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Abstract. This paper describes a new student modeling paradigm called SMART. The premise is that
a single, principled approach to student modeling, involving both theoretical and empirical methods,
can render automated instruction more efficacious across a broad array of instructional domains. After
defining key terms and discussing limitations to previous student modeling paradigms, I describe
the SMART approach, as embedded within a statistics tutor called Stat Lady (Shute and Gluck,
1994). SMART works in conjunction with a tutor design where low-level knowledge and skills (i.e.,
curricular elements) are identified and separated into three main outcome types. Throughout the
tutor, curricular elements with values below a pre-set mastery criterion are instructed, evaluated, and
remediated, if necessary. The diagnostic part of the student model is driven by a series of regression
equations based on the level of assistance the computer gives each person, per curriculum element.
Remediation on a given element occurs when a subject fails to achieve mastery during assessment,
which follows instruction. Remediation is precise because each element knows its location within
the tutor where it is instructed and assessed. I end with a summary of results from two controlled
evaluations of SMART examining the following research issues: (a) diagnostic validity, (b) individual
differences in learning from Stat Lady, (c) affective perceptions of the tutorial experience, and
(d) contributions of mastery and remediation to learning outcome and efficiency. Comments about
related and future research with this paradigm are offered.

Key words: Aptitudes, cognitive diagnosis, learning outcomes, mastery learning, macroadaptation,
microadaptation, remediation

Intelligent instructional systems teach more efficiently by individualizing instruc-
tion (e.g., Regian and Shute, 1992; Shute and Psotka, in press; Wenger, 1987).
A central component within these systems, as well as an important research area
in the field, focuses on modeling a learner to support this individualization (i.e.,
developing a valid student model). While many approaches to student modeling
exist, few modeling approaches, to date, have attempted to span a broad range of
instructional domains. This paper describes a powerful, general, and comprehensive
student modeling paradigm (Student Modeling Approach for Responsive Tutor-
ing — SMART) with the goal of enhancing the efficacy of automated instructional
systems. The premise is that a single, principled approach to student modeling,
involving both theoretical and empirical methods, can render automated instruc-
tion more efficacious across an array of instructional domains.
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1. Introduction
1.1. OVERVIEW

SMART relates to the dynamic interplay between cognitive diagnosis and reme-
diation, thus it is broader than student modeling approaches that focus solely on
diagnosis (e.g., Martin and Vanlehn, 1993). Furthermore, SMART is unique in
that it not only models evolving knowledge and skills (domain specific) for pur-
poses of microadaptation, it also assesses incoming abilities (general and specific
cognitive aptitudes) as predictors of subsequent learning, and indicators of suit-
able instructional environments for macroadaptation. For instance, knowing that an
individual has low working-memory capacity suggests smaller units of instruction
(Shute, 1991), and knowing that someone possesses an exploratory learning style
suggests a less pedantic, more open type of learning environment (Shute, 1993a).
Ongoing aptitude-treatment interaction (ATT) research is already providing infor-
mation about initial states of learners that can be mapped onto optimal instructional
environments (e.g., Shute, 1992; Shute, 1993b; Shute and Gawlick-Grendell, 1994;
Swanson, 1990). Further studies in this area will enhance our ability to tailor, or
optimize, instruction. Finally, whereas most other approaches focus on single out-
come types (e.g., model-tracing for procedural skill), SMART models a range of
outcome types, including: symbolic knowledge (SK), procedural skill (PS), and
conceptual knowledge (CK).

1.2. ORGANIZATION

In subsequent sections of this paper, I define key terms, then describe the SMART
approach to student modeling, followed by a description of, and results from, two
studies assessing its efficacy in predicting outcome performance in descriptive
statistics and the impact on learning. I conclude with comments about current and
future research with this paradigm.

2. Definition of Key Terms

The ability to diagnose student errors and tailor remediation based on the diagnosis
represents the critical difference between intelligent and merely clever automated
instructional systems. The working definition of intelligence used in this paper is
that a system must be able to accurately diagnose students’ knowledge structures,
skills, and aptitudes using principles, rather than pre-programmed responses, to
decide what to do next, and then adapt instruction accordingly (e.g., Clancey,
1986; Shute, 1992; Shute and Psotka, in press; Sleeman and Brown, 1982). Thus,
I define intelligence as both diagnosis and remediation, working in concert.

A student learns from an intelligent tutoring system (ITS) primarily by solving
problems — ones that are appropriately selected or tailor-made and serve as good
learning experiences for that student. The system starts by assessing what the
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student already knows, the student model. The system concurrently must consider
what the student needs to know, the curriculum. Finally, the system must decide
what curriculum element (unit of instruction) ought to be instructed next, and
how it should be presented. From all of these considerations, the system selects,
or generates, a problem, then either works out a solution to the problem (via the
domain expert), or retrieves a prepared solution. The system then compares its
solution, in real-time, to the one the student has prepared, and performs a diagnosis
based on differences between the two. Feedback is offered by an instructional
system based on considerations such as how long it’s been since feedback was last
provided, whether the student already received some particular advice, and so on.
After the feedback loop, the program updates the student model, and the entire cycle
is repeated, starting with selecting or generating a new problem. Not all intelligent
tutoring systems include these components, and the problem-test-feedback cycle
does not adequately characterize all systems. However, this generic depiction does
describe many existing systems.

The current assortment of student modeling approaches (embedded within intel-
ligent tutoring systems) represent different philosophical as well as practical influ-
ences in their design. At a global level, the standard approach to building a stadent
model involves representing emerging knowledge and skills of the learner. When
the computer responds to updated observations with a modified curriculum that is
minutely adjusted, this is called microadaptive modeling. In this case, instruction
is very much dependent on individual response histories during tutoring sessions.
Microadaptive modeling focuses primarily on student knowledge that is specific to
the task domain, although some more general problem-solving and learning strate-
gies may be modeled. An alternative, macroadaptive approach (Shute, 1992; Snow,
1990) involves assessing students’ knowledge and skill prior to their use of the
tutor, and focuses mainly on general, long-term aptitudes, such as working-memory
capacity, associative learning ability, and impulsivity. In fact, many have argued
that incoming knowledge is the single most important determinant of subsequent
learning (e.g., Alexander and Judy, 1988; Dochy, 1992; Glaser, 1984). Combin-
ing these two approaches enables the curriculum to adapt to both momentary and
persistent performance information, and to both domain-specific knowledge and
general aptitudes (see Shute, 1993a, b).

3. Limitations of Prior Student Modeling Research

Historically, a common feature of student modeling research has been on imple-
menting, not evaluating, the respective models. Therefore, there is limited data
supporting a particular paradigm’s validity. This paucity of empirical data may be
remedied by more systematic research in the area. One suggestion is to begin a
coordinated stream of methodical research and development, altering specific fea-
tures of existing systems and evaluating the results of those changes in accordance
with a principled approach. According to Self (1989), “Once a sounder foundation
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for ITS has been specified, it becomes possible to identify the elements of a theory
of ITS. These elements lie within (formal) Al, in areas such as belief logics, reason
maintenance, meta-level architectures, and discourse models — areas from which
ITS research has been divorced” (p. 244).

In addition, there is a large cost associated with incorporating a student mod-
el into a tutoring system. This raises two important questions: (1) How much,
and what kind of, information about a learner is required to adequately diagnose
knowledge and skill acquisition and subsequently tailor instruction to the learn-
er’s needs? (2) What is the payoff of increasing a system’s adaptability? Sleeman
(1987) has argued that “...if one takes seriously the findings of the ATI work
of Cronbach and Snow (1977), it would appear that there is little likelihood of
producing instruction that is uniquely individualized” (p. 242). The key word in
this statement is “uniquely.” An exhaustive characterization of a learner would
probably not warrant the effort and expense in terms of increases in final outcome.
But the empirical question remains: How much is enough? And more generally,
does inclusion of a student model in a tutor enhance overall learning outcome or
efficiency? There is equivocal evidence in the literature concerning these issues. In
some cases, researchers have reported no advantage of error remediation in relation
to learning outcome (e.g., Bunderson and Olsen, 1983; Sleeman, Kelly, Martinak,
Ward and Moore, 1989), whereas in others, an advantage has been reported for
more personalized remediation (e.g., Anderson, 1993; Shute, 1993a, b; Shute and
Regian, 1993; Swan, 1983).

Another question asks whether the student model is even the right framework
around which to build good learning systems. Derry and Lajoie (1993) presented
several reasons why the student modeling paradigm may be problematic. Among
the more compelling reasons cited were that: (a) In complex domains, the student
model cannot specify all possible solution paths, nor determine all possible “buggy”
behaviors; (b) Reflection and diagnosis should be performed by the student, not
the tutor; and (c) Model-tracing is only applicable to procedural learning, but the
focus should be on critical thinking and problem solving.

The approach to student modeling taken in this paper (SMART) does not attempt
to delineate all possible solution paths, buggy behaviors, or misconceptions. Rather,
the information about curriculum elements (CEs), derived from cognitive task anal-
ysis and arranged in inheritance hierarchies, provides a basis for inferences about
what knowledge and skills have been acquired, and to what degree. Furthermore,
the intention of SMART is to not only model procedural skill acquisition, but
also symbolic and conceptual knowledge acquisition. Finally, SMART is currently
undergoing rigorous and controlled evaluations to ascertain the efficacy of its var-
ious features as well as its ability to promote learning across a variety of domains.
Before presenting the actual framework underlying the new approach, I will present
its theoretical basis.
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4. Foundation of Student Modeling Framework

Student modeling paradigms emphasize distinct kinds of knowledge and skill out-
comes; some specialized for modeling procedural skill acquisition (e.g., model
tracing) and some more suitable for modeling conceptual knowledge (e.g., pro-
gression of mental models). The knowledge and skills represented within SMART
were intended to be sufficiently comprehensive to give the model a wide range of
applicability compared to existing models.

In general, the outcome of learning refers to any change within an individual’s
knowledge structure that results from a learning situation. Outcomes of learning
can be quite diverse, differing in magnitude (e.g., learning a simple fact versus a
complex technical skill) as well as content area (e.g., affective and social skills,
motor skills, procedural knowledge). The specific outcomes included in SMART
were derived from Anderson’s ACT* theory of learning, as well as research con-
ducted at the Armstrong Laboratory (see Anderson, 1983, 1987; Kyllonen and
Christal, 1989; Kyllonen and Shute, 1989). These theories of cognitive skill acqui-
sition posit two primary kinds of knowledge and skill outcomes, declarative and
procedural, each arrayed along a continuum, from simple to complex. For a more
detailed description of learning outcomes, see Shute (1994).

4.1. DECLARATIVE KNOWLEDGE

A proposition is the basic unit of information underlying declarative knowledge
outcomes. It is represented by a single, isolated postulate. A collection of related
postulates, constructed from experiences in the world, comprises a schema, defined
as an interconnected set of propositions representing a situation. Schemas form the
basis for comparing and interpreting incoming data. They also shape individuals’
expectations, and hence, what is perceived. But schemas, based on prior knowledge
and beliefs, can lead to erroneous inferences if the foundation is deficient or contains
misconceptions.

4.2. PROCEDURAL SKILL

While declarative learning outcomes relate to knowledge about something, proce-
dural learning outcomes relate to knowledge of how fo do something, as well as
the ability to do it. A rule is the basic unit of action underlying procedural skill
outcomes. Rules are typically represented by condition-action pairs. The condition
may be defined as the “if” part of a rule, while the action may be defined as the
“then” part, consisting of the associated steps of some procedure. The nextlevel of
procedural outcome is a skill, defined as a collection of related rules. A skill may
be cognitive, motor, or even social or creative. Finally, a skill may become auto-
matic after considerable practice applying that skill in many and varied situations.
Eventually, an automatic skill requires little or no conscious effort. For instance,
after years of practice driving a car (involving a complex coordination of skills),
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one can drive the car in traffic while listening to the radio and planning the day’s
activities. The execution of this procedure is almost unconscious, compared to the
step-by-step manner of invoking procedures, outlined above.

4.3. MENTAL MODEL

Both declarative knowledge and procedural skill are believed to influence the for-
mation of mental models — highly organized sets of concepts and rules relating
them together. A mental model represents an integrated system, and is structured
hierarchically, where different levels of analysis are possible. At each level of anal-
ysis, one can know: information about component parts, how they are connected,
and how the system functions as a whole.

Similar to the above learning outcome distinctions, SMART makes a funda-
mental distinction between declarative knowledge and procedural skill. To simplify
things, I’'ve changed some of the terminology. For instance, the most rudimentary
form of knowledge in SMART is called “symbolic knowledge” (SK) cotresponding
to the definition of propositional knowledge above (i.e., knowing about something),
and to the more formal definition of something that represents something else by
association or convention; the latter embodying symbols and formulas. Two exam-
ples of symbolic knowledge include: (a) the symbol “3” means “the sum of,” and
(b) the formula for computing a proportion from a frequency distribution = fre-
quency/total sample size = {/N. The definition of “procedural skill” (PS) in SMART
is the same as described above; namely, being able to apply some rule(s) in the
solution of a problem. Some examples include: (a) arranging a set of numbers in
ascending order, and (b) computing the variance from a set of data. Finally, “con-
ceptual knowledge” (CK) in SMART maps onto the previously described mental
model involving higher-level relationships among concepts, schemas, and rules
relating them together. Examples of conceptual knowledge include: (a) knowing
several ways to characterize the central tendency of a given distribution (e.g.,
mean, median, mode), and how they are related, and (b) understanding the notion
of variability within a set of data, and how that relates to the specific distribution
of data.

4.4. KNOWLEDGE AND SKILL ACQUISITION

In a well-designed curriculum, acquisition of the most basic form of knowledge
(symbolic) typically, but not always, precedes either procedural skill or conceptual
knowledge. In other words, SK comprises the building blocks for either the devel-
opment of rules and skills, or more advanced concepts. In the first case (SK — PS);
knowing the formula for computing variance is necessary in order to subsequently
apply that formula in computing the actual variance. In the latter example (SK
— CK), it is possible to bypass PS and achieve a functional understanding of a
concept, but not be able to actually perform some procedure. For example, one can
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know that “variance” refers to the degree of dispersion in a distribution of data
without being able to apply the formula: [£(X — M)®)[/N — 1. The more typical
case of knowledge and skill acquisition, however, progresses from: SK — PS —
CK. This hypothesized ordering of outcome types is based on current learning
theory (e.g., Anderson, 1987; Kyllonen and Christal, 1989; Kyllonen and Shute,
1989). Finally, increased conceptual understanding can feed back to influence pro-
cedural skill (PS « CK), in a top-down manner (e.g., VanLehn, 1990; White and
Frederiksen, 1987).

In addition to representing students’ specific learning outcomes (i.e., emerging
knowledge and skills), I've suggested that student models can benefit by consid-
ering information about learners’ general aptitudes. The basic idea is that learning
outcomes can reflect differences in incoming aptitudes, such as associative skill,
working-memory capacity, or reflectivity. The processes responsible for declarative
knowledge outcomes appear to be chiefly associative (e.g., Shute, 1992; Kyllonen
and Tirre, 1988) with some inductive reasoning required for the acquisition of com-
plex schemas and mental models (Shute, 1994). The learning processes responsible
for procedural skill acquisition involve primarily working-memory capacity and,
depending on the domain, information processing speed (Shute and Kyllonen,
1990).

As part of my research on student modeling, I am currently contrasting the
effectiveness of using general aptitudes and domain-specific knowledge and skills
to predict and improve training/learning performance. Previous research in this area
has demonstrated that various tests of basic cognitive abilities (e.g., CAM 4.0 tests,
Kyllonen, 1994; Kyllonen, Christal, Woltz, Tirre, Shute and Chaiken, 1990) can
accurately predict training performance (e.g., Shute, 1991; Shute and Kyllonen,
1990) and help assign students to training environments that fit their aptitudes
(e.g., Shute, 1992; Shute, 1993a, b). However, information on student aptitudes is
rarely employed in current instructional systems, which primarily model domain-
specific student knowledge and skill. By explicitly comparing the usefulness of
information concerning general aptitudes and domain-specific knowledge, I hope
to provide concrete evidence that will enable tests of general cognitive abilities to
be more widely used as part of intelligent instructional software. I will now present
a student modeling framework designed to aid in the development and comparison
of different modeling techniques by providing a standard formalism.

5. Smart Framework

Dillenbourg and Self (1992) outlined a two-dimensional framework and notation
for student modeling. Their vertical dimension distinguishes among learner behav-
ior, behavioral knowledge, and conceptual knowledge. This is crossed with the
second dimension reflecting the representation of that knowledge — by the learner,
the system, and the system’s representation of the learner. I modified their orig-
inal framework slightly (see Figure 1) to represent specific knowledge and skill
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Fig.1. SMART framework for student modeling (adapted from Dillenbourg and Self, 1992).

types required during the learning process (i.e., symbolic knowledge, SK; pro-
cedural skill, PS; and conceptual knowledge, CK), rather than overt behaviors.
The horizontal axis remains basically the same (i.e., learner’s representation of the
knowledge or skill, L; the system’s representation of the learner’s knowledge, S/L;
and the system’s/expert’s representation of the knowledge or skill, S). This modified
framework reflects the standard microadaptive approach to student modeling.

5.1. APTITUDES

I also include in the framework (shown in Figure 1) a fourth element reflecting
aptitudes (e.g., inductive reasoning skill — IR, working memory capacity — WM,
procedural learning skill — PL, information processing speed — IPS, associative
learning skill — AL, as well as various personality indices, such as reflectivity
and risk-taking). This dimension is added to accommodate individual differences
among learners (for macroadaptation), as well as provide a basis for representing
the differential cognitive requirements of problems or tasks. This figure contains
only a few aptitudes, for illustrative purposes. For example, SK acquisition is
more a function of AL and IPS, while CK acquisition depends more on IR and
WM. Connections between aptitude and outcome measures are based on findings
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reported in the literature; more aptitudes can be added later as research continues
in this area.

Although not currently shown in the figure, I plan to incorporate a correlated time
dimension because, as learning progresses, cognitive demands on the individual
vary. For example, working-memory capacity and associative learning skills play
an important role early in the learning process in determining the degree of new
knowledge and skill acquisition. But over time, these become less important, and
other cognitive factors gain importance (e.g., Ackerman, 1988, 1992; Woltz, 1988).
Specifically, two findings from Ackerman’s (1992) theory of skill development are
relevant to the present framework: (1) overall task performance is predicted by
general abilities and broad, task-specific abilities during acquisition, and (2) these
correlations diminish, and correlations with perceptual speed and perceptual/motor
abilities increase, as skill develops. Finally, various aptitudes are likely to be
better/worse predictors of successful performance across different domains.

5.2. INTERPRETING THE FRAMEWORK

This framework is intended to function as follows. Suppose you were developing
a computer program to teach statistical topics, and you were developing the part
of the curriculum instructing the computation of a measure of central tendency —
the mean (a procedural skill). Your system would begin by introducing relevant
symbolic knowledge (e.g., £, X, N, £X/N), then would require learners to solve
problems to demonstrate their acquisition of this new knowledge. Differences
between the learner’s (Lgy) and the system’s representation (or understanding) of
the knowledge (Ssx) would show up as errors on specific problems, such as failing
to recognize the denominator (N) as being a part of the final formula (see bottom
section of Figure I, above). Next, the system directs students to apply their new
knowledge by actually computing the mean from a set of data (procedural skill).
Disparities between the learner’s actual solution process (and product) (Lps) and
the system’s representation of the correct procedure (Spg) would be apparent in
procedural bugs. Finally, learners are taught (and induce) conceptual information,
like the mean represents the arithmetic average of a set of data, and relates to other
measures of central tendency, such as the location of the mean in relation to the
median and mode in a skewed distribution. Discrepancies between the learner’s
(Lek) and system’s (Scg) conceptual representations can reflect fundamental
misconceptions.

In general, the degree of similarity/dissimilarity between the learner’s actual (L),
and the model’s inferred (S/L) representations, reflects the goodness/poorness of fit
of the model. Next, discrepancies that exist between the system’s (S) and model’s
(S/L) representations suggest appropriate remediation — what to instruct next, and
how. For example, if the computer diagnoses a learner as having difficulty with
specific PS acquisition (S/Lpg), then possible remediation could include specially-
created problems for additional practice on certain elements.
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The probability that a learner will get a specific problem correct or incorrect is
also influenced by the degree to which a learner’s aptitudes (L 4 pr) are matched
to the cognitive requirements of a specific task (S pr). That is, if the working-
memory demands and requirements for task X were high (e.g., introduction of anew
curriculum element requiring the integration of diverse knowledge), and the learn-
er’s actual working-memory capacity was low, the predicted probability of success
would be low. Cognitive process measures (aptitudes) can easily be assessed. As
mentioned in Section 4.4, the CAM 4.0 battery of computerized tests (Kyllonen et
al., 1990) measures six different aptitudes (i.e., working-memory capacity, induc-
tive reasoning skills, information processing speed, associative learning skills,
procedural learning skills, and general knowledge) in each of three domains (quan-
titative, verbal, and spatial). The battery has been widely tested and validated, and
individual tests can be extracted for different purposes. For instance, if you were
teaching a three-dimensional navigational task and wanted to know an individual’s
spatial aptitude, you could select certain tests for administration (e.g., tests mea-
suring spatial working memory). Differences between the learner’s actual aptitude
(Lapr) and the system’s representation of the learner’s aptitude (S/L 4 pr), denote
the validity of the aptitude measure (e.g., CAM test validity). Moreover, discrep-
ancies between the system’s representation of the learner’s aptitude (S/L 4 pr) and
the system’s aptitude requirements (S 4pr) indicate what kind of remediation is
required (e.g., decomposing the current task into more manageable units for a
learner diagnosed as having low working-memory capacity).

5.3. MACROADAPTATION

To illustrate one way that the macroadaptive approach is intended to work, consider
the results from the following study investigating learning from a flight engineering
tutor (Shute, 1993b). Although there was no main effect on learning outcome due to
treatment (i.e., abbreviated vs. extended practice conditions), I did find a significant
aptitude-treatment interaction between an aptitude profile and treatment condition.
Subjects with a lot of general knowledge (GK) but low working-memory (WM)
capacity learned significantly more if assigned to the abbreviated, rather than the
extended condition. Their broad GK provided a foundation that allowed for the
extraction and interweaving of information from relatively few exemplars, and
their low WM capacities weren’t taxed within the abbreviated environment. How-
ever, these same subjects, assigned to the extended practice condition, performed
poorly, probably due to boredom, fatigue, and/or working memory overload. The
other type of subject was characterized by high WM and low GK. They learned
more from the extended than the abbreviated practice condition. That is, they had
the capacity, as well as the knowledge need, to profit from the extra practice afford-
ed by the extended condition. The abbreviated condition was insufficient for these
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learners to induce the relevant principles.* This finding suggests that individuals
characterized by specific aptitude profiles are differentially suited to instructional
environments. In practical terms, one use of the macroadaptive approach involves
a priori assessment of learners’ WM and GK, then subsequent placement into the
appropriate environment. This type of modeling complements the more common,
microadaptive approach, which bases instructional choices only on student knowl-
edge and performance within the training domain, and ignores information about
students’ more general abilities.

A second application of the macroadaptive approach will be discussed later in
this paper following the presentation of the details of the student modeling updating
scheme. Basically, it involves using modified updating heuristics for student model
values, dependent on particular aptitude profiles.

I will now describe how SMART was integrated into a non-intelligent instruc-
tional system. The example of a statistics tutor is interesting because the domain
encompasses (and attempts to instruct) a variety of knowledge and skill outcome

types.

6. Employing the Smart Framework — Stat Lady

Stat Lady is the name of a series of computerized experiential learning environ-
ments teaching topics in introductory statistics, such as probability and descrip-
tive statistics (Shute, Gawlick-Grendell, Young and Burnham, in press; Shute and
Gluck, 1994). The design of the program reflects the theoretical postulates that
learning is a constructive process, enhanced by experiential involvement with the
subject matter that is situated in real-world examples and problems. The module
focused on in this paper teaches descriptive statistics, and currently exists in two
forms: non-intelligent and intelligent. The two versions of the tutor are the same,
except for the presence or absence of the student model. Thus, they share a lot of
features, including: (2) a humorous and experiential interface; (b) an identical set
of curriculum elements, or CEs; (c) a pool of whimsical problem sets, per CE; and
(d) athree-level feedback design. Nevertheless, the versions differ in two important
respects: (a) subjects must complete all CEs in the non-intelligent version, but only
those CEs identified as being not (or partly) known in the intelligent version; and
(b) in the non-intelligent version, learners have to solve at least two (and may elect
to solve up to five) problems before mastery is presumed and they go on to the next
CE. In the intelligent version, however, learners may solve as few as zero™, but as
many as five or more problems to demonstrate mastery of a given CE. Following
performance assessment, learners may either be advanced to a new CE, receive
remedial instruction, or continue to receive practice on the current CE.

* Note: the subjects who were characterized as being (a) high WM, high GK, and (b) low WM,
low GK performed well and poorly on the outcome measures, respectively.
** Solving “zero” problems for a specific CE means that a learner solved the corresponding pretest
items at a mastery level of performance.
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6.1. NON-INTELLIGENT VERSION OF STAT LADY

Stat Lady’s curriculum is presented in a fixed order to all learners, although learners
are free to move forward and backward through the curriculum, at will. Moreover,
students must solve at least two problems within each problem set,* which they
select from a pool of potential problems, sufficiently varied in topic to be of interest
to all. Further, they are required to answer each question within a given problem
correctly before moving on to subsequent problems. If a learner is unable to answer
a particular problem, Stat Lady intervenes with assistance.

The curriculum focused on in this paper is descriptive statistics, assembled from
the results of a cognitive task analysis performed by two subject matter experts
(for validity and reliability), and consisting of hundreds of curriculum elements
(CEs). These CEs were arranged in a linear order, from simple to more complex
concepts and skills, spread across three 4-hour sub-modules: (a) Data organization
and plotting, (b) Measures of central tendency, and (¢) Measures of variability.
Students receive instruction and solve problems within each section, and Stat Lady
provides specific feedback about each topic under investigation. The system also
allows learners to engage in elective “extracurricular” activities, such as viewing
items in the on-line Dictionary and Formula Bank, playing around in the Number
Factory, or using the Grab-a-Graph tool.

The non-intelligent version of Stat Lady (SL) is often clever, but not intelli-
gent in the classical sense (see working definition of computer-tutor intelligence,
Section 2). The type of pedagogy embedded in the system may be called “near
mastery learning.” That is, relevant concepts and rules are presented, then SL poses
various problems for students to solve in order to demonstrate comprehension of
the curriculum elements. If a learner gets a problem wrong, SL provides progres-
sively more explicit feedback. If the student fails to solve it correctly after three
attempts, he or she is given the correct answer, and told to enter that answer. For
example, suppose the current problem was assessing the SK element: “Formu-
la for Computing the Mean.” If the student (using the “Equation-Builder” tool)
entered “XX” as the correct solution, Stat Lady would respond with level-1 feed-
back: “Your answer is almost correct. Please try again.” If the student then created
the solution “XX/f,” level-2 feedback would inform the student, “Your numerator
is correct, but your denominator is wrong (Do you really want to divide by the
frequency?). Please try it again.” Finally, if the learner then erroneously entered,
“YX/Xf,” Stat Lady would respond with level-3 feedback, “The correct answer for
this problem is XX/N. Please create this solution now.” The system thus presumes
that the learner has actually acquired that concept or skill after explicitly being told.
But this could be an erroneous presumption, with problems arising later on when
a student tries to learn higher-level skills that have only partially-learned subskills
as components.

* A “problem set” contains problems that relate to several previously-instructed CEs. A problem
set consists of multiple questions, each one relating to (assessing) a particular CE.
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The program begins by identifying a particular topic for instruction from an
ordered list of curriculum elements. After presenting the topic in broad strokes,
Stat Lady quickly illustrates the concept with a real-life, humorous example, to
enhance memorability. Following instruction, learners have to apply the concept
or skill in the solution of related problems. For problems that require data manipu-
lation, they obtain their own unique data set from the Number Factory (an activity
that’s analogous to data collection), where they set their own parameters, such as
the sample size, type of distribution, and minimum and maximum values. Then,
if the learner successfully solves the problem on the first attempt, he or she is
congratulated with positive auditory and textual feedback, and moves directly on
to the next part of the exercise. If a student is having difficulty (e.g., enters one or
more incorrect responses), each response is followed by the increasingly explicit
feedback (and encouragement), mentioned above.

Even a quick illustration such as this makes the inherent problem in this approach
apparent. While some students complete a problem set with a firm understanding
of the knowledge or skill being taught, others may emerge with incomplete under-
standing. Ideally, all students would walk away from the tutor having demonstrat-
ed complete understanding. Hence, the primary motivator underlying SMART’s
development was: How can Stat Lady be modified to yield more guarantees of
successful knowledge and skill acquisition?

6.2. INTELLIGENT VERSION OF STAT LADY

The intelligent version of Stat Lady (ISL) includes a student model based on the
framework discussed earlier. Actually, three student models are implemented, one
each for SK, PS, and CK (but in this paper, I'll refer to them collectively as “student
model” because they apply similar updating heuristics).

6.2.1. Classification and Organization of CEs

The first step in rendering Stat Lady intelligent was to classify each CE from the
cognitive task analysis into one of three categories: symbolic knowledge, procedu-
ral skill, or conceptual knowledge. This classification was initially done on the first
descriptive statistics module (i.e., data organization and plotting), independently
performed by three persons, and inter-rater reliability was very high (> 0.90).
Simple operational definitions were employed as the basis for this sorting activity:
SK = any symbol or formula, PS = application of a formula or rule, or performing
a specific action within the tutor, and CK = definitions of, and relations among, the
statistical concepts. A listing of all relevant CEs and associated descriptions may
be found in Appendix A. Of the 77 CEs comprising data organization and plotting,
there were only a handful of cases that required some debate as to category, but
these were easily resolved with brief discussion.
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The elements resulting from the classification were then arranged in three hier-
archies (SK, PS, and CK) relating higher-level knowledge and skills to one another,
and to successively lower-level knowledge and skills. These inheritance hierarchies
have direct implications for SMART’s updating scheme. That is, the acquisition of
a closely-related, previously-learned CE (e.g., one sharing the same parent as the
current CE) should predict the acquisition of its sibling. More distal parts of the
inheritance hierarchy can also be considered when predicting student model values
of particular CEs.* Appendix B shows a hierarchy of the tutor’s PS elements.

Collectively, these CEs (in three learning outcome categories) represent the
knowledge and skills I wanted learners to walk away with at the conclusion of their
learning experience. But how does CE-acquisition information become translated
into numbers or probabilities denoting a learner’s attainment of mastery?

6.2.2. General Operation of the Student Model

The student model operates as follows: (a) Each CE is initially evaluated following
completion of the on-line pretest, and these initial knowledge/skill estimates are
passed to the student model for initialization; (b) Each CE is subsequently evaluated
during problem solution and question-answering within the tutor; (c) CEs are linked
to other CEs in inheritance hierarchies (i.e., parent, siblings, children) to provide
student model updating information based on related CE values; and (d) Because
each CE knows its exact location in the tutor (i.e., where it is instructed and
evaluated), remediation is precise and efficient. These activities map onto the four
main routines that drive the student model, whereby the data are managed by a
straightforward array of records, and each array element maps onto an individual
curricular element. All information for that CE is maintained within the record (see
Table 1) such as its outcome type and location in the tutor where it’s instructed and
assessed.

6.2.3. Student Model: Initialization

As indicated, initial values for SMART are obtained from students’ performance
on a comprehensive, on-line pretest designed to assess incoming knowledge of
all curriculum elements resulting from the cognitive task analysis (separated into
SK, PS, and CK items). The pretest contains at least two test items per CE (for
reliability), the scores of which are combined to yield an average initial CE value.
In addition, many test items contain multiple parts, so these items can be scored
with partial credit.™ Thus, pretest scores (the initial “best guess” of incoming
knowledge/skill) can range from O (completely incorrect) to 1 (completely correct),
with intermediate values reflecting degree of incoming mastery. After the computer

* Currently, SMART does not employ hierarchical information in its updating scheme, but I pian
to add this capability and then test its contribution to predictive validity. For more on this topic, see
Section 9.2.

** 1 also created an isomorphic posttest containing the same CE’s, but with different questions.
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TABLE [ Data contained within each CE record

Curricular element number (e.g., CE-1)

Curricular element description (e.g., Sort Data by Ascending Order)

Current (X) probable mastery leve! (e.g., 0.85)

Previous (X — 1) probable mastery level (e.g., 0.60)

Probable mastery level from X — 2 (e.g., 0.33)

Remediation flag set to True when remediation is needed (default = F)
Knowledge type (SYMBOLIC, PROCEDURAL, or CONCEPTUAL)

First Pre/Post question to evaluate CE (item #1)

Second Pre/Post question to evaluate CE (item #2)

Range (inclusive) of page numbers involved in the instruction of this CE

Range (inclusive) of page numbers involved in the remediation of this CE

CE description [variable] used when remediation required (“Sorting by Ascending Order”™)
An instruction done flag set to True when instruction is completed (default = F)
An mastery achieved flag set to True when mastery has been reached (default = F)
An remediation done flag set to True following remedial instruction (default = F)
A count of the number of times remediation has been required

Children CEs (from hierarchy)

Sibling CEs (from hierarchy)

Parent CEs (from hierarchy)

scores all test items, it communicates those values directly to the student model for
initialization.

Once the student model is initialized with the pretest values, a learner is placed
in Stat Lady’s curriculum at a CE that they do not, or only partly, know. The mastery
criterion can be set at the outset of instruction to be greater than some value (e.g.,
> 0.83). Then, any CEs with values falling below this threshold would become
candidates for instruction. In the tutor, learning about a particular CE involves
instruction, and then relevant problem solving. Following Stat Lady’s introduction
of the CE material, a learner can solve a problem without any assistance from
the tutor (i.e., on the first try, with no negative feedback). This is called level-0
assistance. Alternatively, the learner may require various degrees of assistance (i.e.,
level-1, level-2, or level-3, see Section 6.1, above), which is provided to the learner
in response to erroneous inputs, not explicitly requested. The simple presumption
is — the more help required by the learner, the less understood the current CE; and
hence, the lower the associated probable degree of mastery (or p(CE) value). After
a problem is completed, the appropriate curriculum elements within the student
model are updated. The derivation of the updating scheme is outlined below.

6.2.4, Student Model: Discrete Representation

The student model began with the identification of three main states: Remedial,
intermediate, and mastery, with low vs. high divisions within each. This yielded six
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Fig.2. SMART updating rules for promotion and demotion.

states, total (e.g., low-remedial, high-remedial). I then generated a set of rules for
updating the model, per CE. These rules relate to promotion and demotion through
the curriculum, as a function of the levels of assistance that are needed. That is, if
a person answers a problem without any tutorial assistance (level-0), that person
should get a larger boost in the student model value compared to someone who
required considerably more help from the system (level-3). In fact, the learner who
shows obvious difficulty with some specific part of the curriculum should receive
a substantial decrease in the student model value (and, if necessary, remediation)
rather than being allowed to flail unsuccessfully. Figure 2 shows the current and
new state mappings, as a function of the levels of help required during problem
solution.

While these decision rules may appear somewhat arbitrary, the soundness for
the promotion/demotion rules was agreed upon by two expert instructors in the
domain, both of whom were familiar with mastery learning approaches to teach-
ing. Further, the rules may be thought of as qualitatively applying Bayes’ theorem
—the conditional probability of success given certain performance within the tutor
(i.e., p(mastery) | performance). To illustrate how this works, consider Joe, classi-
fied as “high remedial” based on his pretest performance for a particular CE (i.e.,
he knew alittle about the topic). Following tutorial instruction on this CE, suppose
he required no tutor assistance (level-0 feedback) in the solution of a problem. He’d



SMART 17

Current Value New Value
X-axis Level-0  Level! Level-2 Level-3

00<X<.17 33 33 .00 .00
Remedial

A7<X<.33 .50 42 .08 .00

33<X<.50 .67 50 17 .00
Intermed.

S0<X .67 .83 .67 33 17

67<X < .83 1.00 75 .50 33
Mastery

B3<X<1.0 1.00 83 .67 42

Fig. 3. Transformation from discrete to continuous representation: states and values.

thus be elevated to “high intermediate” (see white cell in Figure 2, above) which
becomes his new “current” status. Furthermore, if he solved the next problem again
on his own, his new state would be probable “high mastery” (shown by the black
cell in Figure 2), given two prior instances of successful, independent performance.
Alternatively, suppose Jane began the tutor at a more ambiguous status (e.g., low
intermediate), and required level-3 help from the tutor to solve her first problem.
She would be demoted to a “low remedial” state. If, on the next problem, she again
needed level-3 assistance, she would be returned to the curriculum for remedial
instruction given obvious difficulty with the current topic. This action results from
the inclusion of various higher-level rules operating in conjunction with the student
model to prevent subjects from becoming trapped in an endless cycle of solving
problem-after-problem and getting nowhere (i.e., not advancing to criterion per-
formance). Section 6.2.6 (below) discusses the specific decision rules concerning
whether to provide continuing, new, or remedial instruction.

While this discrete representation provides a simple (and empirically testable)
solution to the problem of deciding who should move where and by how much,
it retains a categorical flavor, and thus, is not very refined. To transition from a
discrete to a more continuous representation, I needed to associate values with each
of the six states, and then derive functions to use as a basis for making decisions
about probable mastery levels: p(CE). Figure 3 shows the six states with their
associated ranges of student model values, along with a method (i.e., table lookup)
to compute a new value from the current value as a function of how much assistance
a person required.

Each of these discrete points can now be plotted (see Figure 4), separated into
the four types of assistance required (Levels 0, 1, 2, or 3). The x-axis shows the
current value, and the y-axis becomes the new value. To illustrate, suppose a learner
had a current CE value of 0.50 and required a single level of help during problem
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Fig. 4. Preliminary student model update functions.

solution. Draw a line up from 0.50, and intersect with the level-1 “curve.” Reading
over to the y-axis, the new value = 0.67.

Notice that the example given above (current value = 0.50, new value = 0.67)
could be directly obtained from the table presented in Figure 3. The difference
between the table and these preliminary functions is that, with these curves, we can
interpolate values much more easily. That is, we’re not limited to using only those
values explicitly presented in the table. Rather, any value, between 0 and 1, can be
used as a starting point. For instance, a current value of 0.59 with level-0 assistance
can yield a new value of 0.90. Again, that involves drawing a line up from 0.59,
intersecting the relevant curve, then reading over to the y-axis for the new value.
While these four curves can serve as preliminary functions to estimate a learner’s
p(CE) (probable mastery value for a given CE), they really are little more than a
“jury-rigged” state representation. The lines between the points are simply drawn
in; they are not actual functions. One final step is required to transform these values
into real functions that can be used in the computation of continuous student model
vaiues.

6.2.5. Student Model: Continuous Representation

For each of these four preliminary functions, I computed best-fitting curves: linear,
quadratic, and cubic fits. In all cases, the linear trends fit the worst, 80, on the basis
of the R? values and visual inspection of the fits, I selected optimal curves, per
function. For level-0 and level-2 assistance, the quadratic function was optimal,
and for levels 1 and 3, the cubic trend best fit the values. The b-weights from
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Fig. 5. Regression equations for student model updating.

the best-fitting curves provided the basis for regression equations that can now be
employed in the computation of new student model values. See Figure 5 for these
predictive equations.

For instance, to compute a new CE value, the system just needs to know the
current value (X), which is either the pretest score or the currently computed
p(CE) value, as well as the level of help the person required from the tutor. This
gets plugged into the appropriate equation, and the new value results, allowing
for a true continuous representation of probable mastery values. The final graph
of the best-fitting curves, piotted along with the discrete points, is presented in
Figure 6.

There are several things to notice about this graph. First, the three main regions
(i.e., dashed lines separating remedial, intermediate, and mastery boundaries) are
arbitrary; they may be set at any value the instructor wants (e.g., setting mastery as
> .67 or > 0.83). Second, the curves show some interesting properties, such as
ceiling effects (level-0 curve) and floor effects (level-3 curve). Finally, notice how
well the best-fitting curves match the trends defined by the rule-based points. While
that is not entirely surprising (because, after all, they are best-fitting curves), it is
encouraging that the fits are so close. It should be re-emphasized that these values
do not represent grades, although they are determined from individuals’ response
histories in the solution of tutor-specific problems. Instead, these computed p(CE)s
reflect probable mastery values, a best guess about the level to which a learner
has probably achieved mastery. As such, they may also be considered confidence
scores, where a 1.00 would denote 100% confidence that a learner has achieved
mastery, a score of 0.67 would indicate a moderate degree of confidence that
mastery has been attained, and so on.

6.2.6. Student Model: Mastery/Remediation Decisions

When a learner attains mastery on all of the CEs in a problem set, he or she is
advanced to the next section of the tutor containing a CE that shows a below-
mastery threshold value (determined by performance on the pretest, or tutorial
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Fig. 6. Final student model update functions.

problem solving). But in the case where remediation is indicated, what happens
is as follows. Each problem set evaluates several CEs, concurrently, and each
CE is linked to a set of specific questions, for blame assignment. Any CE whose
computed value falls below some value on one or two consecutive trials (depending
on its remediation history) becomes a candidate for remedial instruction. Suppose
there were three CEs that required remediation following completion of a particular
problem set. Each CE can be addressed in turn (or sometimes, in parallel) as each
one knows exactly the place in the tutor’s curriculum where it is first instructed, as
well as the specific problems which assess it. After remediation and assessment,
new updating occurs.

Additional rules operate in conjunction with the student model to prevent sub-
jects from either not advancing expeditiously when they actually have mastered the
topic, or becoming trapped in an endless cycle of solving problem-after-problem
and getting nowhere. Specifically, there is a two-part rule concerning whether to
let the student continue solving problems or be placed back into the curriculum
for remedial instruction: (a) If a CE has not yet been remediated, and the CE is
< 0.60 and has decreased from the previous value, then invoke remediation, or
(b) If a CE has been remediated and the CE is < 0.50 and has decreased across two
consecutive trials, then remediate. The rationale underlying this decision is that I
needed to “narrow” the window of floundering. That is, results from a pilot study
of SMART’s mastery and remediation features showed that when the mastery cri-
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terion was set at 0.83 (too high), and remediation did not get invoked until meeting
a “ < 0.50 on two trials” criterion (too low), many learners got entangled in a
frustrating cycle of problem solving. And, as frustration levels rose, motivation,
and consequently learning, plummeted.

Obviously, these initial SMART functions are not going to be perfect indicators
of knowledge and skill acquisition. But how well do these computed values predict
outcome performance (diagnostic validity)? Furthermore, does adding remediation
and a mastery learning criterion to the program increase outcome performance,
and what effect does it have on learning time (microadaptive validity)? In a related
sense, how much (if anything) do aptitudes and other individual differences mea-
sures contribute to the prediction of learning outcome (macroadaptive validity),
beyond that provided by domain-specific knowledge and skill? Finally, how do
subjects feel about their testing and tutorial experiences (affective data)?

Results will now be presented from two studies — one completed, and one very
close to completion (i.e., 90% of the data have been collected). These represent the
first of a series of controlled evaluations of SMART, specifically testing various
features underlying the model. For example, when assessing the predictive validity
of the diagnostic component of SMART (Study 1), the mastery and remediation
features were disabled. Evaluating the remediation component involves comparing
the relative degree of learning with this feature “turned on” (Study 2) versus when
it’s not employed (Study 1). I will also present data regarding the overall degree of
learning that occurred from Stat Lady instruction, as well as more refined analyses
that examine the data separately by outcome type and aptitude level. Finally,
I will present data examining subjects’ affective perceptions of their Stat Lady
experience.

7. Testing SMART and Stat Lady — an Empirical Evaluation (Study 1)
7.1. DIAGNOSTIC VALIDITY

In this study, SMART’s mastery criterion and remediation features were disabled
because I needed to increase outcome variability. That is, with no mastery criterion
or remediation in operation, subjects would differ more in knowledge and skill
acquisition than they would if everyone were elevated to the same high level of
mastery. This decision allowed me to analyze the correlation between computed
student model values [p(CE)s], and corresponding outcome CE scores. While this
decision rendered Stat Lady “unintelligent,” it serves as a necessary baseline for
subsequent studies where different features of SMART are selectively turned back
on.

7.1.1. Design and Procedure

A total of 104 subjects (61% male, 39% female) participated in this study which
spanned two 8-hour days. Subjects were obtained from several local temporary
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employment agencies, paid for their participation, ranged in age from 17-30 years
old (mean age = 22), and tested in groups of approximately 25 persons. While
all subjects were required to have a high school education, previous statistics
coursework was restricted to < 1 completed class. The first day of the study
involved completing an on-line demographic questionnaire, as well as an on-line
pretest which assessed domain-specific knowledge of pertinent symbols, rules, and
concepts (note: the learning criterion task used in Studies 1 and 2 represents about
1/3 of the curriculum from Stat Lady’s descriptive statistics module). Subjects were
also administered a computerized battery of cognitive and personality test measures
which they completed prior to learning from the tutor. Subjects completed the tutor
on the second day, spending, on average, about S hours learning curriculum and
solving problems that focused on data organization and plotting. There were 77
CEs instructed and assessed in this segment of instruction. Following the tutor, all
subjects were administered the on-line posttest.

7.1.2. Individual Differences

Before explicitly testing the goodness of fit between SMART’s diagnostic values
and the outcome data, T needed to identify individual differences variables to
include in the predictive equation. Some of these variables were extracted from the
demographic questionnaire, designed to assess educational background, interest
in statistics, computer experience, and gender. The cognitive ability measurement
(CAM 4.0) battery provided even more individual differences measures, namely:
working memory capacity, associative learning skill, inductive reasoning, and
information processing speed (Kyllonen et al., 1990).

To reduce these data, I computed a factor analysis on just the aptitude (cog-
nitive) data. Four variables were used in the principal components analysis (i.e.,
the test scores from the quantitative measures, above), and a single factor was
extracted. The four variables accounted for 66% of the aptitude factor variance,
and factor loadings were all high: working memory (0.88), inductive reasoning
(0.87), processing speed (0.79), and associative learning skill (0.69). Demographic
data were used, as is.

7.1.3. Predictive Validity of SMART

The first research question underlying this study concerns the diagnostic validity of
the computed student model values, p(CE)s, in predicting outcome CE scores. To
test this relationship, I computed a stepwise multiple regression analysis. Posttest
score was the dependent variable, and the following were used as independent
variables: Pretest score, p(CE) data, aptitude factor score, education (years of
school), and gender (male or female). Results showed that the first (i.e., strongest)
variable to enter into the equation was p(CE), with a multiple R=0.73 (i.e., 54% of
the unique outcome variance was explained by this variable alone). Next to enter
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Fig. 7. Scatterplot of p(CE), aptitude, and pretest data predicting posttest score.

Predicted Value: p(CE), Aptitude, Pretest data

TABLE II. Correlations among pretest, p(CE), aptitude, school, gender, and posttest data

Variable PRETEST P(CE) APTITUDE SCHOOL GENDER POSTTEST
PRETEST - 0.66™" 0.63™" 0.01 0.16 0.717*
P(CE) - 0.57*" 0.06 0.02 0.73**
APTITUDE - 0.01 -0.02 0.69™"
SCHOOL - 0.07 0.06
GENDER - 0.06

** p<0.001

the equation was aptitude, increasing the multiple R to 0.81 (accounting for an
additional 11% of unique outcome variance). On the third and final step, pretest
data entered into the equation, accounting for an additional 4% variance, and
increasing the multiple R to 0.82. None of the other variables reached criterion for
inclusion in the equation.* The final data are: p(CE) (¢ = 5.01, p < 0.001), aptitude
(t = 4.25, p < 0.001), and pretest, r = 2.90, p < 0.005). A scatterplot of these
three variables predicting posttest score is shown in Figure 7, and intercorrelations
among the relevant variables are shown in Table 2.

* The finding that education and gender failed to predict outcome performance suggests that the
system is doing its job quite well — reducing the impact of potentially influential sources of individual

differences in learning.
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Fig. 8. Hypothetical macroadaptive curve adjustments.

7.1.4. Macroadaptation

The fact that aptitude significantly contributed to the equation (beyond the variance
that was accounted for by the p(CE) data) justifies the macroadaptive approach,
and theoretically could prompt curve adjustments. A main effect of aptitude was
reported above, but a full test of main effects and interactions is needed to advise
curve modifications such as the one shown on the left of Figure 8 (the main effect
curve). The graph on the right illustrates a possible interaction between aptitude and
the slope of the curve. Ensuing p(CE) values, resulting from modified regression
equations, can progressively reflect knowledge and skill acquisition levels more
accurately.

7.2. LEARNING FROM STAT LADY

Within the same study, I wanted to examine the overall degree of learning as a
function of interacting with the Stat Lady program. Moreover, I wanted to test
a series of hypotheses concerning individual differences in learning by outcome

type.

7.2.1. Hypotheses

I hypothesized that subjects would show, on average, a treatment-eftect size = 1
(1 sigma) with regard to pretest-to-posttest improvement as a result of Stat Lady
instruction and problem solving. The rationale for this hypothesis was based on the
following. Kulik, Kulik, and Bangert-Drowns (1985) reported that computer-based
instruction (CBI) typically yields a 0.5 effect size in relation to a classroom lecture
control group. As mentioned, the version of Stat Lady used in this study was tech-
nically CBI, and although there was no classroom control group for comparison, I
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did have data available from a no-treatment control group (N = 79) who came from
the same population as the Study 1 subjects. Thus, the predicted 1-sigma increase
refers to what we would expect in comparison to a no-treatment control group (i.e.,
no-treatment to lecture = 0.5 sigma, lecture to CBI = 0.5 sigma, thus no-treatment
to CBI = 1.0 sigma increase). Computing treatment-effect size (on posttest data),
does presume, however, that pretest data between the groups are comparable.

I also hypothesized that the ordering of outcome types (i.e., posttest scores
in each of the three categories) by acquisition difficulty would be arrayed from
SK to PS to CK. This hypothesis was based on current learning theory (e.g.,
Anderson, 1987; Kyllonen and Shute, 1989). Further, aptitude has historically
been shown to be a powerful predictor of learning, thus providing the basis for my
next hypothesis that there would be a main effect of aptitude level on knowledge
and skill acquisition. And in regard to affective predictions, I expected subjects
to report an overall positive feeling about their Stat Lady experience. This was
based on data collected from an earlier study involving the Probability Tutor (see
Shute and Gawlick-Grendell, 1994) which reported that, overall, students not only
learned a lot, but also greatly enjoyed their learning experience from that Stat Lady
module.

The only interaction that I predicted involved the relationship between learning
and outcome types. In particular, given the experiential nature of the tutor, in
conjunction with scores of studies showing how skill acquisition improves in
relation to the amount of practice opportunities (e.g., Bryan and Harter, 1899; Fisk
and Rogers, 1992; Schneider and Shiffrin, 1977; Woltz, 1988), I expected that
subjects would show more dramatic improvements in procedural skill acquisition
compared to the more declarative knowledge acquisition. That is, a salient feature
of Stat Lady is the provision of hands-on exercises, especially useful for practicing
PS elements.

7.2.2. Results

I computed a MANOVA using Gain (pretest to posttest changes in scores) and
Type (SK, PS, CK) as within-subject variables, and Aptitude (high or low)* as the
between-subjects variable. The first question examined the degree of learning that
resulted from Stat Lady instruction. First, the main effect of Gain was significant:
F(1,102) = 794.14, p < 0.001; Pretest M = 44.1% (SD = 14), Posttest M = 75.3%
(SD = 15). Thus, Stat Lady managed to elevate subjects, overall, from an incoming
score of 44% to a final score of 75%, representing an increase of more than rwo
standard deviations from their incoming status.

* Aptitude level was computed from CAM-4 data submitted to a principal components factor
analysis. A single factor (Aptfac) was extracted, 66% explained variance, and factor loadings on each
of the four variables were all high. Factor scores for Aptfac were saved for each subject, and 2 median
split was computed to arrive at high and low aptitude categories.
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TABLE III. Descriptive statistics on pretest and posttest
by outcome type and aptitude

Low Aptitude (N = 52) Mean SD Min Max

SK-Pretest 38.82 1639 00.00 75.00
SK-Posttest 69.47 17.73 25.00 100.00
PS-Pretest 3235 1466 03.74 75.00
PS-Posttest 71.18 1449 3342 96.65
CK-Pretest 3620 11.00 03.33  60.00
CK-Posttest 59.49 1390 30.83 86.53

High Aptitude (N = 52)

SK-Pretest 50.36 1821 12.50 100.00
SK-Posttest 83.65 1431 S50.00 100.00
PS-Pretest 51.08 19.69 18.50 88.61
PS-Posttest 85.65 13.87 39.02 100.00
CK-Pretest 5122 1227 2720 80.00
CK-Posttest 79.66 12.69 4278 99.17

To interpret the Stat Lady learning gains in relation to simple pretest-to-posttest
change, I examined data from a demographically-matched group of 79 subjects
who received no instructional intervention and whose pretest M = 48% (SD = 16)
and posttest M = 55.5% (SD=18). Although this group started out with significantly
higher pretest scores than the Stat Lady group: F(1, 181) = 4.34; p < 0.05, the Stat
Lady subjects ended up with significantly higher posttest scores: F(1, 181) = 61.04;
p < 0.001. Furthermore, the Stat Lady condition showed a 74% pretest-to-posttest
improvement rate compared to the baseline group’s 15%. The effect size from these
data = 1.1, an underestimate of the true effect size given the control group’s higher
pretest scores.

The analysis also showed a main effect of aptitude: F(1, 102) = 45.12, p <
0.001 where, predictably, high-aptitude subjects performed better across all tests
compared to low-aptitude subjects. Results also showed a main effect of Type:
F(2, 204) = 3.20, p < 0.05, a significant Gain x Type interaction: F(2, 204) =
5.44,p < 0.01, as well as a significant 3-way interaction involving Gain x Type x
Aptitude: F(2, 204) = 4.03, p < 0.03. No other interactions were significant. Table
3 shows the means and standard deviations of these data, while Figure 9 depicts
the obtained 3-way interaction.

7.2.3. Discussion

Although I had expected to see some learning gain resulting from the Stat Lady
experience, I was surprised by the magnitude of improvement. That is, the two
standard deviation increase from pretest to posttest performance is quite impressive,
especially in the absence of any active intelligent component (e.g., mastery and
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Fig. 9. Learning gain by artifact type and aptitude interaction.

remediation) and given the relatively short amount of instructional time. This
now becomes the “score to beat” in subsequent studies of Stat Lady/SMART
where mastery criterion and remediation features are turned on. The finding that
high aptitude subjects performed better on the outcome measures compared to the
“cognitively challenged” was no surprise. In general, subjects with higher incoming
abilities are able to more quickly acquire new subject matter, regardless of learning
environment. What was encouraging from these findings was that the difference
between aptitude levels was not that large (see Figure 9, above). The hypothesis
concerning a main effect of outcome type was similarly upheld. Subjects did have
a more difficult time solving CK test items than either SK or PS ones. The mean
percent correct data across the three outcome categories (collapsing across pretest,
posttest, and aptitude level) are: SK = 61%, PS = 60%, and CK = 57%. This is in
keeping with the previously-hypothesized difficulty ranking of outcome types, in
general.

The Gain x Type interaction shows differential performance improvements by
outcome type. Learning gains for procedural skiil elements are much higher than
either SK or CK elements (as predicted). This result, most likely, is a function of
the effects of greater practice on outcome performance. That is, the probability of
having a procedural outcome established is related to the number of times an item
is exercised (or reentered into working memory), and strength increases as a power
function of practice (Anderson, 1987; Carlson and Yaure, 1990). The average
number of questions answered during the tutor separately by outcome type reveals
that subjects did, in fact, receive more practice on PS elements than either SK or
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CK ones. As mentioned, the experiential nature of the program was designed to
provide subjects with extra practice opportunities. For instance, when constructing
a frequency distribution, learners had to perform the same low-level procedure
several times within a given problem set (e.g., filling in the cells of frequencies
required learners to (a) choose a value in the range of the sample, (b) count the
number of times that value occurred in the sample, and (c) enter that frequency
in the correct cell). However, there is a fine line between enough and not enough
practice. Thus, I attempted to strike a balance between giving learners a sufficient
opportunity to automate the process(es), while not requiring so much repetition
that learners would become bored. I settled on a requirement of completing five
cells per column, which allows sufficient practice for that skill, but not undue
tedium. Stat Lady filled in the remainder of the cells. This amounts to five times
the opportunities that learners have acquiring most SK and CK elements within the
tutor.

The 3-way interaction (Gain x Type x Aptitude) shows that differences exist
between high- and low-ability subjects in terms of their relative gains across SK,
PS, and CK elements. As seen in Figure 9, high-ability subjects achieve equivalent
learning gains on all three outcome types. Low-ability subjects’ gain is slightly
less, except in the case of procedural skill. In that case, they demonstrate dramatic
gains, far beyond even those of the high-ability learners. This result generates at
least two interpretation issues. First, why would low-ability subjects’ procedural
skills increase so much more than their symbolic and conceptual knowledge? This
again is readily accounted for via the practice opportunities explanation above.
The added number of opportunities subjects have to work on their procedural
skills allows the low-ability subjects a chance to improve to a substantial degree.
Second, why don’t the high ability subjects improve to the same degree? This
result is undoubtedly a function of ceiling effects. As seen in Table 2, high-aptitude
subjects perform at a fairly elevated level (relative to their low-aptitude peers) on
the pretest. By the time they improve 35%, they have increased to roughly 85%
correct on the posttest. That represents about as high an average as any educator
could reasonably expect given such abbreviated instruction.

7.2.4. Affective Data

After completing the tutor, all subjects completed an on-line “affective survey”
rating various aspects of the tests and tutor on a 7-point scale. Subjects in this study
had no (or very minimal) prior statistics education or training. Consequently, most
of them felt very frustrated by their pretest performance, despite the fact that they
were told to “do their best” and not to worry if they could not solve some of the
items (see upper-left corner of Figure 10). In contrast, subjects perceived the tutor
itself, and subsequently the posttest, to be considerably less frustrating. In fact, as
shown in the bottom row of the figure, subjects really enjoyed the instructional part
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Fig. 10. Affective data related to testing and tutorial experiences.

of the study where they reported that (for the majority) the tutor’s feedback was
helpful, they felt in control of their learning, and they liked the program.

8. Testing Mastery and Remediation Features in Smart — Preliminary
Findings (Study 2)

In addition to cognitive diagnosis, the second important component of SMART
involves remediation as a function of the mastery requirement. These conjoined
features are currently being assessed in a controlled evaluation to determine the
degree to which learning is improved with the systematic inclusion of these com-
ponents. Two basic questions include: (a) How does the inclusion of a mastery
criterion and remediation influence learning outcome, in general? and (b) How
does their inclusion impact learning efficiency, in a cost-benefit sense?

8.1. DESIGN AND PROCEDURE

Currently, I have data from four groups of subjects (N = 100). When the study
is completed, I will have collected data from over 120 subjects. Subjects in this
study represent the same population, demographically, as those who participated in
Study 1. That is, they are obtained through the same local temporary employment
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agencies, are roughly 60% male and 30% female, and approximately 22 years
old.

8.2. LEARNING IMPROVEMENT

The first question concerns how much is added to learning outcome beyond that
shown in Study 1. Currently, subjects in Study 2 (N = 100) are showing higher
posttest scores (M = 82.1%) compared to those from Study 1 (M =74.9%). However,
they also are arriving with higher pretest scores (M = 49.8%) compared to subjects
in Study 1 (M =43.5%); F (1,199)=9.61; p < 0.01. To control for these differences
inincoming knowledge and skill, I computed an ANCOVA on the posttest data with
pretest as a covariate and condition as a between-subjects variable. Results showed
that there was a significant difference in learning outcome due to condition: F (1,
199) = 4.16; p < 0.05, with superior outcome performance evidenced by subjects
in Study 2 (i.e., the Stat Lady condition that invoked a mastery criterion and
remediation). Thus, we can tentatively conclude that remediation appears to help
learners acquire even greater degrees of domain-specific knowledge and skill. But
we still have to ask “at what cost” in regard to training/learning time.

8.3. LEARNING EFFICIENCY

The time it takes to complete the tutor, with mastery and remediation in place,
reflects learning efficiency (i.e., speed and accuracy of acquisition). Regarding a
comparison between the two studies, I had no a priori hypotheses about relative
efficiency. Thatis, in Study 1, subjects had to complete all 77 CEs in the curriculum,
even those that most subjects already knew about (like sorting data into ascending
and descending order). Furthermore, Study 1 subjects were required to solve two
problems per problem set, regardless of pretest performance. In contrast, subjects
in Study 2 were only exposed to those CEs that were not, or were only partially,
known (i.e., CEs that were answered correctly on the pretest were not explicitly
instructed by the tutor). Thus, in general, Study 2 subjects may require less time to
complete the tutor given fewer CEs instructed. On the other hand, remediation and
mastery were operating in this study, which could have added time to the learning
process.

Because of the incoming differences in pretest scores, noted above, I computed
another ANCOVA, using the total amount of time spent learning and problem
solving within the tutor as the dependent measure, pretest as the covariate, and
condition as the between-subjects factor. Preliminary results show that learners
required significantly more time to complete Stat Lady in Study 2 with the mastery
criterion and remediation features operational (M = 7.6 hr) compared to subjects
in Study 1, where Stat Lady had those features disabled (M = 4.4 hr); F (1, 200) =
223.66; p < 0.001. More refined cost-benefit analyses will be forthcoming once all
of the data have been collected and separated into respective times for: instruction,
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remediation, self-initiated review (e.g., accessing the on-line dictionary), and so
on.

8.4. DISCUSSION

In summary, the results from Study 2 (not entirely completed) has tentatively
indicated that when mastery criterion and remediation are invoked by the system,
learning increases even beyond that seen in Study 1. This is exciting because the
large (2 SD) pretest to posttest improvement shown in Study 1 was viewed as diffi-
cult to surpass. Results from these studies (as well as future SMART experiments)
will enable me to progressively optimize learning for a variety of individuals and
outcome types. For instance, data from Study 1 can provide information that will
enable me to “tweak” the initial regression curves/equations to more accurately
predict outcome in future studies, as well as improve instruction, if necessary (for
more on this, see Section 9.1, below).

Average p(CE) and posttest data were used in the initial, global assessment of
SMART’s diagnostic accuracy. However, more refined analyses are needed, such
as examining these data separately by the four levels of assistance, and even at
the individual (or aggregate) CE level. It will be informative to see if these four
curves consistently over- or underestimate the true posttest values. If so, then curve
adjustments are called for, achieved by altering b-weights, accordingly. The new
regression equations should more accurately predict learners’ actual knowledge
and skill levels in future studies. This interplay among theoretically-based, rule-
driven, and empirically-validated issues is just what is needed to advance the field
of artificial intelligence and education. I'll now present some additional research
questions that I'm in the process of examining with SMART.

9. Current Research with Smart
9.1. EMPIRICAL AND THEORETICAL MODIFICATIONS TO THE CURVES

Findings related to the predictive validity of SMART’s updating heuristics not
only provide information about the overall goodness-of-fit between SMART and
the outcome measures, but can also serve as an basis for modifying the regression
equations. For instance, the degree to which SMART’s functions over- or under-
estimate the actual posttest scores suggest downward or upward adjustments to the
curves which could easily be achieved by altering the b-weights, accordingly. An
alternative, more theoretical approach to modifying the curves has been suggested
by Anthony Jameson (personal communication, March 1995). Specifically, he
suggested using a formal Bayesian approach to generate equations. At any given
time, there is a given p(mastery) for a particular CE. For each of the four possible
outcomes (i.e., levels of help) per CE, the ratio of the likelihoods of that outcome
given mastery vs. non-mastery may be defined. For example, we may postulate
that level-0 behavior is 5 times as likely given mastery than given non-mastery,
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Fig. 11.  Four new curves based on Bayes’ rule.

and that the ratios are 2, 0.5, and 0.2 for level-1, level-2, and level-3 actions,
respectively. We can then view each behavioral outcome for a problem during the
tutoring phase as an observation, applying Bayes’ Rule to update p(mastery). The
updating formula that results from Bayes’ Rule can be rewritten for this case as
follows:

1
p(mastery | outcome) = { ( 1/p(mastery) —1 ) +1 } v

likelihood ratio (outcome)

where p(mastery) is the probability before the observation (i.e., current value),
p(mastery loutcome) is the updated value, and likelihood ratio(outcome) is the
likelihood ratio associated with the outcome in question. For each of the four
outcomes, we then get a continuous curve with the same basic meanings as shown
in Figure 6. Figure 11 shows the four curves derived from the four likelihood ratios
listed above (chosen to coincide exactly with Figure 6’s values when current value
=0.50).

The above approach to deriving the curves has the advantages that the form of the
curves follows from some theoretical assumptions, and each curve is characterized
by a single, interpretable parameter (the likelihood ratio). In a preliminary analysis
of the validity of these curves (relative to the original ones), I've recomputed
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students’ data from Study 1 (N = 104) using the new values to compute student
model values. Results show that the values arising from the new curves, alone, can
account for even more of the unique outcome variance compared to the original
curves (i.e., new curves R? = 0.70, original curves R? = (0.54). The next step is
to systematically test a series of parameters against the outcome data to further
optimize the fit. This has obvious implications for the next iteration of SMART.

9.2. TESTING THE CONTRIBUTION OF THE INHERITANCE HIERARCHIES

The student model values are intended to be propagated through the inheritance
hierarchy to provide preliminary estimates for complex curriculum elements that
contain element X as a component knowledge or skill. Also, information concerning
the acquisition of a sibling CE can potentially be used to enhance “lateral” predictive
validity of a current CE. The preliminary data analyses described above do not
include relational data from the inheritance hierarchies. Thus, another logical series
of regression analyses may compare predictive validities of the p(CE) scores both
with and without “lateral-sibling ” CE data in the equation (see Appendix B for an
example of one of the hierarchies). For example, CE-2 represents the procedural
skill of sorting data in descending order, while CE-1 assesses sorting data in
ascending order. These two “sibling” CEs are perfectly correlated for both pretest
and posttest performance (rz, = 1.00; N = 104). Thus, using posttest CE score as
the dependent variable, I can test for any additional, unique variance accounted for
by including p(CE-1) in the equation, along with the computed value for p(CE-
2) in the same equation. This test will show the relative contribution of sibling
information in predicting targeted CEs. For example, terminal p(CE-2) with level-
1 assistance = [0.332 + 0.295X + 1.154 X% — 0.951X3] + information from terminal
p(CE-1). Terminal p(CE-1) data can then be used to either increase or decrease
the estimate for p(CE-2). Extending this rationale to the entire hierarchy, software
currently exists (e.g., ERGO, Noetic Systems, 1993) that enables one to easily
establish a network of related nodes (CEs) in terms of conditional probability
distributions for their relationships. The network (or hierarchy) then is updated
based on probabilistic relations. Proximal nodes are impacted more strongly, while
more distal nodes have weaker increments/decrements. I'm currently in the process
of acquiring the software needed to set up the Bayesian network. Because the
hierarchies have already been established, what remains is to assign values to the
linkages between CEs. This will provide the basis for an empirical test of relative
predictive validities between p(CE) values inferred from the Bayesian net with
those derived from just the regression equations in SMART.

In addition to some of the research described above, there is also a plethora of
additional questions that I plan to examine in the upcoming years. Some of these
research areas will now be outlined.
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10. Future Research with Smart
10.1. REMEDIATION

The diagnosis of learner difficulty in regard to a particular CE suggests (and
may invoke — dependent on the severity of the problem) remediation. This can
involve either presenting a review of previous, related instruction, or the creation
of specially-designed problems that focus on the particular bug or misconception.
Each of the three student models (SK, PS, CK) may ultimately require different
Sflavors of remediation. For instance, symbolic knowledge may best be remediated
by drill and practice, procedural skill may be optimally remediated by presenting
problems that specifically relate to the explicit (or inferred) bug, and conceptual
knowledge may be remediated with carefully-designed analogies. Further, explic-
itly instructing CK via analogies (for either initial or remedial instruction) may
serve a dual purpose: (a) enhance the memorability of CK elements (over time,
a retention issue), and (b) help learners solve related PS elements (in real-time,
a transfer issue). This attempts to capitalize on the best aspects of a variety of
theoretically-grounded student modeling approaches by pairing them with their
most appropriate type of knowledge/skill remediation. Currently, remediation with-
in SMART involves specific re-instruction of the problematic CE(s), followed by
re-assessment within the context of new problem sets.

10.2. ADAPTIVE PRETEST

While the current pretest assesses knowledge and skill on every CE in the tutor,
a more efficient procedure, deriving from the inheritance hierarchies (and alluded
to in Section 9.2, above), would be to utilize that information to make a more
adaptive pretest. In that case, inferences could be generated about a learner’s actual
understanding of one (or more) CE(s) based on performance data from related CEs.
The result would be a considerably shorter pretest, which would have the advantage
of being less negatively perceived (see Figure 11, above, regarding affective data
related to the pretest). To illustrate, if a learner obviously knew how to sort numbers
by ascending order, we could confidently infer that he or she could also sort them
by descending order. The strength of the inference (Bayesian rule) would depend
on the relatedness of the CEs in question. Again, elements that were more distal
would have lesser associative strengths.

10.3. GENERALIZABILITY OF SMART

Initially, I have implemented and tested SMART within a single domain — Stat
Lady. T am currently testing the generality of the paradigm using other criterion
tasks, selected as being dissimilar to Stat Lady’s domain. For instance, the Navy
Personnel Research and Development Center is supporting the development of
an instructional system called PC-IMAT (PC version of the classroom Interac-
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tive Multisensor Analysis Trainer [IMAT]). The domain includes teaching con-
cepts required for the successful planning and execution of antisubmarine warfare
(ASW); specifically, concepts associated with determining/predicting underwater
sound transmission paths and ranges. Navy-standard models of the elements of
the oceanographic environment which affect acoustic propagation are necessary to
illustrate these concepts, and are being incorporated into the lessonware, written
in Visual Basic. We (John Schuler and I) are currently incorporating SMART into
the delivery system, and the process is quite straightforward. The general issue
concerns how well (and easily) SMART can characterize an assortment of tasks
using the relatively simple framework described herein. To expedite this process,
another (planned) parallel research stream involves incorporating SMART into an
existing intelligent tutoring system authoring shell — RIDES (Munro, 1993; Towne,
1993). A top-down series of questions will appear for the subject-matter expert to
answer. This will ease the burden associated with conducting a less systematic
approach to cognitive task analysis, categorization, and hierarchical organization
of ensuing CEs, the first steps in the SMART process.

10.4. VISIBLE STUDENT MODEL

Another research question concerns whether the explication of a learner’s knowl-
edge and skill acquisition actually helps or hinders the learning process. To test this
question, I plan on making the student model visible to the learner in the form of
an on-line Report Card, presented as a bar graph showing the level of mastery the
system believes the student has achieved (i.e., S/Lsk, S/Lps, S/Lc k). The Report
Card will represent concepts and skill acquisition at a global level (e.g., SK of the
Mean, PS in computing the Mean), then will be further decomposable into individ-
ual elements (e.g., success on ¥, N, X, XX/N). This information may be helpful
to the learner who is concerned about his/her progress. Additional records will
be maintained on students’ usage of the elective tools (e.g., number of times they
accessed the on-line Dictionary). This information is intended to be inspectable as
well, and perhaps will work its way into the formal student model. That is, a person
who supplements his/her tutorial instruction by engaging in self-initiated reading
of the hypertext Dictionary, for instance, may be more successful in knowledge
and skill acquisition (compared to passive learners) given this evidence of active,
motivated learning behavior.

10.5. ALTERNATIVE MASTERY CRITERIA

Does altering the mastery criteria within Stat Lady have any impact on learning? I
plan to run subjects in each of three separate conditions where the mastery criterion
will be fixed at > 0.50, 0.60, and 0.70. Results from some pilot test data that I have
collected showed that the original criterion (> 0.83) was much too stringent (and
consequently, frustrating) for most individuals. That is, to attain mastery at that
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Fig. 12. Hypothesized interaction between aptitude and criterion level.

level, too many problems had to be solved. This not only added time to the learning
process, it also frustrated learners, forcing them to continue solving problems
once they had already understood the concept or rule. Consequently, in the studies
reported in this paper, the mastery criterion value was reduced to 0.70. Perhaps
even lower criterion values may suffice for a demonstration of acquisition for most
(or certain) knowledge and skills. But this remains an empirical question. I also
envision an interaction between criterion level and aptitude on learning outcome.
Figure 12 depicts a hypothetical interaction, where low-aptitude subjects perform
better when the mastery criterion is set higher, while high-aptitude subjects perform
well, regardless of criterion level. The basis for this hypothesis is that if lower-
aptitude learners are allowed to advance to a new CE before it is truly “mastered”
(e.g., using a criterion > 0.50), then consequently their retention, assessed by
posttest performance, may be adversely affected. Moreover, as was seen in Figure 9,
low-aptitude subjects were substantially helped by the extra practice opportunities;
and the higher the criterion, the more practice that is required to attain “mastery”
status.

10.6. MORE REFINED APTITUDE MEASURES

I would like SMART to eventually represent and utilize information about learners’
aptitudes across a variety of cognitive (and other) measures. The macroadaptive
analysis, discussed earlier, only considered the contribution of a global aptitude
measure. But given that I did find a significant influence of general aptitude,
further tests are warranted, using specific aptitudes in the equation. These more
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refined analyses can readily be made via the CAM battery, in conjunction with
other available data I have from the two studies (e.g., personality data), testing the
contribution of a variety of aptitudes in predicting outcome performance. Another
way that aptitude data can potentially enhance learning is to employ findings from
ATT research. For instance, a person judged to be “high exploratory,” could go
through Stat Lady with the explicit feedback (levels 2, 3) turned off. Similarly, low
exploratory learners could learn with the less explicit feedback turned off (levels
1, 2). Finally, as mentioned earlier, aptitude information can also result in curve
modifications (entire curve, slope or intercept adjustments). This information can
potentially make the model even stronger and hence, more predictive.

11. Summary and Conclusion

This paper describes a novel student modeling paradigm (SMART) that employs
both microadaptive (domain-specific) and macroadaptive (domain-independent)
information. That is, SMART not only assesses emerging knowledge and skills, but
also incoming aptitudes, using this information to subsequently adapt instruction
for a particular learner. Moreover, the system assesses a range of outcome types,
unlike other approaches that focus on a single learning outcome.

SMART operates in conjunction with a tutor design where low-level curriculum
elements (CEs) are identified and arranged in inheritance hierarchies, separated into
symbolic knowledge, procedural skill, and conceptual knowledge. Throughout the
course of the tutor, these CEs are instructed, evaluated, and remediated, if necessary.
Three main routines drive the student model: (1) Initializing student model values,
(2) Updating student model values via regression equations, and (3) Determining
what to do next (i.e., remediate, continue with the same CE, or advance to the
nextrelevant CE). Because SMART uses a mastery learning approach, it requires a
learner to achieve a certain level of mastery before being advanced to the next unit
of instruction. Several executive control rules are responsible for the decision to
either advance or remediate the learner in a timely fashion, thus providing benefits
to arange of aptitude levels.

The efficacy of the program’s diagnostic capabilities was shown to be quite
accurate, accounting for 54% of the unique outcome variance on the basis of just the
computed student model values, and 67% of the outcome variance when aptitude
and pretest data entered the equation. An alternative set of curves, discussed in
Section 9.1, have demonstrated even greater predictive validity, accounting for
70% of the outcome variance. Results from a series of tests currently in progress,
across a range of parameter values, will disclose optimal fits. Once determined,
these will provide the computational (as well as theoretical) basis for SMART’s
updating heuristic.

Evaluating the mastery/remediation components of SMART compared the rel-
ative degree of learning with this feature “turned on” versus when it was not
employed. Because the system knows precisely where each CE is instructed and
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assessed, remediation is surgical and efficient. Recall that in Study 1, this fea-
ture was not operational; subjects simply proceeded through the entire curriculum,
solving two problems per CE before moving on. Despite the absence of this impor-
tant feature, subjects still managed to show a two standard deviation increase
from pretest to posttest performance. In Study 2 (with remediation operating, and
mastery level set to > 0.70), outcome performance was shown to be even higher.
However, this greater outcome was achieved at the expense of greater learning time
— Study 2 required about 3 more hours to complete Stat Lady compared to Study
1. Cost-benefit analyses will reveal whether the obtained increase in outcome is
justified by the additional cost in learning time. However, the results of this analysis
may not be completely definitive because the content of the instructional material
(i.e., descriptive statistics) is really not that difficult. Thus, the potential benefits of
remediation may obscured due to ceiling effects on learning. Another use of the
results from this kind of analysis is that it can provide valuable decision-making
data to instructors who either: (a) have a fixed amount of instructional time and
do not mind if outcomes vary, or (b) are concerned with fixing outcome (e.g.,
to some mastery criterion), but who can afford to have learning times vary. The
cost-benefit data (relative outcomes and training times under various conditions)
would impact the decision to employ either an intelligent or non-intelligent version
of some software.

In addition to the specific research questions examined in this paper, other gener-
al research questions include: What types of learning environments are more appro-
priate for learners with certain characteristics? Do these same person-environment
interactions manifest across domains? Are certain domains better suited for specif-
ic instructional methods? How much learner control should be allowed? Answers
to these questions will inevitably boost the instructional capabilities of automated
systems of the future.

In conclusion, the SMART approach to intelligent tutoring attempts to facilitate
learning by bringing together assessment, diagnosis, remediation, and mastery-
based learning in a dynamic synergy that will tailor instruction to students’ partic-
ular profiles of abilities and needs.
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Appendix A
Curriculum Elements from the Stat Lady: Descriptive Statistics Tutor
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CE# Type Description
Section 1
1 PS  Sort data in ascending order.
2 PS  Sort data in descending orxder.
3 CK  Definition of “frequency.”
4 CK  Definition of “distribution.”
5 CK  Definition of “frequency distribution.”
6 CK  Definition of “variable.”
7 CK  Definition of “value.”
8 PS  Fill in the column headings for a simple freq. dist.
9 PS  Fill in the cells of the frequency column.
10 SK  Symbol for a variable (X).
11 SK  Symbol for frequency (f).
12 PS  Identify values with a frequency of 0.
13 PS  Identify least frequently occurring value.
14 PS  Identify most frequently occurring value.
i5 PS  Answer interpretive questions about a sample.
16 SK  Symbol for summation (o).
17 SK  Formula for the sum of all the frequencies in a sample.
18 PS  Sum all the frequencies in a sample.
19 SK  Symbol for the total sample size (N).
Section 2
20 CK  Definition of “proportion.”
21 SK  Formula for computing proportions.
22 SK  Symbol for proportion (p).
23 PS  Compute proportions.
24 PS  Answer interpretive questions about the proportions in a frequency distribution.
25 CK  Knowledge that the sum of the proportions in a frequency distribution equals 1.
26 CK Knowledge of the computational relationship between proportions and
percentages.
27 SK  Symbol for percent (%).
28 SK  Formula for computing percentages.
29 PS  Use proportions to compute percentages.
30 PS  Answer interpretive questions about percentages in a frequency distribution.
Section 3
31 CK  Definition of “class interval.”
32 PS  Identify the lowest and highest values in a sample.
33 CK  Knowledge that roughly 12 class intervals is an appropriate number for a grouped
frequency distribution.
34 SK  Symbol for the class interval size ().
35 CK Knowledge that a “Preferred” class interval size should be used in creating

grouped frequency distributions.
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36
37
38
39

40
41
42
43

44

45

46
47
48
49
Section 4
50
51
52
53
54

55
56
57
58
59
60
61
62
63
64
65
Section 5
66
67
68
69
70
71
72
73
74
75
76
77

PS
SK
PS
CK

PS
PS
PS
CK

CK

CK

CK
CK
PS
PS

SK
CK
CK
PS

CK

PS
SK
SK
CK
CK
SK
PS
PS
SK
Ps
PS

CK
CK
CK
CK
PS
PS
CK
CK
CK
PS
PS
CK

Compute the best class interval size for a given sample.

Formula for computing class interval size.

Choose an appropriate Preferred i.

Knowledge that the Jower limit of the intervals in a grouped frequency distribu-
tion should be a multiple of the class interval size.

Enter the class intervals for a grouped frequency distribution.

Enter correct frequencies in the cells of a grouped frequency distribution.
Answer interpretive questions about a grouped frequency distribution.

Knowledge that any one value in a sample can apply to one and only one class
interval.

Knowledge that there can be no gaps between class intervals. They must encom-
pass all values within the range of the sample.

Knowledge that all intervals within the range are included in a grouped frequency
distribution, even if there are no values that fall within those class intervals.

Definition of “apparent limits.”

Definition of “real limits.”

Identify the real limits of a class interval.
Identify the apparent limits of a class interval.

Symbol for cumulative frequency (Cum. f).

Definition of “cumulative frequency.”

Knowledge of the purpose that cumulative frequency distributions serve.
Compute cumulative frequencies.

Knowledge that the final value in a cumulative frequency column should be
equal to the sample size.

Answer interpretive questions about cumulative frequencies.
Symbol! for cumulative proportion (Cum. p).

Symbol for cumulative percentage (Cum. %).

Definition of “cumulative proportion.”

Definition of “cumulative percentage.”

Formula for cumulative proportion.

Compute cumulative proportions.

Answer interpretive questions about cumulative proportions.
Formula for cumulative percentage.

Compute cumulative percentages.

Answer interpretive questions about cumulative percentages.

Definition of “graph.”

Knowledge of the location and purpose of the x-axis.
Knowledge of the location and purpose of the y-axis.
Definition of “bar chart.”

Create a bar chart.

Answer interpretive questions about bar charts.
Definition of “ratio” scale of measurement.
Definition of “nominal” scale of measurement.
Definition of “frequency polygon.”

Create a frequency polygon.

Answer interpretive questions about frequency polygons.

Knowledge that frequency polygons can only be made for data on the interval
or ratio scales of measurement.
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Appendix B
Hierarchy of Procedural Skill Curriculum Elements

1den. real Usetableto  Enterfsin Draw bars  Aaswer O's Draw pis. &  Answer Q's
¢ limits ans. ci. O's grp. 1. dist far all X's on bar chis lines for X's  an palygor:
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Bar Chart Freq. Polygon
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@ . Cum. p

Answer Q's K Answer Qs . AnswerQt
m cum. p. -, oncum. %
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cum. %
i Percentages
Fill freq

al. Compute interp. p Compute % Interp %
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