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Chapter 4
Assessment and Adaptation in Games

Valerie Shute, Fengfeng Ke, and Lubin Wang

Abstract Digital games are very popular in modern culture. We have been examining 
ways to leverage these engaging environments to assess and support important stu-
dent competencies, especially those that are not optimally measured by traditional 
assessment formats. In this chapter, we describe a particular approach for assessing 
and supporting student learning in game environments—stealth assessment—that 
entails unobtrusively embedding assessments directly and invisibly into the gaming 
environment. Results of the assessment can be used for adaptation in the form of 
scaffolding, hints, and providing appropriately challenging levels. We delineate the 
main steps of game-based stealth assessment and illustrate the implementation of 
these steps via two cases. The first case focuses on developing stealth assessment for 
problem-solving skills in an existing game. The second case describes the integra-
tion of game and assessment design throughout game development, and the assess-
ment and support of mathematical knowledge and skills. Both cases illustrate the 
applicability of data-driven, performance-based assessment in an interactive game 
as the basis for adaptation and for use in formal and informal contexts.

Keywords  Stealth assessment • Adaptation • Bayesian networks

4.1  Introduction

According to “2015 Essential Facts About the Computer and Video Game Industry” 
published by Entertainment Software Association, over 150 million Americans play 
video games and 42 % play regularly for at least 3 h per week. The popularity of 
video games has drawn researchers’ attention in the exploration of the possibility of 
using video games to enhance knowledge, skills, and other personal attributes. 
The idea of using games for serious purposes other than entertainment is called 
game- based learning. Advocates of game-based learning argue that well-designed 

AU1

V. Shute (*) • F. Ke • L. Wang
∎, ∎, ∎AU2

AU3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27



video games represent solid learning principles such as providing ongoing feed-
back, interactivity, meaningful and engaging contexts, and adaptive challenges 
within the zone of proximal development (Bransford, Brown, & Cocking, 2000; 
Gee, 2003; Shute, 2008; Vygotsky, 1978). A  fair  amount  of  research  shows  that 
game-based learning is at least as effective as nongame conditions, such as class-
room contexts (e.g., Barab, Gresalfi, & Ingram-Goble, 2010; Clark, Tanner-Smith, 
& Killingsworth, 2014; Sitzmann, 2011; Wouters, van Nimwegen, van Oostendorp, 
& van der Spek, 2013).

Researchers are also beginning to realize that games can serve as effective assess-
ments (e.g., DiCerbo & Behrens, 2012; Shute, Leighton, Jang, & Chu, 2016; Shute 
& Ventura, 2013). That is, while players interact with the game environment, the 
game engine monitors and collects information about players’ performances and 
provides feedback to players in the form of in-game scores or the avatar’s progress 
in the game. This is basically the same as what educational assessment does, i.e., 
making inferences about students’ knowledge and skills by observing what students 
say, do, and produce in a given context (Mislevy, Steinberg, & Almond, 2003). In 
addition, when game-based assessment is designed following a principled assess-
ment design framework such as evidence-centered design (ECD; Mislevy et al., 
2003) or cognitive design system (CDS; Embretson, 1998), the assessment is likely 
to have high validity and reliability.

Game-based assessment is essentially performance-based assessment. 
Performance-based assessment refers to tasks that require students to demonstrate 
their  knowledge  and  skills  by working  through  a  task  (Flynn,  2008; Madaus & 
O’Dwyer, 1999). Rather than a simple test of one’s ability to recall or recognize 
information, or supply self-reported information, performance-based assessment 
provides students with the opportunity to show their understanding and apply 
knowledge in meaningful settings (Stecher, 2010). Scholars generally support the 
use of performance-based assessment to measure and support twenty-first-century 
skills  (e.g.,  problem  solving,  creativity,  collaboration;  Partnership  for  the  21st 
Century 2015) over conventional types of assessment such as multiple-choice ques-
tions or filling in the blanks (see Shute et al., in press). However, there are a few 
challenges associated with the design and implementation of performance-based 
assessments. Some of the more difficult challenges include: (a) designing contexts 
that will fully elicit the competencies to be measured, (b) modeling the multidimen-
sionality of constructs to be measured, (c) ensuring the validity and reliability (con-
sistency) of the tasks, (d) providing appropriate feedback that is customized to each 
individual situation, (e) automating the scoring of the various tasks, (f) accumulat-
ing the evidence across all task performances, and (g) reducing the development 
costs of performance-based assessments compared to traditional tests. Our premise 
in this chapter is that stealth assessment (see Shute, 2011) coupled with ECD pro-
vides a viable solution to these challenges.

In addition to serving as assessment vehicles, games can help to support learning 
and motivation. That is, people who want to excel at something spend countless 
hours making intellectual effort and practicing their craft. But practice can be boring 
and frustrating, causing some learners to abandon their practice and, hence, learning. 
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This is where the principles of game design come in—good games can provide an 
engaging and authentic environment designed to keep practice meaningful and per-
sonally relevant. With simulated visualization, authentic problem solving, and 
instant feedback, computer games can afford a realistic framework for experimenta-
tion and situated understanding, and thus act as rich primers for active, motivated 
learning (Barab, Thomas, Dodge, Carteaux, & Tuzun, 2005; Squire, 2006). Another 
key feature of well-designed games that can enhance learning and motivation is 
adaptivity related to providing appropriate and adaptive levels of challenge (see 
Fullerton, 2014). Gee (2003) has argued that the secret of a good game is not its 3D 
graphics and other bells and whistles, but its underlying architecture in which each 
level dances around the outer limits of the player’s abilities, seeking at every point 
to be hard enough to be just doable. Similarly, psychologists (e.g., Vygotsky, 1987) 
have long argued that the best instruction hovers at the boundary of a student’s com-
petence. Flow is another name for this phenomenon. It is a construct first proposed 
by Csikszentmihalyi (1990, 1997) to describe an optimal experiential state that 
involves complete immersion in an activity and a deep sense of enjoyment. Flow 
represents full engagement, which is crucial for deep learning. The essential com-
ponents of flow include clear and unambiguous goals, challenging yet achievable 
levels of difficulty, and immediate feedback (Cowley, Charles, Black, & Hickey, 
2008; Csikszentmihalyi, 1997). In the game design context, flow theory states that 
if the player finds a level too difficult, he/she will become frustrated. However, if, as 
the player continues playing, his/her abilities improve while the challenge level 
stays the same, he/she will become bored. Therefore, to facilitate a flow state, chal-
lenge and ability must be carefully balanced to accomplish this type of adaptivity.

In this chapter, we first review the theoretical foundations of ECD and stealth 
assessment. In the second section, we discuss how stealth assessment works. After 
the discussion, we demonstrate the process of creating stealth assessment using 
ECD via two examples—one past and one current research project—that apply the 
approach. We then conclude this paper with a brief discussion on implications for 
future research.

4.2  Literature Review

4.2.1  Evidence-Centered Design

Evidence-centered design (Mislevy et al., 2003) provides a framework for designing 
and implementing assessments that support arguments about personal competencies 
via an evidence chain that connects the arguments with task performance. ECD con-
sists of conceptual and computational models that work together. The three major 
models include the competency model, the evidence model, and the task model.

The competency model outlines in a structured fashion the beliefs about per-
sonal knowledge, skills, or other learner attributes. The competency model can 
host unidimensional constructs and, importantly, multidimensional constructs 
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(e.g., problem solving, leadership, and communication skills) as well. The beliefs 
about learners’ competencies in the competency model are updated as new evidence 
supplied by the evidence model comes in. When competency model variables are 
instantiated with individual student data, the competency model is often referred to 
as the student model.

The task model identifies the features of selected tasks for learners that will pro-
vide evidence about their target competencies. The main function of the task model 
is to provide observable evidence ,about the unobservable competencies, which is 
realized via the evidence model.

The evidence model serves as the bridge between the competency model and the 
task model. It transmits evidence elicited by tasks specified by the task model to 
the competency model by connecting the evidence model variables and competency 
model variables statistically. Basically, the evidence model contains two parts: (a) 
evidence rules or rubrics that convert the work products created during the interac-
tions between the learner and the tasks to observable variables that can be scored 
in the form of “correct/incorrect” or graded responses; and (b) a statistical model 
that defines the relationships among observable variables and competency model 
variables, and then aggregates and updates scores across different tasks. The statis-
tical model may be in the form of probabilities based on Bayes theorem or they 
may be simple cut scores.

4.2.2  Stealth Assessment

Stealth assessment, a specialized implementation of ECD, is a method of embedding 
assessment into a learning environment (e.g., video games) so that it becomes invis-
ible to the learners being assessed (Shute, 2011). We advocate the use of stealth 
assessment because of its many advantages. As we mentioned at the beginning of 
the chapter, there are a number of challenges related to performance-based assessment, 
but stealth assessment addresses each challenge. Because it is designed to be unob-
trusive, stealth assessment frees students from test anxiety commonly associated 
with traditional tests and thus improves the reliability and validity of the assessment 
(e.g., DiCerbo & Behrens, 2012; Shute, Hansen, & Almond, 2008). Second, stealth 
assessment is designed to extract ongoing evidence and update beliefs about stu-
dents’ abilities as they interact with the tasks. This allows assessors to diagnose 
students’ performance and provide timely feedback. As a result, interacting with the 
learning or gaming environment can support the development of students’ compe-
tencies as they are being assessed. Third, when stealth assessment is designed 
following ECD, this allows for the collection of sufficient data about students’ target 
competencies at a fine grain size providing more information about a student’s ability 
compared with conventional types of assessment like multiple-choice formats. 
Fourth, when stealth assessment is embedded within a well-designed video game, 
students are fully engaged in the experience, which is conducive to the extraction of 

V. Shute et al.

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152



true knowledge and skills. Fifth, because scoring in stealth assessment is automated, 
teachers do not need to spend valuable time calculating scores and grades. 
Finally, stealth assessment models, once developed and validated, can be reused in 
other learning or gaming environments with only some adjustments to the particular 
game indicators.

Recently, we have been creating and testing stealth assessments of various com-
petencies  within  video  games.  For  instance,  we  developed  and  embedded  three 
stealth assessments (running concurrently) of qualitative physics understanding 
(Shute, Ventura, & Kim, 2013), persistence (Ventura, Shute, & Small, 2014; Ventura, 
Shute, & Zhao, 2012), and creativity (Kim & Shute, in press) in a homemade game 
called Physics Playground, formerly called Newton’s Playground (see Shute & 
Ventura, 2013). We created and tested stealth assessments of problem solving and 
spatial skills for the commercial game Portal 2 (Shute, Ventura, & Ke, 2015; Shute 
& Wang, in press). Additionally, we created stealth assessment of causal reasoning in 
the World of Goo (Shute & Kim, 2011) and systems thinking in Taiga Park (Shute, 
Masduki, & Donmez, 2010). From these experiences, we have derived some general 
steps related to the design and development of stealth assessment, shown in the 
9-step  approach  listed  as  follows.  In  the  following  section, we  illustrate  how we
implemented these steps using two recent research projects.

 1. Develop competency model (CM) of targeted knowledge, skills, or other attributes
based on full literature and expert reviews

 2. Determine which game (or learning environment) the stealth assessment will be
embedded into

 3. Delineate a full list of relevant gameplay actions/indicators that serve as evidence
to inform CM and its facets

 4. Create new tasks in the game, if necessary (Task model, TM)
 5. Create  Q-matrix  to  link  actions/indicators  to  relevant  facets  of  target

competencies
 6. Determine how to score indicators using classification into discrete categories

(e.g., yes/no, very good/good/ok/poor relative to quality of the actions). This
becomes the “scoring rules” part of the evidence model (EM)

 7. Establish statistical relationships between each indicator and associated levels of
CM variables (EM)

 8. Pilot test Bayesian Networks (BNs) and modify parameters
 9. Validate the stealth assessment with external measures

4.2.3  Adaptation

The next logical step—which is currently under development—involves using the 
current information about a player’s competency states to provide adaptive learn-
ing support (e.g., targeted formative feedback, progressively harder levels relative 
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to the player’s abilities, and so on). The adaptive difficulty features in a video 
game may potentially increase motivation and enhance learning by providing the 
right level of challenge (i.e., tasks that are neither too easy nor too difficult). Such 
optimal levels of challenge ensure that the learner is kept in the zone of proximal 
development (ZPD). Within ZPD, learning activities are just beyond the learner’s 
ability but can be achieved with guidance (Vygotsky, 1978). The guidance is 
sometimes referred to as instructional scaffolding. Some examples of such scaf-
folding include targeted formative feedback and hints to help learners proceed in 
the task. Studies show that scaffolded learning activities lead to better learning 
outcomes compared with activities without scaffolds (e.g., Chang, Sung, & Chen, 
2001; Murphy & Messer, 2000). In addition, when tasks are too complicated for a 
learner, he or she may encounter cognitive overload that exceeds the capacity of 
their working memory and thus undermines learning. On the other hand, if the 
tasks are too easy, the learner may feel bored and disengaged, which also nega-
tively affects learning. Therefore, it is important and beneficial to adjust the dif-
ficulty of tasks to the competencies of the individual and provide appropriate 
learning scaffolds.

There are two main approaches to produce adapted content in video games—
offline and online adaptivity (Lopes & Bidarra, 2011). For offline adaptivity, con-
tent is adjusted after gathering sufficient information about the learner before he or 
she starts playing the game. For online adaptivity (or dynamic adaptivity; see van 
Oostendorp, van der Spek, & Linssen, 2014), the content is adjusted based on learn-
er’s performance, in real time. We recommend the second approach because the 
assessment of the learner’s competency will be more accurate when he or she is 
actually performing the task.

Some common ways to gather information about the learner during gameplay 
include the use of infrared camera or emotion detection software, and stealth assess-
ment. One issue with infrared camera or emotion detection software is that different 
people may experience different levels of stress when they are under pressure. Thus, 
it is difficult to choose the right task based on the stress level. Alternatively, stealth 
assessment gathers data unobtrusively based on performance in the game and is free 
from such bias.

To determine the sequence of tasks in video games, researchers have attempted 
to set an agreed-upon threshold value (e.g., level up after three consecutive suc-
cesses; see Sampayo-Vargas, Cope, He, & Byrne, 2013). Some have calculated the 
expected weight of evidence to pick tasks that will maximize the information about 
a player (Shute et al., 2008). Due to the relatively high cost of developing adaptive 
educational games, few researchers have attempted to investigate the effects of 
adaptive video games on learning. However, existing evidence shows that such 
methods are promising. For example, van Oostendorp et al. (2014) compared the 
effects of an adaptive version of a game focusing on triage training against a version 
without adaptation. They reported that those who played the adaptive version of the 
game learned better than those in the control group.
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4.3  Examples of Stealth Assessment

4.3.1  “Use Your Brainz” (UYB)

4.3.1.1  Competency Model Development and Game Selection (Steps 1 
and 2)

In the UYB project, we developed a stealth assessment of problem-solving skills 
and embedded it within the modified version of the commercial game Plants vs. 
Zombies 2 (the education version is called “Use your Brainz”). The project was a 
joint effort between our research team and GlassLab. PvZ 2 is a tower defense type 
of game. The goal is to protect the home base from the invasion of zombies by plant-
ing various defensive and offensive plants in the limited soil in front of the home 
base. We selected 43 game levels arranged by difficulty. Figure 4.1 shows an example 
of one of the levels in the game.

We chose the game PvZ 2 for two main reasons. First, the game provides a mean-
ingful and engaging context where players are expected to acquire knowledge about 
the rules of the game and apply different resources in the game to solve intriguing 
problems. Second, GlassLab had access to the source code from EA—the publisher 
of PvZ 2—which enabled us to customize the log files.

Fig. 4.1  Screen capture of UYB gameplay on Level 9, World 1 (Ancient Egypt)
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After we determined  that we would  like  to model  problem-solving  skills, we 
reviewed the literature on how other researchers have conceptualized and operation-
alized problem solving. In addition to our extensive review of the literature on 
problem- solving skills, we also reviewed the Common Core State Standards (CCSS) 
related to problem solving. We came up with a four-facet competency model (CM), 
which included: (a) understanding givens and constraints, (b) planning a solution 
pathway, (c) using tools effectively/efficiently when implementing solutions, and 
(d) monitoring and evaluating progress.

4.3.1.2  Identifying Gameplay Indicators (Steps 3 and 4)

Our next task entailed identifying specific in-game behaviors that would serve as 
valid evidence and thus inform the status of the four-facet competency model. After 
playing the game repeatedly and watching expert solutions on YouTube, we delin-
eated 32 observable indicators that were associated with the four facets. For exam-
ple, sunflowers produce sun power, which is the sole source of power that players 
may use to grow plants. At the beginning of a level, typically there are no or very 
few sunflowers on the battlefield. To supply power to grow plants, players must 
plant sunflowers at the beginning of each level before zombies start to appear in 
waves. After brainstorming with the PvZ 2 experts on our research team, we decided 
that the scoring rule for this particular indicator was: “If a player plants more than 
three sunflowers before the second wave of zombies arrives, the student understands 
the time and resource constraints.” Table 4.1 displays a sample of indicators for 
each of the four problem-solving facets. Overall, we included 7 indicators for “ana-
lyzing givens and constraints,” 7 for “planning a solution pathway,” 14 for “using 
tools effectively and efficiently,” and 4 for “monitoring and evaluating progress.” 
The list of indicators forms our task model and the scoring rules form a part of the 
evidence model.

Table 4.1 Examples of indicators for each problem-solving facet

Facet Example indicators

Analyzing givens and 
constraints

• Plants >3 Sunflowers before the second wave of zombies arrives

• Selects plants off the conveyor belt before it becomes full

Planning a solution 
pathway

• Places sun producers in the back/left, offensive plants in the
middle, and defensive plants up front/right

• Plants Twin Sunflowers or uses plant food on (Twin) Sunflowers
in levels that require the production of X amount of sun

Using tools effectively 
and efficiently

• Uses plant food when there are >5 zombies in the yard or zombies
are getting close to the house (within two squares)

• Damages >3 zombies when firing a Coconut Cannon

Monitoring and 
evaluating progress

• Shovels Sunflowers in the back and replaces them with offensive
plants when the ratio of zombies to plants exceeds 2:1
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4.3.1.3  Q-Matrix Development and Scoring Rules (Steps 5 and 6)

We created a Q-matrix (Almond, 2010; Tatsuoka, 1990) laying out all of the indicators 
in rows and the four facets in the columns. We added a “1” in the crossed cell if the 
indicator was relevant to the facet and “0” if the facet did not apply to the indicator. 
We then went through each indicator and discussed how we could classify each 
indicator into discrete scoring categories such as “yes/no” or “very good/good/ok/
poor.” The overall scoring rules were based on a tally of relevant instances of 
observables. Using the aforementioned sunflower indicator, if a player successfully 
planted more than three sunflowers before the second wave of zombies arrived on 
the scene, the log file would automatically record the action and categorize it as a 
“yes” status of the indicator.

For another example, consider the facet “using tools effectively and efficiently.” In 
Table 4.1, an example indicator is “uses plant food when there are >5 zombies in the 
yard or zombies are getting close to the house (within two squares).” Plant food in the 
game is a rare resource. Using one dose of plant food on any plant will substantially 
boost the effect of the plant—whether offensive or defensive—for a short period of 
time. This indicator would be scored if the player used plant food as a boost (a) when 
there were more than five zombies on the battlefield, or (b) when zombies were within 
two squares in front of the house (where the overarching goal of each level is to pro-
tect the house from zombies). Since a single instance of this “using plant food” action 
may be performed by chance, the completion status of the indicator was categorized 
into four levels. That is, the game engine checks on the ratio of the indicator, which is 
“the number of times that plant food was used when >5 zombies in the yard or within 
two squares in front of the house, divided by the total number of times that plant food 
was used in the level.” Then the game engine maps the value of the ratio onto one of 
the four states of the indicator where in this case, higher means better. If the value is 
within [0, 0.25], it corresponds to the status of “poor” performance on the indicator; 
if the value falls within [0.26, 0.5], it corresponds to the “ok” status; if the value falls 
within [0.51, 0.75], it corresponds to the “good” status, and if the ratio falls within 
[0.76, 1], it is categorized as “very good.”

4.3.1.4  Establishing Statistical Relationships Between Indicators and CM 
Variables (Step 7)

Once we categorized all indicators into various states, we needed to establish statistical 
relationships between each indicator and the associated levels of the CM variables. 
We used Bayesian networks (BNs) to accumulate incoming data from gameplay and 
update beliefs in the CM. The relationship between each indicator and its associated 
CM variable was expressed within conditional probability tables stored in each 
Bayes net. We created a total of 43 Bayes nets for this project, one for each level. 
We used separate BNs because many indicators do not apply in every level and 
computations would be more efficient for simpler networks. The statistical relation-
ships carried in the Bayes nets and the scoring rules described in the last section 
formed the evidence model.
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Table 4.2  shows  the conditional probability  table we created  for  indicator #8, 
“Plants >3 Sunflowers before the second wave of zombies arrives” (associated with 
the facet “analyzing givens and constraints”) in Level 9. Because the game is linear 
(i.e., you need to solve the current level before moving to the next level), by the time 
a player gets to Level 9, she has had experience playing previous levels, thus should 
be quite familiar with the constraint of planting sunflowers at this point. Consequently, 
this indicator should be relatively easy to accomplish (i.e., the probabilities to fail 
the indicator were low despite one’s ability to analyze givens and constraints). Even 
those who are low on the facet still have a probability of .63 of accomplishing this 
indicator. When evidence about a student’s observed results on indicator #8 arrives 
from the log file, the estimates on his ability to analyze givens and constraints will be 
updated based on Bayes theorem. We configured the distributions of conditional prob-
abilities for each row in Table 4.2 based on Samejima’s graded response model, which 
includes the item response theory parameters of discrimination and difficulty 
(see Almond, 2010; Almond et al., 2001; Almond, Mislevy, Steinberg, Williamson, & 
Yan, 2015). In this case, the difficulty was set at −2 (very easy) and the discrimination 
value was 0.3 (i.e., may not separate students with high versus low abilities well).

As a player interacts with the game, incoming evidence about the player’s status 
on certain indicators updates the estimates about relevant facets. The evidence then 
propagates through the whole network and thus estimates related to student problem- 
solving skills are updated. The Bayes nets keep accumulating data from the indica-
tors and updating probability distributions of nodes in the network. For example, 
Fig. 4.2 displays a full Bayes net of Level 9 prior probabilities (see Fig. 4.1 for 
an illustration of the level). Shaded nodes toward the top are the competency 

Table 4.2  Conditional probability table for indicator #8 “plant >3 sunflowers before 
the second wave of zombies” in Level 9

Analyzing givens and constraints Yes No

High .82 .18

Medium .73 .27

Low .63 .37

Fig. 4.2  Bayes network of level 9 in UYB, prior probabilitiesAU4
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variables, while the beige nodes toward the bottom represent all relevant indicators. 
We used the program Netica (by Norsys Software Corporation) to construct and 
compile the network.

For instance, if a player successfully completed indicator #8 in Level 9 (i.e., planting 
sufficient sunflowers prior to a wave of incoming zombies), the log file records the 
action, informs the network of the new evidence, and the data are propagated through-
out the network (see Fig. 4.3). As shown, the updated probability distribution of the 
player’s level of “analyzing givens and constraints” is: Pr (analyzing givens and con-
straints | high) = .365, Pr (analyzing givens and constraints | med) = .355, Pr (analyzing 
givens and constraints | low) = .280. The estimates for the player’s overall problem-
solving skill are Pr (problem solving | high) = .362, Pr (problem solving | med) = .334, 
Pr (problem solving | low) = .304. Because there is no clear modal state for the prob-
lem-solving skills node (i.e., the difference between high and medium states is just 
.028), this suggests that more data are needed.

Alternatively, suppose the player fails to accomplish the indicator by the second 
wave of zombies. In this case, the log file would record the failure, inform the BN 
of the evidence, and update with new probability distributions for each node 
(Fig. 4.4). The current probability distribution of the player’s level of “analyzing 
givens  and  constraints”  is  Pr  (analyzing  givens  and  constraints | high) = .213,  Pr 
(analyzing  givens  and  constraints | med) = .349,  Pr  (analyzing  givens  and  con-
straints | low) = .438. The estimates for the player’s overall problem solving skill are 
Pr  (problem  solving | high) = .258,  Pr  (problem  solving | med) = .331,  Pr  (problem 
solving | low) = .411. This shows that  the student  is  likely  to be  low in relation  to 
problem-solving skills.

4.3.1.5  Pilot Testing Bayes Nets (Step 8)

Our game experts and psychometricians produced the initial prior probabilities of 
each node in each network collaboratively. We hypothesized that students would 
have an equal likelihood of being “high,” “medium,” or “low” on problem solving 

AU5

Fig. 4.3  Evidence of the completion of indicator #8
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and the probability of being “high,” “medium,” or “low” for each facet would be 
normally distributed. As more evidence enters the network, the estimates become 
more accurate and tend to reflect each player’s true status on the competency. After 
developing the BNs and integrating them into the game code, we were able to acquire 
real-time estimates of players’ competency levels across the main node (problem-
solving skill) and its constituent facets. We acknowledge that any initial probabilities 
may be subject to bias or inaccurate judgment. Therefore, we ran a pilot test and used 
the ensuing pilot data to adjust parameters of the Bayes nets accordingly.

4.3.1.6  Validating Stealth Assessment (Step 9)

The final step in our list of stealth assessment processes is the validation of the 
stealth assessment against external measures. For the UYB project, we employed 
two external measures: Raven’s Progressive Matrices (Raven, 1941, 2000) and 
MicroDYN  (Wustenberg, Greiff, & Funke, 2012). Raven’s is a test that examines 
subjects’ ability to reason based on given information. MicroDYN presents to sub-
jects a simulation system where subjects are expected to acquire and apply informa-
tion.  For  a  thorough  overview  on MicroDYN,  see  Schweizer, Wüstenberg,  and 
Greiff (2013) and Wustenberg, Greiff, and Funke (2012).

We recruited 55 7th grade students from a middle school in suburban Illinois. 
Students played UYB for 3 h (1 h per day across three consecutive days) and com-
pleted  the  external measures  on  the  fourth  day. Among  the  55  participants,  one 
student’s gameplay data was missing, five students did not take the Raven’s test, and 
two students did not complete the MicroDYN test. After we removed the missing 
data, we had complete data from 47 students (20 male, 27 female).

Results show that our game-based stealth assessment of problem-solving skills is 
significantly correlated with both Raven’s (r = .40, p < .01) and MicroDYN (r = .41, 
p < .01), which established the construct validity of our stealth assessment. We are 

Fig. 4.4  Evidence of failure to complete indicator #8

V. Shute et al.

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397



also refining our Bayes nets based on data collected. These test results need to be 
verified with an even larger sample.

This example demonstrates step by step how we modeled problem-solving skills 
and created and implemented stealth assessment of the skill in the context of a modi-
fied commercial game. Specifically, we created our competency model of problem-
solving skills based on the literature, identified relevant indicators from gameplay 
that could provide evidence of players’ levels on the competency model variables, 
crafted scoring rules of each indicator, and connected the indicators statistically with 
competency model variables. We then modified the Bayes networks by collecting 
and analyzing data collected from a pilot study. Then, we selected well-established 
external measures and validated the stealth assessment in a validation study. 
Reasonable next steps would entail developing tools to help educators gain access to 
the results of the assessment easily (e.g., via a dashboard displaying and explaining 
important results). With that information, educators could effectively and efficiently 
support the growth of problem-solving skill, at the facet level.

4.3.2  “Earthquake Rebuild” (E-Rebuild)

As  discussed  in  the  preceding  example  with  UYB,  the  stealth  assessment  was 
designed and implemented as a post-hoc practice because the game had already 
been designed. In a current design-based project (called Earthquake Rebuild), we 
have been designing evidenced-centered stealth assessment during the entire course 
of game design. Earthquake Rebuild (E-Rebuild) acts as both a testbed and sandbox 
for generating, testing, and refining the focus design conjectures on game-design- 
associated, stealth assessment and support of learning.

Developed  using  Unity  3D,  the  overall  goal  of  E-Rebuild  is  to  rebuild  an 
earthquake- damaged space to fulfill diverse design parameters and needs. The inter-
mediate game goal involves completing the design quest(s) in each game episode to 
gain new tools, construction materials, and credits. A learner in E-Rebuild performs 
two modes of play: (a) third-person construction mode, and (b) first-person adven-
ture mode. In the third-person construction mode, a learner performs construct 
site survey and measurement and maneuver (e.g., cut/scale, rotate, and stack up) 
construction items to build the targeted structure. In the adventure mode, a learner 
navigates the virtual world, collects or trade construction items, and assigns space 
(to residents, for example).

The process of interweaving game and assessment design in E-Rebuild included 
four core design  sectors:  (1) developing competency models and selecting game 
mechanics that necessitate the performance of the focus competency, (2) designing 
game task templates and contextual scenarios along with the Q-matrix, (3) design-
ing the game log file based on the Q-matrix, and (4) designing the in-game support 
as both live input for data-driven assessment and adaptive feedback. These design 
sectors are interacting and interdependent with each other.
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4.3.2.1  Competency Model and Game Mechanics Development

In E-Rebuild, an interdisciplinary team of math educator, mathematician, and 
assessment experts codeveloped a competency model for each focal math topic. 
These competency models are aligned with the Common Core State Standards 
(CCSS)  for  mathematical  practice  in  grades  6–8.  The  game  design  team  then 
designed and selected game mechanics that would best serve the competency 
models. Specifically, game actions were the core constituent of game mechanics 
and the basic behavioral unit to be tracked during gameplay. Consequently, game 
actions became the driving element, defining the degree of learning integration 
and assessment in the game. The team focused on designing game actions or indi-
cators that would necessitate, not just allow, the performance of focus knowledge 
and skills (e.g., ratio and proportional reasoning). By experimenting with all pro-
posed architectural design actions via iterative expert review and user testing at 
the initial paper prototyping stage, the design team decided on the game actions 
that best operationalized the practice of math knowledge, which include (mate-
rial) trading, building, and (resource) allocation. Furthermore, comparative analy-
ses with different versions of the game prototype in a one-year case study indicated 
that an intermediary yet noninterruptive user input (e.g., entering a specific num-
ber), in comparison with an intuitive user input (e.g., clicking or dragging a button 
or meter to adjust a numerical value), effectively necessitates the practice of the 
targeted mathematical knowledge. For example, the trading interface (see Fig. 4.5) 
requires the player to enter the quantity of a building item to be ordered, calculate 
the total amount/cost (based on the unit rate), and enter the numerical value. 
Similarly, the scaling tool prompts the player to specify the numerical value for 
the scaling factor to scale down a 3D construction item along the chosen local axis 
of the item (x, y, z, or all).

Fig. 4.5 Intermediary user input example—the trading interface and the scaling tool for the 
building action
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4.3.2.2  Designing Task Templates to Substantiate the Competency Model 
and Q-Matrix

In E-Rebuild, the game task development was confined by the math competency 
models. Specifically, the competency model has driven the development of a cluster 
of game task templates and the selection of the tasks’ parameters and content scope 
(as depicted in Fig. 4.6). For instance, an exemplary allocation task (e.g., assigning 
families into a multiroom shelter structure, with the ratio of an adult’s living space 
need to a child’s need being 2 to 1) was designed to extract math performance of 
subcompetencies  (e.g.,  C1)  of  “ratio  and  proportional  reasoning.” The Q-matrix 
development (Fig. 4.7) then helped the design team gauge and track which facets of 
the math competency a specific gameplay action inform, and whether each facet of 
a math competency is practiced/assessed by different clusters of tasks. Accordingly, 
existing task templates could be refined or removed, and new task templates might 
be developed.

The Q-matrix also helped  the  team  to gauge  the discrimination and difficulty 
qualities of different tasks and hence assisted the selection and sequencing of tasks 
within/across  game  episodes.  Finally,  a  variety  of  architecture-themed  scenarios 
(e.g., building shelters with shipping containers or building a structure to meet the 
needs of multiple families) would contextualize different clusters of game tasks and 
inform the development of the task narrative. These aforementioned design processes 
occurred concurrently and helped to make the game-task design and the evidence 
model development a coherent process.

Fig. 4.6  A design document depicting a competency model along with the design of game task 
templates. Note: The four black boxes at the bottom represent examples of game tasks designed to 
extract the subcompetencies, which are depicted in the blue boxes in a hierarchical structure. Solid 
lines indicate the relationships among competencies and subcompetencies to be captured/assessed, 
and dotted lines link the gaming tasks and the competencies to be assessed.
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4.3.2.3  Designing Game Log File Along with Q-Matrix for Bayesian 
Network Construction

During the course of E-Rebuild design, we designed, tested, and refined the game 
log file along with the Q-matrix so that  the game objects, salient object features, 
play actions, and action-performing statuses tracked in the game log will assist the 
generation and update of conditional probability tables (CPTs) for all indicators in 
the Bayes net being constructed. In E-Rebuild, the creation of CPTs for indicators 
and hence the Bayesian Network construction were initially driven by the logged 
gameplay data of 42 middle school students and 6 game/content experts in a pilot 
study. The CPTs and the preliminary networks generated were then reviewed and 
refined by the content/assessment experts and game designers. Game logs and indi-
cators were also refined based on the pilot-testing results. For the next phase, the 
refined CPTs and Bayesian networks will be further tested and updated by the 
gameplay data to be collected from a larger group of target users, and then validated 
by external math knowledge tests in a future evaluation study.

4.3.2.4  In-Game Support as Both Input and Output of Data-Driven 
Learning Assessment

In E-Rebuild, we have designed in-game cognitive support (scaffolding) as an 
expandable/collapsible help panel and a scratch pad. The scratch pad includes an 
internal calculator and enables/records participants’ typing of numerical calculation 
steps. The help panel (Fig. 4.8) contains interactive probes to facilitate active math 
problem representation rather than passively presenting the information. When 

Compare ratios 
with whole 
number 
measurement 
using tables of 
equivalent ratios

Recognize a ratio 
relationship 
between 2 quantities 
in numerical form

Recognize a ratio 
relationship between 
2 quantities in 
verbal form

Recognize a ratio 
relationship between 
2 quantities in 
symbolic form

Represent a ratio 
relationship via 
numerical form

Represent a ratio 
relationship via 
verbal form

Represent a ratio 
relationship via 
symbolic form

Calculate the unit 
rate (a/b) associated 
with a ratio (a : b)

Recognize a percent of 
a quantity as rate per 
100

timeToCompletion 0 1 1 1 1 0 1 1 0

Material Credit 0 0 0 0 0 0 0 1 0

scratchpad 
editing(math related) 0 0 0 0 1 0 0 1 0
assignment 
operation 0 0 0 1 0 0 1 1 0

# of trades 1 1 1 0 1 0 0 1 1

scratchpad 
editing(math related) 0 0 0 0 1 0 0 1 0
percentage lost in 
trade avg 1 1 1 0 1 0 0 1 1

cut (for resourcing) 0 0 0 0 0 0 0 0 0

scale (for resourcing) 0 0 0 0 0 0 0 0 0
structure size 0 0 1 0 0 0 1 0 1

structure location 0 0 0 0 0 0 0 0 0
structure direction 0 0 0 0 0 0 0 0 0
# copy/paste failed 0 0 0 0 0 0 0 0 0

scratchpad 
editing(math related) 0 0 0 0 1 0 0 1 0
ruler record 0 0 1 0 0 0 1 0 0
timeToCompletion 1 1 1 1 1 0 1 1 1

Material Credit 1 1 1 1 1 0 1 1 1

Happiness Credit 0 1 1 1 1 0 1 1 1

Game Task

Allocation Task

Trading Task

Building Task

Reason with ratio and proportional reasoning

ObsNameTask Name

Fig. 4.7  Part of the Q-matrix for E-Rebuild. Note: Facets of the focus competency are listed in 
columns and the indicators are listed in rows.
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interacting with those probes, a player has to enter numbers or maneuver dynamic 
icons, with all interactions logged. The two support features thus work as another 
dynamic data source for game-based stealth assessment. In addition, we are still 
designing the dynamic-help mechanism that will use the values extracted from the 
logged gameplay performance variables (e.g., timeToCompletion, materialCredit, 
assignmentScore, usedScratchpad, helpInput) to inform the content and presenta-
tion of task-specific learner feedback in the Help panel. Based on the dynamically 
updated game task performance of the player, the game-based assessment mecha-
nism will inform on task-relevant math competency (e.g., below 50 % in a specific 
competency). Accordingly,  the  help menu will  be  displayed  automatically  and  a 
math-competency-related subsection of the problem-solving probes will be 
expanded. The interactive probes may be presented in iconic (pictorial) and/or symbolic 
(numerical formula) formats, pending on the player’s choice.

4.4  Discussion and Implications

In this chapter, we have introduced the core steps of game-based stealth assessment 
of learning and illustrated the implementation of these steps via two cases. The first 
case focuses on developing an assessment mechanism for an existing game and the 
assessment of an important domain-general skill (i.e., problem solving). The second 
case highlights the integration of learning task and assessment design throughout 
the game development process and the assessment of domain-specific (mathemati-
cal) practice and learning. Both cases illustrate the applicability of data-driven, 
performance-based assessment in an interactive learning setting, for either formal or 
informal learning.

Fig. 4.8 Interactive learning probes
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Several design challenges of in-game learning assessment should be considered. 
First, the development of the underlying competency model is critical for the (con-
struct) validity of the game-based stealth assessment. The latent and observed compe-
tency variables, as well as the scope of the focal competency are usually confined by 
the literature base, the content expertise/background of the project team, and an exter-
nal evaluation purpose or standard (e.g., Common Core State Standards in E-Rebuild). 
The competency model variables and scope are also moderated by the targeted learn-
ers and levels of learning outcomes. Hence the effort contributed to developing and 
validating the competency model is critical, and a developed competency model for 
assessment should be reviewed and refined for each implementation setting. Second, 
although the development of a global, overarching Bayesian network is desirable, 
creating individual Bayes nets for each game episode may be necessary to enhance the 
efficiency in data accumulation and nodes updating in the Bayesian net. Third, the 
creation of conditional probability tables for the initial construction of the Bayes 
net(s) should be driven by both expert opinion and in-field gameplay data.

In the first game (Use Your Brain), expert opinions drove the initial CPT develop-
ment, which were then enhanced by in-field data validation. In E-Rebuild, CPTs 
were generated (learned) from the in-field data and then reviewed/refined by experts. 
Future research can experiment with the two methods in CPT generation and further 
investigate the potential differences in the two methods on learning and validating 
the Bayesian network. Finally, in both projects we are presently developing and test-
ing various adaptive learning support mechanisms. The dynamically updated learn-
ing assessment in E-Rebuild will be used to drive the timing (e.g., at the end of a 
game action, a task, or a game level), topic (e.g., on a task-specific math concept or 
a calculation procedure), and the presentation format (e.g., iconic or symbolic, infor-
mative hint or interactive probe) of the learning scaffolds for game-based learning. A 
critical design consideration for assessment-based, dynamic learner support is the 
timing and extent of live data accumulation for adaptive support presentation. In 
E-Rebuild, we have used game level and game episode (i.e., an episode includes 
multiple game levels) as two hierarchical units for data accumulation and learning 
support presentation. Specifically, performance data will be fed into the Bayesian 
network at the end of each game level and each game episode. Correspondingly, the 
learner profile will be updated at these points, and then the relevant learner supports 
(e.g., probes and feedback) can be presented as both cut- screen in between game 
levels/episodes, and updated content in the Help panel.
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