .005.

Expected values from the regression equation for four groups of subjects were
computed: Individuals one standard deviation above and below the mean pro-
cedural explore score in each of the two learning environments. These resuits can
be seen in Fig. 2.9. The depicted interaction shows that procedural exploratory

FiE. 2.8, Interaction of procedural expioratory behavior and learning
environment on total number of problems needed {expacted values),
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behaviors were unrelated to number of problems required for individuals in the
rule-application environment, but was significantly related for the rule-induction
environment (i.e., more behaviors associated with a reduction in number of
problems needed to reach mastery).

Within-tutor Analyses

The procedural exploratory index used in the foregoing analyses was computed
as total time spent metering and changing component values divided by total time
on the tutor. But sometimes total measures can be misleading {e.g., see Shute,
1689). A more refined way of looking at these data is to examine them across
similar problem types or time (see Shute & Kyllonen, 1990). To accomplish this
goal, I defined 26 new proportions corresponding to each of the 26 principles in
the curriculum (rather than just the single proportion). These were computed as
the amount of time spent metering and changing values divided by the amount of
time spent on each principle.

I computed a factor analysis with varimax rotation on the 26 by 26 covariance
matrix of proportions (i.e., time metering plus time changing values divided by
total time for each principle). The varimax rotation converged in four iterations
yielding a two factor solution. The two extracted factors accounted for 94.2% of
the variance of these proportions. Table 2.2 shows the descriptions of the factors,
along with associated principles and respective factor loadings.

Factor scores for the two factors were saved for each individual and then used
in subsequent analyses. Relationships between factor scores and the criterion
measures can be seen in Table 2.3, separated by environment.

In the rule-application environment, the data suggested that early on during
the course of learning (factor 1 data, principles 1-9), the proportion of time spent
engaging in procedural explorations was not significantly correlated with either
posttest factor score or time on tutor.} During later learning of the more difficult
concepts (factor 2 data, principles 10-26), higher proportions of procedural
explorations were negatively correlated with the outcome and efficiency mea-
sures (1.e., lower posttest scores and longer time on tutor).

On the other hand, in the rule-induction environment, we see a different
pattern of correlations. Early learning (factor I data) showed that higher propor-
tions of procedural behaviors were positively correlated with outcome and effi-
ciency measures (i.e., higher posttest scores, less time on tutor, and fewer
problems to reach mastery). But later on, there was no correlation among the
proportions and the learning measures.

The last analysis examines whether an individual’s inirial exploratory data can
ultimately be used to predict learning outcome and efficiency measures differen-

"There was, however, a significant correlation between this proportion and number of problems
required where higher proportions were associated with fewer problems.




TABLE 2.2
Factor Analysis Solution With Descrlptions and Loadings for Each of the Two Factors Underlying
Procedural Exploratory Behaviors

Factor 1: These are the first nine principles in the curriculum—simple Kirchhoffs problems
involving current flow and voltage drop in series and parallel circuits.

Principle 3 (ioading = .927): The current is the same before and after a resistor.

Principle 4 (loading = .926): The current before a resistor is equai to the current after a resistor
In a parallei net.

Principle 5 (icading = .905): The current in the branches of the parallel net sums to the
current in the entire net.

Principle 6 {ioading = .886); The current in a component is iower than the current for the
entire net.

Principle 2 (loading = .881); The current is the same before and after a voltags source.

Principle 7 (loading = .852): Veltage drop is lower across any singis component of a series
net than across the whole net.

Principle 8 (loading = .780): Voitage drops across components of a series net sum up to the
voltage drop across a whole net.

Principle 9 (loading = .730): Voltage drop is the same across parailel components.

Principle 1 (loading = .683): The current at one polnt in an uninterrupted wire Is equal to the

current at another point in an uninterrupted piece of wire.

Factor 2: This factor is characterized by principles raprasenting later, mors difficult problems:
Ohm's law (l.e., the interrslationship among voltage, current, and resistance] and the integration
of Kirchhoff's and Ohm's laws.

Principie 26 (loading = .958):  Voltage drop Is the same across any component as it is across
the whole paraliel net.

Principle 25 (loading = .958):  Volitage drop is the same across parallei components.

Principle 24 (loading = .957).  The current in a componert is lower than the current for the

antire net.

Principle 23 {loading = .357):  The cumrent in the branches of a parallel net sums to the current
in the ertire nat.

Principle 22 (loading = .852):  The current before a resistor is equal to the current after a resistor
in a paraliel net.

Principle 21 (loading ~ .947):  Voltage drop is the same across any component as it is across
the whole parailel net,

Principle 20 (loading = .938):  Voltage drop is the same across parallel components.

Principle 19 {loading = .926):  The current in a component is lower than the current for the
entire nat,

Principle 18 (loading = .918):  Current is the same across a resistor.

Principle 17 (loading = .905):  Current In the branches of a paralls| net sums to the current In the
ertire net.

Principle 16 {loading = .886):  The current before a resistor is equal to the currart after a resistor
in a paralls! net.

Principle 15 (loading = .867):  Current is the same before and after a resistor.

Principle 14 (loading = .850):  If the voitage goies up or down and the resistance stays the
same, this implies that the current will go up or down with
the voltage.

Principle 13 (loading = .833):  Current is equal to voitage divided by resistance (| = V/R).

Principle 12 (loading = .805):  When tha current goes up or down and resistance stays the
same, this implies that the voitage should also go up or
down.

Principle 11 {loading = .761):  Voltage is equal to current multiplied by resistance {V = I"R).

Principle 10 (loading = .705):  Voltage drop is the same across any camponent as across the
whole parallel net.
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TABLE 23
Correlations Among Procedural Factor Scores and Criterion Measures, Separated by Learning
Environment

ARula-Application Environment (N = 152)

Postfac Time Problems
Factor 1 17 -13 -.28"
Factor 2 23" 35 14

Rule-induction Environment (N = 154)

Factor 1 37 21 -.38%
Factor 2 07 A2 -.18

Notes. * p<.01; **p < .001. Factor | = Early problems (principles 1.9} in the curriculum dealing with
Kirchhoff’s law, and Factor 2 = More difficult problems (principles 10-26) involving Chm’s and KirchhofPs
faws,

tially by environment. This has implications for generating decision rules for
matching learners to environments. Rather than using factor 1 data (which con-
sisted of the first nine principles in the curriculum), I was interested in testing
whether exploratory behaviors, evidenced during learning the first principle, by
itself, could predict any outcome or efficiency measures. The data used in this
analysis included the amount of time a person spent in procedural explorations
while learning principle 1 divided by the total time spent learning principle |
(PEBI). The other independent variables included in the regression equation
were: prefac, learning environment and PEB1 by environment interaction.

Results showed that these independent variables significantly predicted
postiac (Multipie R = .62). There was a significant main effect due to prefac (t =
13.5: p << .001), where more incoming knowledge was a positive predictor of
posttest performance. There was also a significant main effect due to learning
environment (t = —2.3; p < .05) where the rule-application environment was
associated with higher outcome performance. Finally, and of most interest, the
mteraction between exploratory behavior and environment was significant (¢ =
2.2, p <0 .05). Higher procedural proportions were associated with greater out-
comes in the rule-induction environment, but not the rule-application environ-
ment. A graph of this interaction may be seen in Fig. 2.10.

The interaction term did not significantly predict time on tutor, but did predict
total number of problems (t = —2.3, p <C .05). A graph of this interaction may be
seenin Fig. 2.11. Thus, the interaction between very early exploratory behaviors
and learning environment may be used as a valid predictor of learning outcome
and efficiency.
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FiG. 2.10.  Principle 1 data only—Interaction of procedural explorato-
ry behavior and learning environment on posttest factor score (ex-
pected values).

DISCUSSION

{n summary, [ used an intelligent tutoring system with two different learning
environments as a complex but controlled learning task to investigate possible
learner style by treatment interactions. This represents a new generation of ATI
research, more rigorously controlled than ATI research conducted during the
1960s and 70s. The learning environments (or treatments) in this study were
identical, differing only in the feedback provided to the learner. After problem
solution, whether correctly or incorrectly answered, one environment directly
stated the relevant principle and the learner appiied it in the solution of related
problems; the other environment required the learner to induce the relevant
principle, providing only the variables involved in the rule, but not their rela-
tionship(s). Findings showed that when learner styles (exploratory behaviors)
were matched to environment, learning was superior compared with mismatched
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FIG. 2.11. Principle 1 data only—Interaction of procedural expiorato-
ry behavior and learning environment on total number of problems
needed (expected values).

conditions. This suggests a new approach to student modeling using “new” ATI
methodology (computer-administered learning tasks) and focusing on cognitive
tool use as the behavior to model. This contrasts with, for example, model-
tracing which records and diagnoses low-level productions underlying the learn-
ing process.

The first environment, rule-application, was straightforward and clear—all
information necessary to solve a problem was presented to the learner. Subjects
in this environment had no tenable need to engage in exploratory, extracurricular
behaviors. On the other hand, the rule-induction environment required active
participation in the learning process because the tutor only gave learners parts of
a principle. Subjects had to come up with the conceptual glue (functional rela-
tionships) themselves, by any means they could. Thus, it was believed that the
inductive environment would support (if not actively promote) the use of explor-
atory behaviors so that learners could obtain information needed to solve the
problems. But results showed no significant differences between environments
for either procedural or declarative exploratory learning behaviors (see Table
2.1). The mean procedural proportions were .12 and .13 in the rule-application
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and rule-induction environments, respectively. And the mean declarative propor-
tions were .02 and .02 in the rule-application and rule-induction environments,
respectively. Thus the two learning environments did not produce different pro-
files of exploratory behaviors.

In either environment, several different reasons can possibly explain an indi-
vidual’s exploratory behaviors. First, a learner unable to solve the problem being
worked on may grope for something that he or she can do instead ( “floundering”
basis for the behavior). Another person may employ the tools after carefully
designing an experiment involving the systematic manipulation of a circuit and
taking controiled meter readings. This use of tools may ultimately supplement
current understanding and yield other valuable insights (“methodic search for
knowledge” reason for behavior). And finally, another person may simply use
the on-line tools for fun and diversion (“playful curiosity” basis for behavior).
The floundering basis may be associated with cognitive deficits while the me-
thodic search basis may be associated with cognitive surfeits. Playful curiosity
could be associated with either/neither.

if exploratory behavior simply reflects cognitive ability, in the rule-applica-
tion environment, where there was no actual need to explore (the system present-
=d the rule to learners), we would expect to see negative correlations between
tool usage and cognitive ability. But in the rule-induction environment, applying
exploratory behaviors may denote methodic (and perhaps necessary) knowledge
searches. If that were the case, we would expect positive correlations between
explorations and cognitive ability. Although not reported, 1 did compute these
correlations and found no significant correlations between procedural exploratory
behaviors and cognitive ability—overall and when the data were separated by
environment.” Moreover, there was no significant correlation between tool usage
and prefac (domain-specific incoming knowledge), overall and separated by
environment. The degree to which an individual engages in exploratory behavior
seems to be unrelated to cognitive ability and unrelated to incoming knowledge.

Although this chapter focuses on investigating possible interactions between
exploratory behaviors and environment on outcome measures, some of the main
effects turn out to be significant and illuminating; they will be discussed first.

Learning Environments. Was one environment more successful than the
other in promoting knowledge and skill acquisition for the subject matter of basic
clectricity? Individuals in the rule-application environment, overall, took signifi-
cantly less time to complete the curriculum and required significantly fewer
problems to reach mastery compared to subjects in the rule-induction environ-
ment. But sometimes a large investment of time may actually result in greater

“The cognitive knowledge and skill measures that | examined in relation to exploratory hehavior
{proceduraly included: working memory capacity, information processing speed, associative learning
skill, inductive reasoning skills, procedural learning skills, and general knowledge.
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salns or outcomes {(e.g., the race between the tortoise and the hare). This was not
the case in the present study. As a matter of fact. just the opposite was found. Not
only did subjects in the rule-application environment learn the material more
efficiently (i.e., take less time and require fewer problems to complete the tutor),
they also had slightly higher (albeit nonsignificant) posttest factor scores than
subjects learning in the rule-induction environment,

Tool Usage {exploratory behaviors). The next main effect involves explora-
tory behaviors and their impact on learning. A considerable amount of effort is
expended by ITS designers and programmers creating multifarious “bells and
whistles” in their systems. The point, of course, is to entice learners (as well as
teachers, fellow researchers, and so on} with alterative and entertaining ways to
learn. This tutor was no exception. Some very impressive features and ca-
pabilities were built into the tutor. For instance, an individual could use an on-
line meter (voltmeter or ammeter) to obtain readings from different parts of a
circuit. One could change a component’s value {e.g., voltage source) and see the
ramifications on the circuit. Finaily, a person was free to peruse the on-line
hypertext dictionary of terms. Which, if any, of these “bells and whisties” were
important to learning? Did using these tools (and consequently engaging in
exploratory behaviors) actually help or hinder learning? A significant negative
main effect was found for procedural exploratory behavior in relation to posttest
factor scores and time on tutor (where more procedural tool usage was associated
with lower posttest factor scores and more time to complete the tutor). However a
positive (facilitative) main effect was found between declarative exploratory
behavior and both posttest factor scores and total number of problems needed to
reach mastery. These data imply that using the on-line dictionary was a positive
behavior but using the fancy meters and changing circuit values were, in general,
negative behaviors.

There are several possible explanations to account for these findings: (1)
Disruption of procedural skill acquisition; (2) Problems associated with using
gross indicators in data analyses (e.g.. overall procedural exploratory behavior
proportion); and (3) Need to additionally consider other variables in the equation
{e.g., learning environment, degree of tool usage). Each of these are discussed in
turn.

Disruption of Proceduralization.  Many cognitive psychologists have shown
that successful skill acquisition depends on sustained and consistent practice.
opportunities (e.g., Ackerman, [988; Anderson, 1987, Schneider & Shifirin,
1977). If a person focuses on problem solution, then proceduralization is facili-
tated. But when that person departs from problem-solving activities and goes off
10, for example, engage the on-line tools (for whatever reasons), that detracts
from, and thus disrupts the compiiation process. Referencing the dictionary may
be an exception to this disruption because information found in the dictionary
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directly relates to relevant variables and their relations. Furthermore, there are
limired garden paths available to traverse with the dictionary (18 terms defined in
all). On the other hand, there are unlimited ways of manipulating circuits (e.g. .
successively increase a resistor value by one ohm).

Problems Using Total Counts, or “Gross I[ndicators” in Analyses. In dy-
namic learning situations spanning a duration of time, examining one variable
defined as the sum of actions can be deceptive, especially when viewed in
relation to other variables. For instance, Shute (1991) reported findings from a
study employing a Pascal 1TS as the learning task. One variable defined the total
nunber of hints a person requested from the tutor. This gross indicator correlated
with learning outcome (r = —.64), implying that hint-asking was, overall, a very
unsuccessful behavior. But this was disturbing because one main feature of ITS’s
is their ability to provide individualized help when needed. When these data were
analyzed across time (rather than using the gross count), asking for hints had
much higher negative correlations with outcome during latter stages than the
carlier stages of learning.?

A factor analysis computed on the data from the current study showed a clean
two factor solution (i.e., Factor | = first nine principles, and Factor 2 =
remaining principles). This breakdown allowed the data to be globally examined
across time (i.e., carly vs. later learning). Like the data from the Pascal study
discussed earlier, findings with these separated data showed that, in fact, pro-
cedural exploratory behaviors were positively correlated with outcome measures
early on (significantly so within the rule-induction environment, and the trend
present in the rule-application environment). But later usage of these same tools
was negatively correlated with outcome and efficiency measures, only within the
rule-application environment. however. So, the simple main effects involving
exploratory behaviors should be qualified (e.g.. by time data).

Need to Additionally Consider Other Variables in the Equation (e.g., learning
environment, degree of tool usage). The interaction hypothesis tested was
whether individuals with above average exploratory behaviors would perform
better in the rule-induction environment than the rule-application environment.
Conversely, less exploratory individuals were believed to do better in the more
didactic, rule-application environment than the more taxing rule-induction en-
vironment. The basis for this belief is that when learning environment is matched
to certain characteristics of the learner, then performance is optimized (e.g., Pask
& Scott, 1972). In fact, all three dependent measures (i.e., posttest factor score,
time on tutor, and total number of problems required), showed significant learner

*This pattern of correlations between hints and outcome over time was seen even after cognitive
process measures were partialied out of the hint-asking variable (e g.. working memory capacity,
processing speed, general knowledge).
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style by environment interactions. Each told the same basic story, but there were
some subtle differences.

Posttest Factor Scores.  This disordinal interaction was straightforward: Two
opposite trends defined the correlations between exploratory behavior and post-
test score. A positive linear trend expressed the relationship between exploratory
hehavior and outcome in the rule-induction environment {more is better), while a
strong negative trend defined the relationship between exploratory behavior and
outcome in the rule-application environment (more is worse). On the basis of
these results, active explorers would do better on the outcome tests if learning
from the inductive environment. But less exploratory folks should, unequivo-
cally, be assigned to the straightforward application environment (see Fig. 2.7) to
achieve their best posttest scores.

Time on Tutor. The significant interaction depicted in Fig. 2.8 showed that
high explorers progressed through the curriculum in significantly less time if
assigned to the rule-induction environment (again signifying a match between
learner and environment). And low explorers completed the tutor much faster if
assigned to the rule-application environment (another match). Now consider the
slopes of the regression lines. High and low explorers in the rule-induction
environment spent approximately the same amount of time on the tutor (11.4
hours, flat slope). Within the rule-application environment, though, a person’s
exploratory level really influenced learning efficiency (steep slope). A low ex-
plorer appropriately placed in the rule-application environment completed the
tutor, on average, about 2.5 hours faster than a high explorer inappropriately
assigned to the rule-application environment.

Total Number of Problems. The significant interaction shown in Fig. 2.9
supports the previous findings that low exploratory subjects assigned to the rule-
application environment perform better on the tutor than low exploratory subjects
assigned to the induction environment (i.e., require fewer problems to reach
mastery). And high explorers in the inductive environment require fewer prob-
lems to complete the tutor compared to high explorers in the application environ-
ment. For this criterion measure, the rule-application environment showed no
difference between high vs. low explorers in terms of the number of problems
required (about 142 per group, flat slope). But the influence of exploratory
behavior on number of problems was particularly striking within the rule-induc-
tion group. A difference of 30 problems separated subjects due to matched or
mismatched condition. That is, low explorers who found themselves stuck in the
rule-induction environment required 166 problems, on average, to complete the
curriculum while high explorers, appropriately assigned to the inductive environ-
ment, required only 136 problems to reach mastery.

The main conclusion from these findings is that learning outcome and effi-
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ciency may be optimized by considering an individual’s learning style in the
assignment of person to learning environment. But here is the catch: We would
like to develop some decision rule(s) for optimal placement of individual to
environment. We have seen that a person’s exploratory level impacts outcome
performance differentially by learning environment. And we can obtain data
about a person’s exploratory level during tutor interactions. Then how can we
make a priori decisions regarding placement? One solution is to not make a
priori decisions. Instead, we could use early tutor data in the decision rule,
providing these data showed some predictive validity. In fact, exploratory behav-
ior data, tallied during the initial learning phase (principle 1 data only), were
shown to be significant predictors of learning data in this study. The early
behavior by environment interactions were shown to be significant predictors of
learning outcome and efficiency (postfac and total number of problems).

In practice, the learner-to-environment assignment would work as follows:
All individuals would initially be assigned to a default learning environment.
Results from the study reported in this chapter suggest that, for instructing basic
orinciples of electricity, the default environment should be rule-application be-
cause it displayed a distinct advantage over the inductive environment in terms of
tearning time and number of problems needed for attaining mastery (as well as a
marginal advantage of posttest factor scores). Persons would then proceed
through the tutor, and information on their explorations would be tallied in real-
time. After the first principle was mastered, they would either be switched to the
rule-induction environment if exploratory behavioral level was greater than aver-
age, else they would remain in the rule-application environment. Decision rules
can, of course, be made even more comprehensive with the inclusion of addi-
tional conditionals. For example, some other ATI results reported by Shute
{1992) suggest that considering an individual’s associative learning abilities can
inform decisions about which learning environment is the more suitable.

These findings have a direct implication for instruction (e.g., ITS design
issues). As psychologists and educators concerned with instruction, our goal
should be to maximize learning for as many individuals as possible. Results from
this research provide information about which learning environments are more
suitable for which learners, and why. In this study, we saw that low exploratory
individuals learned efficiently from structured learning environments (rule-ap-
plication) while high exploratory individuals learned best from freer learning
environments (rule-induction). The reason “why” is due to the match between
learner and environment characteristics. Furthermore, exploratory behavior does
aot appear to be simply an artifact of aptitude: the correlations between this
learning style measure and various cognitive process measures were zero.

This study also addressed the issue of the utility of various “bells and whis-
tles.” Preliminary evidence suggested that, for many learners, all that glitters is
not gold. In other words, simply having many and dazzling on-line tools in the
environment without requirements for their use may be a wasted effort. Directed
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tool use may actually have positive effects on learning outcoine and efficiency,
but that was not tested in the current study. In conclusion. an ITS can potentiaily
increase its effectiveness and progress toward the goal of optimizing learning by
adapting to an individual’s particular learning style. Learning environments are
casily modified while learner attributes (€.g., styles, aptitudes) are less easily
altered.* However, comparing the relative flexibility of styles to aptitudes, Baron
(1985) argues that learning styles are considerably more modifiable than ap-
titudes (processing components). S0, these data can provide a point of departure
for building more adaptive learning environments.
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