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   Introduction 

 Adaptive educational systems monitor 
important learner characteristics and make 
appropriate adjustments to the instructional 
milieu to support and enhance learning. 
The goal of adaptive educational systems, 
in the context of this chapter, is to create 
an instructionally sound and fl exible envi-
ronment that supports learning for students 
with a range of abilities, disabilities, inter-
ests, backgrounds, and other characteristics. 
The challenge of accomplishing this goal 
depends largely on accurately identifying 
characteristics of a particular learner or 
group of learners – such as type and level of 
knowledge, skills, personality traits, affective 
states – and then determining how to lever-
age the information to improve student 
learning (Conati  ,  2002 ; Park   & Lee  ,  2004 ; 
Shute   et al.,  2000 ; Snow  ,  1989 ,  1994 ). 

 We present a general evidence-based 
framework for analyzing adaptive learn-
ing technologies. We then describe experts’ 
thoughts on: (1) the variables to be taken 
into account when implementing an adap-
tive learning system (i.e.,  what  to adapt) 

and (2) the best technologies and  methods 
to accomplish adaptive goals (i.e.,  how  to 
adapt). We conclude with a summary of 
key challenges and future applications of 
adaptive learning technologies. These chal-
lenges include: (1) obtaining useful and 
accurate learner information on which to 
base adaptive decisions, (2) maximizing 
benefi ts to the learner while minimizing 
costs associated with adaptive technologies, 
(3) addressing issues of learner control and 
privacy, and (4) fi guring out the bandwidth 
problem, which has to do with the amount 
of relevant learner data that can be acquired 
at any time. 

  Rationale for Adapting Content 

 The attractiveness of adaptive technolo-
gies   derives from the wide range of capa-
bilities that these technologies afford. One 
capability involves the real-time delivery of 
assessments and instructional content that 
adapt to learners’ needs and preferences. 
Other technology interventions include 
simulations of dynamic events, extra prac-
tice opportunities on emergent skills, and 
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alternative multimedia options, particularly 
those that allow greater access to individuals 
with disabilities. We now provide evidence 
that supports the importance of adapting 
content to students to improve learning. 
These arguments concern individual and 
group differences among students.  

    Differences in Incoming Knowledge, 
Skills, and Abilities 

 The fi rst reason for   adapting content to the 
learner has to do with general individual dif-
ferences in relation to incoming knowledge 
and skills among students. These differences 
are real, often large, and powerful; how-
ever, our educational system’s traditional 
approach to teaching is not working well 
in relation to the diverse population of stu-
dents in U.S. schools today (Shute  ,  2007 ). 
Many have argued that incoming knowledge 
is the  single  most important  determinant of 
subsequent learning (Alexander   & Judy,   
 1988 ; Glaser  ,  1984 ; Tobias  ,  1994 ). Thus, it 
makes sense to assess students’ incoming 
knowledge and skills to provide a sound 
starting point for teaching.   A second rea-
son to adapt content to learners has to do 
with differences among learners in terms 
of relevant abilities and disabilities. This 
addresses issues of equity and accessibility. 
To illustrate, a student with visual disabili-
ties will have great diffi culty acquiring visu-
ally presented material, regardless of prior 
knowledge and skill in the subject area. 
Student abilities and disabilities can usually 
be readily identifi ed and content adapted 
to accommodate the disability or lever-
age an ability to support learning   (Shute   
et al.,  2005 ).    

    Differences in Demographic 
and Sociocultural Variables 

 Another reason to adapt content to learn-
ers relates to demographic and sociocultural 
differences among students, which can affect 
learning outcomes and ultimately achieve-
ment (Conchas  ,  2006 ; Desimone  ,  1999 ; 
Fan   & Chen  ,  2001 ). For example, training 
on a foreign language may contain different 

content depending on whether the learner 
is a child or an adult.    

    Differences in Affective Variables 

 In addition to cognitive, physical, and socio-
cultural differences, students’ affective states 
fl uctuate both within and across individuals. 
Some of these states – such as frustration  , 
boredom  , motivation, and confi dence – may 
infl uence learning (Conati  ,  2002 ; Craig   et al., 
 2004 ; D’Mello   & Graesser  ,  Chapter 6  in this 
volume; Ekman  ,  2003 ; Kapoor   & Picard  , 
 2002 ; Litman   & Forbes-Riley  ,  2004 ; Picard  , 
 1997 ; Qu et al.,  2005 ).   

 In summary, there are a number of com-
pelling reasons to adapt content to learners. 
We now provide context and coherence 
for adaptive technologies by way of a gen-
eral evidence-based, four-process model. 
This model has been extended from (1) a 
simpler two-process model that lies at the 
heart of adaptive technology (diagnosis     and 
 prescription) and (2) a process model to 
support assessment   (Mislevy   et al.,  2003 ).    

      Four-Process Adaptive Cycle 

 The success of any adaptive technology to 
promote learning requires accurate   diagnosis    
of learner characteristics (e.g., knowledge, 
skill, motivation, persistence). The collection 
of learner information can then be used as 
the basis for the  prescription  of optimal con-
tent, such as hints, explanations, hypertext   
links, practice problems, encouragement, 
and metacognitive support. Our framework 
involves a  four-process cycle  connecting the 
learner to appropriate educational materi-
als and resources (e.g., other learners, learn-
ing objects, applications, and pedagogical 
agents) through the use of a learner model     
(LM) (see  Figure 1.1 ).  1   The components 

  1     The terms “student model” and “learner model” 
are used interchangeably in this chapter. They are 
abbreviated as either SM or LM. Because this chap-
ter focuses on the educational functions of adap-
tive systems, we limit our modeling discussion to 
the context of students or learners rather than more 
broadly defi ned users.  
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ADAPTIVE EDUCATIONAL SYSTEMS 9

of this four-process cycle include capture, 
analyze, select, and present.    

  CAPTURE 
 This process entails gathering information 
about the learner as the learner interacts 
with the environment (depicted in  Figure 
1.1  by the larger human fi gure). Relevant 
information can include cognitive data (e.g., 
solution to a given problem) as well as non-
cognitive aspects of the learner (e.g., engage-
ment). This information is used to update 
internal models maintained by the system.  

  ANALYZE 
 This process requires the creation and main-
tenance of a model of the learner in relation 
to the domain, typically representing infor-
mation in terms of inferences on current 

states. That is, the computer can infer what 
the learner knows or can do directly from 
aspects of the learner’s performance in the 
learning domain (e.g., if the learner solves 
a relatively diffi cult problem correctly, the 
inference is that his/her knowledge and/or 
skill related to the topic is likely pretty good, 
and if he/she solves another diffi cult prob-
lem correctly, the confi dence in the infer-
ence that he/she knows the content well 
increases). In  Figure 1.1 , this is depicted 
as the smaller human fi gure and is often 
referred to as the student model or the LM.  

  SELECT 
 Information (i.e., content in the broadest 
sense) is selected for a particular learner 
according to: (1) his/her current status 
as represented in the student model and 
(2) the purpose(s) of the system (e.g., next 
learning object or test item). This process is 
often required to determine how and when 
to intervene.  

  PRESENT 
 Based on results from the select process, spe-
cifi c content is presented to the learner. This 
entails appropriate use of media, devices, 
and technologies to effi ciently convey infor-
mation to the learner. 

 This model accommodates alternative 
types and levels of adaptation.  Table 1.1  
describes some of the different possibilities, 
starting with a completely adaptive cycle and 
continuing to a nonadaptive presentation.    

   In general, the architecture of adap-
tive applications has evolved in a way that 
refl ects the evolution of software systems 
architecture; for example, it is possible to 
fi nd  stand-alone  adaptive applications where 
the complete adaptive system – includ-
ing its student model – resides in a single 
machine. Also, adaptive applications have 
been implemented using a  distributed  archi-
tecture model. Some examples of distrib-
uted applications include: (1)  client-server 
adaptive applications that make use of 
student modeling servers and shells (Fink   
& Kobsa  ,  2000 ); (2) distributed agent-
based platforms (Azambuja et al.,  2002 ; 
Vassileva   et al.,  2003 ); (3) hybrid approaches 
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 Figure 1.1.      Four-process adaptive cycle. The larger 
human icon represents the student. The smaller 
human icon represents the student model. 

  Source : From “Adaptive technologies,” by V. J. Shute       
and D. Zapata-Rivera      , 2007, in J. M. Spector, D. 
Merrill, J. van Merri ë nboer      , & M. Driscoll (Eds.), 
 Handbook of research on educational communications 
and technology  (3rd Ed.) (pp. 277–294). New York: 
Lawrence Erlbaum Associates, Taylor & Francis 
Group. Copyright © 2007 by the Taylor & Francis 
Group; reprinted by permission of the publisher.  
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SHUTE AND ZAPATA-RIVERA10

involving distributed agents and a student 
modeling server (Brusilovsky   et al.,  2005 ; 
Zapata-Rivera   & Greer  ,  2004 ); (4) peer-
to-peer architectures (Bretzke   & Vassileva  , 
 2003 ); and (5) service-oriented architec-
tures (Fr ö schl  ,  2005 ; Gonz á lez   et al.,  2005 ; 
Kabassi   & Virvou  ,  2003 ; Trella   et al.,  2005 ; 
Winter   et al.,  2005 ). 

 To illustrate how our four-process adap-
tive model can accommodate more dis-
tributed scenarios,  Figure 1.2  depicts an 
extended version of our model. Agents 
(e.g., application, personal, and pedagogi-
cal agents) maintain a personal view of the 
learner using their own representation of 
the “four-process adaptive cycle” (see  Figure 
1.1 ). Agents share (or negotiate) personal 
information with other agents to accom-
plish goals on behalf of the learner. A com-
mon LM is maintained in a learner modeling 
server. The term “common learner model  ” 
refers to a subset of the LM that is common 

to all the agents (e.g., identifi cation informa-
tion) and other information the agents share 
(e.g., long-term goals and interests).         

  Summary of Current Adaptive 
Technologies 

   This section describes adaptive technol-
ogies currently in use and relevant to the 
context of this chapter. The technologies 
have been divided into two main sections: 
soft and hard technologies; this distinction 
may be likened to  program  versus  device  and 
may be used across the array of processes 
described in the previous section (i.e., cap-
turing student information, analyzing it, 
selecting content, and presenting it). The 
technologies selected for inclusion in this 
section are those that make use of, to some 
extent, a LM in its formulation. Also, this 
listing is intended to be illustrative and not 

 Table 1.1.     Scenarios Represented in the Four-Process Adaptive Cycle   

Scenario Description

 A complete outer cycle, 
automated adaptation 
(1, 2, 3, 4, 5, and 6 )

All processes of the cycle are exercised: capturing relevant information, 
analyzing it, updating the variables that are modeled in the learner model, 
selecting appropriate learning resources and strategies that meet the 
current needs of the learner, and making them available to the student 
in an appropriate manner. This cycle will continue until the goals of the 
instructional activity have been met.

 Automated adaptation 
with user input 
(1, 2, 3, 4, 5, 6, and 9 )

The learner is allowed to interact with the learner model. The nature 
of this interaction and the effects on the learner model can vary 
(e.g., overwriting the value of a particular variable). Allowing student 
input to the model may help reduce the complexity of the diagnostic and 
selection processes by decreasing the level of uncertainty inherent in the 
processes. It can also benefi t the learner by increasing learner awareness 
and supporting self-refl ection.

 Diagnosis only 
(1, 2, and 3 )

The learner is continuously monitored; information gathered is analyzed 
and used to update learner profi les, but not to adapt content. This may be 
seen as analogous to student assessment.

 Short (or temporary) 
memory cycle 
(1, 7, 5, and 6 )

The selection of content and educational resources is done by using the 
most recent information gathered from the learner (e.g., current test results 
and navigation commands). Adaptation is performed using information 
gathered from the latest interaction between learner and the system.

 Short (or temporary) 
memory, no selection 
cycle (1, 2, 8, and 6 )

A predefi ned path on the curriculum structure is followed. No learner 
model is maintained. This predefi ned path dictates which educational 
resources and testing materials are presented to the learner.
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exhaustive. For a more thorough descrip-
tion of adaptive technologies in the context 
of e-learning systems, see Buxton   ( 2006 ), 
Fr ö schl   ( 2005 ), Jameson   ( 2008 ), and Kobsa   
( 2006 ), the fi rst of these for a directory of 
sources for input technologies. 

  Figure 1.3  provides examples of both 
soft and hard technologies (in shaded 
boxes) operating within an adaptive 
learning environment in relation to our 
four-process adaptive cycle; for example, 
technologies for  analyzing  and  selecting  LM 
information include Bayesian networks and 
machine-learning   techniques. These tech-
nologies are examined in relation to both 

learner variables     (cognitive and noncogni-
tive) and modeling approaches (quantita-
tive and qualitative). Similarly, examples 
of soft and hard technologies are provided 
for the processes of  capturing  and  presenting  
information.    

  Soft Technologies 

 Soft technologies represent programs or 
approaches that capture, analyze, select, or 
present information. Their primary goals are 
to create LMs (diagnostic function) and to 
utilize information from LMs (prescriptive 
function). 

Learner 1

Learner 2

Learner 3

Learner  modeling
server

Analyze Select

Agent 1

Agent 2 Agent 3

Agent 4

Capture Present

Analyze Select

Capture Present

Analyze Select

Capture Present

Analyze Select

Capture Present

 Figure 1.2.      Communication among agents and learners. 

  Source : From “Adaptive technologies,” by V. J. Shute and D. Zapata-Rivera, 2007, in J. M. Spector, 
D. Merrill, J. van Merri ë nboer, & M. Driscoll (Eds.),  Handbook of research on educational communications 
and technology  (3rd Ed.) (pp. 277–294). New York: Lawrence Erlbaum Associates, Taylor & Francis 
Group. Copyright © 2007 by the Taylor & Francis Group; reprinted by permission of the publisher.  
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    QUANTITATIVE MODELING 
 In general, quantitative modeling of learn-
ers obtains estimates about the current state 
of some attribute. This involves models and 
datasets, as well as typically complex rela-
tionships and calculations. To begin model-
ing, relationships are established and tested, 
in line with a hypothesis that forms the basis 
of the model and its test. To quantify the 
relationships, one can use graphical models 
to create graphs of the relationships and sta-
tistical models that will defi ne quantitative 
equations of expected relationships to model 
uncertainty (for more, see Jameson  ,  1995 ).    

    QUALITATIVE MODELING 
 Qualitative modeling supports learners by 
constructing conceptual models of systems 
and their behavior using qualitative formal-
isms. According to Bredeweg   and Forbus   
( 2003 ), qualitative modeling is a valuable 
technology because much of education 
is concerned with conceptual knowledge 
(e.g., causal theories of physical phenom-
ena). Environments using qualitative mod-
els may use diagrammatic representations 

to facilitate understanding of important 
concepts and relationships. Evaluations in 
educational settings provide support for the 
hypothesis that qualitative modeling tools 
can be valuable aids for learning (Frederiksen   
& White  ,  2002 ; Leelawong   et al.,  2001 ).    

    COGNITIVE MODELING 
 Cognitive models may be quantitative or 
qualitative. They help predict complex 
human behaviors, including skill learning, 
problem solving, and other types of cognitive 
activities. Generally, cognitive models may 
apply across various domains, serve differ-
ent functions, and model well- or ill-defi ned 
knowledge (e.g., design problems). The range 
of cognitive modeling approaches includes, 
for example, symbolic, connectionist, hybrid, 
neural, probabilistic, and deterministic math-
ematical models. Probably the best-known 
examples of cognitive models come from 
the cognitive tutor  ing research by John 
Anderson   and colleagues (Anderson  ,  1993 ; 
Anderson   & Lebiere  ,  1998 ; Anderson   et al., 
 1990 ,  1995 ; Koedinger   & Anderson  ,  1998 ; 
Koedinger   et al.,  1997 ; Matsuda   et al.,  2005 ).    

• Performance
 data
• Eye/gaze tracker
• Speech capture
• Gesture/posture
• Haptic devices
• ...

• Bayesian nets
• Machine learning
• Stereotypes
• Plan recognition
• ...

• Personalized 
 media
• Multiple
 representations
• Meaning
 equivalence
• Accommodations
• ...

Quantitative
techniques

Capture

Analyze Select

Present

Cognitive
variables

Noncognitive
variables

Qualitative
techniques

Adaptive Learning Environments

 Figure 1.3.      Overview of technologies to support learner modeling 

  Source : From “Adaptive technologies,” by V. J. Shute and D. Zapata-
Rivera, 2007, in J. M. Spector, D. Merrill, J. van Merri ë nboer, & M. 
Driscoll (Eds.),  Handbook of research on educational communications 
and technology  (3rd Edition) (pp. 277–294). New York: Lawrence 
Erlbaum Associates, Taylor & Francis Group. Copyright © 2007 by 
the Taylor & Francis Group; adapted by permission of the publisher.  
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    MACHINE LEARNING 
 Machine-learning methods applicable 
for learner modeling include rule/tree 
 (analogy) learning methods, probabilistic 
learning methods, and instance- or case-
based learning approaches. An LM can take 
advantage of machine-learning methods and 
thus increase accuracy, effi ciency, and exten-
sibility in areas not modeled before (Sison   
& Shimura  ,  1998 ). According to Webb   et 
al. ( 2001 ), machine-learning methods can 
be used to model: (1) cognitive processes 
underlying the learner’s actions, (2) differ-
ences between the learner’s skills and expert 
skills, (3) the learner’s behavioral patterns or 
preferences, and (4) other characteristics of 
the learner.    

  BAYESIAN NETWORKS   
 Bayesian networks   are graphs composed of 
nodes and directional arrows (Pearl  ,  1988 ). 
Nodes represent variables, and directed 
edges (arrows) between pairs of nodes indi-
cate probabilistic relationships between 
variables (Pearl  ,  1988 ). Bayesian networks 
are related to the machine-learning   meth-
ods (see preceding subsection) and are 
used within LMs to handle uncertainty by 
using probabilistic inference to update and 
improve belief   values (e.g., regarding learner 
profi ciencies). The inductive and deductive 
reasoning capabilities of Bayesian nets sup-
port “what if” scenarios by activating and 
observing evidence that describes a partic-
ular case or situation and then propagat-
ing that information through the network 
using the internal probability distributions 
that govern the behavior of the Bayesian 
net. Resulting probabilities inform decision 
making, as needed in, for example, our select 
process. Examples of Bayesian net imple-
mentations for LMs may be found in Conati   
et al. ( 2002 ), Shute  , Hansen  , and Almond   
( 2008 ), and VanLehn   et al. ( 2005 ).  

    STEREOTYPE METHODS 
 A stereotype is a collection of frequently 
occurring characteristics of users (e.g., 
physical characteristics, social background, 
computer experience). Adaptive meth-
ods are used to initially assign users to 

specifi c classes (stereotypes), so previously 
unknown characteristics can be inferred on 
the basis of the assumption that they will 
share characteristics with others in the same 
class (Kobsa  ,  2006 ). Creating stereotypes 
is a common approach to user modeling, 
whereby a small amount of initial informa-
tion is used to assume a large number of 
default assumptions. When more informa-
tion about individuals becomes available, 
the default assumptions may be altered 
(Rich,    1979 ). The two types of stereotyping 
are  fi xed  and  default . In fi xed stereotyping, 
learners are classifi ed according to their per-
formance into a predefi ned stereotype that 
is determined by, for example, an academic 
level. Default stereotyping is a more fl exi-
ble approach. At the beginning of a session, 
learners are stereotyped to default values, 
but as the learning process proceeds and 
learner performance data is obtained, the 
settings of the initial stereotype are gradu-
ally replaced by more individualized  settings 
(Kay,  2000 ).    

    OVERLAY METHODS 
 An overlay model   is a novice-expert dif-
ference model representing missing con-
ceptions, often implemented as either an 
expert model annotated for missing items 
or an expert model with weights assigned to 
each element in the expert knowledge. The 
weights represent the probability of a stu-
dent knowing a particular concept or having 
a misconception  . One of the fi rst uses of an 
overlay model was done with the WUSOR 
program   (Stansfi eld   et al.,  1976 ). More 
recent applications of this overlay approach 
can be found in a variety of research projects 
(e.g., Kay,  1999 ; Vassileva  ,  1998 ; Zapata-
Rivera   & Greer  ,  2000 ).    

    PLAN RECOGNITION 
 A plan is a sequence of actions (which may 
include choice points) to achieve a certain 
goal, thus refl ecting the learner’s inten-
tions and desires. Plan recognition is based 
on observing the learner’s input actions 
and the system, and then inferring all pos-
sible learner plans based on the observed 
actions. According to Kobsa   ( 1993 ), two 
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main techniques are used to recognize the 
learner’s plan: (1) establishing a  plan library  
containing all possible plans where the 
selection of the actual plan is based on the 
match between observed actions and a set of 
actions in the library; and (2)  plan construc-
tion  where the system controls a library of 
all possible learner actions combined with 
the effects and the preconditions of these 
actions. Possible next actions may be calcu-
lated by comparing the effects of preceding 
actions with the preconditions of actions 
stored in the actions library. To read more 
about applying plan-recognition techniques 
in relation to instructional planning efforts, 
see Kobsa   ( 1993 ) and Vassileva   and Wasson   
(1996).    

    CUMULATIVE/PERSISTENT STUDENT 
MODEL 
 The cumulative student model represents 
the more traditional approach where the 
LM is analyzed and updated in response to 
the learner’s activities. This involves build-
ing a student model that captures and repre-
sents emerging knowledge, skills, and other 
attributes of the learner, with the computer 
responding to updated observations with 
modifi ed content that can be minutely 
adjusted. The selection and presentation of 
subsequent content are dependent on indi-
vidual response histories (Shute   & Psotka  , 
 1996 ; VanLehn   et al.,  2005 ; Wenger  ,  1987 ). 
Student models can last for a long time and 
provide valuable information for various 
applications that keep track of long-term 
goals and interests. Some researchers have 
explored these ideas in the context of life-
long user models (e.g., Kay & Kummerfeld  , 
 Chapter 7  in this volume).    

    TEMPORARY STUDENT MODEL 
 Temporary student models usually do not 
persist in the system after the learner has 
logged out. In artifi cial intelligence  , formal-
isms used to describe the world often face 
something called the  frame problem , which is 
the problem of inferring whether something 
that was true is still true; for example, the 
accuracy of cumulative (or persistent) stu-
dent models can degrade as students forget 

things. Brooks   ( 1999 ) and others have cir-
cumvented the frame problem by using the 
world as its own model (i.e., if you want to 
know if a window is closed, check the actual 
window rather than consult an internal 
model). The same idea applies to student 
modeling; that is, if you want to know if a 
student can still multiply two fractions, ask 
the student to multiply two fractions. This 
kind of student model is always up to date 
and corresponds to the short memory cycle 
scenario shown in  Table 1.1   .  

    PEDAGOGICAL AGENTS 
  Pedagogical  means that these programs are 
designed to teach, and  agent  suggests that 
the programs are semiautonomous, possess-
ing their own goals and making decisions on 
what actions to take to achieve their goals 
(i.e., a programmer has not predefi ned every 
action for them). The current generation of 
pedagogical agents is interactive and some-
times animated; for example, students can 
speak to agents that can speak back, often 
have faces and bodies, use gestures, and 
can move around a computer screen. Some 
well-known agents include Steve   (Johnson 
et al.,  2000 ), AutoTutor   (Graesser   et al., 
 2001 ), AdeLE   (Shaw   et al.,  1999 ), and the 
Tactical Language   Training System   (Johnson 
et al.,  2004 ). An interesting application of 
agent technologies is  teachable agents   , which 
have been successfully used to promote stu-
dent learning of mathematics and science 
(Biswas   et al.,  2001 ). This computer-based 
environment involves a multi-agent system 
(Betty’s Brain  ) that implements a learning-
by-teaching paradigm. Students teach Betty 
by using concept map   representations with 
a visual interface  . Betty is intelligent, not 
because she learns on her own but because 
she can apply qualitative-reasoning tech-
niques to answer questions that are directly 
related to what she has been taught. Another 
class of agents is  emotional agents    (affective 
computing), which have been employed 
to support student learning (Picard  ,  1997 ; 
Wright  ,  1997 ).   Getting students motivated 
and sustaining their motivation have his-
torically been major obstacles in education. 
Emotional (or affective) agents create a 
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learning environment involving learners and 
interactive characters (or believable agents). 
Two important aspects of such characters 
are that they appear emotional and can 
engage in social interactions. This requires a 
broad agent architecture and some degree 
of modeling of other agents in the environ-
ment  . Finally, pedagogical or virtual agents 
can collaborate with students, enabling new 
types of interactions and support for learn-
ing   (Johnson et al.,  2000 ).     

    Hard Technologies 

   In this section, we review several hardware-
based technologies. These are mainly used 
for input (i.e., data capture) and output 
(presentation). 

    BIOLOGICALLY BASED DEVICES 
 So-called biologically based devices obtain 
physical measures of the student’s body or 
physical activity. They were originally devel-
oped to support learners with disabilities 
(i.e., assistive technologies); however, many 
are being created or repurposed to sup-
port LMs for both cognitive and noncogni-
tive student data. As an example, obtaining 
information about where on the computer 
the learner is looking during learning pro-
vides evidence about the learner’s current 
state and attentiveness (for good reviews 
of eye-tracking   research, see Conati   et al., 
 2005 ; Merten   and Conati  ,  2006 ). This infor-
mation can inform the system about what 
is the next optimal path to take for this 
particular learner. In terms of eye-tracking 
technology, eye movements, scanning pat-
terns, and pupil diameter are indicators of 
thought and mental processing that occur 
during learning from visual sources (Rayner  , 
 1998 ); consequently, eye-tracking data can 
be used as the basis for supporting and 
guiding learners during the learning pro-
cess. To illustrate the approach, consider a 
novel application of this technology known 
as AdeLE   (Garc í a-Barrios   et al.,  2004 ). This 
introduces a real-time eye-tracking proce-
dure for intelligent user profi le deduction, 
as well as the use of a dynamic background 
library to support learning.    

    SPEECH-CAPTURE DEVICES 
 These devices allow users to interact with 
the computer via speech instead of relying 
on typing their input; consequently, this 
approach is valuable for individuals with 
physical disabilities that preclude typing, for 
young children who cannot yet type, and so 
on. The devices can also analyze speech pro-
fi les and obtain information on other aspects 
of the person, such as stress. One example 
project using speech-capture technology 
is Project LISTEN   (Literacy Innovation 
that Speech Technology ENables) by Jack 
Mostow   and colleagues. This is an auto-
mated reading tutor that displays stories 
on a computer screen and listens to chil-
dren read aloud. It intervenes when the 
reader makes mistakes, gets stuck, clicks 
for help, or is likely to encounter diffi culty 
(Project LISTEN,  2006 ). See also D’Mello   
and Graesser,  Chapter 6  in this volume, and 
Litman  ,  Chapter 13  in this volume.    

    HEAD-GESTURE CAPTURE DEVICES 
 Many computers are currently equipped 
with video cameras. Processing the image 
provides a means to track head position and 
movement. Software by Visionics Corp  ., for 
example, provides this capability. Zelinsky   
and Heinzmann   ( 1996 ) developed a system 
that can recognize thirteen different head 
and face gestures. In addition, researchers in 
areas such as animated pedagogical and con-
versational agent  s have used sensor  s and a 
video camera for recognizing facial gestures 
(e.g., Kanade  , Cohn  , & Tian  ,  2000 ). This 
information is used to facilitate human-
agent interaction (Cassell   et al.,  2001 ).    

  ASSISTIVE TECHNOLOGIES 
 Disabilities and nonnative language status 
can be major obstacles to learning from a 
computer. Examining adaptations in light 
of a validity framework can be valuable, if 
not essential, for ensuring effectiveness (for 
more on this topic, see Hansen   & Mislevy  , 
 2005 ; Hansen   et al.,  2005 ). Currently, a 
growing number of sites on the Web provide 
information for persons with special needs. 
See the Special Needs Opportunity Window 
(SNOW,  2006 ) Web site for information 
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about the different kinds of adaptive tech-
nologies for people with disabilities.       

  Adaptive Environments 

 When technologies (soft and hard) are inte-
grated into a single environment or plat-
form to accomplish the goal of enhancing 
student learning via adaptation, this is called 
an  adaptive environment .   We now exam-
ine several well-known types of adaptive 
environments. 

  ADAPTIVE HYPERMEDIA ENVIRONMENT 
   Adaptive hypermedia environments or sys-
tems (AHSs) are extended from an intel-
ligent tutoring system foundation and 
combine adaptive instructional systems and 
hypermedia-based systems (Brusilovsky  , 
 1996 ;  Chapter 3  in this volume). An AHS 
combines hypertext   and hypermedia, uti-
lizes features of the learner in the model, 
and applies the LM during adaptation of 
visible aspects of the system to the learner. 
Brusilovsky   ( 2001 ) distinguished between 
two different types of AHS: (1) adapting 
the presentation of content (i.e., differ-
ent media formats or orderings), and (2) 
adapting the navigation or learning path, via 
direct guidance; hiding, reordering, or anno-
tating links; or even disabling or removing 
links (Kinshuk   & Lin,  2004 ).    

  ADAPTIVE EDUCATIONAL HYPERMEDIA 
ENVIRONMENT 
   A particular type of AHS is an adaptive 
educational hypermedia system (AEHS). 
The hyperspace of AEHS is kept relatively 
small given its focus on a specifi c topic; con-
sequently, the focus of the LM is entirely 
on the domain knowledge of the learner 
(Brusilovsky  ,  1996 ). Henze   and Nejdl   
( 2003 ) have described AEHS as consisting 
of a document space, an LM, observations, 
and an adaptation component that recom-
mends content and changes the appear-
ance of links and icons. The document 
space belongs to the hypermedia system 
and is enriched with associated information 
(e.g., annotations, domain or knowledge 
graphs). The LM stores, describes, and infers 

information, knowledge, and preferences 
about a learner. Observations represent the 
information about the interaction between 
the learner and the AEHS and are used for 
updating the LM.    

  COLLABORATIVE LEARNING 
ENVIRONMENT 
   An alternative approach to individualized 
learning is collaborative learning – that is, the 
notion that students, working together, can 
learn more than by themselves, especially 
when they bring complementary, rather than 
identical, contributions to the joint enter-
prise (Cumming   & Self,    1989 ). Collaboration 
is a process by which  “individuals negotiate 
and share meanings relevant to the problem-
solving task at hand” (Teasley   & Roschelle  , 
 1993 , p. 229). Research in this area exam-
ines methods to accurately capture and 
analyze student interactions in collabo-
rative or distance learning   environments; 
for example, Soller   ( 2004 ) described vari-
ous techniques (e.g., probabilistic machine 
learning  ) for modeling knowledge-sharing 
interactions among different learners.    

  SIMULATION AND IMMERSIVE 
ENVIRONMENT 
   Although simulations and immersive envi-
ronments   (e.g., virtual reality) change in 
response to specifi c user actions, typically 
the change is not due to an underlying LM 
but rather is a function of a predefi ned set 
of rules. Some simulations and immersive 
environments, however, do maintain an LM 
(Rickel   & Johnson,  1997 ). Smithtown (Shute   
& Glaser  ,  1990 ; Shute   et al.,  1989 ) is a sim-
ulated environment where students change 
parameters in the hypothetical town – such 
as per-capita income, population, the price of 
gasoline – and see immediate changes in vari-
ous markets, thus learning the laws of supply 
and demand. Smithtown   actually maintains 
two LMs: one to model students’ microeco-
nomic knowledge and skills and the other to 
model their scientifi c inquiry skills.   

 As we have just shown, many different 
programs and devices are available to cap-
ture, analyze, select, or present information 
to a learner based on current or perceived 
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needs or wants. We now turn our attention 
to what some experts in the fi eld have to say 
about adaptive technologies. Our goal is to 
provide additional perspectives on relevant 
topics.    

  Experts’ Thoughts on Adaptive 
Technologies 

 To supplement our literature review on 
adaptive technologies, we asked leading 
adaptive-technology experts to address two 
questions: (1)  what to adapt  (i.e., what vari-
ables should be taken into account when 
implementing an adaptive system?) and (2) 
 how to adapt  (i.e., what are the best technol-
ogies and methods that you use or recom-
mend?). The experts who responded to our 
e-mail queries include Cristina Conati  , Jim 
Greer  , Tanja Mitrovic  , Julita Vassileva  , and 
Beverly Woolf  . 

  What To Adapt? 

 Our experts responded to the what-to-
adapt question in two ways: (1) input data 
or  learner variables  to be measured and used 
as the basis for adaptation, and (2) output or 
 instructional variables        that adapt to learners’ 
needs and occasionally to preferences.  Table 
1.2  summarizes their collective responses 
and illustrates a wide range of student vari-
ables and adaptive pedagogical responses.     

  How To Adapt? 

 Responses to this question tended to focus 
on domain-independent approaches and 
technologies based on analysis of student 
and pedagogical models.  Table 1.3  lists the 
methods suggested by our experts, which 
represent innovative implementations of 
the adaptive technologies discussed earlier.    

 In this section, we have presented a 
variety of learner traits and states that are 
judged relevant to modeling in educational 
contexts. In addition to these variables to 
be captured and analyzed in the LM, new 
data-mining technologies permit the dis-
covery of even more learning variables for 

a more refi ned just-in-time collection of 
student information (for more, see Baker   & 
Yacef  ,  2009 ; Beck   & Woolf  ,  2000 ). This will 
allow systems to discover new things about 
a learner based on multiple sources of infor-
mation from a single learner as well as from 
different learners. This sets the stage for 
accomplishing more accurate individual as 
well as distributed and collaborative learner 
modeling in the future. Challenges and envi-
sioned futures are discussed next.   

    Challenges and Future of Adaptive 
Technologies 

 Several major obstacles must be overcome 
for the area of adaptive technologies to 
move forward. As in the previous section, we 

 Table 1.2.     What to Adapt 

Variables Examples

 Learner Variables 
Cognitive 
abilities

Math skills, reading skills, 
cognitive development 
stage, problem solving, 
analogical reasoning.

Metacognitive 
skills

Self-explanation, self-
assessment, refl ection, 
planning.

Affective 
states

Motivated, attentive, 
engaged, frustrated.

Additional 
variables

Personality traits, learner 
styles, social skills, 
perceptual skills.

 Instructional Variables 
Feedback Types: hints, explanations. 

Timing: immediate, 
delayed.

 Content 
sequencing   

Concepts, learning objects, 
tasks, items, cases or 
problems to solve.

Scaffolding  Support and fading   as 
warranted; rewards. 

View of 
material

Overview, preview, review, 
as well as visualization 
of goal and/or solution 
structure.
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 Table 1.3.     How to Adapt 

Adaptive Approach Rationale

 Probability and 
decision theory 

 Rule-based approaches are typically used in adaptive systems, but using 
probabilistic learner models provides formal theories of decision making 
for adaptation. Decision theory takes into account the uncertainty in both 
model assessment and adaptation actions’ outcome, and combines it with 
a formal representation of system objectives to identify optimal actions 
(Conati  ,  2006 ). 

 Constraint-based 
tutoring 

 The domain model   is represented as a set of constraints on correct solutions, 
the long-term student model contains constraint histories, and these can be 
used to generate the system’s estimate of students’ knowledge. Constraint 
histories can also be used to generate a population student model 
(e.g., probabilistic model), which can later be adapted with the student’s 
data to provide adaptive actions (e.g., problem or feedback selection) 
(Mitrovic  ,  2006 ). 

 Concept mapping  In order to adapt content (e.g., sequences of concepts, learning objects, 
hints) to the student, employ a concept map   with prerequisite   relationships, 
an overlay model   of the students’ knowledge, and a reactive planning 
algorithm (Vassileva  ,  2006 ). 

  Unsupervised 
machine learning    

 Most existing student models are built by relying on expert knowledge, 
either for direct model defi nition or for labeling data to be used by 
supervised machine-learning   techniques. But relying on expert knowledge 
can be very costly and for some innovative applications it may be even 
impossible because the necessary knowledge does not exist. An alternative 
is to use unsupervised machine learning to build student models from 
unlabeled data using clustering techniques for defi ning classes of user 
behaviors during learning environment interactions (Conati  ,  2006 ). 

 Exploiting learning 
standards 

 Adapting around standardized content packages can make use (and reuse) 
of large quantities of high-quality content. This can be done by extending 
the Shareable Content Object Reference Model (SCORM)   Runtime 
Environment specifi cation to include user-modeling functionality. This 
permits content authors to take advantage of (and update) LMs in a 
content-management system. Content recommendations to students are 
based on the LM and recommendation is done in a lightweight manner 
with minimal demands on content developers (Greer   & Brooks  ,  2006 ). 

 Analyzing expert 
teachers 

 Studying expert teachers/tutors is an invaluable source of information on 
how to adapt instructional content, but it is not always possible. Moreover, 
for some innovative systems (e.g., educational games), human tutors may 
not know how to provide effective pedagogical support. An alternative is to 
run so-called Wizard of Oz studies to test adaptation strategies defi ned via 
pedagogical and/or cognitive theories and/or through intuition 
(Conati  ,  2006 ). 

 Matching instructional 
support to cognitive 
ability 

 Adapting instructional support to match students’ cognitive needs 
(i.e., developmental stage and different abilities) has been shown to 
promote better learning in a couple of experimental studies (e.g., Arroyo  , 
Beal  , Murray  , Walles  , & Woolf  ,  2004 ; Arroyo  , Woolf  , & Beal  ,  2006 ). The 
rationale is that if students receive instructional support that they are not 
cognitively ready to use, it will be less effective in promoting learning 
(Woolf  ,  2006 ). 
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have augmented this section by directly ask-
ing leading researchers in the fi eld of adap-
tive technologies to summarize their views 
on challenges and the future of adaptive 
technologies. Our experts include Anthony 
Jameson  , Judy Kay, and Gord McCalla  . 

  Practical and Technical Challenges 

 The main barriers to moving ahead in the 
area of adaptive educational technologies 
are obtaining useful and accurate learner 
information on which to base adaptive deci-
sions, maximizing benefi ts to learners while 
minimizing costs associated with adaptive 
technologies, addressing issues relating to 
learner control and privacy, and fi guring 
out the bandwidth problem, relating to the 
scope of learner data. Each of these is now 
described. 

  DEVELOPING USEFUL LEARNER 
MODELS 
 A core challenge of developing effective 
adaptive technologies is building useful 
LMs. According to Judy Kay ( 2006 ), col-
lecting meaningful learning traces (i.e., data 
obtained from records and student log fi les) 
should help overcome this challenge; that 
is, the large and increasing volume of learn-
ing trace data   associated with individuals is 
generally trapped within logs of individual 
tools. As a consequence, these data represent 
a wasted, untapped resource that might be 
used to build rich LMs. To transform learn-
ing trace data into a LM, a process must 
interpret the data to infer relevant learner 
attributes, such as knowledge and prefer-
ences. This would require the addition of 
a knowledge layer that maps learner trace 
data (evidence) to a set of inferences about 
the learner’s knowledge.  

  ACQUIRING VALID LEARNER DATA 
   A related barrier to overcome involves the 
acquisition of valid learner data, particu-
larly when accomplished via self reports 
(Kay,  2006 ). Self-report information has 
at least two problems. First, learners may 
enter inaccurate data either purposefully 

(e.g., based on concerns about privacy or a 
desire to present themselves in a fl attering 
light) or by accident (e.g., lack of knowledge 
about the characteristics they are providing). 
This problem may be solved by maintaining 
separate views of the LM (e.g., the learner’s 
view) and providing mechanisms for recon-
ciling different views into one LM. Second, 
when additional interactions are required 
during the learning process (e.g., complet-
ing online questionnaires), this increases the 
time imposition and can lead to frustration   
(Kay,  2006 ) as well as potentially invalid 
data from students simply trying to get to 
the content quickly (Greer   & Brooks  ,  2006 ). 
Gathering such information, however, can 
not only reduce the complexity of diagnosis  , 
but also encourage students to become more 
active participants in learning and assume 
greater responsibility for their own LMs.    

    MAXIMIZING BENEFITS 
 Currently, the cost of developing and 
employing adaptive technologies is often 
quite high, while the return on investment   is 
equivocal. This challenge is a practical one – 
how to maximize the benefi t-to-cost ratio 
of adaptive technologies. Despite a growing 
number of adaptive technologies available 
today, there are too few controlled evalua-
tions of the technologies and systems. 

 According to Jameson   ( 2006 ), address-
ing this problem should begin with the 
identifi cation of specifi c conditions that 
warrant adaptation. There are at least two 
standards of comparison for adaptivity: (1) 
fi xed sequencing   and (2) learner control 
of content. The question is whether these 
comparison conditions accomplish the same 
goals that could be achieved via adaptation. 
Jameson   ( 2006 ) offers a strategy for fi nding 
appropriate adaptivity applications – look 
for cases where the learner is in a poor posi-
tion to select content herself, such as: (1) 
the learner wants to choose an item from 
a very large set of items whose properties 
the learner is not familiar with, and (2) 
the learner is in a situation lacking in the 
resources that would be required for effec-
tive performance.  

9780521769037c01_p5-27.indd   199780521769037c01_p5-27.indd   19 10/10/2011   4:03:49 PM10/10/2011   4:03:49 PM



SHUTE AND ZAPATA-RIVERA20

  MINIMIZING COSTS 
 One straightforward way to minimize the 
technical costs associated with adaptivity 
involves the use of more or less off-the-
shelf technology for user adaptivity (Fink   
& Kobsa  ,  2000 ; Jameson  ,  2006 ). Another 
cost- minimizing option has been suggested 
by Greer   and Brooks   ( 2006 ), which involves 
leveraging existing content. They note that 
adaptive algorithms are often domain-
 specifi c, requiring the hand-coding of con-
tent to fi t the specifi c form of adaptation. 
But, with the growing use of standardized 
content management systems and con-
tent available with descriptive metadata  , 
the adaptive learning community has the 
opportunity to get in on the ground fl oor 
in creating standards for content adaptation 
(see Flynn,  Chapter 12  in this volume) Their 
approach involves creating formal ontologies 
to capture content, context, and learning 
outcomes. Instances of these ontologies can 
be reasoned over by a learning environment 
to provide content (and peer help) recom-
mendations. Formal ontologies may then be 
shared (e.g., via Semantic Web specifi ca-
tions) and provide a clear set of deduction 
rules as well as extensive tool support.    

    DEALING WITH LEARNER CONTROL 
ISSUES 
 Learners often want to control their learning 
environment. One strategy that addresses 
this desire is to allow them partial con-
trol of the process. According to Jameson   
( 2006 ), there are several ways to divide the 
job of making a learning-path decision by 
the system versus the learner (see Wickens   
& Hollands  ,  2000 , chapter 13). The system 
can (1) recommend several possibilities and 
allow the learner to choose from that list; 
(2) ask the learner for approval of a sug-
gested action; or (3) proceed with a particu-
lar action but allow the learner to interrupt 
its execution of the action.    

  ADDRESSING PRIVACY AND 
OBTRUSIVENESS CONCERNS 
   When a system has control of the learn-
ing environment and automatically adapts, 
its behavior may be viewed by learners as 

relatively unpredictable, incomprehensi-
ble, or uncontrollable (Jameson  ,  2008 ). 
Moreover, the actions that the system per-
forms to acquire information about the 
learner or to obtain confi rmation for pro-
posed actions may make the system seem 
obtrusive or threaten the learner’s privacy   
(Kobsa  ,  2002 ). According to Kay ( 2006 ), 
  one way to address this concern is to build 
all parts of the learner modeling system in a 
transparent manner to ensure that the learner 
can scrutinize the system’s management of 
their data and the way in which those data 
are interpreted (Cook   & Kay,  1994 ).    

  CONSIDERING THE SCOPE OF THE 
LEARNER MODEL 
   According to McCalla   ( 2006 ), adapting to 
individual differences is essential to making 
adaptive systems more effective. Despite 
some support for this claim (Arroyo   et al., 
 2004 ,  2006 ), signifi cantly more experimental 
studies are needed. The traditional approach 
to achieving adaptivity has required the sys-
tem to maintain an LM that captures certain 
characteristics of each learner and then use 
those data as the basis for adapting content 
(Greer   & McCalla  ,  1994 ). One major prob-
lem concerns obtaining suffi cient bandwidth 
of learner interactions to allow the capture 
of a suffi cient range of characteristics to 
paint an accurate picture of the learner for 
appropriate adaptation. Bandwidth in this 
case refers to the amount of relevant learner 
data that can be passed along a communica-
tions channel in a given period of time. The 
bad news is that it is diffi cult to maintain 
a consistent model as learners’ knowledge 
and motivations change over time; but the 
good news is that the bandwidth problem is 
diminishing as learners are currently spend-
ing more time interacting with technology 
(McCalla  ,  2006 ), and it is possible to gather 
a broad range of information about them. 
Moreover, learners’ interactions can now 
be recorded at a fi ne enough grain size to 
produce more depth in the LM. The main-
tenance problem may be addressed by the 
simple expedient of not trying to maintain 
a persistent LM but instead making sense 
of a learner’s interactions with an adaptive 
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system just in time to achieve particular 
pedagogical goals. 

 Having summarized the main challenges 
surrounding adaptive technologies and pos-
sible ways to overcome them, we now pre-
sent some visions of where the fi eld may 
be heading in the future. These views have 
been crafted from the answers provided by 
three experts to our questions.     

  The Future of Adaptive Technology 

  JUDY KAY’S VIEWS 
     A long-term vision for adaptive technologies 
involves the design and development of life-
long LMs under the control of each learner. 
This idea draws on the range of learning 
traces available from various tools and con-
texts. Learners could release relevant parts 
of their lifelong LMs to new learning envi-
ronments. Realizing such a vision requires 
that all aspects of the LM and its use are 
amenable to learner control. Part of the 
future for LMs of this type must include the 
aggregation of information across models. 
This relates back to two major challenges: 
privacy and user control of personal data, as 
well as its use and reuse. An important part 
of addressing these issues will be to build 
LMs and associated applications so learners 
can always access and control their LMs and 
their use. This approach must go beyond 
just making the LM more open and inspect-
able, to ensuring that learners actually take 
control of its use.      

  GORD MCCALLA  ’S VIEWS 
 The next envisioned future of adaptive tech-
nologies relates to the ecological approach. 
The learning environment is assumed to 
be a repository of known learning objects, 
but both learning object and repository 
are defi ned broadly to include a variety of 
learning environments. To further enhance 
fl exibility, the repository may also include: 
(1) artifi cial agents representing learning 
objects, and (2) personal agents represent-
ing users (e.g., learners, tutors, and teachers). 
In this vision, each agent maintains models 
of other agents and users that help the agent 
achieve its goals. The models contain raw 

data tracked during interactions between 
the agents and users (and other agents), as 
well as inferences drawn from the raw data. 
Such inferences are only made as needed 
(and as resources allow) while an agent is 
trying to achieve a pedagogical goal. This is 
called  active modeling    (McCalla   et al.,  2000 ). 
After a learner has interacted with a learn-
ing object, a copy of the model that his or 
her personal agent has been keeping can be 
attached to the learning object. This copy 
is called a  learner model instance    and repre-
sents the agent’s view of the learner during 
this particular interaction, both what the 
personal agent inferred about the learner’s 
characteristics and how the learner inter-
acted with the system. Over time, each 
learning object slowly accumulates LM 
instances that collectively form a record of 
the experiences of many different learners 
as they have interacted with the learning 
object. To achieve various pedagogical goals, 
agents can  mine  LM instances – attached 
to one or more learning objects – for pat-
terns about how learners interacted with 
the learning objects. The approach is called 
 ecological  because the agents and objects in 
the environment must continuously accu-
mulate information, and there can be nat-
ural selection as to which objects are useful 
or not. Useless objects and agents can thus 
be pruned. Moreover, ecological niches may 
exist that are based on goals (e.g., certain 
agents and learning objects are useful for a 
given goal whereas others are not). Finally, 
the whole environment evolves and changes 
naturally through interaction among the 
agents and ongoing attachment of LM 
instances to learning objects. The ecological 
approach will require research into many 
issues (e.g., experimentation to discover 
algorithms that work for particular kinds of 
pedagogical goals).    

  ANTHONY JAMESON  ’S VIEWS 
   Although there are many improvements 
that can and should be made in terms of 
tools and techniques for adaptation, it is 
even more important to focus on the central 
problem of getting the benefi ts to exceed 
the costs. Adaptivity, like many other novel 
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technologies, is a technology that is worth-
while, albeit within a restricted range of set-
tings. It is thus critically important to clearly 
identify these settings and to solve the adap-
tation problems therein. The ultimate goal is 
to enhance (in the short or middle term) the 
usability and effectiveness of real systems in 
the real world.      

  Summary and Discussion 

   Adaptive systems have been and will con-
tinue to evolve as new technologies appear 
in the fi eld and old ones transform and 
become more established. The future of the 
fi eld is wide open in that it can evolve in 
different ways depending on factors such 
as the emergence of new technologies, new 
media, advances in learning, measurement, 
and artifi cial intelligence  , and general poli-
cies and standards that take hold (or not) in 
relation to adaptive instruction and learning. 
One shift that we see as critically important 
to the fi eld, particularly in the near term, is 
toward conducting controlled evaluations of 
adaptive technologies and systems. This will 
enable the community to gauge the value-
added of these often expensive technologies 
in relation to improving student learning or 
other valued profi ciencies (e.g., self-esteem, 
motivation).   Our review has shed light on a 
range of technologies, but the bottom line 
has not yet been addressed: What works, 
for whom, and under which conditions and 
contexts? Conati   ( 2006 ) asserts and we 
agree that  learners’ traits targeted for adap-
tation should clearly improve the pedagogical 
effectiveness of the system . This depends on 
whether or not: (1) a given trait is relevant 
to achieve the system’s pedagogical goals; 
(2) there is enough learner variability on 
the trait to justify the need for individual-
ized interaction; and (3) there is suffi cient 
knowledge on how to adapt to learner dif-
ferences along this trait. Along the same 
lines, Jameson   ( 2006 ) argues that the bene-
fi ts of adaptation should be weighed against 
the cost of modeling each candidate trait, to 
focus on traits that provide the highest ben-
efi t given the available resources. 

 A similar appeal for conducting controlled 
evaluations was made more than a decade 
ago, during the heyday of intelligent tutor-
ing system development. Now, as then, the 
call for evaluations of adaptive technologies 
and systems is crucial for future develop-
ment efforts to succeed in terms of pro-
moting learning. Building adaptive systems 
and not evaluating them is like “building a 
boat and not taking it in the water” (Shute   & 
Regian  ,  1993 , p. 268). Evaluation is not only 
important to the future of the fi eld, but can 
also be as exciting as the process of develop-
ing the tools and systems. And although the 
results may be surprising or humbling, they 
will always be informative.    
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