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Abstract

In this study, we investigated the validity of a stealth assessment of physics under-

standing in an educational game, as well as the effectiveness of different game-level

delivery methods and various in-game supports on learning. Using a game called

Physics Playground, we randomly assigned 263 ninth- to eleventh-grade students into

four groups: adaptive, linear, free choice and no-treatment control. Each condition

had access to the same in-game learning supports during gameplay. Results showed

that: (a) the stealth assessment estimates of physics understanding were valid—signif-

icantly correlating with the external physics test scores; (b) there was no significant

effect of game-level delivery method on students' learning; and (c) physics animations

were the most effective (among eight supports tested) in predicting both learning

outcome and in-game performance (e.g. number of game levels solved). We included

student enjoyment, gender and ethnicity in our analyses as moderators to further

investigate the research questions.
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1 | INTRODUCTION

STEM-related education has, and will continue to have, a significant

impact on people's lives around the world (Hasanah &

Tsutaoka, 2019; Kelley & Knowles, 2016). That is, as we grow into a

global society, becoming increasingly interconnected and technologi-

cally dependent, the workforce will have a high demand for people

with STEM-related knowledge and skills. However, most educational

systems are not currently producing enough STEM graduates to fill

this need. For a specific example relevant to this paper, the number

of students studying physics is not only low but also lacks diversity.

According to the most recent 2015 report of the Trends in Interna-

tional Mathematics and Science Study (Tofig, 2017), only 4.8% of

18-year-old students in the United States enroll in physics courses,

and more than half (61%) of those students are male. Moreover, the

American Physical Society (2020) used 2013–2017 data collected by

the Integrated Postsecondary Education Data System, along with

ethnicity data from the United States Census, and reported that the

percentage of physics bachelor's degrees awarded to Hispanics was

only 8%, less than 3% to African Americans, just 18% to females and

82% to males.

To increase the workforce possessing STEM-related knowledge

and skills, educators need to increase the number and diversity of stu-

dents entering STEM areas, especially in physics. The presence of

diverse perspectives (including gender and ethnic diversity) in most

fields leads to more innovative solutions. Although this problem can

be approached in various ways, the current research focuses on two

related goals that we believe can have the largest impact. The first
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goal is to get more children, particularly females and certain under-

represented minorities (e.g. Black and Hispanic children), excited

about and interested in physics. Recognizing that interest alone is not

enough, our second goal is to identify ways to facilitate and deepen

physics learning. Well-designed digital games represent a promising

vehicle for meeting both goals: capturing children's interest in physics,

and supporting active, contextualized learning across all children.

1.1 | Well-designed educational games as vehicles
for assessment and learning

As children grow up in today's technology-rich world, one commonal-

ity is that they love to play digital games. According to the Entertain-

ment Software Association's report (2019), 75% of Americans have at

least one gamer in their household. In 2018, Americans spent $43.4

billion to purchase various types of digital games. Moreover, playing

digital games is prevalent across all gender, ethnic and socioeconomic

groups (Entertainment Software Association, 2019).

This huge popularity of digital games has spawned interest in

examining the effectiveness of such games on assessing and improv-

ing various competencies (i.e. knowledge, skills and other attributes).

These games are suitable for assessment because designers can

embed continuous measures of learning therein (Shute, Ventura, &

Ke, 2015), overcoming problems associated with disruptive and lim-

ited assessments evidenced by multiple-choice types of tests (Shute,

Ke, Almond, Rahimi, Smith, & Lu, 2019; Shute & Ventura, 2013). For

instance, researchers have used games to assess various competen-

cies, such as problem solving (e.g. Yang, 2012); computational thinking

(Zhao & Shute, 2019); emotional regulation (Spann, Shute, Rahimi, &

D'Mello, 2019); visual–spatial abilities and attention (e.g. Green &

Bavelier, 2007, 2012; Shute et al., 2015); persistence (Ventura, Shute,

& Zhao, 2013); creativity (Jackson et al., 2012); and civic engagement

(Ferguson & Garza, 2011). Collectively, the findings show that well-

designed digital games can be promising vehicles for assessment and

learning (Shute & Ke, 2012; Shute, Leighton, Jang, & Chu, 2016).

There are several reasons why well-designed digital games are suit-

able vehicles for learning. These games provide ongoing and timely

feedback, interactivity and active participation (Gee, 2003; Ifenthaler,

Eseryel, & Ge, 2012; Shute, Ke, & Wang, 2017a). In addition, adaptive

challenges (i.e. tasks matched to players' abilities; Vygotsky, 1978) and

dynamic feedback in well-designed digital games can facilitate the state

of flow (Csikszentmihalyi, 1990). The flow state happens when one

fully engages in a task, loses track of time and experiences a deep feel-

ing of enjoyment. Experiencing engagement while playing educational

games (i.e. digital games with learning purposes) is important for learn-

ing to occur (Shute & Ke, 2012).

Despite years of research in designing game-based learning, there

is still a lot we do not know. We do know that an engaging game capa-

ble of supporting learning for a broad range of students must accu-

rately, and in real time, assess the competencies it aims to support.

Then, adaptive challenges, tailored feedback and other learning sup-

ports can be delivered to fit students' individual needs (Conati, 2002;

Shute & Zapata-Rivera, 2012). An educational game with accurate and

ongoing assessment (e.g. stealth assessment), as well as adaptive

delivery of challenges, feedback and learning supports, can potentially

help students attain and sustain the flow state, matching gameplay

with skill level. However, we do not currently know the psychometric

qualities (i.e. reliability, validity and fairness) of these in-game assess-

ments, nor do we know the added value of adaptivity in games rela-

tive to learning (e.g. Clark, Virk, Barnes, & Adams, 2016; Leemkuil &

de Jong, 2012; Sampayo-Vargas, Cope, He, & Byrne, 2013). Finally,

incorporating learning supports into a game to maximize learning

without losing the fun of gameplay has been an important and unre-

solved challenge in game-based learning research for over a decade

(Shute, Almond, & Rahimi, 2019; Shute, Ke, et al., 2019; Squire, 2006).

There are thus three main aims of the current study to address

these gaps. First, we want to establish the psychometric qualities of a

stealth assessment methodology used in the game – Physics Play-

ground (PP; Shute, Almond, & Rahimi, 2019). Second, we plan to evalu-

ate the effects of three different conditions of the game (i.e. adaptive,

linear and free choice) on student learning of physics. Finally, we want

to test the effectiveness of the in-game learning supports relative to

students' acquisition of physics knowledge and skills. Towards that

end, we address the following research questions:

1. Is our stealth assessment of physics understanding a reliable, valid

and fair measure?

2. Which delivery method of game levels (i.e. adaptive, linear or free

choice) is more effective for improving students' physics under-

standing when controlling for incoming knowledge?

3. Which type of embedded learning support most effectively

enhances learning and game performance?

For research questions 2 and 3, above, we also examined these

variables (i.e. delivery method and learning support) relative to stu-

dent enjoyment, and included gender and ethnicity as moderators in

the equations.

2 | BACKGROUND

2.1 | Stealth assessment

To adapt game challenges and learning supports to students, success-

fully, in a well-designed digital game, we need to accurately assess

and track students' knowledge and skill development during gameplay.

Unlike assessments in traditional educational settings that occur

external to the learning activities, educational games provide an ave-

nue for assessing learning while it occurs. To do so, we need a type of

assessment that is unobtrusive and ongoing within a well-designed

digital educational game (Shute, Rahimi, & Chen 2017b). Creating such

an assessment is complex and challenging. Stealth assessment in

game-based learning environments offers a possible solution (e.g.

Georgiadis, van Lankveld, Bahreini, & Westera, 2018; Min et al., 2019;

Shute, 2011).

2 SHUTE ET AL.



Stealth assessment is based on an assessment design framework

called evidence-centred design (ECD; Almond, Mislevy, Steinberg,

Yan, & Williamson, 2015; Mislevy, Steinberg, & Almond, 2003). ECD's

primary purpose is to structure the collection of evidence needed to

make valid claims about the level of students' competencies. ECD

defines a framework of conceptual and computational models that

work in harmony. The four core ECD models are: (a) the competency

model (CM)—operationalizing the construct we want to assess (e.g.

conceptual physics understanding) and defining the claims to be made

about students' competencies; (b) the evidence model (EM)—automat-

ically scoring and accumulating valid evidence (i.e. observables) of a

claim about students' competencies (i.e. unobservables); (c) the task

model (TM)—detailing the nature and form of the tasks (e.g. game

levels) that will elicit the evidence needed for the EM; and (d) the

assembly model (AM) which specifies the number, types and sequenc-

ing of tasks.

In stealth assessment, specific gameplay behaviours are dynami-

cally linked to the CM. As students interact with the game environ-

ment, they generate a continuous stream of data captured in the

game's log files. The stealth assessment filters through and analyses

that data—in real-time—to identify and extract evidence related to the

CM. This is the evidence identification (EI) process. The EI's output is

the input data (e.g. scores, tallies) for the evidence accumulation (EA)

process, which statistically updates the claims about relevant compe-

tencies in the CM (e.g. the probability of a student being low, medium

or high on a given competency). The more evidence a student gener-

ates during gameplay, the more accurate the estimates of competency

levels. Competency-level estimates can be used for various purposes

(e.g. adaptive delivery of game levels, feedback and learning supports).

PP uses stealth assessment of conceptual physics understanding (dis-

cussed in detail in Section 3) as the basis for developing adaptive

delivery of its game levels.

2.2 | Adaptivity in digital games

Facilitating and maintaining the flow state in any learning activity

requires clear goals, achievable challenges and immediate feedback

(Csikszentmihalyi, 1997). Adaptive balancing of challenges in digital

games can facilitate and sustain the flow state (see Vandewaetere,

Cornillie, Clarebout, & Desmet, 2013). Theoretically, such adaptation

leads to higher levels of enjoyment, and eventually to higher levels of

learning when playing well-designed digital games (e.g. Bontchev &

Georgieva, 2018; Jagušt, Botički, & So, 2018). Adaptive sequencing of

game levels based on students' performance and game level difficulty

is consistent with the theory of the zone of proximal development

(ZPD; Vygotsky, 1978). ZPD indicates that learning is optimized when

students are given learning activities at the edge of their abilities.

Limited, and somewhat conflicted research exists, comparing

adaptive sequencing to non-adaptive sequencing (i.e. linear or free

choice) within digital games. In one study, Sampayo-Vargas et al. (2013)

found that students who played the adaptive version of their game

scored significantly higher on the post-test compared to students who

played linearly and students who completed a related non-game activ-

ity. In contrast, adaptivity may not actually generate better learning

relative to non-adaptive conditions. Other researchers have found

that learning environments offering students choices to navigate

within a learning environment can be more effective than environ-

ments that make those decisions for students (e.g. Black & Deci, 2000;

Vansteenkiste, Simons, Lens, Sheldon, & Deci, 2004). For instance,

Vanbecelaere et al. (2019) compared the effectiveness of an adaptive

versus a non-adaptive educational game on kindergarten students'

cognitive and non-cognitive gains. Results showed significant learning

gains in general but no difference between conditions. The findings of

our study will add to the dialog on adaptivity in digital educational

games.

2.3 | Learning supports in digital games

There is growing consensus and weight of evidence suggesting that

well-designed learning supports embedded in digital games can pro-

mote students' learning outcomes (e.g. Chen & Law, 2016; Moyer-

Packenham et al., 2019; Sun, Chen, & Chu, 2018; Wouters & van

Oostendorp, 2013; Young et al., 2012; Zeglen & Rosendale, 2018).

For instance, Tsai, Kinzer, Hung, Chen, and Hsu (2013) tested the

effectiveness of in-game, content-related learning supports designed

to promote learning the principles of projectile motion. Targeted mul-

tiple-choice questions were included after each game level. Results

showed a significant correlation (r = .44, p < .05) between students'

average time spent with the learning supports and their post-test

scores. It is important to note, however, that providing content-

related learning supports that disrupt gameplay can disrupt

enjoyment.

Kao, Chiang, and Sun (2017) used a game called Crayon Phys-

ics Deluxe to investigate the effectiveness of two types of learning

supports: hints (i.e. minimal guidance) and worked examples (i.e.

full expert solutions of a game level) in an experiment. Their study

consisted of four groups in a pretest–post-test design—three

gameplay groups (hints, worked examples and no supports) and

one control group. While all students who played the game scored

significantly higher on the post-test than those who did not play

the game, the hint group scored significantly higher than all other

groups on the post-test controlling for incoming knowledge. Stu-

dents in the worked-example group and students in the no-sup-

port group showed no significant difference on physics

knowledge acquisition. The authors speculated that students in

the worked example group may have only tried to replicate what

they saw instead of thinking deeply about the physics behind the

levels. These results show the type of learning support and the

degree of information provided within the learning support can

affect students' learning.

It is important to foster motivation in educational games because

in the absence of motivation, learning suffers (e.g. Wouters, van

Nimwegen, van Oostendorp, & van der Spek, 2013). Including in-game
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learning supports can potentially motivate students to do more

advanced activities, and to accomplish more than when learning sup-

ports are not included (Gee, 2003; Huang & Oh, 2018; Johnson,

2019; Khamparia & Pandey, 2018; Wouters & van Oostendorp,

2013). Again, the big challenge is to include learning supports in

games that help students learn the content knowledge deeply, but do

not disrupt enjoyment while students are immersed in gameplay. With

this in mind, we designed multiple learning supports in PP to maximize

both students' learning and game performance. Next, we discuss the

details of our study.

3 | METHOD

3.1 | Participants

Our sample consisted of 280 9th–11th grade students in a large K-12

school in the southeastern United States. We included the data from

263 students who completed both the pretest and posttest, submit-

ted their parental consent forms and signed the assent form in this

study. We had the same number of students self-identify as male (n =

128) and female (n = 128), with a wide range of ethnicities. Self-

reported ethnicities representing more than 1% of the respondents

were: Asian (n = 8), Black or African American (n = 77), Hispanic (n =

23), White (n = 114), Other (n = 7), Black or African American and

White (n = 6), Black or African American and Hispanic (n = 3), and His-

panic and White (n = 9).

Students participated in the research activities during their science

classes. After the no-treatment control group was selected, we ran-

domly assigned participants into one of three experimental conditions—

adaptive, linear or free choice. All students completed the pretest and

posttest. Students in the experimental conditions played Physics Play-

ground for 4 hr across six sessions. Students in all conditions were com-

pensated with a $30 gift card after completing the post-test.

3.2 | Materials

All experimental materials were administered online. Students

accessed the materials on school laptops, desktops, Chromebooks and

Surface Pros.

3.2.1 | Educational game

PP is a computer-based game designed to help middle and high school

students learn conceptual physics related to Newton's laws of force

and motion, linear momentum, energy and torque. Using a mouse- or

stylus-driven interaction, the goal is to move a green ball to hit a red

balloon. The game includes two task types: sketching and manipula-

tion. In the sketching levels, students can draw simple machines (i.e.

ramp, lever, pendulum and springboard) that interact with the two-

dimensional environment according to Newtonian mechanics (Figure

1). In the manipulation levels, students can change various physics

parameters in the environment (i.e. gravity, air resistance, mass and

bounciness of the ball), and manipulate external forces (i.e. puffers

and blowers) (Figure 2). Each level is designed to be solved by specific

physics parameters or agents.

Two physics experts helped us create our competency model

(Figure 3). They also identified the primary and secondary physics

concepts associated with each game level. This was represented using

a Bayesian network (BN; Almond et al., 2015).

Game levels in Physics Playground differ in terms of difficulty. We

created two sets of rubrics to determine a level's difficulty—one con-

cerning its game mechanics, and the other related to the underlying

physics. Game mechanics difficulty (which ranged from 1 to 5 per

level) was based on factors such as the relative positions of the ball

and the balloon, the number of obstacles present, the novelty of the

problem and the number of objects or parameters required to solve

the level. Physics difficulty (which also ranged from 1 to 5 per level)

was based on a rubric created by our physics experts. The rubric con-

sidered the primary and secondary physics concepts (see nodes in the

middle section of Figure 3) that were associated with each level. Scor-

ing for a level's primary concept was: force and motion = 0; momen-

tum and energy = 1; torque = 2. Another difficulty point was added if

the level: (a) required the balancing of forces (i.e. equilibrium or New-

ton's third law); (b) involved conservation or the transfer of energy; or

(c) consisted of both primary and secondary concepts that came from

two different ‘parents’ (e.g. Newton's first law and energy can trans-

fer). Each level was scored by two raters on both dimensions and any

disagreements were resolved in consultation with our physics experts.

Based on the difficulty ratings, we established a par value (like in

golf) per level related to the minimum number of objects (in the sketch-

ing levels), or attempts (in the manipulation levels) needed for an ele-

gant/efficient solution. Pars determine if a person receives a silver or

F IGURE 1 Sketching level in PP—to
solve the level, students can draw a lever
and drop a weight on the other side of
the lever to lift the ball to the balloon. PP,
Physics Playground [Colour figure can be
viewed at wileyonlinelibrary.com]
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gold coin for their solution (i.e. if the student solves a level under par

they receive a gold coin, otherwise silver). The adaptive algorithm (dis-

cussed later) uses pars to deliver easy, medium or hard levels in PP.

Students learn the game mechanics at the beginning of the game

by playing tutorial levels for both task types (i.e. sketching and manip-

ulation). Along with the tutorial levels, PP includes learning supports

that can be accessed at any time during gameplay. A help button

resides in the lower-right corner of the screen in each level. When

students click on the help button, a popup menu shows three options:

Show me the Physics (see Figure 4); Show me a solution or a Hint; and

Show me Game Tips. Each support is briefly described below, but for

more details and illustrations of the supports, see Shute, Almond, and

Rahimi (2019) and Shute, Ke, et al. (2019).

Show me the Physics leads students to a screen containing the fol-

lowing physics supports: Animation, ‘Definition’, Formula (when appli-

cable), Hewitt video and Glossary.

• The physics animation support (shown as ‘Animation’ in Figure 4)

contains videos presenting physics concepts (e.g. properties of tor-

que) in the game environment relevant to a student's current game

level (e.g., see: https://bit.ly/38L8vHz).

• The definition support includes physics terms applicable to the game's

content. Students watch a short animation illustrating the term in the

game environment (e.g. gravitational potential energy) and complete the

term's definition through a fill-in-the-blank, drag-and-drop interaction.

• The formula support presents the physics concept's formula and

defines the associated variables.

• The Hewitt video support contains cartoon animations explaining

various physics concepts, originally developed by Paul Hewitt, and

edited with permission to present a targeted competency in

the game.

• The glossary support contains brief explanations of a set of physics

terms relevant to the game.

F IGURE 2 Manipulation level in PP—
to solve the level, students have to
manipulate the gravity slider and enable
the bounciness function. PP, Physics
Playground [Colour figure can be viewed
at wileyonlinelibrary.com]

F IGURE 3 Physics understanding competency model for PP. PP, Physics Playground [Colour figure can be viewed at wileyonlinelibrary.com]
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Show me a solution or a Hint presents two buttons: ‘Show me a

hint’ and ‘Show me a solution.’ If students select the former, they will

see a written hint (e.g. Try drawing a pendulum). If they select a solu-

tion, they will watch a short expert video solution (i.e. worked exam-

ple) of the current level. Show me Game Tips presents snapshots of the

game tutorials, a review of the game mechanics, and an illustrative

key of the components in My Backpack (discussed in more detail

below).

The game also includes an incentive system. As previously dis-

cussed, students earn either a silver coin (worth $10 game money) or

a gold coin (worth $20) for solving a level based on the efficiency/ele-

gance of their solution. Students can earn additional game money by

accessing the physics learning supports. Conversely, students must

pay $60 to view solutions (i.e. worked examples). Accessing hints and

game tip supports do not cost or earn money for the student.

Upon finishing each level, students can choose to replay the level or

proceed to the next level. Students can also accessMy Backpack (Figure 5)

where they can check their gameplay progress, game money balance and

levels of physics understanding. In addition, they can select the store to

customize the type of ball (e.g. beach ball or volleyball) or change the

background image and background music. Purchasing game

customizations is another way students can spend the game money

they earn.

The version of PP used in this study consisted of 10 tutorial levels

and 81 game levels covering the nine physics competencies (i.e. chil-

dren nodes—on the far right in the competency model) arranged in

the following sequence: Newton's first law, energy can transfer,

energy can dissipate, properties of momentum, conservation of

momentum, properties of torque, equilibrium, Newton's second law

and Newton's third law.

3.2.2 | Physics understanding test

We created 36 illustrative multiple-choice items covering the nine

physics competencies in the game, counterbalanced between two

equivalent forms for a pretest and posttest (pretest = 18 items, α =

.77; posttest = 18 items, α = .82). Each form includes two items per

competency. The items were (a) designed in the context of PP (i.e.

including a video or an image from the game environment), (b)

F IGURE 4 Learning supports
available in Show me the Physics
(top) and example of the learning
support for an interactive
definition (bottom) [Colour figure
can be viewed at
wileyonlinelibrary.com]
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developed with the help of two physics experts and (c) subjected to

several pilot tests before administration in the current study (Fig-

ure 6).

3.2.3 | Game and learning support satisfaction
questionnaire

To evaluate students' satisfaction with both the game and the learning

supports, we developed and used a 16-item questionnaire with two

subscales: (a) game satisfaction, with 10 items, Cronbach's α = .86 (e.g.

‘I enjoyed the game very much’), and (b) learning support satisfaction,

with 6 items, Cronbach's α = .73 (e.g. ‘The supports helped me under-

stand the physics’). Students responded on a five-point Likert scale,

from strongly disagree (1) to strongly agree (5). All items from the

game and learning support satisfaction questionnaire are included in

Table A1 in the Appendix, along with the descriptive statistics,

per item.

3.3 | Research design

One purpose of the study was to examine the psychometric proper-

ties (reliability and validity) of our stealth assessment estimates of

physics understanding. Then, using the valid in-game measures, we

could develop and analyse the impact of adaptive sequencing of game

levels on learning, and the effectiveness of the learning supports. We

used a between groups repeated measure design with four conditions:

adaptive sequencing (n = 64), linear sequencing (n = 68), free choice

(n = 67) and control (n = 64). A few classes were selected to form the

control group. The remaining participants were randomly assigned at

the student level into one of the three treatment conditions on Day 1.

The adaptive condition used an algorithm to determine the order

to present the levels to best fit a student's needs. We assessed stu-

dents' physics competencies using a Bayesian network (BN) approach.

The network is split into a core student model (corresponding to the

CM, but student specific) and a number of Bayesian network frag-

ments, corresponding to the EMs as applicable to that level. The EM

F IGURE 5 My backpack—
students can check their
gameplay progress, money
balance and physics
understanding (top), as well as
access the game store (bottom)
[Colour figure can be viewed at
wileyonlinelibrary.com]
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fragments join to the student model at the competencies identified by

the experts, and describe how observable outcomes from the game

level (identified by the experts) relate to the competencies. At the end

of each level, the events logged by the game engine associated with

each game level are processed to set values for observables. The EM

fragment is joined to the core student model and used to update the

current state of knowledge about the competencies (Almond et al.,

2015). Then, if the estimate of a student's current level of understand-

ing about a competency (e.g. Newton's first law) was satisfactory (e.g.

�0.50), the adaptive algorithm would deliver more difficult levels

associated with that competency. If the competency estimate fell too

low (e.g. <0.33), the algorithm would pull an associated physics learn-

ing support video and present it to the student before delivering the

next level. Once the competency estimate became sufficiently high

(e.g. >0.83), the student would ‘graduate’ to the next competency.

When a student graduated from all competencies, they would enter

an endgame mode where the level selection process would select un-

played levels from each competency. Finally, in the case where the

student was estimated as being ‘high’ on all nine competencies, and

had completed all 81 levels, the algorithm provided levels for which

the student received only a silver coin.

In the linear condition, students followed a predetermined sequence

of levels, with limited ability to skip a level. Students could choose to go

to the next or previous level without the need to solve the current level

by pressing the ‘Escape’ button from the keyboard and then clicking

either the ‘Next’ or ‘Previous’ button. However, in this condition, stu-

dents could not freely choose which level to play. The researchers and

physics experts arranged the sequence of the levels based on the pro-

gression of physics topics and associated level difficulty.

Finally, in the free-choice condition, students were provided with

the same level sequence as the linear condition, but they could move

back and forth through all of the levels in the game and select which

one they wanted to play. Students in all three conditions had equal

access to the learning supports during gameplay through the help but-

ton in the bottom-right corner of the screen.

3.4 | Procedure

The experiment spanned 6 days of class time, with six sessions per

classroom in total. Each session was 50 min. On the first day, partici-

pants completed a demographic survey and an online pretest of physics

knowledge (18 items), followed by an introduction to PP gameplay. Ses-

sions two through five consisted of gameplay for the duration of the

class. Students played the game independently with headphones, and

were monitored by the members of our research team. The final ses-

sion consisted of gameplay followed by the online post-test, the game

and learning support satisfaction survey, and receipt of the gift card.

4 | RESULTS

Our results are presented in line with the research questions related

to the psychometric qualities of the stealth assessment estimates, the

impact of different game conditions (adaptive, linear and free choice)

on learning and enjoyment, and the impact of various learning sup-

ports on learning and enjoyment. We hypothesized that (a) the stealth

assessment measures would be valid, (b) learning from, and enjoyment

of gameplay would occur—perhaps with an advantage to the adaptive

condition and (c) our learning supports would further boost learning

and enjoyment, beyond that from simple gameplay.

4.1 | Validation of stealth assessment estimates

To validate our stealth assessment estimates of physics understand-

ing, we first established the reliability of our external pretest and

F IGURE 6 Example of an item from
the physics understanding test. The
correct answer is C [Colour figure can be
viewed at wileyonlinelibrary.com]
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post-test measures. As described earlier, each test consisted of 18

items, measuring all nine focal competencies in duplicate. These

were matched forms, with multiple-choice formatted items accom-

panied by pictures. The tests have been revised across 2 years of

testing, and the current reliabilities (Cronbach's α values) were: pre-

test = .77; posttest = .82; n = 263. Next, we computed the correla-

tion between our overall ‘physics understanding’ estimate from the

game (see far left side of Figure 3) with our external test scores.

Results showed that both the pretest (r = .36, p < .01) and posttest

(r = .40, p < .01) scores significantly correlated with the overall ste-

alth assessment estimate.

We were also able to test specific correlations involving each one

of our four competency estimates (see the middle of Figure 3, e.g.

Torque) with the score of relevant pretest and post-test items (e.g.

two item scores summed for Torque on pretest and post-test to cre-

ate a Torque pretest and Torque post-test score). As with the general

physics estimate, the more fine-grained stealth assessment estimates

significantly correlated with their associated external measures both

on pretest and post-test (see Table 1).

In summary, it appears that our stealth assessment estimates are

measuring the constructs that we intended them to measure, overall

as well as at a more granular, diagnostic level. Note that the BN scores

are currently based only on the experts' original estimates. Refining

the model using the data from the field test should yield even better

measures of physics competency.

4.2 | Learning physics from the game

4.2.1 | Overall learning

The most general question related to learning addresses whether stu-

dents, regardless of game condition, learned any physics from

gameplay. We conducted a paired sample t test including all students

in the three game conditions (adaptive, linear and free choice). As

predicted, results showed that students scored significantly higher on

the post-test (M = 12.46, SD = 3.86) than the pretest (M = 11.82, SD =

3.53), t(198) = 3.10, p = .002, d = .17, 95% CI [0.23, 1.04]. Because we

had a no-treatment control group (i.e. students who did not play the

game but completed the pretest, then a week later completed the post-

test), we could see any possible ‘test effects’. Results from a paired

sample t test including just the subjects in the control group showed

that they scored the same on the pretest (M = 11.61, SD = 3.65) and

post-test (M = 11.59, SD = 4.19); t(63) = −0.04, p = .97, d = .005, 95%

CI [−0.77, 0.74].

4.2.2 | Learning by condition

After establishing that learning occurred as a function of gameplay,

and that there were no pretest influences on post-test scores, we

then examined physics learning as a function of game condition (adap-

tive, linear and free choice). We computed an ANCOVA with post-test

as the dependent variable, condition as the independent variable and

pretest serving as the covariate. Surprisingly, results showed no signif-

icant outcome differences by condition, holding pretest constant

(F[2,195] = 0.34; p = .71, partial η2 = 0.003). Table 2 presents all pre-

test and posttest data across all four conditions. Note that there were

no significant differences in pretest score by condition, so the subjects

were randomized well.

4.2.3 | Learning by gender

Another question we addressed, touching on the fairness/equity

issue discussed earlier, concerned physics learning from the game as

a function of gender. We computed an ANCOVA, with post-test

score as the dependent variable, gender [i.e. males (n = 105) and

females (n = 94)] as the independent variable, and pretest score as the

covariate. Results showed no significant outcome differences by gender

holding pretest constant [F(1, 196)] = 0.07; p = .80, partial η2 < 0.001].

4.2.4 | Learning by ethnicity

Similarly, we tested differences in learning physics as a function of

ethnicity. An ANCOVA was computed, with post-test as the

TABLE 1 Fine-grained validation of stealth assessment estimates

Stealth assessment estimates Pretest Post-test

Force and motion 0.29** 0.30**

Linear momentum 0.27** 0.27**

Energy 0.22** 0.35**

Torque 0.14* 0.18**

*p < .05.

**p < .01.

TABLE 2 Descriptive statistics of
pretest and post-test by condition

Condition Pretest M (SD) Post-test M (SD) Gain M (SD)

Adaptive (n = 64) 11.77 (3.40) 12.23 (3.67) 0.47 (2.73)

Linear (n = 68) 11.82 (3.40) 12.41 (4.04) 0.59 (2.86)

Free choice (n = 67) 11.88 (3.81) 12.72 (3.94) 0.84 (3.11)

Control (n = 64) 11.61 (3.65) 11.59 (4.19) −0.02 (3.03)

Total (N = 263) 11.77 (3.55) 12.25 (3.96) 0.48 (2.93)
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dependent variable, ethnicity [i.e. White [n = 83], Black/African Amer-

ican [n = 62] or Hispanic [n = 15]) as the independent variable, and

pretest as the covariate. Results showed no significant outcome

differences by ethnicity holding pretest constant (F[2,156] = 1.54;

p = .22, partial η2 = 0.02).

4.3 | Game enjoyment

4.3.1 | Overall enjoyment

Having established that students' learning of physics improved via

playing the game, we next wanted to ensure that this was not at the

expense of game enjoyment. We defined game enjoyment as the

combination of two game-survey items (i.e. ‘I enjoyed the game very

much’, and ‘I'd like to play this game again’). These statements were

each rated on a scale of 1 (strongly disagree) to 5 (strongly agree). We

computed the average of the two enjoyment items, which ranged from 1

to 5. Overall, students really enjoyed the game (M = 3.90, SD = 1.01,

n = 195).

4.3.2 | Enjoyment by condition

We reported earlier that there were no learning differences as a func-

tion of game condition. But did students in each of the three condi-

tions differ in terms of their enjoyment of the game? The means of

enjoyment across all three conditions were strikingly similar (3.90 for

adaptive and free choice, and 3.84 for linear), and the results of an

ANOVA showed that there was no significant difference in enjoyment

by condition [F(2, 192) = 0.08; p = .92, partial η2 = 0.001].

4.3.3 | Enjoyment by gender

To test whether males and females differentially enjoyed the

game, we computed an ANCOVA predicting game enjoyment by

gender, holding pretest scores constant because males showed

slightly higher pretest scores (M = 12.68, SD = 3.40) compared to

females (M = 10.84, SD = 3.49). Results from the ANCOVA

showed that both females (M = 3.90, SD = 0.99, n = 92) and males

(M = 3.90, SD = 1.04, n = 103) equally enjoyed the game:

[F(1, 192) = 0.36; p = .55, partial η2 = .002].

4.3.4 | Enjoyment by ethnicity

We also tested for differential enjoyment as a function of ethnicity.

We computed an ANCOVA with game enjoyment as the dependent

variable, ethnicity (i.e. those self-identifying as White, Black/African

American or Hispanic) as the independent variable and pretest as the

covariate. As with the gender analysis, we included pretest score as a

covariate, given some differences in incoming knowledge by ethnicity.

The pretest scores by ethnicity were: White (M = 12.55, SD = 3.30, n

= 83); Black/African American (M = 10.48, SD = 3.73, n = 62); and His-

panic (M = 12.13, SD = 2.67, n = 15). Results of the ANCOVA showed

no significant enjoyment differences by ethnicity holding pretest

constant [F(2, 154) = 0.78; p = .46, partial η2 = .01]. The final enjoy-

ment scores by ethnicity were: White (M = 3.87, SD = 1.03, n = 82);

Black/African American (M = 3.77, SD = 0.96, n = 61); and Hispanic

(M = 4.17, SD = 0.75, n = 15).

4.4 | Learning support effectiveness

As described in Section 3, we designed and developed eight different

types of supports—five related to physics (i.e. physics animations,

interactive definitions, Hewitt videos, glossary and formulas), and

three related to solving game levels (i.e. worked examples, hints and

tips on game mechanics). Students, regardless of condition, voluntarily

accessed the learning supports in the current study via a ‘Help’ button

in the bottom-right corner of the screen. Based on responses to the

learning support satisfaction questionnaire, students found the learn-

ing supports to be helpful and liked having them in the game (see

Appendix).

The first learning support question we examined was: which of the

supports were accessed most frequently? The three most-frequently

accessed supports included: hints (M = 5.10, SD = 5.41); physics anima-

tions (M = 3.94, SD = 4.57); and worked examples (M = 2.60, SD = 2.84).

Hints and worked examples provided only game-level support. The

physics animations targeted the underlying physics, thus we hypothe-

sized that the physics animations would be the only support that corre-

lated with our physics pretest and post-test scores. The correlations of

the top three supports with our pretest and post-test scores confirmed

this hypothesis: (a) hints—no correlation with pretest (r = .06) or post-

test (r = .07); (b) physics animations—significant correlation with pre-

test (r = .32, p < .01) and posttest (r = .33, p < .01); and (c) worked

examples—no correlation with pretest (r = .10) or posttest (r = .06).

We also computed a stepwise regression analysis predicting post-

test score by pretest score, and the frequency data of all eight supports

(i.e. physics animations, worked examples, hints, glossary, interactive def-

initions, formulas, Hewitt videos and game tools). The results showed a

Multiple R = .71 (R2 = .50); with just two predictors: pretest and physics

animations in the model [F(2, 198) = 97.46; p < .001]—Pretest β = .66;

t = 12.27, p < .001; Physics animations β = .11; t = 2.11, p = .04.

4.4.1 | Effects of physics animations on game
performance

In addition to our more formal outcome measure of physics learning

(assessed via an external pretest and post-test), another important

measure relates to students' in-game performance. Towards that end,

we examined data related to the following: total number of levels

solved, total number of gold coins earned and total number of silver

coins earned. We computed three regression analyses. Results

10 SHUTE ET AL.



showed that Physics Animations significantly predicted the levels com-

pleted [β = .43, F(1, 197) = 45.15, p < .001, R2 = .18], gold coins

earned [β = .35, F(1, 197) = 27.84, p < .001, R2 = .12] and silver coins

earned [β = .31, F(1, 197) = 21.42, p < .001, R2 = .10]. That is, for each

1SD change in Physics Animations frequency, the number of (a) levels

completed increases by 0.43 SD, (b) gold coins increases by 0.35 SD

and (c) silver coins increases by 0.31 SD. In summary, students

watching more Physics Animations completed more levels and earned

more gold and silver coins than those watching fewer Physics

Animations.

4.4.2 | Effects of physics animations on game
enjoyment

Viewing physics animations boosts both learning and game performance.

But how does watching physics animations relate to overall enjoyment

of the game? To address this question we computed another regression

analysis with game enjoyment as the dependent variable and Physics Ani-

mations as the independent variable. Results showed that Physics Anima-

tions significantly predicted game enjoyment [β = .15, F(1, 193) = 4.53,

p = .04, R2 = .02]. That is, for each one SD change in Physics Animations

frequency, game enjoyment increases by 0.15 SD.

4.4.3 | Interaction of learning supports and game
level difficulty

For our final analysis, we wanted to explore any interactions between

viewing learning supports and game levels—specifically game level diffi-

culty. We expected that students would tend to access learning supports

(particularly physics animations, hints and worked examples) when playing

the more difficult game levels. To test this hypothesis, we computed the

average time spent playing each game level (i.e. average duration), which

significantly correlated (r = .56, p < .001) with our composite difficulty

index (i.e. the sum of game mechanics and physics difficulty indices, rang-

ing from 1 to 10). On average, it took students longer to solve harder than

easier levels. The average duration of playing game levels significantly cor-

related with accessing learning supports—i.e. physics animations (r = .29,

p = .01), hints (r = .83, p < .001) and worked examples (r = .86, p < .001).

These correlations suggest that students were, in fact, accessing more

learning supports (both content- and game-related) in more difficult levels.

5 | SUMMARY AND DISCUSSION

One main goal of our research was to design and study a digital educa-

tional game that dynamically measures and supports the development

of conceptual physics understanding for a diverse set of learners. The

results of our study indicate that we met that challenge. That is, our

findings showed significant overall improvement of students' concep-

tual physics understanding after approximately 4–5 hr of gameplay.

Moreover, participants reported that they enjoyed playing the game.

Importantly, there were no gender or ethnicity effects on the

participants' learning or enjoyment of the game. These findings suggest

that an educational game like PP can act as a versatile learning tool to

enhance conceptual physics understanding for a diverse learner group,

without sacrificing the fun of gameplay. One limitation of the game is

that it currently presents the content in English.

5.1 | Stealth assessment in games for assessment
and learning

An accurate and ongoing assessment (e.g. stealth assessment) is a pre-

requisite element to drive adaptive challenges and dynamic learning

support in a digital educational game. The current findings provided

empirical support for the validity of using stealth assessment to mea-

sure domain-specific competence, such as conceptual physics under-

standing, in a game-based learning setting. Overall, we found that the

stealth assessment estimate of physics understanding, as well as the

finer-grained estimates of the four specific competencies (i.e. force

and motion, linear momentum, energy and torque), significantly and

positively correlated with the external physics test scores. These find-

ings support the argument that real-time stealth assessment can act

not only as an authentic assessment for active learning, but also func-

tion diagnostically to guide the presentation of adaptive challenges

and/or the delivery of dynamic learning supports during game-based

learning (Shute, 2011; Shute, Ke, & Wang, 2017). Thus, our findings

support prior research and the design conjecture that we can use

well-designed digital games as vehicles for both assessment and

learning (Shute et al., 2016; Shute & Ke, 2012).

5.2 | Adaptivity in level navigation

According to the theory of the zone of proximal development

(Vygotsky, 1978), adaptive sequencing of game levels based on players'

in-game performance can lead to higher levels of enjoyment and/or

engagement, and eventually to higher levels of learning (Bontchev &

Georgieva, 2018; Jagušt et al., 2018). However, the current study does

not indicate a significant effect of adapting game levels to fit learners'

needs relative to either game enjoyment or test performance. This

result is consistent with the findings of Vanbecelaere et al. (2019) who

similarly reported no difference in game-based learning as a function of

adaptivity. It also supports other findings that a computer-based learn-

ing environment that makes navigation decisions for students (i.e. adap-

tive or linear) is not necessarily better than one that offers students

choices to navigate (e.g. Black & Deci, 2000; Vansteenkiste et al.,

2004). On the other hand, this finding does not support the argument

for the benefit of computer-controlled adaptive level navigation in digi-

tal gaming (Sampayo-Vargas et al., 2013).

The finding suggests that the relative effectiveness on learning of

adaptive versus non-adaptive sequencing (e.g. linear and free choice)

in an interactive learning environment warrants further research. Note

that, in the current study, adaptive sequencing was driven by the

physics competency estimates per student. However, such estimates
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may, in addition, correlate with students' self-efficacy related to dif-

ferent game levels. In other words, students' non-adaptive gameplay

sequence (especially in the free-choice condition) may somewhat con-

cur with the computer-controlled adaptive gameplay sequence, thus

making the conditional difference in game-based learning sequence

minimized. Moreover, the linear sequencing condition in this study

still allowed the students to navigate between levels, which again

reduces the conditional differences in the game-based learning path.

Future research should investigate different mechanisms in planning

adaptive sequencing in gameplay, such as integrating individual

learners' enjoyment state or frustration level as an additional index in

the adaptivity algorithm.

It is also worth noting that there are multiple approaches to build-

ing adaptive control in a hypermedia learning environment (Kelly,

2008). The advantage of adaptively delivered versus learner control in

a game-based learning environment should be further examined via a

future study that examines alternative adaptivity strategies, such as

adaptive presentation of learning supports or types of game tasks (e.g.

sketching and manipulation game levels) in response to learners' com-

petency and/or degree of enjoyment.

5.3 | Effective in-game learning supports

A large challenge of using games as a vehicle for domain-specific

learning is to include content-related learning supports in games while

not disrupting enjoyment (Ke, 2016; Tsai et al., 2013). Our exploration

of the relative effectiveness of different types of in-game learning

supports indicated that hints, physics animations and worked exam-

ples were the most frequently accessed. Among these three supports,

only physics animations correlated with the post-test scores. Specifi-

cally, the various levels of physics animation usage significantly

predicted physics post-test scores as well as various in-game mea-

sures (e.g. gold coins received). Our finding on the effective learning

supports differs from Kao et al.' work (2017); in that, we did not find

hints to be a particularly effective in-game learning support—particu-

larly compared to the effects of the physics animations. But it does

support their argument that the type of learning support and the

degree of information provided within the learning support can affect

students' learning.

Some possible reasons why the physics animations were such

effective supports include the following. First, the physics animations

were designed to have the same look and feel as the game (i.e. the

videos were produced with PP's level editor). Second, the physics ani-

mations included both physics knowledge and gameplay mechanics.

They also included a common failed attempt followed by a successful

attempt. This could help students with both their physics understand-

ing as well as learning the game mechanics. The physics animations

were also based on the tutorial levels (i.e. illustrating simple machines),

comprising the primary means of solving the game levels. Finally, each

physics animation was applicable across multiple levels that were

linked to the video in terms of the shared competency. In summary,

this learning support was designed to be content and gameplay

related, and was able to successfully enhance students' physics under-

standing. This finding aligns with previous discussions on the impor-

tance of intrinsic integration of learning and gameplay in the design of

game mechanics and support features (Ke, 2016).

Another goal of the current work was to figure out how to maxi-

mize learning with a game using various learning supports, without

ruining the fun of gameplay. As mentioned earlier, this has been an

ongoing challenge in educational games. Our results showed that the

best learning support (i.e. physics animations) predicted physics post-

test scores, but not at the expense of enjoyment. The number of

physics animations viewed significantly predicted our composite mea-

sure of game enjoyment.

Finally, we found that students typically accessed more learning

supports (both physics- and game-related supports) in the more diffi-

cult game levels. These findings show that our learning supports were

designed and embedded in the game appropriately. That is, we

expected students to access the supports when they really needed

help, and that is what students did.

6 | CONCLUSIONS AND IMPLICATIONS

Overall, the current study has provided empirical evidence supporting

the validity of game-based stealth assessment and the feasibility of

using a digital educational game as an engaging and effective tool for

both assessment and learning with a diverse set of learners. Partici-

pating students, regardless of gender or ethnicity, developed an

increased understanding of physics and self-reported enjoyment with

playing Physics Playground.

The best way to sequence levels or provide adaptive challenges

in a digital game to optimize learning, however, is still unclear. In the

current study, adaptivity was provided mainly through computerized-

level sequencing based on the stealth assessment of a student's phys-

ics competency state. The future design of adaptive sequencing of

game levels should be further investigated to include multiple facets

of game-based states (e.g. cognitive and affective). Future research on

adaptive challenges can also examine a micro-level personalization

approach in which particular types of in-game learning supports are

adapted to the students' game-based states. Designing in-game learn-

ing supports to improve both enjoyment and learning is another area

ripe for investigation. Our research suggests that integrating subject-

matter content and gameplay mechanics within learning supports will

assist learning and promote learner-support interactions.
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APPENDIX A.

Game and learning support satisfaction questionnaire

Students responded to the 10-item game satisfaction and the 6-item

learning support satisfaction questionnaires. Individual items and

descriptive statistics are shown in the following table. Ratings per item

were on a 1 (strongly disagree) to 5 (strongly agree) scale, and overall

revealed student satisfaction with both the game and the supports.

TABLE A1 Game and learning supports satisfaction questionnaire

Game satisfaction

M SD

I enjoyed the game very much 4.03 1.02

I thought the game was boring [R] 3.62 1.16

The game did not hold my attention [R] 3.53 1.16

I thought I performed well in the game 3.91 0.94

I was pretty skilled at playing the game 3.69 1.00

I put a lot of effort into solving levels 4.08 0.91

The game helped me learn some physics 3.96 0.91

Physics is fun and interesting 3.75 1.09

I would like to play this game again 3.72 1.16

I would recommend this game to my

friends

3.43 1.18

Scale 3.77 0.70

Learning supports satisfaction

The ‘show solutions’ helped me solve the

levels

3.82 1.25

The ‘show physics’ helped me learn

physics

3.60 1.09

The supports were generally annoying [R] 3.46 1.08

The supports were pretty easy to use 3.78 0.83

The supports did not help me at all [R] 3.56 1.09

I would rather solve levels without

supports [R]

3.28 1.28

Scale 3.58 0.72

Note: [R] items were reverse coded for analysis. For example, the mean for the item ‘I thought the game was boring’ is 3.62. Students generally disagreed

with this item and thought the game was not boring.
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