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CHAPTER 2

CONSISTENCY AND VALIDITY 
IN GAME-BASED  

STEALTH ASSESSMENT
Valerie J. Shute and Gregory R. Moore

ABSTRACT

Assessments need to evolve to accurately measure the higher-order skills 
that people need to be successful in the 21st century. We believe that game-
based stealth assessment is one way to modernize assessments to meet this 
need. Stealth assessment refers to unobtrusively embedding assessments 
directly and invisibly into a gaming environment. While ample real-time 
data is available on a player’s interactions with a game, a primary challenge 
in using stealth assessment in games is taking this stream of data and 
making valid inferences about players’ competencies that can be examined 
at various points in time (to see growth), and also at various grain sizes 
(for diagnostic purposes). We suggest that reliability and validity can be 
achieved by following the evidence-centered design process to create stealth 
assessments and by using Bayesian Networks to accumulate evidence from 
the game. Reliability can be demonstrated through a combination of factor 
analyses and correlations and validity can be demonstrated by comparing 
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the stealth assessments to external measures of the same competency. 
Through these processes, we can be confident that stealth assessments are 
measuring their target competencies accurately. 

CONSISTENCY AND VALIDITY IN  
GAME-BASED STEALTH ASSESSMENT 

 You can discover more about a person in an hour of play than in a year of conversation. 

—Plato

In this chapter, we start by presenting the current state of assessment, and 
then argue for the use of games as a viable alternative to traditional assess-
ment, illustrated within the context of a recent stealth assessment project. 
The research project involves the game Physics Playground (Shute & Ventura, 
2013), which includes three stealth assessments running concurrently and 
invisibly in the game—measuring physics understanding, creativity, and 
persistence directly from gameplay data. The underlying models and 
mechanisms that comprise the stealth assessments are presented, along 
with examples of how evidence was identified and accumulated in the 
models. Finally, we describe how we established validity and consistency for 
the Physics Playground stealth assessments, and conclude with a discussion 
of future research in this area.

State of Assessment

Since the 1960s, large-scale achievement testing has played a dominant 
and consequential role in the assessment of student learning outcomes. 
This role has come with a predictable set of rules and by-products. For 
example, the rules have included designing test items manually, imposing 
rigorous content and statistical checks to ensure psychometric defensibility, 
administering in paper-and-pencil format, and rank ordering students. 
The by-products of this focus have included the systematic assessment of 
students and comparability of learning outcomes across grades, years, and 
jurisdictions, but also, in some cases, measuring lower-level (superficial) 
skills in reading, math, and science, and providing ineffective forms of 
feedback to teachers, students, and policy makers. 

The science of large-scale achievement testing has grown to such a level 
of sophistication, imposing a gigantic “footprint” in the assessment of 
learning, that it has systemically dwarfed classroom assessments. Classroom 
assessments—unable to be developed with the technical infrastructure to 
ensure psychometric defensibility—have become little more than tools for 
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preparing students to perform on the large-scale tests that really matter 
(see Shute, Leighton, Jang, & Chu, in press). However, at least two con-
ditions now exist that indicate that these rules and effects are no longer 
tenable, forcing testing specialists and psychometricians to make significant 
changes in how assessments are conceptualized, designed, administered, 
and interpreted (Mayrath, Clarke-Midura, Robinson, & Schraw, 2012; 
Shute & Becker, 2010). 

The two conditions forcing us to rethink assessments include advances 
in the learning sciences and technology. First, advances in the learning sci-
ences indicate that acquiring and demonstrating new knowledge and skills 
occurs within an environment or pedagogical context, which includes (a) 
learners with specific cognitive and noncognitive profiles, and (b) tools to 
promote and evaluate learning (Pellegrino, Chudowsky, & Glaser, 2001). 
Second, technology has dramatically changed the environments and pro-
cesses by which students learn and communicate, teachers instruct, and 
assessments are designed and administered. Paper-and-pencil tests are 
slowly becoming a thing of the past as assessments are now increasingly 
being viewed as adaptive and delivered online, employing interactive tasks 
and simulations (e.g., Gierl & Haladyna, 2012). This wave of innovation, 
ushered in by advances in the learning sciences and technology, has revo-
lutionized the science of assessment, permitting greater ecological validity 
and feedback to students related to the breadth and depth of knowledge 
and skills learned in-situ, including so-called 21st century skills (e.g., 
critical thinking, creativity, collaboration, and problem solving). That is, 
advances in technologies and their integration with assessment systems 
have allowed for the assessment of multidimensional learner characteristics 
(cognitive, metacognitive, and affective) using authentic digital tasks (e.g., 
games and simulations). 

However, despite these advances, assessments of learning are still mainly 
traditional—using multiple choice and short answer format for items—
which may be efficient for measuring declarative knowledge, but not very 
effective for measuring higher-order skills. Essays can be used to measure 
some higher-order skills, but they are expensive and time consuming to 
both take and grade. In addition, traditional assessments are divorced 
from learning and tend to take place within inauthentic contexts. In many 
(if not most) classrooms today, instruction is designed to have discrete 
learning and assessment portions, with students needing to demonstrate 
their knowledge skills separately from (a) when and where they learned 
them, and (b) how they apply the competencies. This separation is per-
petuated because teachers typically engage in the following cycle: teach 
some content, stop, test for the content, and then repeat for each new unit 
of instruction. 

---------->
AU: Update?
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It is no longer sufficient for students to acquire declarative knowledge 
and basic skills in math and English. Today’s students need to develop 
higher-order skills, such as problem solving, persistence, creativity, and 
collaboration (Partnership for 21st Century Skills, 2008), and become 
lifelong learners. However, these skills are hard to measure (Shute & Wang, 
in press). As a result, there are few valid and reliable assessments for 21st 
century skills. This is one reason that schools are reluctant to embrace 
these skills. Old ways of testing, such as multiple choices tests, cannot 
accurately measure learning and succeeding in a complex world. Thus, we 
need to rethink assessment, which, in this chapter, means using games as 
assessment vehicles.

Games as Learning Environments

There is a convergence between the core elements of a good game and 
the characteristics of productive learning (Shute, Rieber, & Van Eck, 2011). 
Our thesis in this chapter is that (a) learning is at its best when it is active, 
goal-oriented, contextualized, and interesting (e.g., Bransford, Brown, & 
Cocking, 2000; Bruner, 1961); and (b) learning environments should thus 
be interactive, provide ongoing feedback, grab and hold attention, and 
have appropriate and adaptive levels of challenge—all features of good 
games. Gee (2003) has argued that the secret of a good game is not its 
3D graphics and other bells and whistles, but its underlying architecture 
in which each level dances around the outer limits of the player’s abilities 
such that it is hard enough to be just doable (see also Csikszentmihalyi, 
1990, on flow theory). Along the same line, psychologists (e.g., Vygotsky, 
1987) have long argued that the best instruction hovers at the boundary 
of a student’s competence. Finally, both well-designed games and produc-
tive learning processes employ ongoing feedback as a major mechanism 
of play/learning support. 

Well-designed games can be seen as vehicles for exposing players to 
intellectual activities. People who want to excel at something—from sur-
geons to artists—spend countless hours making intellectual effort and 
practicing their craft. There is considerable support in the literature, going 
back more than 100 years, that practice substantially improves knowledge 
and skills (e.g., Bryan & Harter, 1899; Ericsson, Krampe, & Tesch-Römer, 
1993; Newell & Rosenbloom, 1981; Schneider & Shiffrin, 1977; Shute, 
Gawlick, & Gluck, 1998; Thorndike, 1898). But practice can be boring and 
frustrating, causing some learners to abandon their practice and, hence, 
learning. This is where the principles of game design come in: Good games 
can provide an engaging and authentic environment designed to keep 
practice meaningful and personally relevant. With simulated visualiza-

---------->
AU: Update?
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tion, authentic problem solving, and instant feedback, computer games 
can afford a realistic framework for experimentation and situated under-
standing, and thus act as rich primers for active learning (Barab, Thomas, 
Dodge, Carteaux, & Tuzun, 2005; Gee, 2003; Squire, 2006). Furthermore, 
within-game learning support enables learners to do more advanced activi-
ties and to engage in more advanced thinking than they could without such 
help (Vygotsky, 1987). The tricky part about including learning support 
in games is providing support that does not disrupt engagement while 
learners are immersed in gameplay, and reinforcing emerging concepts 
and principles to deepen learning and engender transfer to other contexts. 

Play is voluntary, intrinsically motivating, and involves active cognitive 
and/or physical engagement that allows for the freedom to fail (and recover) 
and experiment freely (Klopfer, Osterweil, & Salen, 2009; Pellegrini, 1995; 
Rieber, 1996). Unlike “free play,” a game is usually a contest of physical 
or mental skills and strengths, requiring the player to follow a specific 
set of rules to attain a goal (Hogle, 1996). Thus, well-designed games are 
highly engaging and are guided by design principles for both the interface 
and game mechanics (e.g., Desurvire, Caplan, & Toth, 2004; Fullerton, 
Swain, & Hoffman, 2008). That is, we can use salient game features (e.g., 
problem solving, adaptive challenges, and targeted feedback) to engender 
motivation, which in turn will support engagement and ultimately learning. 
Adaptive challenges and dynamic performance feedback in a game help 
to create an optimal environment for diverse players which will foster the 
sense of flow and potentially cultivate the growth mindset that engenders 
effort-driven, challenge-centered competency development (Dweck, 2006). 

In short, well-designed games are engaging, which is an important pre-
requisite to learning. They are also ubiquitous, as approximately 97% of 
youth play video games (Lenhart et al., 2008). For these reasons, we believe 
that well designed games can act as transformative learning environments 
that support skill development and meaningful learning across a range 
of critical educational areas. Indeed, research suggests that games can 
improve a variety of learning outcomes when properly implemented (e.g., 
Wilson et al., 2009). Just as importantly though, games are also excellent 
vehicles for stealth assessment, described next. 

STEALTH ASSESSMENT

Given the goal of using well-designed games to support learning in school 
settings and elsewhere, we need to ensure that the assessments are valid, 
reliable, and unobtrusive (to keep engagement intact). The output from 
the assessments, however, should be transparent. That is, players should 
be aware of how they are doing relative to important competencies at any 
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point in time to motivate learning. One way to meet these requirements is 
to use “stealth assessment” (Shute, 2011; Shute & Ventura, 2013). Stealth 
assessment refers to evidence centered design (ECD)-based models that are 
woven directly and invisibly into the fabric of the gaming environment (for 
more on ECD, see Mislevy, Steinberg, & Almond, 2003). 

During game play, students naturally produce rich sequences of actions 
while performing complex tasks, drawing on the very skills or competen-
cies that we want to assess (e.g., problem solving, spatial skills, creativity, 
persistence). Evidence needed to assess the skills is thus provided by the 
players’ interactions with the game itself (i.e., the processes of play). This 
evidence can, in turn, be contrasted with a summative score—the norm in 
educational environments. Making use of this stream of gameplay evidence 
to assess students’ knowledge, skills, and understanding (as well as beliefs, 
feelings, and other states and traits) presents problems for traditional mea-
surement models used in assessment. First, in traditional tests, the answer 
to each question is seen as an independent data point. In contrast, the 
individual actions within a sequence of events in a game are often highly 
dependent on one another. For example, what one does in a game at one 
point in time affects subsequent actions later on. Second, in traditional 
tests, questions are often designed to measure particular, individual pieces 
of knowledge or skills. Answering the question correctly is evidence that 
one may know a certain fact: one question—one fact. But by analyzing a 
collection of actions within gameplay (where each action provides incremen-
tal evidence about the current mastery of a specific fact, concept, or skill), 
stealth assessments can infer more accurately what learners know and do 
not know at any point in time. Now, because we typically want to assess a 
whole cluster of skills and abilities using evidence coming from learners’ 
interactions within a game, methods for analyzing the sequence of behav-
iors to infer these abilities are not as obvious. As suggested above, stealth 
assessments that use ECD-based models can help address these problems. 

Figure 2.1 shows the three main models of ECD: the competency, evi-
dence, and task models. We first describe the process of assessment design. 
While assessment design is an iterative process, an assessment designer 
tends to work from left-to-right (i.e., from the competency model to the 
evidence model to the task model). The competency model defines what 
you want to be able to say about the learner (i.e., their knowledge, skills, 
and/or attributes). Development of the competency model involves iden-
tifying and structuring the relevant competency variables. The evidence 
model establishes the statistical relationships among the variables in the 
competency model and the observable variables obtained from game play. 
The evidence model also defines specific rules for automatically “scoring” 
obtained data. Finally, the task model defines the features of the tasks that 
will elicit the evidence that will ultimately inform the competency variables. 
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When using ECD to assess a learner’s performance, one works in the 
opposite direction: from the task model to the evidence model to com-
petency model. A learner’s performance on a task provides a steam of 
evidence. Evidence rules pull relevant information from the stream of 
game play data, score it, and statistically link the scored, observed evidence 
to relevant competency variables. The competency model then updates the 
estimates of each competency variable in the model. 

Stealth assessment (Shute, 2011) embeds the competency and evidence 
models created via ECD deeply into the learning/gaming environment such 
that the line between learning and assessment is blurred. This allows us to 
(a) extract dynamic, ongoing information of various grain sizes from the 
learner in real-time, (b) make accurate inferences of the learner’s compe-
tencies at any time, and (c) support learning by reacting in immediate and 
helpful ways. Because stealth assessment is intended to provide support 
to the learner, it is mainly used for formative purposes. If the purpose of 
the assessment is summative, stealth assessment can still be used, although 
it would not tap the full potential diagnostic and support capabilities of 
stealth assessment.

To illustrate, the stealth assessment process (Figure 2.2) begins with a 
student playing a game. While she is playing the game, she is producing 
a dense stream of performance data (arrow 1). This performance data is 
captured in a log file, then analyzed and scored (arrow 2). The output of 
the analysis is sent to the student model (arrow 3), which uses the data to 
update its estimates of the student’s competencies. The estimates of the 
student’s competencies can then be used to provide feedback and other 
forms of learning support to the student during gameplay (arrow 4). This 
cycle repeats as long as the student is producing performance data. We 
will next discuss a recent project in which we applied stealth assessment 
to measure students’ qualitative physics understanding, creativity, and 
persistence.

Source: Mislevy, Steinberg, and Almond (2003).

Figure 2.1.  Three main models of ECD.
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Figure 2.2.  Stealth assessment process.

PRESENT WORK

We developed and applied stealth assessments in Physics Playground (for-
merly Newton’s Playground, see Shute & Ventura, 2013). Physics Playground 
is a 2D physics-based computer game. The learning goal of this game is 
develop the player’s understanding of qualitative physics within the context 
of simple machines (Shute, Ventura, & Kim, 2013). In the game, players 
need to guide a green ball to a red balloon. They do so by using their 
mouse to draw various simple machines (which are called “agents of force/
motion” in the game). These agents include ramps, levers, pendulums, 
and springboards (Table 1.1). All objects in the game follow the basic rules 
of physics (e.g., gravity, Newton’s 3 laws). For example, Figure 2.3 shows a 
screenshot from one level in the game. The green ball is cradled and sus-
pended in the middle of the screen (the purple and blue objects). To get the 
ball to the red balloon in the top left, the player has drawn a pendulum on 
the right (in red). When put into motion, the pendulum will hit the cradle, 
sending the cradle and the ball towards the balloon (as demonstrated by 
the arrows in blue). 

There are 74 problems in the game, each of which has many possible 
solutions. Therefore, learners may play a level multiple times to solve the 
problem in different ways. However, some strategies are more effective than 
other. For example, in the problem shown in Figure 2.3, ramps are unlikely 
to be useful. We wanted to capture when players were using effective strate-
gies and tools and demonstrating mastery over the game. Thus, each level 
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in the game has three possible levels of performance: not completed, a 
silver trophy, or a gold trophy. Players receive a silver trophy if they simply 
complete the level, but receive a gold trophy if they are able to complete 
the level under par (usually with three or fewer objects). Receiving a gold 
trophy suggests that the player has mastered (or is in the process of) mas-
tering the competency.

To satisfy the requirements of the task model for our stealth assess-
ments and ensure that all players are confronted with challenging levels, 
we designed levels with a wide range of difficulty. We used the following 
scheme to define each level’s difficulty on a scale from 0 to 6:

Table 2.1.  Agents of Force/Motion Available in Physics Playground

Agent of Force/Motion Definition

Ramp
Used to change the direction of the motion of the ball (or 
another object)

Lever
Rotates around a fixed point usually called a fulcrum or pivot 
point.  Moves the ball vertically.

Pendulum
Directs an impulse tangent to its direction of motion.  Secured 
at the top by a pin.

Springboard
Stores elastic potential energy from falling weight; becomes 
kinetic as weight is released.  Moves the ball vertically.

Figure 2.3.  Screenshot from Physics Playground.
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•	 Relative location of ball to balloon: If the balloon is above the ball, 
the player is forced to use the agents of force/motion to impart a 
force and thus raise the height of the ball to solve the problem (0–1 
point). 

•	 Obstacles: If the pathway between the ball and the balloon is ob-
structed, the player must project the ball in a specific direction to 
solve the problem (0–2 points).

•	 Distinct agents of force/motion: More complicated problems 
require the player to use more than one agent of force/motion to 
solve the problem (0–1 points).

•	 Novelty: If the problem is unlike any other problem the player 
encountered, the player cannot easily determine the solution from 
prior experiences (0–2 points). 

Based on these difficulty indices, the levels were organized into 7 groups 
of increasingly difficult problems. Each group, called “playgrounds” in the 
game, contained around 10 levels. 

Project Findings

After playing Physics Playground for 4 hours with no instruction, stu-
dents in the study demonstrated significant learning gains from pretest to 
posttest, F(1, 153) = 4.24, p < .05. Additionally, students tended to enjoy 
the game (1 = dislike; 5 = like; M = 4, SD = 1), with male and female 
students enjoying the game equally after controlling for the pretest. While 
these results are very promising, they do not use our stealth assessments to 
measure students’ competencies directly from gameplay in real-time, and 
are not our main focus. However, to understand the results from our stealth 
assessments, we first need to describe how we know they are valid and 
consistent. This involves explaining the underlying structure of the assess-
ments, how evidence is identified and accumulated, and, most importantly, 
what procedures we used to test for validity and consistency. We discuss 
these issues in detail next. 

MODELS FOR PHYSICS PLAYGROUND

Using ECD, we designed a competency model for each of our three focal 
constructs: qualitative physics understanding, creativity, and persistence. 
These three constructs were combined under a broader category of “Success 
in Physics Playground” (Figure 2.4). For the purposes of this chapter, we 
will describe the creation of the conceptual physics understanding com-
petency model in depth. However, the process is similar for the other two 
competency models.
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Figure 2.4.  Simplified representation of the complete competency model.

The competency models in Physics Playground were developed by 
conducting an extensive literature review for each of the three primary con-
structs. Based on the literature reviews, we then created graphical models, 
received expert feedback on the models, and subsequently refined them. 
To illustrate, for the physics competency model, we identified two broad 
categories of physics understanding from the literature: (a) Potential and 
Kinetic Energy, and (b) Angular Momentum. 

Potential energy exists when a force acts on an object to restore the 
object to its resting point (or lower energy configuration). For example, 
when a springboard—like a player in Physics Playground could create—is 
bent downward, it exerts an upward force to return to its unbent position. 
The action of bending the springboard down stores energy in the spring-
board equal to the work done by the springboard in returning it to its 
resting point. When the bent springboard is released, the stored energy is 
converted into kinetic energy. The same holds true for the force of gravity. 
When an object is held at some height, it has gravitational potential energy 
that, when dropped, is gradually converted to kinetic energy. The angular 
momentum of an object about a point of reference is the product of its 
position and linear momentum. A useful example is a pendulum—like a 
player might create in the game. When it is released, a pendulum’s angular 
momentum increases (and hence its speed) due to the unbalanced torque, 
which is due to the force of gravity. 
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We then linked our four agents of force and motion to the two main 
physics constructs (see Figure 2.6 for a graphical representation). We also 
defined observable variables, or indicators, within Physics Playground that 
would provide evidence of effective creation and application of the agents 
and, by extension, the learner’s physics understanding. All of the indica-
tors we defined were equally applicable to all four agents. One indicator 
included trophy level data for a given level (i.e., gold, silver, or none), 
another reported the time, in seconds, spent on the level, and so on. Col-
lectively, these indicators and their values across gameplay inform our 
estimates of the learner’s knowledge about the agents, her understanding 
of the two main categories of physics, and her overall understanding of 
conceptual physics. Thus, if a player solves a level with a pendulum very 
quickly and using three or fewer objects with a pendulum, she likely has 
high pendulum knowledge, which suggests that she has a good under-
standing of angular momentum, which in turn suggests that she has a good 
overall understanding of conceptual physics. The specifics of how this type 
of evidence is identified and accumulated in real-time are described next. 

Evidence Identification

To identify evidence and “score” gameplay performance, Physics Play-
ground generates log files while students play the game. These log files 
capture a wide variety of gameplay behaviors that provide evidence related 
to our target competencies. Figure 2.5 displays a portion of one student’s 
log file from a single level in the game. The metrics in this log file include, 
among others, the time spent on the level, the number of objects created, 
the number of restarts, whether the player received a silver/gold trophy, 
and the trajectory of the ball. 

One particularly important piece of information is the agents of force/
motion that the player creates during the solution process. Since players 
draw these agents with the mouse, and everyone draws differently, the 
game has a system that allows it to identify which agent the player intends 
based on the object he or she has drawn. The agent identification system 
is based on the idea that each agent has certain unique features that distin-
guish it from other agents. For example, pendulums rotate around a single 
pin, so any drawn object that does this is most likely a pendulum. Ramps 
tend to be in contact with the ball for a longer period of time. Levers tend 
to rotate when the ball comes into contact with them. Springboards tend to 
be connected to other objects with two pins and include a weight—either 
attached to the springboard or dropped on it and then deleted. In this way, 
the game is able to classify the player’s drawn object with more than 95% 
accuracy (compared with human ratings) and provide detailed information 
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on the agents drawn per level in the log files. For a more detailed explana-
tion of this system, see Shute and Ventura (2013) and Shute, Ventura, and 
Kim (2013). 

Evidence Accumulation

Once evidence is captured and analyzed in the log files, the game needs 
to accumulate this evidence to estimate the learner’s competencies. This 
is accomplished by a script that sums the data across all instances in each 
level to produce raw indicator data per level (e.g., time on level, number of 
restarts per level). The data per level are then summed across all levels for 
some of the variables to create session level variables (e.g., number of levels 
attempted, applicable agents created). Finally, we use cut scores, obtained 
from the frequency distributions of the raw observables in our study, to 
define the Low, Medium, and High levels for each indicator. 

The data are accumulated in Bayesian Networks (Figure 2.6), or 
Bayes nets, which use conditional probabilities to represent a learner’s 
competencies. We created 74 Bayes nets for Physics Playground, one for 
each level in the game, because each level differs in terms of difficulty and 
discrimination parameters. These networks are implementations of the 

Figure 2.5.  Sample log file.
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competency model and its associated indicators. To properly implement 
these models, though, we needed to define conditional probability tables for 
each of the nodes in the network, which represent the competency variables 
(in white) and the indicators (in green). The conditional probability tables 
(CPTs) were initially based on student pilot data. 

Once we defined the prior probabilities for each CPT, we could then 
use the Bayes nets to estimate the unobserved variables of each player. 
For example, the Bayes net fragment in Figure 2.7 is updated with two 
observables. The player solved the level twice using two different agents. 
She received a silver trophy using a lever and a gold trophy using a pendu-
lum. These two observables update the Lever Knowledge and Pendulum 
Knowledge nodes respectively. These competency nodes influence the 
estimates of the player’s knowledge of Potential/Kinetic Energy and Con-
servation of Angular Momentum, and ultimately Newton’s Three Laws. In 
turn, the estimates of the student’s knowledge of Potential/Kinetic Energy, 
Angular Momentum, and Newton’s 3 Laws influence the estimates of Ramp 
Knowledge, Springboard Knowledge, and the likelihoods of getting spe-
cific trophies using a ramp or springboard in the level. 

Figure 2.6.  A Bayes net fragment instantiated with indicator data.
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Based on this illustration, the player is currently estimated to be either 
at a medium or high state relative to most of the competency variables. For 
cases where the estimated values between states are quite close (e.g., Con-
servation of Angular Momentum, p(high) = .51 and p(medium) = .46), we 
derived a rule to decide if more evidence is needed for that node. After cal-
culating the three absolute values between all pair-wise states, if any two of 
the three values are less than or equal to .15, then more evidence is needed. 
If not, we can calculate Expected a Posteriori (EAP) values to reduce the 
triplet of values to a single value ranging from –1 to 1. This is defined as 
p(high) –p(low). For reporting purposes, the student will have mastered the 
competency if EAP falls in [0.34, 1]; nearly mastered the competency if EAP 
falls in [–0.34, 0.33]; and (c) not mastered the competency, if EAP falls in 
[–1, –0.33]. These probabilistic models of players’ knowledge are not useful 
if they do not meet the basic psychometric properties of consistency and 
validity, discussed next. 

CONSISTENCY AND VALIDITY OF STEALTH ASSESSMENTS

Consistency

The learners were allowed to play any of the 74 levels they wanted and, 
therefore, not all learners attempted the same problems. This made it 
difficult to examine the reliability (i.e., consistency) of the stealth assess-
ments simply by calculating Cronbach’s alpha on the levels. Instead, we 
used a variety of other analyses and metrics to explore the consistency 
of our stealth assessments. For the purposes of this chapter, we will only 
describe how we examined the consistency of our stealth assessment for the 
conceptual physics competency. The process was the same for the stealth 
assessments of the creativity and persistence competencies. 

First, we conducted a confirmatory factor analysis on the gold trophy 
(i.e., mastery) data to examine the consistency of the constructs (Figure 
2.7). The four factors were highly intercorrelated and the CFA suggests 
that the mastery data (gold trophies) per agent fit a single factor well and 
have a small error variance. We also calculated the intraclass correlation 
on the gold trophy data and found a high correlation between each of the 
four agents of force/motion (r = 0.85). 

Additionally, we examined the consistency among gold trophy perfor-
mance for varying levels of difficulty: easy (levels in Playgrounds 2 and 
3), medium (Playgrounds 4 and 5), and hard (Playgrounds 6 and 7). As 
expected, gold trophy performance was highly correlated between easy, 
medium, and hard levels, with an intraclass correlation of r = 0.82. The 
individual correlations between the three difficulty levels were also signifi-
cant: easy-medium, r = 0.77; easy-hard, r = 0.53; medium-hard, r = 0.66. 
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Figure 2.7.  Confirmatory factor analysis for mastery with each agent of force/
motion.

Finally, we computed Cronbach’s alpha for gold trophy performance 
on levels that the majority of participants attempted. Most of these levels 
were of easy or medium difficulty, though some hard problems were also 
included. We first identified problems that were solved by more than 100 
students. This produced a list of 29 levels (out of 74) that were solved 
by 110 students (out of 168). We then calculated a Cronbach’s α on the 
performance data for the 29 levels. This analysis suggested that there 
is consistency among gold trophy performance in the levels, α = 0.87. 
Thus, the CFA, intraclass correlations, and alpha values all suggest that 
our stealth assessment for qualitative physics knowledge is consistent for 
gold trophy performance across agents of force/motion and varying dif-
ficulty levels. However, this does not necessarily mean that our assessment 
is actually measuring qualitative physics knowledge. To determine that, we 
need to examine the validity of the stealth assessment. 

Validity 

To validate the stealth assessments, we compared them to validated 
external measures of the same competencies. In general, we expected that 
the correlations between each stealth assessment and the corresponding 
external tests would be reasonably high, but not too high. That is, the 
external measures were “standard” measures, meaning that they were fairly 
limited and not completely comparable to the stealth assessments. We 
tested for both convergent validity (i.e., the stealth assessment and external 
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measure of the same construct were significantly correlated), and divergent 
validity (i.e., the stealth assessment and external measure of a different 
construct were not correlated).

We describe the validation studies for persistence and validity elsewhere 
(see Ventura & Shute, 2013; Shute & Ventura, 2013). For the purposes of 
this chapter, we describe the validation of the physics stealth assessment. 
Towards that end, we developed, with two physics experts, a conceptual 
physics external test. The test contained 24-items consisting of two iso-
morphic forms (12 items each), informed by the Force Concept Inventory 
(Hestenes, Wells, & Swackhamer, 1992) and the Mechanics Baseline Test 
(Hestenes & Wells 1992). Learners completed both forms—one as a pretest 
and the other as a posttest (in a counterbalanced design). The test con-
tained both constructed responses and multiple choice items (Figure 2.8).

Figure 2.8.  Example item from the conceptual physics external measure.

The pretest scores from the external measure of physics knowledge were 
significantly correlated with the number gold trophies (i.e., the stealth 
assessment measures of mastery) for each agent of force/motion, with 
the more challenging agents (pendulums and springboards) being more 
strongly correlated: Ramp (r = 0.27, p < 0.01), Lever (r = 0.22, p < 0.01), 
Pendulum (r = 0.31, p < 0.01), Springboard (r = 0.40, p < 0.01). The 



48    V. J. SHUTE and G. R. MOORE

pretest scores from the external measure were also significantly correlated 
with the estimated overall physics competency (r = 0.41, p < 0.01), using 
the expected a posteriori (EAP) value per student. Finally, the pretest and 
posttest scores of our external physics measure were significantly corre-
lated, r = 0.60, p < 0.01. These results meet our expectations and suggest 
that our conceptual physics stealth assessment is valid. Additionally, the 
results support our use of gold trophies as measures of mastery in the 
game. While these findings are positive, there is still more work to do to 
further validate the stealth assessments. For instance, in the future, we plan 
to compare the stealth assessments to various other external measures of 
conceptual physics knowledge to gauge validity and transfer.

CONCLUSION

In order to prepare students for success in the 21st century, we need to 
support the development of higher-order competencies, such as per-
sistence, problem solving, and creativity. Supporting these complex 
competencies requires that we design innovative assessments that are 
valid and reliable. Using stealth assessments embedded in gaming envi-
ronments is one potential way to address this need. Well-designed games 
are engaging and enable learning within complex, realistic, and relevant 
environments and evidence-centered design is a process that enables the 
development of valid assessments. Stealth assessment is a specific imple-
mentation of evidence-centered design that allows us to gather evidence 
from game players in real-time, without disrupting engagement, and use 
that information to support learning. 

The present work suggests that we can gather good evidence for accu-
rate, real-time estimates of competencies using stealth assessment. The 
information that is gathered from these assessments can be used for a 
variety of purposes. Teachers can use the competency estimates to adjust 
their instruction and provide meaningful feedback on a student’s strengths 
and weaknesses. Students can use the competency estimates to gauge and 
reflect on their progress. Games and other computer-based environments 
can use the competency estimates to select new experiences and problems 
to present to players. 

We are expanding on this work by building stealth assessments for various 
cognitive and noncognitive personal attributes (e.g., problem solving skill, 
spatial ability, affective states, engagement), as well as knowledge and 
skill acquisition across various domains (e.g., mathematics and computer 
programming). Additionally, because students in the present study dem-
onstrated significant learning gains, we are also continuing our work with 
Physics Playground. Specifically, we will be adding learning supports to the 
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game (i.e., targeted feedback, curriculum) to help students move from an 
informal understanding of physics to a formal understanding. 

Through stealth assessments, we hope to be able to accurately assess a 
variety of learner competencies in authentic, engaging learning environ-
ments. Accurate assessments will lead to a better understanding of the 
current states and disposition of students, which will allow us to design 
instruction and other interventions to help students meet their goals. With 
proper help, students will be able to achieve high learning outcomes and 
obtain the skills that they will need to be successful. For these reasons, we 
view stealth assessment as an important step towards preparing learners 
for the 21st century.
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