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Introduction

Consider the following examples. Beverly, while starting her car, raises her wrist to her mouth and requests directions to her next
appointment. Her request to the digital assistant is not understood at first, but it is after her second attempt. Since she first began
using her smart watch, she has noticed a decrease in the times she must repeat herself. The watch is learning her voice and speech
patterns. A few weeks later, she raises her wrist to find that her device is already offering to navigate to that location. It has recognized
that every Thursday at 4:00 p.m. she travels to the same place. Beverly accepts the directions and heads down the road.

Across town, Jamal (a college sophomore) is figuring out which textbooks to purchase for his coming semester. Opening
Amazon, he sees various college-related supplies being recommended; most of which are already monogrammed with his school’s
mascot. He selects his first textbook and notices that the site is suggesting another book commonly bought with the one he has
selected. Checking his list again, he sees that the recommended book is also required. Both go into his shopping cart. After closing
the browser, he sees a notification from his favorite social media platform. A “friend” has uploaded a somewhat embarrassing photo
of them from the prior evening. The app has recognized Jamal's face, and is asking if he would like to be tagged in the photo. He
declines (while also making a mental note to talk with his friend about posting photos online without permission).

These examples all fall under the umbrella of Artificial Intelligence (AI), which increasingly appears in the news because of the
breadth of its reach. Part of this breadth comes from the generality of its definition. John McCarthy—who first coined the term in
1955—defined artificial intelligence as, “the science and engineering of making intelligent machines, especially intelligent computer
programs” (Stanford University, n.d.). The purpose of Al is to model human thinking, and eventually surpass it. Because it is such
a broad term, Al has found application in nearly all areas that make use of technology and data. The specific area within Al where the
opening examples fall is called machine learning (ML).

ML has become a popular buzzword in recent years and is often incorrectly used interchangeably with AI Rather, ML refers to the
process by which a computer attempts to find regularities or patterns from a set of data—Tlike speech patterns, purchasing habits, and
facial features described in the examples above. Accurate recognition of patterns requires the algorithm to be exposed to large sets of
examples. In this way, the algorithm “learns” to identify patterns that it can then recognize in novel data. Even then, the algorithm
may, if provided the capacity to, improve itself by learning from feedback loops that inform it of cases which were mistakenly
identified.

In the opening illustration, with Beverly’s smart watch not recognizing her voice, the ML algorithm embedded within the device
might take an initial sample of her speech patterns, but whenever Beverly must repeat herself, the algorithm identifies that as
a mistaken interpretation and improves itself for future interactions. The watch may be artificially intelligent, but it is machine
learning that allows the watch to improve over time. Another example of ML in use today is how Uber uses ML algorithms to predict
how long it will take rides (or meals) to arrive, set pricing, and even determine where best to wait to give a driver the best odds of
finding you for pick-up (GeekWire, 2016). These algorithms are specific to their purpose and likely trained using data they mined
from their own apps. Finally, it is the ML technology behind driverless cars that can quickly adjust to diverse conditions while
driving. The continual self-improvement of the algorithm, however, is what makes it truly “intelligent.” ML is not the same as
Al but ML does provide Al with the ability to learn and improve.
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What is machine learning?

Think of Pavlov’s dogs. When he would ring a bell, they started to salivate. Pavlov taught them this pattern: every time the bell rings,
food is on the way. The dogs soon learned the pattern and eventually began to respond to the bell before the food appeared. To
cognitive psychologists, human brains are also natural pattern matchers. Since birth, we are constantly trying to find patterns in
what we perceive, then associate new patterns with existing patterns in our memory. This pattern-matching process happens auto-
matically. Through our everyday experiences, our brains are constantly collecting new patterns and adding them to memory. These
patterns then influence the inferences and decisions we make in the future.

Inspired by an understanding of how the human brain works, researchers in the field of ML draw on connections to psychology,
neuroscience, and the learning sciences. These connections are evident in the use of shared or similar terminology (e.g. reinforce-
ment learning). Tom Mitchell (1997) wrote a widely quoted definition of ML: “A computer program is said to learn from experience
E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience
E” (p. 2). Machine learning focuses on developing algorithms that allow machines to improve their performance on a certain task
over time through accumulating experiences. Going back to Beverly, her watch implements an ML algorithm to understand her
voiced instructions. Although the initial performance is not fully satisfying (i.e. she had to repeat herself several times), the watch
becomes better over time as it experiences more instances of Beverly’s voice. Modern companies that build these voice-recognition
systems often pre-train the algorithm with massive amounts of voice recordings covering a wide range of accents, volumes, and
acoustic environments prior to selling them to the customers. The initial accuracy of the watch's voice recognition should be accept-
able, but it is further improved by specifically learning its owner’s voice.

Approaches to training

Although all ML approaches share the goal of automatically improving performance on a task based on accumulated experiences,
they differ largely on the target task, the nature and availability of training data, and the measure of performance. Given the
complexity and variability of typical problems addressed with ML, there is no one-size-fits-all approach to training. Although
not a comprehensive list, the three largest categories are: supervised learning, unsupervised learning, and reinforcement learning.

Supervised learning

In supervised learning, the ML algorithms are trained using large collections of examples that are labeled with the correct “answer.”
Similar to how one studies for a test by completing endless practice problems, the algorithm “learns” how properly to identify or
classify a given input by processing large, labeled datasets until it can do so with an elevated level of confidence—the larger the
training set with rich and diverse examples, the more accurate the algorithm.

A simple example of supervised learning involves training an algorithm to differentiate between images of cats and dogs. The
training dataset consists of a huge selection of different images showing either a cat or dog, along with its correct label. The algo-
rithm “studies” these examples by identifying patterns within the pixels. Then, when provided with a novel (unlabeled) image, the
algorithm will look for similar patterns and provide an answer—although “best guess” might be more appropriate—and a level of
confidence. Now, what happens when the algorithm, trained on nothing but cats and dogs, is given an image of a rabbit? There are
certainly similarities that could be drawn between rabbits, cats, and dogs, but the algorithm can only choose between the latter two
animals. It will have to choose whichever category the rabbit image most closely resembles, but the confidence of the result will
likely be low.

The training data are critical to a successful supervised learning approach, but reliance on the training data is also a limitation. If
high-quality training datasets (i.e. containing accurate human coders’ labels with unbiased and diverse training examples) are not
available, it can take hundreds of hours for humans to collect and label a new training set. Moreover, if humans are doing the
labeling, they must be very careful as each error will influence a dataset’s quality and the overall performance of any ensuing predic-
tive model.

Supervised learning primarily deals with problems of prediction and forecasting. Supervised learning algorithms look at existing
data to make an inference about new instances or predict the outcome of a yet-to-be-seen example. And while identifying the species
of pet photos on the Internet may be fun, supervised learning can be applied to data beyond images, such as using numerical data
for predicting and forecasting. For example, stock prices or real estate trends, due to the potential financial gains and the ample
amounts of historical data, are popular real-world examples of supervised learning. The prediction of a single house price, for
instance, might use data that include several properties of individual houses in the dataset, called features. Each house might include
features describing earlier sales prices, the neighborhood, square footage, number of bedrooms, and so forth. Another algorithm
may be trained on patterns leading up to major shifts in the market to predict major trends in the future. Costly errors can be
made when an algorithm, meant to predict stock prices, is trained on data that neglect the potential of dramatic swings in the market
due to unique events (e.g. a natural disaster or war). Thus, supervised learning algorithms can have powerful predictive and discrim-
inatory capabilities—provided the availability of enough quality training data that is also sufficiently representative of the targeted
population.

International Encyclopedia of Education, Fourth Edition, 2023, 83-91



Machine learning 85

Unsupervised learning
When well-labeled data is unavailable and the task of creating a labeled dataset is neither physically nor financially feasible, or when
one is without preconceived categories (or unsure what to even look for), unsupervised learning may be the ideal approach. The
unsupervised approach allows the algorithm to detect patterns that may be too complex for a human to recognize. The algorithm
reads the unlabeled data and discovers hidden patterns within.

For instance, the construction of a commercial airliner involves millions of mechanical parts. Each part of the aircraft will have
a degree of error in length, weight, or performance due to simple variation in quality control—all pieces meeting a minimum stan-
dard, but not perfect. Even though all parts individually may work without perceivable error, in a complex machine like an aircraft,
the accumulated error may be catastrophic. Traditionally, technicians must manually conduct multiple systemic evaluations of the
plane, which cost tremendous amounts of time and money. Using an unsupervised approach, such as Anomaly Detection, and data
regarding the quality of each part, an algorithm can holistically assess the amount of accumulated error and determine to what
extent the accumulated errors affect the quality of the plane’s airworthiness before the plane even leaves the warehouse.

Reinforcement learning

Both supervised and unsupervised learning are powerful approaches, but sometimes real-world problems that are natural to
humans can be too complex or dynamic for machines to label or model (e.g. driving a car on a highway). Compared to supervised
learning, where the answers are provided upfront, reinforcement learning tackles a task with parameters for successful completion.
One might draw a simplistic analogy comparing supervised learning to rote memorization and reinforcement learning to discovery
learning. The algorithm works by making random attempts, each of which is provided immediate feedback, until it can successfully
complete the task.

Self-driving cars are a well-known example of reinforcement learning. When training an algorithm to drive a car, one central task
is to determine the optimal combination and sequence of gas pedal, brake, and angle of the steering wheel. Instead of labeling the
behaviors of 1000 different drivers, reinforcement learning can happen in a simulated environment with a wide variety of driving
situations.

The driving algorithm is given a straightforward goal: drive from point A to point B without accident and before time runs out.
Any behaviors that progress toward meeting the goal are rewarded while the rest are penalized. The algorithm starts with random
actions and, for a while, might not even move forward. However, after thousands of random trials, the algorithm begins to use the
gas pedal to move forward (not backwards) because moving forward closes the gap between point A and point B, but it may not
have learned yet how to use the steering wheel to turn. After running off the road, hitting stationary objects, making U-turns, and
another million failed trials, the algorithm finally begins to guide the car to its destination. The cost of reinforcement learning is
computational resources and time in simulated environments, which is relatively inexpensive and more efficient compared to
crashing cars on a real road or collecting data on even 100 real drivers.

Supervised learning, unsupervised learning, and reinforcement learning are currently the most well-known approaches in ML.
Other more complex approaches derive from these basic approaches. For example, semi-supervised learning and self-supervised
learning combine both supervised and unsupervised learning techniques, such as using the results from unsupervised learning
to inform labeling in supervised learning datasets. Additional ML approaches (e.g. ensemble learning, active learning, transfer
learning) strive strategically to improve the performance of the basic approaches. These techniques do not have to be supervised,
unsupervised or reinforcement learning, but they do employ strategies to improve the performance of any single model. For
instance, ensemble learning combines multiple classifiers and then outputs more robust results compared to simpler approaches.
Active learning can involve a human coder to resolve uncertain cases. And transfer learning, in some instances, can use pre-tuned
model parameters to shorten the training time or deal with problems with fewer training examples needed.

In summary, ML is an applied field and different approaches are inspired by diverse practical problems across various disciplines.
Therefore, these approaches do not necessarily all share the same theoretical foundation and historical root. Each approach to ML
has developed a multitude of different algorithms for different purposes. This diversity began during the mid-20th Century and
continues to evolve today.

A brief history of machine learning

As early as 1947, the British mathematician Alan Turing envisioned a machine that could, based on an initial set of instructions,
modify its own operating instructions over time. The new instructions created by the machine were the result of responses to
recently added information. He likened the process to students who have learned basic information from their teachers and
went on to develop new knowledge on their own.

In such a case one would have to admit that the progress of the machine had not been foreseen when its original instructions were put in. It would be
like a pupil who had learnt much from his master but had added much more by his own work.
Turing (1995, p. 13).
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Turing's idea was too theoretical and abstract to implement in 1947, but today’s development of ML is largely inspired by his
vision. With modern technology, Turing’s ideas have come to fruition.

One of the earliest practical examples of learning machines is often attributed to Arthur Samuel. In the 1950s, Samuel developed
a computer program that could learn to play the game Checkers, a strategic board game where two players make diagonal moves
and capture pieces by jumping over the opponent. Samuel’s program evaluated each position by looking ahead at all the possible
moves to determine the best next move. Later, he developed a simple learning method (i.e. rote learning) where, through repetitive
self-play, the program memorized optimal moves given a set of conditions observed over thousands of games. Although the algo-
rithms he used were relatively slow and limited by the computer memory at that time, the program was able to improve its perfor-
mance continuously and reached the level of “better-than-average novice.”

Around the same time, researchers came up with the idea for artificial neural networks (ANN) that imitate human neurons to
deal with complex computing often involved in machine learning. This idea was initially discussed in the early days of machine
learning (e.g. Perceptron invented by Frank Rosenblatt at Cornell Aeronautical Laboratory in 1957). In the 1970s and 1980s, classic
structures of ANN were invented (e.g. Convolutional Neural Networks for image recognition and Long Short-Term Memory Recur-
rent Neural Networks for natural language processing). However, these efforts did not make a substantial impact outside of research
labs due to the lack of computational power and limited data at the time. ANN has regained attention in recent years in the form of
deep learning (i.e. multi-layered neural networks). Modern deep learning applications range from classic speech recognition and
image recognition to complicated music composition, bioinformatics, drug discovery, and so on. Many applications reach the level
of “experienced amateur” and some even surpass human performance. To illustrate, from 2015 to 2017, AlphaGo—a neural-
network-based Al system—defeated every world champion in a strategic board game called Go (like chess). Originating in ancient
China, Go is a vastly more complicated game with 361 potential opening moves compared to Checkers (four moves) or Chess
(twenty moves). Brute-force assessment of every possible next move in Go, as is done in simpler algorithms used for Checkers
and Chess, is beyond the computational power of any computer in existence. However, with the successful implementation of
ML algorithms (e.g. Monte Carlo tree search and deep neural network), AlphaGo can play against itself just as Arthur Samuel envi-
sioned, evolving over time in search of the optimal strategy.

Besides rote learning and artificial neural networks, ML has been influenced by many different disciplines and the field of ML has
branched out to multiple lines of research through its history. For example, Email systems now routinely have spam filters to block
junk emails. These filters are usually powered by algorithms like Naive Bayes classifiers, based on Bayesian probabilistic inferences,
invented in the 1970s. Later, around the 1990s, models like Support-vector machines (SVM; Cortes and Vapnik, 1995) were intro-
duced to the ML field. They can be used for both regression and classification tasks and are typically used for classification purposes.
SVMs provide an alternative, non-probabilistic method for classification compared to Naive Bayes. Inspired by evolutionary theory,
genetic algorithms were also invented around the same time as SVMs (Holland, 1992). Genetic algorithms were once widely used to
solve complex and dynamic problems like scheduling optimization for flights and trains and later informed the development of
reinforcement learning. The theoretical foundations and data structure of different algorithms may vary, but they all share a similar
goal—identifying an optimal solution based on existing and incoming new data. Now, having laid a foundation about ML in
general, we next describe how ML can be used in education.

Machine learning in education

At its core, the purpose of ML is to solve problems and offer insight into issues too complex for human analysis, or to automate
routines too costly for human labor. Successful implementation of ML algorithms reduces the reliance on human effort by auto-
mating complicated or tedious tasks. In education, there are many such tasks that could benefit from ML. For instance, a report
published by the Organization for Economic Cooperation and Development (OECD) in 2015 found that teachers spend, on
average, about half as much time teaching as they do on non-teaching tasks including lesson planning, grading, administrative
work, and collaboration with other teachers. Moreover, teachers struggle to provide equal attention to all students in addition to
preparing high quality instructional activities to classrooms of 30+ students. Struggling students are often left alone to grapple
with difficult subjects before the class moves on to the next topic. Such unaddressed gaps in learning may plague students for years.

The opportunities for ML to benefit the field of education are bountiful; however, change in education is often slow. Developing
and implementing ML-powered systems requires significant financial investment, expertise in both education and machine learning
techniques, and extra caution when dealing with vulnerable populations. For these reasons, intelligent machine aids are only slowly
making their way into schools worldwide. We now describe some current ML applications that are helping both teachers and
students.

Instructor aids

Teachers stand to benefit greatly from ML systems, such as in time saved from completing routine tasks that are easily automated.
Such ML-powered systems can be employed to save teachers’ time by grading homework assignments and exams that are in essay
format. For example, the Educational Testing Service has been using an ML-based system called c-rater for years to score participants’
essays (Sukkarieh and Blackmore, 2009).
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Tools to enable facial recognition have already been shown to be helpful in simple daily tasks like taking attendance (e.g. Okok-
pujie et al., 2017; Sanli and Ilgen, 2018). Although checking which student is present may take between two to 10 min, depending
on the class size, even just 2 min can add up to a total of 6 h across a 180-day school year. These systems, which have been tested in
limited classrooms already, record the classroom at certain times throughout the day. Student faces are captured, and the facial
recognition software identifies the student and marks them as present.

Attendance may seem trivial, but facial recognition algorithms can also help with the arduous task of noticing students’ subtle
behaviors during class. ML systems have demonstrated the ability to track facial expressions that can indicate students’ engagement.
Systems like these can notify teachers when students are not engaged, which in turn could prompt the teacher to change up a lesson,
call for a break, or help a struggling student. For example, Stimer et al. (2021) used ML to analyze the audiovisual recordings from
a classroom of students over a period of one and half months. They trained their engagement classifier models using two features of
engagement (attention and affect). The results were promising. That is, their engagement classifier achieved an acceptable level of
accuracy, which is notable because this study was the first in this area (i.e. multimodal engagement analysis in a physical classroom)
and because of the relatively small amount of student-specific data used. Results from this type of research can help teachers identify
whether their students are engaged or not so they can modify their teaching (e.g. slow down and elaborate, ask a thought-provoking
question), as needed. Granted, facial recognition in classrooms raises issues of privacy and potential abuse. We address those
concerns later.

Identifying real-time indicators of engagement is one benefit of ML, but long-term data collection can yield even more valuable
insights. For example, researchers have used multiple ML algorithms to predict high-school students’ risk of dropping-out based on
records of coursework, attendance, and performance (Coleman et al., 2019). By recognizing patterns that lead to dropping out of
courses, teachers can improve retention rates by offering interventions before the student has even seriously considered quitting,
such as suggesting a student come for extra help after school prior to an important test. Moreover, ML has been used to model
complicated socio-cognitive processes such as knowledge sharing and negotiation in computed-supported collaborative
problem-solving contexts (Stewart et al., 2019). In general, receiving real-time data—especially that which has been accumulated
over time—can provide recommendations so that teachers are able to make more informed decisions on subsequent learning activ-
ities. But ML can also benefit students directly.

Student aids

In addition to supporting teachers, ML has incredible potential for enhancing students’ learning experiences. One early vision for
implementing ML was to develop intelligent tutoring systems which were meant to emulate the role of a human teacher and
respond to students thoughtfully as an expert tutor (Self, 1990; Shute and Zapata-Rivera, 2010). In this case, ML can be used to
(a) identify students’ learning processes and behaviors, (b) diagnostically assess their weaknesses and strengths, and (c) provide
individualized cognitive and affective supports as needed. As part of interacting within such digital learning environments, students
demonstrate observable behaviors relative to targeted knowledge and skills. These behaviors could then be collected as information
traces and used to train ML models, for example, identifying behavioral patterns that are successful and those that are not for various
outcome measures. The models can then infer students’ evolving knowledge and skill levels based on an accumulation of observed
behaviors. Using these inferences, the intelligent learning environment can recommend the most appropriate learning supports or
subsequent content to optimize students’ learning experience. Diagnostic information and intervention recommendations can also
be shared with the teacher.

Recently, the National Science Foundation granted $20 M to an Al-institution project led by the University of Colorado, Boulder
(Strain, 2020). This five-year project is targeted at middle- and high-school students and aims to improve teamwork. In the class-
room envisioned by the project, ML algorithms will be used to recognize who is speaking, what is being said, and then react in real-
time (e.g. provide feedback) as needed. The data collected over time will be used to create individual models of each student that can
be used for formative and summative assessments. ML and similar techniques comprise the building blocks of such complex Al-
based classrooms.

The costs of designing, developing, and testing intelligent systems are high, thus making them cost-prohibitive for most schools.
However, many of the functions of such systems can be emulated, with the help of ML, by more familiar environments, like educa-
tional games. For instance, Physics Playground (Shute et al., 2019) is an educational game that incorporates stealth assessment (Shute,
2011) to estimate students’ conceptual physics understanding in real-time. Stealth assessment is embedded into the game code to
continually track a player’s progress and support learning during gameplay using an automated statistical scoring and accumulation
approach (Bayesian inference networks). Moreover, the game includes a quit-prediction model. This model can predict if a student
is frustrated and is likely to quit playing. The game then can use this information (i.e. the probability of quitting for each student at
any given time) to provide appropriate supports (e.g. affective supports such as motivational messages) to encourage persistence in
solving game levels. The quit-prediction model uses 37 variables, also known as features, to determine the probability of a student
quitting. These features were extracted from student-generated log files through an iterative ML process called feature engineering
(Shute et al., 2020; Slater et al., 2017a,b).

Thus far, we have looked at how a machine can assess and support student learning, both of which are dependent on ML
approaches that focus on pattern recognition. Reinforcement learning provides another benefit that goes beyond monitoring
and reporting on students’ knowledge and skill levels. That is, reinforcement learning algorithms can provide individualized content
and experiences that surpass what a single teacher could achieve. The ITSs mentioned earlier can reach a new level of sophistication
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when paired with reinforcement learning. That is, earlier ITSs were dependent on rule-based, manually coded, and generalized
responses to student interactions. The manual approach is limited by how many rules the designer can think of and integrate
into the system. Using reinforcement learning, the ITS can adapt to learners’ behaviors and select the optimum next step for learners
based on their prior performance (Chi et al., 2011). Every student receives a unique learning experience, based on the insights gath-
ered from the ML-based systems.

Taking ML's ability to generate tailored content in another direction via reinforcement learning to train and build simulated envi-
ronments, individual students may interact with these environments to experiment and learn. What could only be explained with
diagrams and hypotheticals can now be demonstrated in real time (or in accelerated time for slow-moving processes) as the student
observes. Economic markets can be generated that mimic modern-day markets (e.g. Zheng et al., 2020). Students can adjust param-
eters to see how simple changes can have massive impacts. Tiny creatures can be modeled, created by students, and left to live out
the perils of natural selection as students observe how they survive (or not) over long periods of time. Not only can students observe
these complicated systems that have such powerful influences on our lives, but they can also create their own systems and see how
they respond to different inputs. This is putting the world in students” hands and letting discovery learning take place on a whole
new scale.

What does the future hold for ML in education? We believe that the influence of ML will continue to grow in educational systems
around the world. Following are some ideas and examples of what we expect to see happen with ML and education in the future.

Future of ML in education

Although modern programming tools and programming libraries already make the workflow of structuring ML projects easier than
before (Slater et al., 2017a,b), ML is far from accessible to the layperson. We do expect to see that, in the future, ML will become
a fairly ubiquitous influence in the educational world by making insights and answers readily available to all stakeholders. For
instance, educators will be able to actively use ML tools to support instructional decisions and students can use ML to diagnose their
own performance without going through hundreds of hours of training only to get a single score. This accessible ML future first relies
on the advancement of technology (e.g. increases in computational power). That is, although the main theoretical foundations of
ML were established in the last century, applications in this field were largely restricted by the costs and limits of technology. Recent
advances in computing—like quantum computing, Optical Neural Networks, and distributed computing—continue to increase
computing performance and lower cost. Before long, computing resources required for more advanced ML applications, rather
than being a luxury of well-funded computing labs, will be within the budgets of local school systems—making the benefits of
ML more prevalent in education.

In addition to rising power and decreasing costs, this envisioned future depends on raising the bar for “basic” computer literacy.
Just as the ability to read was once a luxury of the upper class, and not long-ago creating content on the Internet was limited to only
the technically savvy, the minimum threshold for what is considered “basic knowledge” of statistics, computer science, and engi-
neering practices (e.g. simulation and modeling) must be raised. A transformation in society’s computing literacy will take time, but
we are optimistic. Again, just 30 years ago, when the Internet was young, creating a simple website required advanced programming
skills. But today, anyone can create sophisticated and beautiful websites without any programming knowledge. As ML technology
continues to increase in availability and become more prevalent in our everyday lives, we fully expect ML to become a basic
programming skill and, one day, be a part of our children'’s core science curricula.

As more and more educational activities happen online, the data available to ML tools used in education will grow exponen-
tially. The increase of data volume is predictable, and we expect the future will include the fusion of dynamic and diverse data being
used for ML in education. ML will not have to focus on one model or source of data. Instead, data will come from many sources and
channels. Students’ academic performances (numerical data), facial expressions (visual data), classroom discourse with peers and
instructors (verbal data), and engagement levels (physiological data) can all be merged to provide a holistic and more valid view of
students’ performance and understanding. We will be able automatically to identify that a student’s difficulty in an English class is
not because of language ability but due to test anxiety based on affect detection and other physiological data. In addition, data
fusion can synthesize the conclusions from multiple sites (e.g. different school districts), which prevent the sharing of individual
levels of identifiable digital traces. Ultimately, we can build up a comprehensive and multi-faceted data warehouse to benchmark
educational ML performances and inform research and practices.

In the more distant future, we may see analytical systems, powered by ML, help individuals self-actualize by identifying dispo-
sitions and paths needed to achieve short- and long-term goals. Such ML-based systems would make the learning process more effi-
cient, self-directed, individualized, and life-long. Through advanced personalized-learning environments, students could pursue
their own interests instead of being constrained by one-size-fits-all curricula. Apart from individual support, ML-powered systems
could be employed at the group level, for data-driven decision-making purposes. For instance, governments can use school, district,
city, and state data to create policies and practices that can dramatically improve education quality with high precision. In this
scenario, the unit of analysis is not a student; rather, it is a larger entity made up of students, teachers, educators, parents, admin-
istrators, and other stakeholders. Data from all these sources could be used to develop ML-based models to inform policy makers’
decisions. Using ML algorithms, governments can build educational success models, starting with feature engineering (i.e. identi-
fying all the important variables predictive of an outcome).
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To work effectively, now and in the future, ML requires copious amounts of data, such as online accounts, learning management
systems, and school databases. How to balance the use of all these data while protecting students’ privacy is a concern as we move
forward. The ethical issues of mass data collection and the overall use of ML and Al are current global concerns, but when dealing
with vulnerable populations like young students, extra caution must be taken before ML can fully take off in education. Like any
major advancement, the future of machine learning, and its benefits, will face hurdles we must surmount.

Concerns moving forward

As we move toward this new world of “smart” machines, the ethics of ML must remain at the forefront of progress. In general,
computer scientists, researchers, educators, and educational policy makers who generate, put in use, and advance the technologies
that are powered by ML must be mindful of the controversies to prevent their products from doing harm (Garrett et al., 2020). For
instance, meticulous care must be given when both creating and training ML algorithms to ensure they remain unbiased. A miscon-
ception about Al and ML algorithms is that they are inherently unbiased because humans are not involved. However, humans have
biases and humans are the ones writing the algorithms. Even well-intentioned people may possess implicit biases that unintention-
ally influence their designs (Bertrand and Mullainathan, 2004). More importantly, ML algorithms are trained on massive datasets
that reflect the reality of human bias. Therefore, the algorithms can inherit those biases—e.g. racial or gender bias. Beyond that,
human judgment is always involved in what is deemed worthy of being modeled by ML, and what is not. This may seem like a small
issue, but even the underrepresentation of a single population can have a large impact during application. Consider the case of facial
recognition algorithms powered by ML. Recent studies have shown that the accuracy of facial recognition software recognizing
“darker” faces was lower compared to the accuracy of recognizing “lighter” faces (e.g. Buolamwini and Gebru, 2018). The reason
for this discrepancy was due to the large number of lighter-skinned faces (i.e. about 85%) existing in the databases used to train the
ML algorithm. Earlier, we provided two examples of using ML-powered facial recognition in classrooms (one for taking attendance
and the other for building an engagement classifier). Such racial biases can sabotage those applications of ML in classrooms by
mistakenly marking students of color as absent, or continually misidentifying a student’s engagement due to idiosyncrasies asso-
ciated with cultural differences.

ML algorithms can also be biased relative to gender. For example, Caliskan et al. (2017) found that natural language processing
algorithms can inherit gender biases—either from the data that was used to train the algorithms or from ignoring such biases by the
programmers. For instance, the word nurse is more frequently associated with the word she than with the word he. A biased model
can perpetuate biases in those who interact with the biased environment; even the results of modern image searches can portray
gender biases related to occupations (Kay et al., 2015). Allowing these skewed perspectives into the classroom can impair the
struggle to reduce gender inequality.

There are some things we can do to reduce bias in data-driven, automated ML approaches. Ntoutsi et al. (2020) have suggested
that we need to: (1) Understand bias relative to how it occurs in society and how it finds its way into the data used for training ML
algorithms so that we can proactively address biases when creating algorithms and collecting data; and (2) Mitigate bias in each step
of the ML decision making process. For example, we need to ensure that the ML algorithms are adequately trained on data from
minority populations (i.e. gender- and race-balanced datasets) so that datasets provide a valid representation of all populations.
Moreover, several researchers (e.g. Garrett et al., 2020; Saltz et al., 2019) have noted that it is in everyone’s best interest to teach
ethics in Al as part of computer science courses to make sure that future computer scientists (and others who will be writing the
algorithms) are aware of ethical issues. But above all else, those who implement ML algorithms must retain “transparent classifiers
which are interpretable on their own and exhibit predictive accuracy close to that of obscure models” (Ntoutsi et al., 2020, p. 8).
Aggressive transparency, much like peer-review, helps establish a norm for public auditing of the algorithms that so intimately influ-
ence everyone’s lives. And although there are ways to reduce the biases ML inherits from humans, we note that ML is not a panacea
to all problems, particularly in educational systems. Thoughtful decisions about what to model (and why) need to be made prior to
training ML algorithms.

Security (i.e. protection from hackers) and privacy (i.e. data anonymization) are also issues that need proper attention to ensure
a successful future with ML (e.g. Mittelstadt and Floridi, 2016). When personal data on an individual are stored somewhere, people
with harmful intentions may access the data (e.g. identity theft). Therefore, it is important to know how the data are stored, who
owns the data, and how secure the data are. Regarding privacy, a quick resolution is to remove any identifiable information from the
data, but this solution greatly diminishes an algorithm'’s ability to function as even just one’s date of birth and zip code are enough
to identify them (Mittelstadt and Floridi, 2016).

As mentioned previously, when facial recognition technology is used in classrooms and on campuses, concerns of privacy and
abuse are quick to surface. However, we believe this trend is evident in the literature and the continued integration of ML (e.g. facial
recognition) is a double-edged sword, offering great benefits alongside meaningful risks. If quick resolutions are non-solutions, then
policies and legislature must ensure the security of students; for example, recommendations tend toward transparency and the
ability to “opt-out” of having one’s data collected. In short, legislation such as the General Data Protection Regulation passed in
Europe and similar legislation passed in California possesses a spirit of security, privacy, and fairness that must extend to some
extent to academia.
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Finally, because new technologies appearing in the future may be more work and require additional learning for teachers who
are already overwhelmed, we need research and development on user-friendly, easy-to-use tools that can attract teachers to use the
tools. Moreover, professional education is needed to help teachers understand the strengths and weaknesses of the new tools. Any
implementation of ML-powered systems in schools must be accompanied by comprehensive training for teachers to ensure they are
fully in command of the power ML can give them, and aware of potential ethical issues in using them.

Conclusion

We first explained what Al and ML mean and how they relate to each other. Then, we focused on machine learning, its definition,
history, and use in education, now and in the future. We concluded with a discussion of relevant concerns and issues related to the
use of ML, especially in education, moving forward. What makes us confident that the future of education is bright is the amount of
progress that has been made in the past several decades in terms of technology, learning sciences, computer science, psychology,
psychometrics, and so on. No matter how far we eventually go in using ML in education, we need to remember that nothing
can replace human-to-human and particularly teacher-student interactions.

The goal for ML should be to help—not replace—humans in classrooms. The algorithms that improve our daily online experi-
ences can become extensions of the instructor, the administrator, and policymaker. ML can bring to one’s fingertips answers to ques-
tions that just ten years ago required teams of researchers and decades of experience in the classroom. ML can automate and energize
the classroom to the extent that the teacher is free to facilitate learning with a level of precision previously unattainable. Yes, caution
must be taken, but with a careful hand, a watchful eye, and forethought informed by history, it is possible that we can press forward,
propelled by technology, into a brave new world of education.
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