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Abstract: In this study, we use feature engineering and machine learning (ML) to develop a 
regression model to predict students’ learning gain while playing an educational game. 
Specifically, this study used the log data from 199 students’ gameplay to build a logistic 
regression model. The model we created includes 14 features with an accuracy of .61. 

Introduction 
Educational games are complex environments that can assess students’ learning process and outcome. As students 
interact with the game, they produce rich data which provides evidence of learning. Using machine learning (ML) 
techniques, we can make use of game data to derive models that predict students’ experience. By doing so, we 
can create educational games that will respond—providing supports or adaptive challenges—to student’s learning 
needs. In this study, we use feature engineering and machine learning to develop a regression model to predict 
students’ learning gain (pre to posttest) using gameplay data from Physics Playground (PP; Shute et al., 2019). 

Method 
We examined a dataset (n = 199) from 9th to11th-grade students (Male = 104, Female = 91, Other = 4) in a large 
public school in the southeastern United States (see Shute et al., 2020). Students self-reported a diverse range of 
ethnicities: White (42%), Black or African American (31%), Other (19%), Hispanic (8%). Collectively, these 
students generated about 6 million data points in 5 days of gameplay (about 1.5 hrs of gameplay per day). PP is 
a 2D computer-based game (including 81 levels) created to help secondary school students learn Newtonian 
physics. Using simple physics agents (e.g., ramp, lever) or manipulating physics parameters (e.g., mass of the 
ball), students hit a red balloon using a green ball in PP’s levels. To access the learning supports, students click 
on the help button, which is always available during gameplay. The game’s incentive system includes earning 
money resources and spending money opportunities (e.g., buying background music, background image, new ball, 
or a solution video). We collected log data of students’ interactions with the game. The log file contains nearly 
17,500 events representing each level played by all 199 participants. 13,312 events were used for modeling after 
removing missing values. A set of features was distilled based on our prior work on developing evidence-based 
assessments (Shute et al., 2020). We originally considered 45 features that show students’ actions in each game 
level, such as the coins students earned (gold or silver) and how long students played a level. Our refinement and 
selection of the feature space was guided by the theory of game-based learning (Plass et al., 2015) and literature 
about predicting learning gain with interactions with technologies (Crossley et al., 2020). After several rounds of 
feature selection based on training data for reducing overfitting, we selected 14 features (Table 1) for modeling 
learning gains using a logistic regression model. The learning gains were measured through two isomorphic tests 
with multiple-choice items (pretest = 18 items, α = .77; posttest = 18 items, α = .82). The higher the absolute value 
of a feature weight in a regression model, the stronger its influence on learning gains. All features were normalized 
using z-score normalization. We tuned the regression model to achieve high accuracy in predicting learning gains.  

Results 
Our final model achieves a cross-validated accuracy of 0.61 and a cross-validated kappa of 0.12. The features 
explain 5.31% of the variance of those who had learning gains. The confusion matrix shows that the model had 
the majority error cases in predicting events that should be false but were predicted as true. This indicates that in 
the future, we still need to revise the feature space so that the model could identify patterns for positive learning 
gains. As shown in Table 1, game levels with challenging physics concepts (concept difficulty), learning support, 
game mechanics difficulty (GM), and agents drawn are good predictors for learning gain while not solving the 
game level (solved), money earned, number of help button usage, game supports viewed, and number of physics 
animations viewed negatively predicted learning gains. 
 
 



 

Table 1 
Definitions of Features and their Weights 

Feature Weight Definition 
Performance   

Time -0.001 The time, in seconds, a player spends in the level. 
Solved1 0.720 Whether the player solved the level or not (yes/no). 
Money earned -0.030 The amount of money earned playing the level. 
Wallet balance -0.001 The amount of money in the player’s wallet at the end of a level.  

Support   
Help button usage -0.090 The total number of times the help button was used within the level. 
Learning support viewed 0.080 The total number of learning supports, of all types, viewed in a level. 
Game support viewed -0.060 The total number of game supports, of all types, viewed in a level.  
Physics support viewed -0.060 The total number of physics supports, viewed in a level. 
Physics animations (PA) viewed -0.010 The total number of physics animations viewed within a level. 

Engagement   
Agents drawn 0.020 The number of mechanical agents (e.g., ramp) drawn within a level. 
Objects drawn 0.007 The total number of objects (excluding agents) drawn in a level. 

Level Traits   
Type2 0.003 The type of level. Either manipulation or sketching. 
Concept difficulty3 0.200 The difficulty of physics concepts included in the level. 
Game mechanics (GM) difficulty 0.070 The difficulty of game mechanics included in the level.  

1 Compared to unsolved; 2 Focus is sketching type levels; 3 Focus is hard difficulty 

Discussion 
Looking at the features contributing to positive learning gain, we can see variables that are related to game 
performance. Specifically, solving the game levels and drawing agents (simple machines). Other than game 
performance variables, learning support-related variables are also good predictors of learning gain. That is, the 
total number of learning supports viewed was a positive predictor of learning gains. Variables that predicted 
learning loss included variables other than gameplay (e.g., clicking the help button, money earned, game support, 
and physics animations viewed). These variables indicate that students needed help and showed that students 
spent time doing tasks which took them out of gameplay. Finally, variables related to a game level’s difficulty 
were also important predictors of learning gains. Specifically, the concept difficulty was a strange predictor 
compared to game mechanics difficulty. This indicates that difficult concepts and difficult levels in terms of game 
mechanics contribute more to students’ learning. The model we came up with can be used for early detection of 
learning gain.  
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