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ABSTRACT
Designing, developing, and administering assessments has remained fairly
unchanged across the past century. However, recent developments in
instructional technology, learning science theory, and advances in the design
of assessments necessitate a newfound perspective on assessment. The
objective of the present article is to review the topic of assessment in depth—
past, present, and future. Specifically, we focus on the use of technologically
rich learning environments that have spurred advances in student
assessment, new methods and procedures from these advances, and
consequently the need to consider implementing comprehensive assessment
systems that provide rigorous and ubiquitous measurement of the whole
student learning experience.

Standardized achievement tests used for high-stake decisions are on the rise. They are being used
around the globe to take account of publicly funded primary and secondary educational systems and, in
some cases, especially in the United States, to inform debate and decisions about teacher competency
standards, school funding, and the forecast of economic growth (Hanushek & Woessmann, 2012;
Koretz & Hamilton, 2006; see also the U.S. Department of Education, 2009). In relation to the latter,
Hanushek andWoessmann (2012) demonstrated that a country’s gross domestic product growth could
be predicted from student scores on large-scale standardized achievement tests such as the Programme
for International Student Assessment (Organization for Economic and Co-operation Development,
2013). Other standardized achievement tests, such as the College Board’s SAT and high school exit
examinations (e.g., Alberta Education, 2013), are intended to measure a variety of academic outcomes
depending on the test, including acquisition of knowledge and skills and college readiness. Whatever
the objective, test performance is consequential as it can dictate high school graduation, the college or
university in which a student is ultimately able to matriculate, and the subject major the student can
expect to acquire during postsecondary study. Therefore, the consequences of student assessment are
unmistakable for individuals, their families, and society.

In this article, we consider how achievement testing and the science of assessing learning are
progressing with advances in technology. These advances have implications for stakeholders—students,
teachers, parents, policymakers, and industry leaders. In the first section of the article, we provide a
brief review of the controversies and changing landscape of standardized measures of learning. In the
second section, we present a new feature of this landscape, technologically rich environments (TREs;
see Bennett, Persky, Weiss, & Jenkins, 2007) and the pedagogical opportunities they afford for learners
and teachers. In addition, we discuss the need for innovative assessments to measure and support
learning within TREs. In the third section, we present three principled assessment design frameworks
and show how they can provide increasingly accurate and sensitive measures of learners’ cognitive (e.g.,
knowledge and skill acquisition) and noncognitive (e.g., dispositional and emotional) attributes, at one
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point in time and across time. That is, these assessment design frameworks can direct the development
of innovative assessments that meet psychometric standards and possess psychological rigor. In the
final section, we call for the reconceptualization of current assessments with innovative assessments
that capitalize on technological advances.

Section 1—Controversy and promise: the historical landscape for student assessment
large-scale standardized measures of achievement

Finding efficient yet accurate methods to assess learning outcomes has been a persistent objective for
maintaining the accountability of public educational systems. However, efficient assessment methods
have traditionally relied on standardized, selected response test item formats such as multiple-choice
tests. Selected response formats were preferred in order to avoid subjectivity associated with human
scoring, whereas standardization in testing allowed for comparability of test scores among test takers
across contexts. Although such traditional tests still proliferate as an efficient way to evaluate learning
and educational systems, they have a controversial history. The controversy is in part because these
methods are rooted in intelligence testing.

In the early 20th century, psychologists such as Thorndike, Terman, Yerkes, and Spearman
championed the use of group-administered multiple-choice tests to evaluate human intelligence.
In 1918, intelligence testing en masse was introduced with the U.S. Army Alpha test composed of
multiple-choice questions designed to identify the “mental fitness” of army draftees expecting to be
given jobs and serve in World War I (Leahey, 1992). In the United States at this time, the use of group-
administered intelligence tests was distinct from the individually administered intelligence tests that
Alfred Binet conducted with French children.

From 1917 to 1940, the apparent ease of evaluating human intelligence with group-administered
tests opened the door to some questionable ethical practices based on test results (Leahey, 1992). For
example, IQ tests during that time were used to screen new immigrants as they entered the United
States, and the results were often used to make broad generalizations about entire populations. This, not
surprisingly, led some “intelligence experts” to urge Congress to pass stricter immigration restrictions
(Kamin, 1995). Nonetheless, the efficiency of the methods used to administer group intelligence tests
was considered desirable and transferred to the measurement of learning outcomes, thereby helping to
usher in modern-day standardized achievement tests in primary and secondary school, as well as
college admission/readiness tests (Zwick, 2004). One case in point is the College Board’s Achievement
test, a college admission or readiness test that back in 1900 was delivered in essay format. However, the
essay could not be reliably scored (i.e., the scores varied quite a bit from year to year). To counter such
concerns, Carl Brigham, a psychometrician who had worked on the U.S. Army Alpha tests, helped the
College Board create the multiple-choice SAT in 1926. Following the creation of the multiple-choice
SAT, several other major testing products followed, such as the SAT achievement (subject) tests in
1937, machine scored answer sheets in 1939, and the normalization of the SAT in 1941 to ensure that
all future SATs would be comparable in content and difficulty (Lawrence, Rigol, Van Essen, &
Jackson, 2003).

The SAT especially, but also other large-scale standardized tests (e.g., ACT), have been criticized on
a number of fronts (e.g., Sackett, Borneman, & Connelly, 2008; Zwick, 2004). Sackett et al. (2008)
detailed several criticisms against large-scale achievement testing as follows: the tests predict badly, they
do not measure all the relevant determinants of important criteria related to achievement and learning,
they are subject to coaching and do not measure genuine ability and classroom achievement, they are
biased against members of racial and ethnic minority groups, and they are subject to motivational
differences among students. To be fair, most of these critiques do not take issue with the care and rigor
of the technical frameworks underwriting large-scale tests but rather take aim at the out-of-scope
significance that large-scale test results have acquired in the hands of inexperienced users.

Since the 1960s, large-scale achievement testing has played a dominant and consequential role in
the assessment of student learning outcomes. This role has come with a predictable set of rules and
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by-products. For example, the rules have included designing test items manually, imposing rigorous
content and statistical checks to ensure psychometric defensibility, administering in paper-and-pencil
format, and rank ordering students. The by-products of this focus have included the systematic
assessment of students, comparability of learning outcomes across grades, years, and jurisdictions, but
in some cases measuring lower level (superficial) skills in reading, math, and science, and providing
ineffective forms of feedback to teachers, students, and policymakers.

The science of large-scale achievement testing has grown to such a level of sophistication, imposingwhat
seems like a gigantic “footprint” in the assessment of learning, that it has systemically dwarfed classroom
assessments. Classroom assessments—unable to be developed with the technical infrastructure to ensure
psychometric defensibility—continue to have significant influence in providing students and teachers with
valuable, albeit limited, information about learning outcomes. However, classroom assessments lack the
technical rigor to satisfy as the final say on learning outcomes; thus, in many cases, classroom assessments
havegainedprominence as tools for preparing students toperformon the large-scale tests that reallymatter.
To be sure, both large-scale tests and classrooms assessments provide valuable information. However, at
least two conditions (i.e., advances in the science of learning and technology) nowexist that indicate that the
rules and effects that have come to characterize assessments may be changing, and incentivizing testing
specialists and psychometricians to consider significant changes in how assessments—large-scale and
classroom—are conceptualized, designed, administered, and interpreted (Mayrath, Clarke-Midura,
Robinson, & Schraw, 2012; Shute & Becker, 2010).

Advancements in learning sciences and technology

The two conditions spurring us to rethink and revamp assessments include advances in the learning
sciences and technology. First, advances in the learning sciences indicate that acquiring and
demonstrating new knowledge and skills occurs within an environment or pedagogical context, which
includes (a) learners with specific cognitive and emotional profiles, and (b) tools to promote and
evaluate learning (Pellegrino, Chudowsky, & Glaser, 2001). Central to this understanding is recognition
that teaching and learning are not strictly cognitive activities but also emotional ones for both teachers
and students (Sternberg & Horvath, 1995). The affective attributes of individual learners and teachers
must be considered when assessments are developed; administered; and, most important, used to
evaluate and communicate feedback to stakeholders. The latter is vital to ensure that formative
feedback is viewed as relevant and used by students (Jang & Wagner, 2014; Leighton, Chu, & Seitz,
2013; Shute, 2008).

Second, technology has dramatically changed the environments and processes by which students
learn and communicate, teachers instruct, and assessments are designed and administered. Paper-and-
pencil tests are slowly becoming a thing of the past as assessments are now increasingly being designed
as adaptive and delivered online (e.g., computer adaptive testing, with computer-based testing),
employing dynamic and interactive tasks and simulations (e.g., Gierl & Haladyna, 2012). Items for
large-scale tests are increasingly created and assembled automatically by sophisticated computer
algorithms that can produce not only items in more cost-effective ways but also enough of them to
address security concerns (Gierl & Haladyna, 2012).

This wave of innovation, ushered in by advances in the learning sciences and technology, has
revolutionized the science of assessment, permitting greater ecological validity and feedback to students
related to the breadth and depth of knowledge and skills learned in-situ, including so-called 21st-
century skills (e.g., critical thinking, creativity, collaboration, and problem solving). That is, advances in
technologies and their integration with assessment systems have allowed for the assessment of
multidimensional learner characteristics (cognitive, metacognitive and affective) using authentic digital
tasks (e.g., games and simulations).

In the next section, we focus on technologically rich environments and the pedagogical
opportunities they afford for learners and teachers. We also discuss the need for innovative assessments
to measure learning in technologically rich environments.
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Section 2—Technologically rich environments: A current landscape for student
assessment

TREs can be broadly defined as any environment or context that involves and encourages concentrated
interaction of an individual with technology. For example, the environment could be a classroom with
access to SMART boards (i.e., computerized whiteboards), iPads, or online digital games. However,
regarding TREs discussed in this article, it is critical to note that these environments do not passively
“house” technological devices. Rather, the devices are intended to be interactive and promote
pedagogically relevant as well as socially and emotionally meaningful learning situations for students.

TREs can take many different forms, and an exhaustive list of those forms is beyond the scope of this
article. However, several online educational sites offer examples of TREs, such as MIT’s Education
Arcade (Massachusetts Institute of Technology, 2013), where digital and multiplayer online games (e.g.,
The Radix Endeavor and Quandary), simulations (e.g., Molecular Workbench and StarLogo: The Next
Generation), and social networking (e.g., Ning, Think.Com, Diigo, Panwapa) are presented and
described. Other sites include Michigan State’s Matrix: Centre for Humane Arts, Letters, and Social
Sciences (Michigan State University, 2013), Arcademic Skill Builders (www.arcademics.com), and
Gamasutra (UBM Tech, 2014).

In addition to these sites, other examples of TREs currently used to study learning and assessment
include (a) Crystal Island (see Rowe, Shores, Mott, & Lester, 2011), designed for students in middle
school microbiology; (b) BioWorld (see Lajoie, Lavigne, Guerrera, & Munsie, 2001), designed for
learners to acquire and demonstrate knowledge about diseases through solving specific patient cases; (c)
Physics Playground (see Shute & Ventura, 2013; Shute, Ventura, & Kim, 2013), designed to assess and
support students’ conceptual physics understanding, creativity, and persistence; (d) the Digital
Deteriorating Patient Activity (Blanchard, Wiseman, Naismith, & Lajoie, 2012), designed as a real-life
educational simulation that prepares medical students to effectively approach emergency situations
through role-play; and (e) Metatutor (Azevedo, Johnson, Chauncey, & Burkett, 2010), designed to
examine the effectiveness of several human scaffolding conditions in facilitating undergraduate
students’ learning about the circulatory system.

A defining feature shared by many TREs currently used to study learning is their stimulating
problem-solving richness. This richness is achieved by the visual, auditory, and interactive realism of
the TRE, permitting learners to engage actively with the learning environment to solve problems by
accessing a variety of resources in real time. Depending on the quality of the technology, TREs elevate
or transform an otherwise static learning opportunity (e.g., lectures in a classroom) into a dynamic
occasion approximating the vividness of learning in vivo as if the student were “really there” solving
the task. For example, Figure 1 illustrates two screenshots of the commercial, off-the-shelf game
Civilization III (Take-Two Interactive Software, 2010), considered to be a high-quality educational
game for teaching history (the latest version is Civilization IV).

Figure 1. Two screenshots of Civilization III (Take-Two Interactive Software, 2010).
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Designed for the PC and considered one of the most complex games for history and social studies
instruction, Civilization III has its players create a society that comes to power through a variety of
strategies, including diplomacy, cultural impact, and military strength. By playing the game, which
can span the full range of human history, students learn about political alliances, trade, diplomatic
negotiations, resource management, geography, and technology.

Facer (2003) indicated that the vitality of learning experiences evoked by TREs is deliberately
expected to encourage and tap specific cognitive and emotional regulation skills, such as active
engagement in the learning process, rapid information processing, discrimination of relevant from
irrelevant variables, and parallel processing from different sources. In addition, TREs enable learners
to experience nonlinear methods of exploring information, access to a wide array of information
(e.g., imagery and text), communication networks that are not geographically bounded, and the
awareness that playing is a form of problem solving (see also Jenkins, Purushotma, Weigel, Clinton, &
Robinson, 2009). For example, in Crystal Island (e.g., Rowe et al., 2011), middle school students are
challenged to understand an unexplained illness that has afflicted a team of researchers on an island.
From a first-person perspective, learners must explore the camp, gather data about patient symptoms
and associated diseases, formulate hypotheses about transmission, employ virtual lab equipment and
resources (e.g., online texts about microbiology concepts), and report conclusions. There are multiple
problem-solving paths learners can take in Crystal Island, and the challenge is for students not only to
solve a mystifying problem but also to make key decisions about how their solutions are going to
unfold. According to Facer, successful digital games are expected to produce for students what
Csikszentmihalyi (1990) described as flow, that is, the full and energetic absorption within an activity
due to its strong but age-appropriate set of challenges and intrinsically motivating objectives.

In immersive TREs, involving digital games, online tasks, and/or simulations, learners are situated in
electronically enhanced 2D or 3D contexts. One of the objectives of these digitally enhanced contexts
is to create for learners the experience or sensation of authenticity as they solve challenging tasks.
However, TRE experiences are not arbitrary. This sensation is expected to induce in learners not only a
stronger investment of attention, interest, and flow but also a more accurate set of conditions than is
normally possible in static classroom-based environments for inspiring learning and measuring its
outputs, including the cognitive, emotional, and kinaesthetic processes educators wish to probe in their
learners. As Klopfer, Osterweil, Groff, and Haas (2009) of the MIT Education Arcade have emphasized,
the potential of digital games, as an example of TREs, for teaching core learning skills is high.

Given that playing through such immersive games like Civilization and Crystal Island requires a
substantial investment of time, we can imagine a type of flipped classroom scenario where kids are
assigned the game as homework (or “homeplay”) across several weeks, and then the class can enjoy
lively discussions of successes, failures, and strategies moderated by the teacher. We revisit this idea in
Section 4 of this article.

TREs and 21st-century skills

One of the promises of using TREs—in addition to providing enhanced contexts to support learning
and the assessment of core knowledge and skills in reading, math, and science—is the opportunity they
afford for acquiring and demonstrating 21st-century skills (e.g., higher order thinking and problem-
solving skills across domains, and learning-to-learn skills). For example, TREs provide opportunities
for students to engage in “on-the-fly” complex problem solving, which often includes searching for
information, discriminating between distinct data sources, planning strategies, coordinating and
collaborating with others, hypothesizing about consequences to courses of action, testing ideas,
receiving feedback directly, synthesizing multiple informational streams, modifying and/or revising
and re-executing strategies, patience, perseverance, cognitive flexibility, creativity, and cooperation.
However, we are not yet at a point where TREs are being widely used in schools, and students are not
acquiring these valuable skills. For example, a 2004 analysis paper by the American Diploma Project, a
U.S.-based advocacy group for college and career readiness, conveyed that approximately 60% of U.S.
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employers have serious doubts not only about students acquiring 21st-century skills but also about the
education students are generally receiving in core subject areas such as reading, writing, and math.
Remedial training in core subjects costs states as much as $40 million a year.

According to the Partnership for 21st Century Skills (2008), a coalition initiated in 2002 between the
U.S. Department of Education and eight founding organizations (including major industries such as
Apple Computer Inc., Cisco Systems Inc., Dell Computer Corporation, and Microsoft Corporation),
21st-century skills are a necessity in today’s information-rich and technology-intense economy. These
skills specifically include (a) learning and innovation requiring creativity (e.g., brainstorming,
elaboration of ideas, openness to diverse perspectives, viewing failure as part of a cyclical process of
learning and opportunity to learn), critical thinking (e.g., analysis of how parts of a whole interact,
evaluation of evidence, arguments), problem solving (e.g., asking clarification questions that lead to
better solutions), communication and collaboration (e.g., listening effectively to fully understand
intended meanings); (b) information, media, and technology literacies (e.g., managing the flow of
information from a variety of different sources); (c) life and career know-how (e.g., incorporating
feedback effectively, adapting to various roles and responsibilities, working well in ambiguous, ill-
defined environments); and (d) reading, writing, science, and mathematics.

In cooperation with the Partnership for 21st-Century Skills, Duncan (U.S. Department of Education,
2009) identified four key objectives for remedying the poor preparation students receive for entering
the job market. The objectives included (a) setting clear educational goals and having core standards for
schools to work toward; (b) facilitating federal resources, such as Race to the Top funding, to support
state proposals seeking innovative local solutions; (c) evaluating educational programs that work for
raising academic performance; and (d) building on and sharing successful programs across
jurisdictions. In response to the challenge, but independently of the federal government, the National
Governors Association Center for Best Practices and the Council of Chief State School Officers in 2010
brought forward the Common Core State Standards in collaboration with teachers, researchers, and
content experts. With the goal of aligning curricula across the states and specifying student outcomes,
state governments decided, separately, whether to adopt the standards to guide educational process and
procedures.

Advances for the assessment of 21st-century skills in TREs

The value placed on teaching 21st-century skills is accompanied by increased awareness and effort to
properly assess these skills. Arne Duncan highlighted this need in his 2009 speech to the Chamber of
Commerce’s Education and Workforce Summit:

We have to get a lot smarter about how we evaluate our students—and how we measure success. Instead of
setting arbitrary proficiency levels we need to look at growth—and the science of measuring growth has to
continue to evolve.We need to invest in the science of testing andmeasurement and findways to do it better—
without simply doingmore of what we are currently doing. None of us like the overemphasis on testing, so we
have to find a practical way to measure progress. . . . The testing industry must reform and develop college-
ready assessments in an array of subjects. States must invest in new data systems. Local districts must retrain
teachers and administrators. This won’t happen overnight, but it must happen over time. (Duncan, 2009)

Responsive, comprehensive, and balanced assessment procedures, which measure higher order
thinking skills and learning-to-learn skills in students, are an essential aspect of effective teaching in the
classroom today (Brookhart, 2011). However, most teachers in traditional classroom environments do
not routinely employ such assessments, relying instead on past classroom assessment practices that
provide a limited view of student learning. Therefore, it is not surprising that the question of how to
properly administer responsive, comprehensive, and balanced assessments within TREs is a new and
open question.

To address the need for new types of assessment procedures in K-12 classrooms, two U.S.-based
federally funded assessment consortia have been organized with the goal to develop innovative or
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“next-generation” assessments in English and math by 2014–15 in accordance with the Common Core
State Standards. The first is the Partnership for Assessment of Readiness for College and Careers
(PARCC), an association of 18 states plus the District of Columbia and the U.S. Virgin Islands. The
second is the Smarter Balanced Assessment Consortium, an association of 25 states. Both share the
same policy goals for summative standardized testing in conjunction with classroom-based formative
assessment. They differ somewhat in their foci and methods. For instance, in relation to the assessment
of English literacy, PARCC outlines advances in the use of “authentic” texts and a sequence of questions
that draw students deeper into the text. Further, in relation to the assessment of mathematics, PARCC
describes the use of multistep conceptual and application problems that require students to delve
deeper into a given domain instead of covering many concepts superficially. Both consortia are devising
formative and summative computer-based assessments that move away from traditional paper-based,
multiple-choice, and constructed-response items and make greater use of technology-enhanced items,
reflecting a variety of question types and features (e.g., drag-and-drop, multiple select, text highlighting,
and equation builder), response options, and interactivity. For instance, PARCC’s computer-based
through-course (nonsummative) assessments along with end-of-year assessments include constructed
response items and performance-based tasks, some of which are computer enhanced, and involve
automated scoring and human scoring. Moreover, Smarter Balanced Assessment has designed
computer-based online adaptive tests that tailor a variety of item types to student ability levels. Both
PARCC and Smarter Balanced Assessment are grappling and making inroads with how to administer
and measure student skills using primarily computer-based assessments.

Computer-based assessments reflect a relatively modest deployment of technology for testing
purposes at the present time. Many computer-based assessments, including adaptive tests, capitalize on
innovations along key dimensions: item format, response action, media inclusion, level of interactivity,
scoring, and communication of test results (Parshall, Spray, Kalohn, & Davey, 2002). Innovations along
these key dimensions might suggest improvements in the measurement of higher order thinking skills.
However, the empirical evidence for this in terms of stronger validity arguments for higher order skills,
reliability of ability estimates, and efficiency has been found to be surprisingly limited (Jodoin, 2003;
Sireci & Zenisky, 2006; Wan & Henly, 2012). For example, the construct equivalence of essay/short-
answer items, similar to what one would expect with innovative item types, and traditional multiple-
choice items for subjects such as mathematics, science, and computer science (e.g., Bennett, Rock, &
Wang, 1991; DeMars, 1998) suggests equivalence. However, Wan and Henly (2012) argued that this
finding could be attributed to the unspecified, lower level of cognition invoked by both items and/or the
similarity of item design. In other words, validating constructed-response item types (e.g., essay
questions) by comparing them to traditional selected-response item types may not be the appropriate
route for making a strong case for improved measurement (Linn, Baker, & Dunbar, 1991).

Wan and Henly (2012) further pointed out that although testing specialists are discussing and
creating prototypes for innovative item types (especially in terms of improving construct representation
of the knowledge and skills being measured; see Bennett, Morley, & Quardt, 2000; Davey, Godwin, &
Mittelholtz, 1997; Luecht, 2001; Parshall et al., 2002; Shute, 2007; Sireci & Zenisky, 2006), empirical
studies of the psychometric and cognitive demands of innovative items are few and limited. According
to Wan and Henly, these studies tend to be informal and small scale without the benefit of large-scale
operational response data. However Jodoin (2003) provided an exception as he compared the precision
of measurement (reliability) associated with two types of innovative formats (i.e., a drag-and-connect
and create-a-tree) for the Microsoft Certified Systems Engineer Certification Program with traditional
multiple-choice. Using large-scale operational data from actual examinees, he found that the innovative
item types provided more information about students’ knowledge and skills but less information per
time unit. In addition, in an investigation of the reliability, efficiency, and construct validity of two
innovative item types involving figural response and constructed response in a K-12 computerized
science assessment, Wan and Henly’s results were similar to Jodoin’s. Specifically, Wan and Henly
found that the constructed-response items provided more information overall but less information per
minute of testing time than the traditional selected-response item types; however, the reliability and
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efficiency of the information yielded by of the figural response items was equivalent to multiple-choice
items. Clearly more research of this type is needed in relation to innovative assessments.

Technologically enhanced item types

Many item or task formats have been offered to capitalize on advances in technology and the learning
sciences. Scalise and Gifford (2006) described a taxonomy of 28 item types for e-learning or computer-
based assessment. As shown in Figure 2, the taxonomy categorizes item types along two dimensions—
constraint and complexity. The constraint dimension identifies seven levels: (a) multiple-choice (being
the most constrained, with the least amount of choice for novel responses), (b) selection/identification,
(c) reordering/rearrangement, (d) substitution/correction, (e) completion, (f) construction, and (g)
presentation/portfolio (being the least constrained, with the most amount of choice for novel
responses). Further, the complexity dimension shows that items within each level of constraint can be
designed to be more or less elaborate up to four levels, although Scalise and Gifford do not specify the
nature of the elaboration, that is, whether the elaboration is cognitive or technological. For example,
completion item types, which are categorized at an intermediate level of constraint (Level 5 in Figure 2),
can be designed to be less cognitively complex as exemplified by filling in a single numerical response
(most basic shown in cell 5A) or more complex by requiring a full matrix of values to be completed
(most elaborate shown in cell 5D). This variation in cognitive complexity might also have implications
for the technology required to underwrite the different items.

Although Scalise and Gifford’s (2006) taxonomy is useful for categorizing item types, the taxonomy
is relatively traditionalist. Most of the item types shown in Figure 2 are conventional in format, albeit
with allowances for computer delivery or “technological enhancement.” For example, the most
elaborate multiple-choice item type is the multiple-choice with new media distracters (see 1D in
Figure 2) or the construction of an essay with automated editing (see 6D). Three added dimensions that
could strengthen this taxonomy are as follows. First, expectancies about the cognitive demands exerted
on learners from different item types could be outlined with relevant research or identified for further
research. Research shows discrepancies between expected task difficulty and actual cognitive demands
that learners experience (Cohen & Upton, 2007). For example, when summarizing tasks, anticipated to

Figure 2. Scalise and Gifford’s (2006) taxonomy of 28 item types for computer-based assessment.

EDUCATIONAL ASSESSMENT 41

D
ow

nl
oa

de
d 

by
 [

Fl
or

id
a 

St
at

e 
U

ni
ve

rs
ity

] 
at

 0
7:

17
 0

2 
Ju

ne
 2

01
6 



be cognitively complex, appear at the end of a reading comprehension testlet, their difficulty levels are
often lower than expected because learners acquired textual information from solving preceding tasks
(Jang, 2009a). Leighton and Gierl (2007a, 2007b, 2011; see also Jang, 2009b) describe ways of
investigating the cognitive-processing demands of assessment tasks to generate stronger validity
arguments about student learning and achievement (see Kane, 2006, for validity arguments) and
provide clearer diagnostic information about student knowledge and skill acquisition for remediation.
Empirical evidence from learners’ verbal descriptions of their thinking processes can help build greater
understanding between how students think (cognition), how tasks elicit cognition (observation), and
what inferences are made about students’ ability (interpretation; National Research Council, 2001; see
also Jang, 2014; Leighton, 2004).

Second, expectancies about the affective demands elicited by item types could be outlined with
relevant research or identified for further research. At this time, we are not aware of any published
scholarly research investigating the affective demands of the item types shown in Figure 2. Similarly to
cognitive-processing demands, identifying the affective states of learners while they are engaged in
assessment tasks can help identify sources of difficulties for learners and thus facilitate opportunities for
formative feedback and intervention. For example, Conati (2002; see also Conati & Maclaren, 2009)
investigated the design of an intelligent pedagogical agent for the game Prime Climb. This agent was
tasked with gathering learner affective information—from sensors measuring learners’ eyebrow
position, skin conductance, and heart rate—during gameplay. The agent extended helpful interventions
when the student made a mistake or in some way indicated a need for help. For example, if a student
made a cognitive mistake, and displayed a high heart rate and furrowed eyebrows, the agent combined
the affective and cognitive information and intervened before the student experienced complete
frustration and lack of engagement (Conati & Maclaren, 2009). However, the agent reserved help if the
student did not provide affective information indicating the need for an intervention.

Third, item types could be expanded to show methods of implementation. The presentation item
type (Level 7 on the constraint dimension), especially the “demonstration, experiment, or performance”
type (cell 7B), could be linked to a range of administration possibilities for embedding this item type
within true-to-life learning environments such as TREs. Toward this end, DiCerbo and Behrens (2012a,
2012b) identified four different levels of technology-enhanced assessments. As shown in Figure 3, Level
1—Computerized paper-and-pencil tests represents the most basic integration of assessment within a
TRE. Level 1 includes traditional types of items, often multiple-choice, administered to students via
computer. According to DiCerbo and Behrens (2012a), “This level is characterized by the use of

Figure 3. Summary of DiCerbo and Behrens’s (2012a) four different levels of technology-enhanced assessments.
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relatively large numbers of discrete, independent items administered and scored digitally. The
technology enhancement may include one or more of the following: innovative item types, automated
scoring, adaptivity, and/or advanced feedback” (p. 6). Level 2—Integrated contexts and tasks offers
students an alternative to discrete, traditional multiple-choice items by presenting technology-
enhanced simulated performance-based tasks that require multiple opportunities for complex
interactivity for assessment purposes. At Level 2, DiCerbo and Behrens (2012a) indicates, “The
technology . . . allows for the observation of discrete actions taken by examinees within these tasks”
(p. 8). It is important to note that at this level, as in Level 1, there continues to be a separation between
instruction and assessment activities; the activities that define instruction are distinct from the activities
that define assessment. Level 3—Natural digital activity with assessment features transitions from the
previous levels by blurring the line between instruction and assessment. At Level 3, instruction and
assessment are part of the same set of TRE activities such as simulation-based games (e.g., Behrens,
Frezzo, Mislevy, Kroopnick, & Wise, 2008), and assessment is no longer presented as something that is
done after the instruction is delivered. Level 4—Accumulation of information from a variety of natural
digital activities is similar to Level 3 except that assessment is no longer confined, for example, to a
single game or set of activities but is instead distributed across a variety of TREs, tasks, and experiences.
In this way, an assessment ecosystem (DiCerbo & Behrens, 2012a) is created where assessment data are
constantly being collected and analyzed as students engage with multiple types of TRE activities such as
games, simulations, and digitally enhanced experiences (e.g., tablets in classrooms).

Benefits and limitations of assessments at levels 1–4

The assessments described in Levels 1 through 4 in Figure 3 fall under the general class of e-assessments.
Traditionally, e-assessments use computer and information technology to make the assessment process
more efficient by automating functions that would otherwise require human assessors (Baker & O’Neil,
1995; Shute & Kim, 2012). The Joint Information Systems Committee (2007) defined e-assessments as

covering a range of activities in which digital technologies are used in assessment. Such activities include the
designing and delivery of assessments, marking (by computers, or humans assisted by scanners and online
tools), and all processes of reporting, storing, and transferring of data associated with public and internal
assessments. (p. 6)

One of the advantages of e-assessments is that most, if not all, can be used concurrently (i.e., on demand
and instantaneously), and many of them are embedded within a learning activity or environment. Some
e-assessments are even transformative insofar as they not only measure traditional knowledge and skills
but also provide a means to measure unique higher order thinking and learning-to-learn skills that
push beyond the limits of what is traditionally measured (Binkley et al., 2010, 2012). Referring to
Figure 3, assessments at Levels 1 and 2 offer concurrent access, but only assessments at Levels 3 and 4
offer students, increasingly, the opportunities for embedded and transformative evaluation experiences
given task complexity, integration with learning activities, and variety of activities and responses.

One of the benefits of assessments at Levels 3 and 4 is the extensive data collected from individuals so
that a fine-grained and cohesive portrait can be developed about a particular student’s knowledge, skills,
affective states, and so on. When information is collected from such a wide variety of digital activities
(including technology-enhanced labs and e-portfolios) to form an assessment ecosystem for individual
students, inferences about learner strengths and weaknesses can be better substantiated. However, this
accumulation of data creates a practical problem of how to manage such a deluge of data, especially for
assessments at Level 4. For example, methods must be developed for how to systematically mine the
data, statistically summarize it, and logically present it to support inferences about student learning
and, of importance, to be understood and utilized by stakeholders. We discuss this issue and additional
obstacles, as well as some potential ways to surmount them, in Section 4.

Related to the extensive data collected, assessments at Levels 3 and 4 are increasingly personalized to
help students better understand their areas of strength and areas for improvement. In this respect,

EDUCATIONAL ASSESSMENT 43

D
ow

nl
oa

de
d 

by
 [

Fl
or

id
a 

St
at

e 
U

ni
ve

rs
ity

] 
at

 0
7:

17
 0

2 
Ju

ne
 2

01
6 



assessments at Levels 3 and 4 capitalize on one of the central goals of cognitive diagnostic assessments
(CDA; Leighton & Gierl, 2007a). Although CDAs were originally conceived as assessments at Levels 1
and 2, CDA items were designed to measure, based on theories and models of cognition, specific
knowledge structures and processing skills in students to provide information about their cognitive
strengths and areas for improvement (Leighton & Gierl, 2007a). A central goal of CDA is to provide
detailed formative feedback (see Shute, 2008) to students and teachers about areas of student strength
and weakness in order to inform detailed and personalized instruction. Similarly, Jang (2009a), using a
method of diagnostic skill classification called reparameterized unified model, has found a way to create
fine-grained profiles of second-language learning skills for approximately 2,500 students based on their
LanguEdge assessment performance. The LanguEdge is a large-scale assessment designed for second-
language learners who aim to take the TOEFL. As part of the LanguEdge courseware (which provides
support to instructors), the assessment is designed to evaluate student reading comprehension, such as
searching, analyzing, and using contextual clues for deducing the meaning of a word; using lexical and
grammatical cohesion devices to comprehend relations between sections of text; and distinguishing
major and minor ideas in text by analyzing and evaluating the importance of information. Jang (2009a)
found that classifications of students into categories of mastery were promising with reliabilities
ranging from 88% to 90% depending on the skill category. This work illustrates the potential of
personalized assessments to deliver much more information than a single overall grade on an exam to
students and teachers.

Another way of personalizing assessments for students is to embed them into ongoing learning
activities, thus enhancing the connectedness between learning and assessment. By embedding
assessments into TREs, such as stand-alone digital games, the potential of the assessment to distract
learners from the object of measurement may be minimized. For example, one type of Level 3
assessment achieves this goal by means of embedding stealth assessments (Shute, 2011) within a gaming
environment such as Physics Playground for assessing and supporting conceptual physics
understanding, persistence, and creativity. According to Shute and Ke (2012),

Stealth assessment refers to evidence-based assessments that are woven directly and invisibly into the fabric
of the gaming environment. During gameplay, students naturally produce rich sequences of actions while
performing complex tasks, drawing on the very skills or competencies that we want to assess. (p. 52)

In addition to providing valid measures, two other goals of stealth assessment are to stimulate
engagement and sustain flow (Csikszentmihalyi, 1990) of learning. Stealth assessment is designed to
emphasize the view for learners that assessment is a part of the natural sequence of interactions with the
game or learning environment—exploring, observing, manipulating, testing, evaluating, synthesizing,
and revising. Given the dynamic nature of stealth assessment, it is not surprising that it promises
advantages—for example, measuring learner competencies continually, adjusting task difficulty or
challenge in light of learner performance, and providing ongoing feedback. Examples of stealth
assessment prototypes, designed to measure a range of knowledge and skills—from systems thinking to
creative problem solving to causal reasoning—can be found in relation to the following games: Taiga
Park (Shute, Masduki, & Donmez, 2010), Oblivion (Shute, Ventura, Bauer, & Zapata-Rivera, 2009), and
World of Goo (Shute & Kim, 2011), respectively. In the game Physics Playground (formerly Newton’s
Playground; see Shute & Ventura, 2013), three stealth assessments were created and evaluated in
relation to the validity and reliability of the assessments, student learning, and student enjoyment (see
Shute et al., 2013). The stealth assessments correlated with associated external validated measures for
construct validity and demonstrated reliabilities around .85 (i.e., using intraclass correlations among
the in-game measures such as number of gold trophies received for various objects created).
Furthermore, students (167 middle school students) significantly improved on an external physics test
(administered before and after gameplay) despite no instruction in the game. Students also enjoyed
playing the game (reporting a mean of 4 on a 5-point scale ranging 1 [strongly dislike ] to 5 [strongly
like ]), and boys and girls equally enjoyed the game.
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In the next section, assessment design principles are presented to guide sensible and defensible
inferences about student learning based on technologically enhanced task types.

Section 3—Designs for principled student assessment

To draw reliable and valid inferences about student knowledge, skills, and other attributes, assessments
must be developed or created using principled assessment design (American Educational Research
Association [AERA], American Psychological Association [APA], and National Council on
Measurement in Education [NCME], 1999; Kane, 2006). For example, Shute and her colleagues
developed stealth assessment using Evidence-Centered Design (ECD; Mislevy, Almond, & Lukas,
2003), a principled assessment design framework that supports making explicit links between student
skills of interest, behavioral evidence for the presence of those skills, and tasks that probe for the
evidence needed. A poorly designed assessment can be manifest in an outdated paper-and-pencil test,
but it can also be apparent in a technologically enhanced gaming environment. Caution must be
exercised when making claims about student learning or achievement when the assessments
undergirding learning activities are developed arbitrarily. A good assessment, regardless of format,
needs validity arguments backed by empirical evidence.

In any activity used to assess students (e.g., traditional paper-and-pencil multiple-choice tests,
or technologically enhanced stealth assessments delivered via computer), a distinction can be made
between the external expression of the assessment and the internal underlying framework or rules
employed to create the assessment. An assessment activity might appear on the surface to be an
appropriate measure of student learning if the content of the activity matches the content of the
learning domain. However, content can be deceptive. Content can be a serious distraction when
evaluating assessments as appropriate measures of learning, especially if the real object of measurement
is not knowledge of content per se, but how knowledge of the content is applied, manipulated, or
processed.

When higher level skill sets are the real objects of measurement, it is necessary to evaluate
assessment activities not by their surface similarities with learning domains but by their deep structural
correspondences with intended learning outcomes; for example, does an activity measure the
application of a skill or set of skills? To ensure that assessment activities yield useful data for making
inferences about student learning beyond simple knowledge claims, principled assessment design must
guide the development and structure of the assessment.

Principled assessment design can be viewed as a plan, comprising a visual or textual scheme, to guide
the purpose, expression, development, internal structure, and defensibility of an assessment. For
example, principled assessment design includes the sources of evidence needed to demonstrate that an
assessment measures the knowledge and skills of interest in students, thus supporting and defending
test-based inferences about student learning to stakeholders. It is important to note that principled
assessment designs encompass more than test blueprints or specifications. Test blueprints provide “a
detailed description for a test . . . and the desired psychometric properties of the items and test such as
the distribution of item difficulty and discrimination indices” (AERA, APA, & NCME, 1999, p. 183).
Although a test blueprint is a central part of assessment design, it is not the only part, as it does not
include the sources of evidence that need to be collected to defend the particular knowledge and skills
tested, format of test items, and interpretation of test item performance.

We have identified three leading principled assessment designs that provide the most advantageous
design systems by which to develop technologically enhanced assessment tasks: ECD, Cognitive Design
System (CDS), and Assessment Engineering (AE). It is important to note, however, that these design
systems do not differ substantially in terms of end goals but they do have differential foci, albeit
nuanced, for arriving at those goals. Generally, ECD focuses on the empirical or evidentiary link
between test-based interpretations about examinees and the evidence to support those claims, CDS
focuses on the cognitive theoretical basis for test item design and interpretation, and AE focuses on the
systematic translation between cognitive-based item features into item shells or “models.” In describing
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each assessment design, we use Raven’s Advanced Progressive Matrices (APM) Test (Raven, Raven, &
Court, 1998) as a running example to illustrate the differences among designs. The APM Test is a
nonverbal 48-item multiple-choice test designed to measure reasoning ability by asking examinees to
identify the missing element that completes a figural pattern. An example item is shown in Figure 4.

Evidence-centered design

Much has been written about and in relation to ECD. We therefore do not provide a comprehensive
review and instead refer the reader to Mislevy, Steinberg, and Almond (2003) for a full development of
concepts. As a summary, ECD reflects a set of procedures, premised on the creation of evidentiary
arguments, for generating many kinds of assessments, from classroom assessments to technologically
enhanced items and tests. ECD is based on addressing a series of questions posed byMessick (1994), such
as the following, to structure and operationalize planning, designing, and making test-score inferences:

1. What knowledge, skills, and attributes (KSAs) do we want to assess?
2. What are the observable features of the KSAs that will allow measurement?
3. What criteria and rubrics can be developed to score KSAs?
4. What kinds of tasks elicit or probe observable features of KSAs?
5. What task specifications guide assessment assembly and administration?

Answers to these basic questions are found using ECD’s Conceptual Assessment Framework (CAF;
see Figure 5) and a Four-Process Architecture for assessment delivery systems. The CAF illustrates five
models. All five models are relevant to answering the questions posed, but three of the five models are
fundamental for defending the empirical basis of test-score inferences.

The first is the student model, which explicitly specifies the KSAs to be measured by the assessment
so as to facilitate the operationalization of the construct with observable behaviors. The second model

Figure 4. Example item from Raven’s Progressive Matrices test. Reprinted with permission from Carpenter, P., Just, M., & Shell, P. (1990,
July). What one intelligence test measures: A theoretical account of the processing in the Raven Progressive Matrices Test. Psychological
Review, 97, 404–431. q American Psychological Association.
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is the evidence model, which specifies the assignment of scores to student test performance such as
whether dichotomous (i.e., an item response is assigned a value of 1 if correct, otherwise a 0) or
polytomous (i.e., an item response is assigned values other than just 0 or 1 to show increasing
performance quality) scoring will be used and how the scores will be aggregated. Finally, the third
model is the task model, which outlines the types of items or tasks, including all features, requiring
development to elicit the KSAs of interest from the student.

The CAF feeds into a Four-Process Architecture for organizing and implementing the delivery of
assessments. The Four-Process Architecture involves four key decisions (see Figure 6). First, a decision
must be made as to how tasks will be selected for the student (Activity Selection Process), for example,
whether all tasks are presented or, alternatively, selected based on identified and scored (Evidence
Identification Process), for example, whether overall item performance will be scored as 1 or 0 or at a
finer level of granularity, with distinct scores at different points within the task. Fourth, a decision must
be made about how a student’s performance, once identified, will be aggregated and summarized
(Evidence Accumulation Process), for example, using classical test theory, item response theory, or
Bayesian Networks.

Figure 5. The Conceptual Assessment Framework, from Mislevy, Steinberg, and Almond (2003).

Figure 6. The Four-Process Architecture (from Almond, Steinberg, & Mislevy, 2002).
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Had ECD been used to develop the APM Test, its design would focus on the evidentiary link
between reasoning ability (i.e., KSAs) and the success of identifying missing elements to complete
abstract patterns (i.e., tasks to probe KSAs). The CAF and the Four-Process Architecture (Almond,
Steinberg, & Mislevy, 2002) would guide the development of individual items, including choice of
patterns to complete, missing elements, and decisions about whether the APM Test should be multiple-
choice or open-ended, dichotomously or polytomously scored for increasing sophistication of
responses and how scores are aggregated—all in support of the claim that reasoning ability is measured
by this particular pattern completion task. Although ECD provides a sophisticated and comprehensive
guide for test design, Leighton and Gierl (2011) noted that it is relatively ambivalent on the need for the
KSAs to have an empirical cognitive scientific basis. For example, Mislevy and Haertel (2006) indicated
that a domain analysis can be based on “transdisciplinary” research on learning but not that it is a
requirement (p. 7). Next, we present Embretson’s (1998) Cognitive Design System, which, as the name
suggests, focuses on integrating advances in cognitive science with assessment design.

Cognitive design system

The CDS (Embretson, 1998) involves two parts—a conceptual and a procedural framework divided
into approximately 10 stages. The conceptual framework serves to provide a theoretical and empirically
based rationale for the measurement of specific behaviors that are intended to serve as indicators of
KSAs (Cronbach & Meehl, 1955; Kane, 2006). The conceptual framework explicitly includes reference
to theoretical and empirical research from the cognitive and learning sciences to support choices for (a)
measuring behaviors associated with KSAs, (b) designing tasks with particular features to probe for
behaviors, and (c) providing explanations for how task features elicit evidence for the KSAs of interest.
The conceptual framework is translated into a procedural framework described by the stages shown in
Table 1.

The first two stages in Embretson’s CDS are standard and can be found in almost all conventional
test design plans (Schmeiser & Welch, 2006). However, Stages 3 through 6 are unique in that they
emphasize information from the cognitive and learning sciences to guide task design. Particularly, in
Stages 3 through 6, a cognitive model, informed by the empirical research literature, guides the design,
evaluation, and psychometric analysis of the items or tasks.

Embretson (1998) applied CDS to generate items to measure reasoning ability similar to those in the
APM test. She used Carpenter, Just, and Shell’s (1990) processing theory, which provides experimental
evidence that the main cognitive processes involved in solving APM items are “generating and
evaluating relationships across the rows and columns” (Embretson, 1998, p. 384). Moreover, working
memory capacity is shown to be essential in carrying out these processing functions. Based on this
cognitive scientific work, Embretson (1998) designed items that reflected systematic combinations of
rules for generating and evaluating pattern relationships across rows and columns, administered the
newly created items to a sample of participants, examined participants’ performance on the items with
their performance on other tests designed to measure working memory such as the Armed Services
Vocational Aptitude Battery, and evaluated the psychometric quality of the newly created items by
fitting different item response theory (IRT) models to participants’ test data. This latter focus on
psychometric quality is shown in Table 2.

As shown in Tables 1 and 2, the overall goal in CDS is to create a cognitive IRT model to
summarize student test performance based on what is scientifically known about how students
process information related to a construct of interest. Embretson (1998) defined cognitive IRT
models as “jointly mathematical models of cognitive processes and IRT models of response patterns.
These models contain parameters to represent the cognitive demands of items as well as the person’s
ability” (p. 384).

CDS has not been used to design assessments of learning in TREs. Nonetheless, CDS may be well
suited for this purpose because it can accommodate the inclusion of psychologically complex KSAs.
CDS has exerted most of its influence in the development of cognitively rich items with predictable
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psychometric properties. For example, the explicit link established in CDS between cognitive scientific
theory and item features has resulted in the formulation of precise and detailed item models. Item
models provide directions to computer algorithms for generating large quantities of items at a fraction

Table 1. Embretson’s cognitive design system—initial six stages (procedural framework).

Stage Function Question(s) Answered

1. Specify general goals
of measurement

a. Construct representation
b. Nomothetic span

a. What does the construct measured entail?
b. Why is the construct significant?

2. Identify design features
in item/task domain

a. Item/task-general features
b. Item/task-specific
features

a. What are the mode, format, and conditions
under which the item will be presented?

b. What cognitive skills are probed by
specific item features?

3. Develop a cognitive
model

a. Review theories
b. Select or develop model for
psychometric domain

c. Revise model
d. Test model

a. What are demonstrable behaviors
associated with the construct?

b & c. What is the best way to operationalize
the construct given the purpose of the
measurement? Can it be used to design
items/tasks? d. Does the model developed
stand up to empirical scrutiny?

4. Evaluate cognitive model
for psychometric potential

a. Evaluate cognitive model plausibility
on current test

b. Evaluate impact of complexity factors
on psychometric properties

a. Does this model align with the items/tasks
included in the assessment? Can this
model be used to guide item design?

b. Does this model increase or decrease
item difficulty of the construct as
expected? Do the item features
manipulated for each item based on the
cognitive model lead to construct
relevant increases (or decreases) in overall
item difficulty?

5. Specify item distributions
on cognitive complexity

a. Distribution of item complexity
parameters

b. Distribution of item features

a & b. Does this model lead to the expected
overall distribution(s) of item difficulty
based on manipulated item features?

6. Generate items to fit
specifications

a. Artificial intelligence

Table 2. Embretson’s Cognitive Design System—Final Four Stages (Procedural Framework).

Stage Function Question(s) Answered

7. Evaluate cognitive and
psychometric properties
for revised test domain

a. Estimate component latent trait model
parameters

b. Evaluate plausibility of cognitive model
c. Evaluate impact of complexity factors on
psychometric properties

d. Evaluate plausibility of the psychometric
model e. Calibrate final item parameters
and ability distributions

a, c, d, e. Is the cognitively enhanced
psychometric model working well to
summarize student performance?

b. Does the cognitive model (as a hypothesis
of the variables that reflect student
mastery of the construct) explain
student performance?

8. Psychometric evaluation a. Measuring processing abilities
b. Banks the items by cognitive
processing demands

a. What knowledge, skills, and attributes
characterize strong versus weak student
performance?

b. How can items be best categorized by the
knowledge, skills, and attributes
measured in students?

9. Assemble test forms
to represent specifications

a. Fixed content test b. Adaptive test a. How can test forms be assembled if the
same test content is delivered to all
students?

b. How can test forms be assembled if the
test content is to be adapted to the ability
level of students?

10. Validation: Strong program
of hypothesis testing

a. Does the assessment measure what it set
out to measure?
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of the cost normally spent on human-generated test items (e.g., Daniel & Embretson, 2010; Embretson
& Yang, 2006; Gierl & Lai, 2012; Gorin & Embretson, 2012).

Assessment engineering

AE (see Luecht, 2013) combines the core ideas of both ECD and CDS, but builds on these by providing
a highly detailed operational process (Luecht, 2013) for manufacturing assessments (see Figure 7).

Similar to CDS’s item model, but with greater detail, Luecht (2013) explained that a task model is a
general frame or scheme that specifies n number of slots needing to be filled with values of variables for
systematically creating items. For example, types of variables might include declarative and procedural
knowledge components, relationships among components, content, and context, in order to create a
family of items. Luecht (2013) strongly recommended that the variables chosen for task models be
based on cognitive scientific research. In light of the APM test, AE would highlight the need to identify
all the variables required to generate matrix items. For example, in addition to variables cuing for
generation and evaluation of pattern relationships across rows and columns, variables such as pattern
choice and form of presentation would be included to specify all conceivable aspects of generating a
family of related items.

AE offers additional ideas for guiding the manufacturing of high-quality assessments. A key idea is
that the construct measured by the test and subsequent claims about student performance should be
connected at the outset and explicitly linked to an ordered proficiency scale. An ordered proficiency
scale, shown with a number 1 in Figure 7, indicates what it means to be at increasingly higher levels
along the construct of interest, including the performance-level descriptors that provide evidence for
this position on the scale. AE underscores the need to show how test item content and cognitive
complexity become more sophisticated at increasingly higher points along the scale. Applying this to
the APM test would involve knowing how increasingly higher scores along the 48-item continuum
translate to performance descriptions of enhanced reasoning ability. Luecht (2013) indicates the
instrumentality of cognitive psychology to meet this end. Cognitive scientific research can specify the
variables that have been shown to systematically increase cognitive load for human information
processing (e.g., Carpenter et al., 1990; Kalyuga, 2011, 2012; Sweller, Ayres, & Kalyuga, 2011).

One of the reasons that Luecht (2013) emphasized attention on cognitive complexity, which is often
neglected in traditional assessment design in favor of content, is to generate task model maps that are

Figure 7. Luecht’s (2013) development of task models based on the cognitive psychological literature.
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grounded in empirical evidence. Shown with a number 2 in Figure 7, the evidence model becomes a
repository of relevant empirically based task variables to guide the design of task model templates at
different levels of difficulty along the ordered proficiency scale. This aspect of AE is shown with a
number 3 in Figure 7. These task model templates are intended not only to formalize the content and
cognitive specifications of items but also to automate their development. Automation can be achieved
because task models delineate, within certain parameters, the slots that need to be filled with varying
information to produce tasks at particular difficulty levels.

Having described the historical and current landscapes of student assessment, as well as three
principled assessment design frameworks, we now conclude with our vision on where we can go from
here regarding assessment design and development.

Section 4—The future of innovative assessment design

As discussed in the first section of this article, student testing—especially standardized summative
assessment in North America—has a long and controversial history. Controversy has focused on how
standardized test results are sometimes used to open or close opportunities for learners, some would
argue unfairly. To ensure accuracy and fairness, and to avoid the potential for misuse, a rigorous science
of assessment has developed and is continually enforced by professional organizations, government
ministries, and university scholars. One issue that has dominated policy and research in the design and
development of assessments is how to generate items and tasks that contain the necessary features
to validly, reliably, and fairly measure the knowledge and skills we seek to measure in students.
In addition, aligning assessments against the learning environments in which students are acquiring
knowledge and skills is vital to enhance the suitability of the assessment for measuring specific
knowledge and skills and therefore improve the validity of inferences made about student mastery.
It would make little sense to teach students to drive a car in vivo—out on the road—and then
administer a paper-based driving test that has little or no basis in the performance-based knowledge
and skills they have acquired on the road. Likewise, technologically rich environments, the learning
contexts in which many students find themselves, have created a need to reconsider quite dramatically
the design and development of assessments.

We need technologically enhanced assessments to properly measure the knowledge and skills
students are learning today and important competencies they will need to acquire in order to be
prepared to meet 21st-century economic and labor force demands. However, the science of assessment
and its core principles are grounded in paper-based, discrete knowledge-based items, most of which are
somewhat divorced from the performance-based learning environments that make up the contexts
students encounter today. New assessments must be designed, developed, and evaluated. Furthermore,
core ideas about how to define and operationalize the standardization of tasks, task difficulty, task
discrimination, reliability of performance, and validity arguments must be outlined relative to TREs.
Toward this end, state-of-the-art innovative assessments need to be developed using principled
assessment design to ensure the development of increasingly accurate and sensitive measures of
learners’ knowledge and skill acquisition. Several principled assessment designs that could direct the
development of innovative assessments, and meet psychometric standards and possess psychological
rigor, were presented in this article.

Principled assessment designs such as ECD, CDS, and AE provide comprehensive frameworks for
designing tasks that are expected to evoke knowledge and skills of interest in students, thus generating
evidence for claims about student learning of these knowledge and skills. These designs also blur the line
between what can be considered to be formative or summative, because assessments created from these
designs are expected to be equally informative to student learning irrespective of whether there is a grade
or score attached to student performance. That is, instead of distinguishing between formative versus
summative, we are evolving in our understanding to realize that a better way to begin to think of
assessments generally is as informative to student learning; regardless of a specific grade or other high-
stakes consequence, they can be used to provide needed information about what has been achieved
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versus not, and what can be done now to address areas of weakness (DiCerbo&Behrens, 2012b; Leighton
& Gierl, 2011; Shute et al., 2009). Principled assessment design may not yield assessments that specify
individual learning plans post assessment (as this is something that would need to be coordinated by the
teaching community), but they can orient learners—and possibly other stakeholders—as to the current
status of the learner and to where attention should be focused for the next phase of learning.

The vision

To bring our vision of next-generation assessments into focus, imagine an educational system in which
high-stakes tests are no longer the dominant means to drive educational reforms through
accountability systems. Instead, students would progress through their school years engaged in
different learning contexts, all of which capture and measure growth in valuable cognitive and
noncognitive skills. This information would then be used to further enhance student learning.

In our complex, interconnected digital world, we are learning constantly and producing numerous
digital footprints or data along the way. This vision does not refer to simply administering assessments
more frequently (e.g., each week, each day) but rather continually collecting data as students interact
with digital environments (Level 3, in Figure 3) both inside and, of importance, outside of school. When
the various data streams coalesce (Level 4, in Figure 3), the accumulated information can potentially
provide increasingly reliable and valid evidence about what students know and can do across multiple
contexts. The vision involves high-quality, ongoing, unobtrusive assessments embedded in various
TREs that can be aggregated to inform a student’s evolving competency levels (at various grain sizes)
and aggregated across students to inform higher level decisions (e.g., from student, to class, to school,
to district, to state, to country). In short, our take on assessment is that it should (a) support, not
undermine, the learning process for learners; (b) provide ongoing formative information (i.e., be part of
a system of giving useful feedback during the learning process that informs and complements a
summary judgment at the end); and (c) be responsive to what is known about how people learn,
generally and developmentally.

This vision of assessment has its primary goal to improve learning (e.g., Black & Wiliam, 1998;
Leighton & Gierl, 2011; Shute, 2009; Stiggins, 2002), and we believe that it’s critical to support the kinds
of learning outcomes and processes necessary for students to succeed in the 21st century. Again, most
current approaches to assessment/testing are too disconnected from learning processes. That is, the
typical classroom cycle is: Teach. Stop. Administer test. Go loop (with new content). But consider the
following metaphor representing an important shift that occurred in the world of retail outlets (from
small businesses to large department stores), suggested by Pellegrino et al. (2001, p. 284). No longer do
these businesses have to close down once or twice a year to take inventory of their stock. Instead, with
the advent of automated checkout and barcodes for all items, these businesses have access to a
continuous stream of information that can be used to monitor inventory and the flow of items. Not only
can businesses continue without interruption, but the information obtained is far richer, enabling stores
to monitor trends and aggregate the data into various kinds of summaries, as well as support real-time,
just-in-time inventory management. Similarly, with new assessment technologies, schools should no
longer have to interrupt the normal instructional process at various times during the year to administer
external tests to students. Instead, assessment should be continual and invisible to students, supporting
real-time, just-in-time instruction and other types of learning support.

The envisioned ubiquitous nature of assessment will require a reconceptualization of the boundaries
of the educational system. That is, the traditional way of teaching in classrooms today involves
providing lectures and giving tests in class, then assigning homework to students to complete outside of
class (usually more reading on the topic and perhaps answering some topical questions). Alternatively,
consider a relatively new pedagogical approach called “flipped classrooms.” This involves a reversal of
the traditional approach where students first examine and interact with a target topic by themselves at
home and at their leisure (e.g., viewing an online video and/or playing an educational game), and then
in class, students apply the new knowledge and skills by solving problems and doing practical work (see
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Bergmann & Sams, 2012). The flipped classroom is already operational for core courses at some
universities (e.g., Alberta) across North America. The teacher supports the students in class when they
become stuck, rather than delivering the initial lesson in person. Flipped classrooms free up class time
for hands-on work and discussion and permit deep dives into the content. Students learn by doing and
asking questions, and they can help each other, a process that benefits a majority of learners (Strayer,
2012). It is important to note that our working hypothesis is that these efforts are more likely to engage
a greater population of teachers and learners—including poor and unmotivated learners. If this wasn’t a
problem in the current educational landscape, then perhaps TREs might make little sense as a potential
solution to a problem that didn’t exist. However, flipped classrooms and TREs may provide affordances
to engage, teach, and reach a greater population of learners than is currently possible with traditional
pedagogical practices.

Limitations and future research

For this vision of the future of assessment—as ubiquitous, unobtrusive, engaging, and valid—to gain
traction, there are a number of large hurdles to overcome. We describe four of the more pressing issues
that need more research.

The first hurdle relates to variability in the quality of assessments within TREs. That is, because
schools are under local control, students in a given state could engage in thousands of TREs during their
educational tenure. Teachers, publishers, researchers, and others will be developing TREs, but with no
standards in place, they will inevitably differ in curricular coverage, difficulty of the material, scenarios
and formats used, andmany other ways that will affect the adequacy of the TRE, tasks, and inferences on
knowledge and skill acquisition that can justifiably be made from successfully completing the TREs. The
principle design frameworks we presented in Section 3 represent a design methodology but not a
panacea, so more research is needed to figure out how to equate TREs or create commonmeasurements
(i.e., standardize) from diverse environments. Toward that end, there must be common models
employed, perhaps linked to the CommonCore State Standards, across different activities, curricula, and
contexts. Moreover, it is important to figure out how to interpret evidence where the activities may be the
same but the contexts in which students are working are different (e.g., working alone vs. working with
another student). To illustrate, Kim and Shute (2015) examined two versions of Physics Playground. The
two versions of the game differed only in terms of linearity in gameplay. The linear version required
students to play levels in a fixed order, and the nonlinear version permitted students to choose any level
they wanted to play. Investigation of the assessment qualities—validity, reliability, and fairness—
suggested that changing one game element (e.g., linearity) significantly influenced how players
interacted with the game, thus changing the evidentiary structure of the in-game measures. The most
salient difference between the two versions was found in the ways students thought about and interacted
with the game. For example, imposing linearity influenced the perceived goals of gameplay. Students in
the linear condition focused on just solving lots of levels, whereas students in the nonlinear condition
spent more time per level, striving for more “elegant” solutions. Moreover, students who played the
nonlinear version of the game showed significant improvement on qualitative physics understanding
measured by the pretest and posttest, whereas the students assigned to the linear condition did not.

The second hurdle involves accurately capturing and making sense of students’ learning
progressions.1 That is, although TREs can provide a greater variety of learning situations than
traditional face-to-face classroom learning, evidence for assessing and tracking learning progressions
becomes heterogeneous and complex rather than general across individual students. Thus there is a
great need to model learning progressions in multiple aspects of student growth and experiences, which
can be applied across different learning activities and contexts (Shavelson & Kurpius, 2012). However

1We use the term learning progressions generally. We acknowledge that some investigators (e.g., Duschl, Maeng, & Sezen, 2011)
have differentiated learning progressions in science education from what are called learning trajectories in mathematics education
in terms of the length of teaching sequences and granularity of features.
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as Shavelson and Kurpius pointed out, there is no single absolute order of progression, as learning in
TREs involves multiple interactions between individual students and situations, which may be too
complex for most measurement theories in use that assume linearity and independence. Clearly,
theories of learning progressions in TREs need to be actively researched and validated to realize TREs’
potential. For example, Jang, Wagner, and Xu (2014) developed a conceptual framework that models
medical students’ learning experiences and growth in the problem-based TRE called Bioworld (Lajoie
et al., 2001) in which students solve clinical cases with interactive feedback. Based on the triangulation
of multiple data sources including computer logs, self-reports, and think-aloud protocols, they
examined interactive relationships among learner and task variables. Although the Jang et al.
framework specifies the interconnected learner variables and mediating task variables, it assumes that
individual learners take different learning pathways and can be used to fine-tune their progressions by
encouraging students to identify immediate learning goals relevant to their current status. Learner (or
data) dashboards (Verbert, Duval, Klerkx, Govaerts, & Santos, 2013) can be used to facilitate
communication of learning progressions to students and teachers, but again, more research is needed
on data dashboards and their optimal representations.

The third problem to resolve involves the need to expand educational boundaries and resolve
impediments to moving toward the idea of the flipped classroom. One issue concerns the digital divide,
where some students may not have access to a home computer. In those cases, students can be allowed
to use library resources or a computer lab. Alternatively, the online components can be accessed via a
cell phone, as many students who do not have computers or Internet at home do have a phone that
can meet the requirements of online activities. In addition, some critics may argue that flipped
classrooms will invariably lead to teachers becoming outdated. However, teachers become even more
important in flipped classrooms, where they educate and support rather than lecture (i.e., serve as
“guide on the side” rather than “sage on a stage”). This represents an intriguing way to take back some
of the very valuable classroom time and serve as a more efficient and effective teacher. Much more
empirical research is needed to determine how this pedagogical approach works relative to traditional
pedagogies.

Finally, we have to figure out a way to resolve privacy, security, and ownership issues regarding
students’ information. The privacy/security issue relates to Level 4 assessment (i.e., the accumulation of
student data from disparate sources). The recent failure of the $100 million inBloom initiative (see
McCambridge, 2014) showcases the problem. That is, the main aim of inBloom was to store, clean, and
aggregate a wide range of student information for states and districts and then make the data available
to district-approved third parties to develop tools and dashboards so that the data could be easily used
by classroom educators. The main issue boils down to this: Information about individual students may
be at risk of being shared far more broadly than is justifiable. Because of the often high-stakes
consequences associated with tests, many parents and other stakeholders fear that the data collected
(reminiscent of Orwell’s “Big Brother”) could later be used against the students. Related to this hurdle
are the “data dashboards” themselves, which can be intimidating and thus unused by classroom
teachers. Almond, Shute, Underwood, and Zapata-Rivera (2009) described various graphical ways to
present Bayesian network-based proficiency estimates from students to teachers, but much more
research is needed in this area.

What would it take to implement the vision once the hurdles are surmounted? We use ECD to
illustrate. In addition to ECD’s ability to handle multivariate competency models (Mislevy, Steinberg, &
Almond, 2003), it is able to accumulate evidence across disparate sources (e.g., homework assignment,
in-class quiz on an iPad, high score on a video game). This is possible, as ECD provides assessment
designers with processes that enable them to work through the design trade-offs that involve multiple
competency variables—either within one assessment or across multiple assessments. The “alchemy”
involves turning the raw data coming in from various sources into evidence. Evidence models will need
to be able to interpret the results of all of the incoming data for the purposes of updating the student
model. The rules of evidence must describe which results can be used as evidence, as well as any
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transformation that needs to be done to those results (e.g., averaging, rescaling, setting cut scores; see
Almond, 2010, for more on this process).

As mentioned in Hurdle 1 (i.e., differential assessment quality), we need to find the right
probabilities (or other parameters) that will complete the evidence models. One solution is to use
Bayesian logic on the parameters of the system. An assessment designer could complete a questionnaire
for each task included in the system. This would help the designer define the observable(s) for each task
and describe how they are related to competency variables. It would also ask questions about the
strengths of the relationships, used to produce prior distributions for the parameters of the ECDmodels
(see Almond, 2010). The prior parameters could then be used to immediately score the student
interactions with the digital activity (e.g., a TRE, online quiz, or game). As sufficient data (i.e., outcomes
from students’ interactions with a collection of tasks) become available, Bayesian inference can be used
to replace the prior distributions for parameters with posterior distributions. This should improve the
quality of inferences that come from the system.

Despite the foregoing hurdles and limitations, constructing the envisioned ubiquitous and
unobtrusive assessments across multiple learner dimensions, with data accessible by diverse
stakeholders, could yield various educational benefits. First, the time spent administering tests,
handling make-up exams, and going over test responses is not very conducive to learning. Given the
importance of time on task as a predictor of learning, reallocating those test preparation activities into
ones that are more educationally productive would provide potentially large benefits to almost all
students. Second, by having assessments that are continuous and ubiquitous, students are no longer
able to “cram” for an exam. Although cramming can provide good short-term recall, it is a poor route to
long-term retention and transfer of learning. Standard assessment practices in school can lead to
assessing students in a manner that is in conflict with their long-term success. With a continuous
assessment model in place, the best way for students to do well is to do well every day.

The third direct benefit is that this shift in assessment mirrors the national shift toward evaluating
students on the basis of acquired competencies. With increasing numbers of educators growing wary of
pencil-and-paper high-stakes tests for students, this shift toward ensuring students have acquired
“essential” skills fits with the idea of our envisioned future of assessment. Finally, with a slight change in
pedagogical focus (from teacher centered to more student centered)—as manifest, for example, in
flipped classrooms—this can address the serious shortfall of time that is needed to interact with
particularly rich TREs. We can fix time and let outcomes vary, or we can fix outcomes (set to high
standards) and let time vary. The problem in classrooms is not having enough time. Furthermore, as
described earlier, current research comparing the quality of new versus traditional assessments on the
Microsoft Certified Systems Engineer Certification Program (see Jodoin, 2003) showed that the
innovative items provided more information about students’ knowledge and skills but less information
per time unit.

The time is now ripe for such assessments given the dire need for supporting new 21st-century skills
and the increased availability of computer technology. New technologies make it easy to capture the
results of routine student work—in class, at home, or wherever. It could be that 21st-century assessment
will be so well integrated into students’ day-to-day work that the students don’t even know it is there.
This represents quite a contrast to our current testing contexts.

Finally, although the benefits of using a seamless-and-ubiquitous model to run a business have been
clear for more than four decades, applying this metaphor to education may require some adjustments,
as we are dealing with humans, not goods. For instance, one risk associated with our vision is that
students may come to feel as if they are constantly being evaluated, which could negatively affect their
learning and possibly add stress to their lives. Another risk of our continuous assessment vision could
result in teaching and learning turning into ways to “game the system” depending on how it is
implemented and communicated. But the aforementioned hurdles and risks, being anticipated and
researched in advance, can help to shape the vision for a richer, deeper, more authentic assessment (to
support learning) of students in the future. How many current businesses would elect to return to pre-
barcode days?
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