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Game-based assessment (GBA) is a specific use of educational games that em- 

ploys game activities to elicit evidence for educationally valuable skills and knowl- 

edge. While this approach can provide individualized and diagnostic information 

about students, the design and development of assessment mechanics for a GBA 

is a nontrivial task. In this article, we describe the 10-step procedure that the de- 

sign team of Physics Playground (formerly known as Newton’s Playground) has 

established by adapting evidence-centered  design  to  address  unique challenges 

of GBA. The scaling method used for Physics Playground was Bayesian net- 

works; thus this article describes specific actions taken for the iterative process 

of constructing and revising Bayesian networks in the context of the game Physics 

Playground. 
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INTRODUCTION 

 
Recently, interest in using digital games to assess and support learning has in- 

creased (Baker & Delacruz, 2008; Behrens et al., 2010; Mislevy et al., 2014; 

Shute et al., 2009). Game-based assessment (GBA) uses game activities as tasks 

to elicit evidence for complex skills. Advocates of GBA (e.g., DiCerbo, 2014; 

Mislevy et al., 2012; Shute, 2011) list several advantages of GBA. First, digital 

games can provide complex, authentic tasks based on modern theories of learning 

and cognition. Second, games require constant interaction between the player and 

the game yielding copious data that can be used to build a comprehensive student 

model. Finally, because of the engaging nature of games, GBA can avoid possible 

“text anxiety” that leads to underperformance of learners, which in return can 

increase assessment accuracy (Sundre & Wise, 2003). 

Developing GBA can be challenging (Almond et al., 2014; DiCerbo, 2014; 

Mislevy et al., 2012; Zapata-Rivera & Bauer, 2012) because game mechanics 

must be aligned with learning and assessment (Habgood & Ainsworth, 2011). 

Furthermore, many game tasks require multiple competencies for successful ex- 

ecution, and untangling the contributions of the multiple competencies can be 

quite difficult. Evidence-centered assessment design (ECD; Mislevy, Steinberg, & 

Almond, 2003) provides a language for expressing the relationship between multi- 

ple aspects of proficiency and performance, and stealth assessment (Shute, 2011) 

extends ECD to game-based assessment. Bayesian networks, with their graphical 

representation of probability distributions, provide a convenient representation for 

building scoring engines that untangle multivariate relationships. 

This article describes a development process for game-based assessment, with 

emphasis on the phase of constructing assessment machinery using Bayes net- 

works. We first briefly describe ECD in the context of GBA, and then review 

how Bayesian networks have been used in educational assessment. The 10-step 

framework presented in this article describes procedure used to build the assess- 

ment machineries and tasks undergirding Physics Playground (formerly called 

Newton’s Playground, see Shute & Ventura, 2013). 

 

BACKGROUND 

 
Application of ECD in GBA 

ECD lays out the structures of assessment as an evidentiary argument that connects 

what students do, say, or create in given contexts with general skills and knowledge 

(Mislevy et al., 2003). The ECD process addresses a series of questions that should 

be asked in any assessment design; what, where, and how are we measuring, and 

how much do we need to measure. The answers to these questions are recorded in 

several design objects called competency, evidence, task, and assembly models; 
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FIGURE 1 

Four focal models of Evidence-Centered Design (Mislevy, Almond, & Lukas, 2003). 
 
 

the collection of all models used for a particular assessment is called the conceptual 

assessment framework (CAF; Figure 1). These models then guide the development 

of the operational machinery of assessment, such as tasks, rubrics, and statistical 

models (Almond et al., 2015; Mislevy et al., 2003). 

 

Competency Models: What Are We Measuring?. A competency model 

(CM) reflects the claims (stars in Figure 1) that the assessor wishes to make about 

students at the end of the assessment. The claims are used to define CM vari- 

ables, which describe aspects of skills, knowledge, traits, and attitudes of interest. 

The distribution of the CM variables in the target population is described with a 

statistical model. ECD explicitly allows multidimensional CMs, and Bayesian net- 

works provide graphical language for expressing multidimensional relationships 

(Almond et al., 2015). 

 

Evidence Models: How Do We Measure the Competencies?. A student 

interacting with assessment tasks produces work products. In GBA, the work 

product typically consists of a transcript of player activities (typically captured in 

a log file) and the state of the system at the end of a task. An evidence model 

(EM) provides rules for updating the CM given the work project. An EM has two 

parts: the evidence rules and the statistical model. The evidence rules (the right 

side of the EM in Figure 1) define the observables: salient features of the work 

product that provide evidence about one or more competencies (Mislevy et al., 

2003). In GBA, evidence rules are often expressed in computer code (e.g., Did 

the player successfully complete a game level? Did the player use a particular 

tool in the solution of a problem?). The statistical model describes relationships 
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between the competency variables and the observables, particularly expressing 

the probability that a student with a given profile will produce a particular value 

for each observable variable. Almond and Mislevy (1999) suggested expressing 

evidence models as Bayesian network fragments that are attached to the CM 

Bayesian network during scoring. 

 

Task Models: Where Do We Measure the Competencies? A task is a 

unit of activity that is attempted by the student which produces a work product. A 

task can be as simple as a multiple choice question, but ECD encourages 

assessment designers to think about more complex performance tasks as well. In 

GBA, a task is a self-contained unit of game play. In some games, game play 

is naturally divided into levels, and tasks correspond to the game levels. In other 

cases, a task may be a segment of a more complex interaction, and defining the task 

boundary can be challenging (Mislevy et al., 2012). A task model (TM) describes 

a family of related tasks (often all of which are variations on a single prototype), 

and task model variables express features of a task that can be manipulated to 

both create variants and change the evidentiary strength or focus (Almond et al., 

2014). 

 

Assembly Model: How Much Do We Need to Measure?. An assembly 

model (AM) specifies how the CMs, EMs, and TMs work together to generate 

sufficient evidence to form a valid assessment (Almond et al., 2015). In partic- 

ular, the AM specifies how much evidence is required about the value of each 

competency variable. The AM ensures comparability between multiple possible 

forms, particularly in applications such as computer adaptive testing where each 

student receives a unique form (Mislevy & Levy, 2006). Similarly, addressing 

this comparability issue in GBA can be challenging because players have more 

freedom in games compared to conventional assessment, and their choices in the 

game can lead to variations in the focus, scope, and strength of the evidence (Kim, 

2014; Mislevy et al., 2012). 

The CM, EMs, and AM together make up the measurement model of the as- 

sessment. To build a scoring engine, test designers must construct a mathematical 

realization of the CM and an EM for each task that might be selected by the 

AM. This article looks at one possible realization of those models using Bayesian 

networks. Note that a complete CAF looks at two additional models: presenta- 

tion and delivery system models. The presentation model describes how tasks 

are rendered on different platforms (e.g., desktop computer vs. smart phone). 

The delivery system model describes other factors related to the assessment en- 

vironment, including eligibility to participate in the assessment. In the class- 

room use of GBA, instructions given by the teacher could influence how students 

interact with the game (Slota, 2014). For example, demonstrating how simple 

machines work  in the classroom before the students play  Physics    Playground 
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as part of curriculum helps focus the students’ gameplay on creating simple 

machines. 

 
Bayesian Networks in Educational Assessment 

Bayesian networks (or Bayes nets) provide a graphical notation for describing 

complex, multivariate probability models (Pearl, 1988; Almond et al., 2015). In a 

Bayes net, variables separated in the graph are conditionally independent. Exploit- 

ing these independence relationships produces efficient algorithms for calculating 

probabilities; in particular, the conditional probability that a student has a given 

competency profile, given a pattern of evidence collected about that student. Mod- 

eling both competency and observable outcome variables as discrete allows the 

use of commercially supported software such as Netica (Norsys, 2012) to score 

the assessment. 

Constructing a Bayes net involves two main steps. First, psychometricians 

working with domain experts define the targeted competency and observable 

variables, and then draw an acyclic directed graph that captures the important 

conditional independence relationships. Second, for each variable in the model, the 

design team specifies the conditional probability of that variable given its parents 

(i.e., nodes from which an arrow extends connecting them to the child node) in the 

graph. In the case of a discrete Bayes net (one in which all variables are discrete), 

this takes the form of a conditional probability table (CPT) that gives the probability 

of each state of the child variable given each possible configuration of parents in the 

graph. As these tables can be quite large (they grow exponentially with the number 

of parent variables), psychometricians often use a parametric representation for 

the tables (Almond et al., 2001, 2015). Almond (2015) described a class of models 

for CPTs based on multivariate item response theory (IRT) models, for which the 

designers must choose a combination function (e.g., compensatory or conjunctive) 

and a link function (e.g., graded response or partial credit). In Step 4 of our process, 

the designers picked both a parameterization (e.g., compensatory or conjunctive) 

and a set of parameters (difficulty and discrimination) for each observable. (Note 

that in a Bayes net, the parameterization decision is made at the node level and 

not the assessment level.) 

Generally, there are two approaches to specifying parameters. The first is to 

directly specify them. The resulting Bayes net can then immediately be used to 

score the assessment. The Bayes net using “expert numbers” often has a reliability 

and validity comparable to (or possibly better than) a number right assessment 

(Shute, Hansen, & Almond, 2008), because thinking about the evidence required 

to build the Bayes net may lead to better task designs. The second approach is to 

use the expert numbers as prior distributions for the CPTs (Almond, 2015). This 

still allows the Bayes net to be used immediately for scoring, but also allows the 

CPTs to be updated with data from field studies. 
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Physics Playground 

Physics Playground (PP) is a two-dimensional physics game developed to assess 

players’ qualitative understanding of Newton’s three laws of physics, and also their 

persistence. The core mechanic of PP is that the player draws physical objects on 

the screen that “come to life” following the basic laws of physics, and are intended 

to move a ball to a target (i.e., balloon on the screen). Particular objects are called 

agents of motion—simple machine-like objects that execute force to the ball thus 

causing the ball to move. The game levels focus on four primary agents of motion: 

ramp, lever, pendulum, and springboard. Therefore, when players draw objects that 

represent agents of motion, they provide evidence relative to their understanding 

of particular aspects of qualitative physics. 

PP stores a complete transcript of players’ activities during each game level. 

This is the work product for the game-level, which is the ECD task. The game 

engine contains rules of evidence; that is, code that identifies which agents of 

motion were used in each step and code that calculates whether the player’s 

solution uses a certain number of objects qualifying for a gold or silver trophy (see 

Shute and Ventura, 2013 for detailed information about the game engine). A gold 

trophy indicates an “elegant” solution (i.e., one with a limited number of objects, 

in most cases less than three objects), while a silver trophy simply means that the 

player has solved the problem, using more than three objects. 

In a field study with 167 middle school participants (grades 8–9), Shute and 

colleagues (2013) investigated whether stealth assessment in PP satisfied psycho- 

metric criteria. Relevant in-game performance measures in PP (e.g., the number of 

silver and gold trophies obtained) significantly correlated with external measures 

of physics understanding, suggesting construct validity of PP. In particular, the 

number of gold trophies per agent was significantly correlated with the external 

physics test scores (ramp r = 0.27, lever r = 0.22, pendulum r = 0.31, springboard 

r = 0.40, p < 0.01). 

 

 
THE 10-STEP PROCEDURE OF BUILDING BAYES 

NETS IN GBA 

 
ECD as described in Mislevy and colleagues (2003) is a generic procedure for 

developing assessments. In any particular assessment design process, various parts 

of the framework may take on more or less importance. In GBA, the task must 

prompt the student to produce a work product that will provide evidence for one 

or more relevant competencies. This can be more complex in GBA because the 

task must also be aligned with the core mechanics of the gameplay (Mislevy et al., 

2012). Mislevy and associates (2014) proposed an extension called evidence- 

centered game design (ECgD) to align the game and the evidentiary   reasoning 
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FIGURE 2 

10-step procedure of building Bayesian nets in game-based assessment. 
 
 

mechanisms in GBA. Similar to ECgD, the 10-step procedure we describe here al- 

lows game and assessment designers and developers to iteratively design, develop, 

and revise game-based assessment systems and revisit with particular emphasis 

on constructing Bayes nets. 

Figure 2 provides an overview of the ten steps that we established and applied in 

the development of PP. This 10-step procedure can be applied for any game-based 

assessment using Bayes nets as the scoring engine. These steps are organized into 

four distinct phases: (a) designing levels in PP (i.e., Task Authoring), (b) creating 

assessment models (i.e., the CAF), (c) putting all assessment models together 

using Bayes nets as assessment machinery (i.e., Nuts & Bolts), and (d) evaluating 

and refining the assessment models (i.e., Debugging). Although Figure 2 suggests 

a linear flow through the phases, in its actual implementation the process should 

be iterative, as indicated by the dashed arrows. That is, problems that may show up 

in later steps often require revisiting design decisions made earlier. The following 

sections describe each step, with particular emphasis on those steps necessary to 

build the Bayesian networks used to score PP. 

 

Step 1: Identify key variables 

First, the design team must (a) determine the goals and purposes of the assessment, 

(b) define the competencies of interest relative to the assessment, (c) describe the 

relationship(s) among each competency variable and the range of the competency 

levels that can be measured in the game, and (d) identify in-game observables that 

can provide evidence for one or more competencies. This step produces “working 
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definitions,” which will be revised as later steps in the process reveal limits of 

what can be observed in the game. 

The nature of this first step depends on whether the game uses new mechanics 

or adapts an existing game. As PP was partially based on an existing game (i.e., 

Crayon Physics Deluxe), the design team spent a considerable amount of time 

during this step playing and analyzing various solutions to Crayon Physics game 

levels. During this time, we noted how different game levels could be solved with 

different agents of motion. We also noticed that the Crayon Physics game engine 

treated the mass of an object as simplistically related to its volume (area). Because 

confusing mass and volume is a common misunderstanding in qualitative physics, 

we realized the need to create a different mechanism for expressing the mass of 

an object (density of lines). Shute and Ventura (2013) provided more detailed 

information about this adaptation. Additionally, activities in this phase include 

general activities of the domain analysis phase of ECD (Mislevy et al., 2003) such 

as cognitive task analysis, literature review, and subject-matter expert interviews 

(both game and domain experts). For PP, the design team consulted with two 

physics experts who reviewed gameplay and identified physics principles needed 

to solve problems in the game. 

It is important during this first step to start drawing graphical models that 

represent the relationships among competency variables and between competency 

and observable variables using simple drawing tools (e.g., white boards, presenta- 

tion software). As the authoring of game levels preceded, an augmented Q-matrix 

(Figure 3) was used to track the progress. The augmented Q-matrix documents 

the relationship between observable variables associated with tasks and compe- 

tency variables (the traditional role of the Q-matrix; Tatsuoka, 1983). It also has 

additional columns that capture detailed information about tasks (e.g., game level 

difficulty, task ID) that later experts used for task-specific parameters. Note that the 

Q-matrix combines information from the evidence models (which proficiencies 

are tapped) and the assembly model (how many tasks are there of each type). We 

also used it to check that we had sufficient evidence for each proficiency variable 

(see Almond et al., 2015). 

 

Step 2: Draw Network Structure 

Based on the artifacts from Step 1, the design team decides the structure of the 

Bayesian network. The complete Bayes net, sometimes called a motif  (Almond 

et al., 2015), contains all of the competency variables and all of the observables 

from every task. To make the construction task more manageable, the motif is bro- 

ken into a core competency model—which represents the distribution of the com- 

petency profiles in the target population—and a collection of Bayes net fragments 

called links—one for each task. Note that the graphical structure for task-related 

links from a common TM is usually the same, so the graphical structure for a link 
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FIGURE 3 

An augmented Q-matrix. 
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FIGURE 4 

Two versions of the physics competency model in PP. 
 
 
 

is associated with its EM. The Bayes net fragment for a link generally has different 

values for the CPTs but the same graphical structure as the fragment associated 

with the EM. Therefore, at this step, Bayes net fragments are only needed for the 

CM and each unique EM. 

Because all of the tasks in PP shared the same work product (i.e., objects 

drawn by the player) and hence the same observables in PP, only a single EM 

structure was needed. We built the Bayes nets and fragments using both the Netica 

(Norsys, 2012) graphical user interface and RNetica (Almond, 2013), an interface 

for driving Netica from R (R Core Development Team, 2013). RNetica could read 

details about the game level from the augmented Q-matrix, calculate conditional 

probability tables appropriate to the link, and convert the generic EM fragment 

to a task-specific link. It could also adjoin the fragment with the CM to create a 

one-task motif for validating the links. 

The initial network structure will likely be revised (usually simplified) as the 

design process proceeds. Figure 4 shows two versions of the physics competency 

model for PP. The model on the left is the initial model. The subject-matter 

expert suggested two facets of understanding of Newton’s laws: one for problems 

using linear momentum and one for problems using angular momentum. This 

results in a mezzanine layer between the overall proficiency (Newton’s  Laws) 

and the four nodes representing the four agents of motion. The final version 

(shown on the right) removed the mezzanine layer for two reasons. First, there 

were no direct observables for the two variables at this layer, and the strengths of 

relationships between variables that cannot be directly measured are difficult to 

estimate (Almond, Yan, & Hemat, 2008). Second, the distinction between the two 

was only that levels involving ramp solutions can be solved without knowledge 

of angular momentum, and there were not enough levels involving only ramps to 

provide good evidence of the distinction between knowledge of linear and angular 

momentum. It is quite common for the CM to be simplified as the development 

process unfolds, as the domain experts will often identify more subtle distinctions 

of knowledge than the assessment can meaningfully separate. 
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FIGURE 5 

Physics MOTIF with prior conditional distributions in PP. 
 
 

The highest level node, Newton’s Three Laws, serves two purposes. First, it 

models the dependency among knowledge of the four agents of motion. Second, 

it potentially can serve as an overall score for reporting. Once again, there are 

no observables that attach directly to that node. Almond and colleagues (2008) 

noted that this can cause issues with model identification and parameter recovery 

in simulation experiments. Following their suggestion, we introduce the Physics 

Knowledge node, shown as a pink hexagon (utility node), which is a fixed compos- 

ite (i.e., a weighted average with predefined weights) of the four agent variables, 

used for reporting purposes. 

The construction of the EM fragment also required several rounds of simpli- 

fication. The final model had four observable variables, one for each agent of 

motion. These could take on the values of Gold (player created an elegant/efficient 

solution), Silver (player eventually solved the level, but not efficiently), and None 

(player did not solve the level). Depending on which agent the player used to solve 

the problem, the appropriate observable variable would be set, and the others 

would be unobserved. Figure 5 shows the complete motif for the CM and EM. 

The upper seven (beige) nodes are from the CM and the four lower (green) nodes 

are from the EM. 

 

Step 3: Create Operational Definitions for Observable Variables 

The main source of evidence in GBA is the players’ interactions with the game 

that are saved in log files. In PP, the log file contains a description of all objects 

drawn by the player such as time needed to draw object, size, shape, and location, 
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as well as information about the level as a whole (e.g., whether a gold or silver 

trophy was earned, the duration of time spent on the level, and how many times the 

player restarted the level). Much of this information is low level, and higher level 

summaries were needed to enter into the Bayes net observables. In particular, the 

design team early on identified the most applicable agent(s) of motion, per level, to 

solve the level. This required identifying whether an object the player had drawn on 

the screen was intended to be a ramp, lever, springboard, pendulum, or something 

else. To this end, the design team of PP needed to develop an identification 

system based on specific rules of evidence that could distinguish among the four 

agents (Shute et al., 2013 describe the agent identification system). Deciding an 

appropriate level of indicators is an important issue that the design team carefully 

needs to decide. While low-level features can be directly used, it is often more 

efficient to create high-level summary indicators to (1) generate scores that can be 

more human interpretable and (2) reduce complexity of the BNs. 

Building such system was possible because of the built-in physics engine of 

the game, Box2D (Catto, 2013). Because the agent identification system relied 

on much of the same code as the game engine, it was implemented as part of the 

game mechanism, and the log file format was augmented to include the output of 

the agent identification system. 

 

Step 4: Parameterization of Conditional Probability Tables 

While experts could provide priors for conditional probability tables (CPTs) for 

each link for each game level, it can be a daunting task because it requires experts 

to consider a large number of configurations (Almond, 2010). To make this task 

manageable, design patterns (Mislevy et al., 2003) can be used to select parame- 

terizations and experts’ judgments on task difficulty and discrimination to set the 

initial parameter values. The CPTs for most observables can use the conjunctive, 

disjunctive, or compensatory design patterns (Almond et al., 2001, 2015). This in- 

formation is recorded in the augmented Q-matrix created in Step 1 and completed 

during this step. 

As mentioned earlier, PP awards  a silver trophy for any  solution to a  level 

in the game, but only awards a gold trophy for an efficient solution that only 

uses a few objects. Therefore, the observables are naturally ordered categorical 

variables (with categories of gold, silver, and none). There are two commonly used 

models for ordered categories: the graded response model (Samejima, 1997) and 

the generalized partial credit model (GPCM, Muraki, 1992). While both of these 

are IRT models and assume a single continuous competency variable, Almond 

and colleagues (2001) adapted the graded response model for multiple discrete 

competency variables using the common design patterns. 

Although design patterns based on the graded response model have been shown 

to work well in other applications (e.g., ACED—Shute, Hansen, & Almond, 2008), 
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FIGURE 6 

Roller Coaster and two possible solutions. 
 
 
 

they did not work well in PP. For some levels, players could stumble on a solution 

by randomly drawing things. In these levels, the distinction between the gold 

and silver categories provided more evidence (i.e., showed higher discrimination) 

than the distinction between silver and none. Other game levels were so difficult 

that only a few players achieved a gold trophy. In those levels, the distinction 

between silver and none provided the most evidence. The graded response model 

was limited in that the discrimination had to be the same for each level of the 

observable variable. The generalized partial credit model provided more flexibility, 

so we adapted the models of Almond et al. (2001) to use the partial credit rather 

than the graded response model (Almond et al., 2013; Almond, 2015). This new 

approach required four parameter values from the expert: difficulty for silver, 

difficulty for gold, discrimination for silver, and discrimination for gold for each 

agent of motion per level. 

 

 
Step 5: Elicit Prior Values 

PP consisted of 74 different levels, each of which possessed four observable out- 

come variables (corresponding to the four agents of motion). For each outcome 

variable, a game designer assigned four values: two difficulty values ranging be- 

tween –5 and 5 for the gold and silver trophies for that level, and two discrimination 

values ranging between 0 and 2. We illustrate this process using Roller Coaster as 

an example (Figure 6). 

Roller Coaster is designed to have a medium-level difficulty, and the intention is 

for players to use a springboard solution, which is already present in the level (i.e., 

the red bar hanging in the air), to propel the green ball to the balloon by attaching 

a weight to the springboard (see the picture in the middle panel of Figure 6). 

However, the design team noticed from a series of playtests that players could also 

use a pendulum to solve the problem (see panel on the right side of Figure 6). 

Table 1 reflects the design team’s knowledge about this level regarding difficulty 

and discrimination power. 
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TABLE 1 

Experts’ Estimates on Roller Coaster’s Difficulty and Discrimination Parameters 
 

  Ramp    Lever   Pendulum  Springboard 

S  G  S  G  S G  S G 

Difficulty 3  4  3  4  1 2  1 2 

Discrimination 0.1  0.4  0.3  0.6  0.5 0.9  0.5 0.8 

S = Silver, G = Gold. 

 

The first values represent difficulty for silver trophy and gold trophies, respec- 

tively. As ramp and lever solutions are rarely used for this level, the difficulty for 

silver and gold trophies for a ramp and lever solution were set high—as 3 and 

4, respectively. Because pendulum and springboard solutions would be similarly 

simple for this level, the difficulty for pendulum and springboard were set as 1 

and 2, respectively. Again, gold trophies are always harder to achieve than silver 

trophies. As ramp and lever trophies typically have less discrimination power than 

pendulum and springboard trophies, the values for them are relatively lower than 

the ones for pendulum and springboard. 

Given these parameter estimates, we were able to calculate the CPTs for the 

four observable variables. From the graph in Figure 5, each of the observables 

has a single parent competency that can assume the values of Low, Medium, or 

High. These competencies were assigned values of –0.97, 0, and +0.97 (the 17th, 

50th, and 83rd percentiles of a normal distribution). Plugging these values and the 

parameters from Table 1 into the GPCM equations (Muraki, 1992) yields the CPTs 

shown Table 2. We should emphasize that Table 2 shows experts’ initial beliefs, and 

 

TABLE 2 

Prior CPTs for Each Observable Related to the Roller Coaster Level in the Game 
 

 Ramp     Lever  

Gold Silver None   Gold Silver None 

High 0.001 0.002 0.997  High 0.001 0.002 0.997 

Medium 0.0005 0.0005 0.998  Medium 0.0005 0.0005 0.998 

Low 0.0005 0.0005 0.998  Low 0.0005 0.0005 0.998 

Pendulum Springboard 

 Gold Silver None   Gold Silver None 

High 0.050 0.121 0.828  High 0.044 0.106 0.850 

Medium 0.006 0.032 0.962  Medium 0.006 0.032 0.962 

Low 0.0006 0.008 0.992  Low 0.000 0.009 0.990 
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the prior distribution should be further refined and updated as more observations 

are entered. We developed an R software package (CPTTools; Almond, 2013) that 

calculated the CPTs and then used RNetica to create both an EM fragment   and 

a level-specific motif—the EM fragment connected to the CM Bayes net—which 

could be used to check if the parameters supplied by the game designer produced 

reasonable inferences. This process was repeated for all 74 game levels. 

 

 

Step 6: Construct Proxy Variables for Latent Variables (Optional) 

Step 5 produced a complete set of Bayes nets (i.e., the CM and an EM fragment per 

level). This produces the expert network, which can now be used to score a player. 

The scores from the expert network are probably no worse than a simple count 

of game levels solved. However, one of the advantages of using a full Bayesian 

approach is that the prior opinions about the difficulty of the game levels can be 

combined with data from field testing to refine the model parameters. 

Estimating the parameters of models with latent competency variables (of 

which Bayes nets are just one example) is tricky because the competency variables 

are never directly observed. Although it is possible to use various forms of the 

EM or MCMC algorithms, insufficient information about the latent variable can 

cause problems with convergence (Almond, Yan, & Hemat, 2008). A further 

complication in the case of PP was that we were using a new parameterization 

for the CPTs, so new software would be needed to estimate the parameters of the 

model (Almond, 2015). 

To avoid some of these difficulties, we created proxy variables for the latent 

competencies from the pretest and posttest. As both the pretest and posttest were 

short, we combined the two tests and created four subscales focused on each of the 

agents of motion. As the four subscales were short, we shrank them toward each 

other using the procedure suggested by Wainer and colleagues (2001). As a first 

pass at determining difficulties, we then divided the subscale scores into High, 

Medium, and Low values by taking the one-third and two-third quantiles as the cut 

points. Using the proxy variables in place of the latent variables allowed us to use 

a simpler gradient descent algorithm in Step 8 rather than the more complicated 

EM algorithm. 

A possible drawback of the proxy variable approach is that correlation between 

the Bayes net values and the pretest and posttest scores was one of the primary 

planned validity measures for PP. The use of the proxy variables in calibration 

(Step 8) would produce parameters that have maximum correlations. While the 

validity estimates could be positively biased, as the correlation between the Bayes 

net estimates and the pretest and posttest scores was fairly low, we thought that 

such an optimistic estimate would provide information about whether the problem 

was with the network parameters or the choice of observables. In particular, if 
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FIGURE 7 

An illustration of evidence identification and accumulation in PP. 
 
 

the correlation is still modest even with this optimistic calibration it indicates that 

more observable variables, or different tasks are needed to increase the evidence. 

 

 
Step 7: Calculate Observable Variables from Game Log Files 

According to the four-process architecture of Almond, Steinberg, and Mislevy 

(2002), the scoring of an assessment consists of two phases: evidence identifi- 

cation (EI)—calculating the observables from the work product, and evidence 

accumulation (EA)—updating competency variables on the basis of observed out- 

comes. In PP, the EA is a script running on top of the Bayesian networks written 

in RNetica and the presentation process is the game engine (Figure 7). 

The EI was a script written in Perl that extracted a vector of features (e.g., 

{RampTrophy:None, LeverTrophy:None, SpringboardTrophy:Silver, Pen- 

dulumTrophy:None}) for each game level. For instance, consider the game level 

Roller Coaster, described earlier. According to the EM, the EI process must (a) 

identify the final agent of motion used in the solution, and (b) determine whether or 

not the solution earned a silver or gold trophy. The EI process must also make one 

other determination: whether to consider each variable as “observed” or “missing.” 

If the player solved the level, then the rule was to observe only the solution. For 

example, if the player solved the Roller Coaster level with a springboard, this pro- 

vides minimal information about the player’s ability to use ramps or pendulums. If 

the player does not solve the level, only the agents the designer thought applicable 

are considered as “observed.” In the Roller Coaster level, only springboard and 

pendulum agents were considered to be applicable. If the player did not solve the 

level, SpringboardTrophy and PendulumTrophy would be considered observed 

(with value = None) and the other two observables would be considered missing. 

Conceptually, this should all be handled with the EI process. However in prac- 

tice, the boundaries of the EI process extend beyond the Perl script. As the rules 

for identifying agents required the physics engine, that part of the EI process 

was implemented within the game engine. As the rules for setting observables 

required level-specific data not in the log files, the logic of which observable to set 

to “missing” was handled by the RNetica code implementing the EA process. 
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Much of the development of the EI process was done in a rapid prototyping 

mode. The game output would be sent through the Perl script and the output 

checked against human viewing of replays of the game levels. In later stages, the 

results would also be run through the Bayes nets to score the players involved in 

the field test. In several cases, this revealed problems with the definitions of some 

observables that needed to be resolved. Fortunately, both Perl and R support rapid 

prototyping. 

 

Step 8: Updating CPTs 

We scored the field test data with the expert Bayes nets. For each student, we 

took the expected value of the highest level node (i.e., Newton’s Three Laws), 

assigning a value of 2 to High and 1 to Medium. The correlation with this expected 

a posteriori score with the posttest was low (around 0.1), so we decided to improve 

the Bayes nets by calibrating the CPTs to the pilot test data. 

If we assume that the parameters for each CPT are independent given the 

values of the variables, then the sufficient statistic for each CPT is the counts 

of observed cases in the cross-tabulation of the parent variables and the child 

variables (Spiegelhalter & Lauritzen, 1990). In each case, the parent variable 

is a latent competency instead of an observable variable. Therefore, the proxy 

variables constructed in Step 6 were used in place of the latent competencies. The 

parameters of the GPCM could be learned via a simple gradient descent algorithm 

implemented in the CPTTools package (Almond, 2015). 

Note that the data for some tables was fairly sparse, as for many levels there was 

one or more agents which were rarely used in solutions. We guarded against this 

in two ways. First, if players never successfully solved the level with a particular 

agent, then the CPT for that table was left at the priors. Second, the prior CPT was 

multiplied by 10 to produce pseudo observations, which were then added to the 

data from the field test. This is similar to the sometimes used trick of adding half 

to all cells of a contingency table where some of the cells are zero. The weight of 

10 was chosen as a good balance between letting the CPT for a level be influenced 

by a few observations and letting the CPT for a level with many observations be 

mainly data driven. Using this method, we were able to bring the correlation with 

the posttest up to around 0.36, closer to the correlation of the number of gold 

trophies with the posttest score. 

The proxy variables are a less than ideal solution as we expect that the networks 

calibrated using them will have a higher correlation with the posttest scores than 

if we used only data from the game. A better way to calibrate the CPTs is to use 

an EM algorithm, which alternates between calculating expected values for cell 

counts (the sufficient statistics for the CPTs) and maximizing the parameter values 

(Spiegelhalter & Lauritzen, 1990). Netica implements this learning algorithm 

but only in the special case where the table is parameterized as a collection of 
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independent Dirichlet distributions (one for each row). This does not work well 

for educational measurement as often the data for some rows of the CPT is much 

sparser than for others (Almond et al., 2015). A more complete implementation 

of this EM algorithm is planned for later work. 

 

 

Step 9 and Step 10: Debugging 

Complex systems, like GBAs, are rarely perfect on the initial implementation. 

Instead, they may contain flaws in conceptualization, specification, or implemen- 

tation that must be uncovered and corrected. In GBAs, an additional problem 

occurs in that players can approach the game in a way that is quite different 

from the approach envisioned by the designers. Almond and colleagues (2013) 

described some of the debugging procedures used with PP. We briefly review 

them here. 

First, completing Step 8 produced a pair of difficulty and discrimination pa- 

rameters for each game level and agent. The first level of debugging was to look 

for excessively low and high difficulty or discrimination values. For cases with 

unusual parameter values, the next step was to look at the estimated CPTs and the 

counts of trophies by relevant skill. In some cases, there was no problem (i.e., the 

gradient descent algorithm sometimes converged to a point at the tail of the IRT 

curve but still produced reasonable CPTs). If the CPT looked strange as well, this 

prompted a review of the game level. In one case, we discovered that an observable 

was accidently reverse coded. 

Second, we constructed evidence balance sheets (Almond et al., 2013; Madigan, 

Mosurski & Almond, 1997) for each student playing through the game. The 

evidence balance sheet is a graphical representation of how the probability of a 

high level of “Newton’s Three Laws” changes as evidence from each game level 

arrives from the system (Figure 8). Sudden jumps in the probability—that is, levels 

with high weights of evidence—could indicate a possible problem. Viewing the 

replays for levels with high weights of evidence could reveal problems with a 

player’s game strategy. 

For instance, one approach taken by players in some anomalous levels was 

called stacking. In stacking solutions, players exploited a feature of the game 

that if a thin object/line was drawn under the ball, the ball would jump on top 

of it. While this allowed players to, say, draw the arm of a lever under the ball, 

it also allowed players to move the ball around the screen by stacking multiple 

objects under it. Using stacking, players were able to solve somewhat difficult 

levels without applying much knowledge of qualitative physics. The prevalence of 

stacking led us to revise both the game mechanics (putting limits on the number of 

objects that could be drawn) and the agent identification rules (to avoid classifying 

stacks as simple machines). 
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FIGURE 8 

An example of balance sheet. 
 
 
 

This example illustrates a larger conceptual problem in the way the field 

study was conceived and the game was framed. When the design team play 

tested the game under development, our focus was on particular agents of mo- 

tion. Although there was no formal reward system, players would receive credit 

from their peers for solutions that used the agents of motion in creative and 

interesting ways. During the field test, however, the players were told that the 

player who earned the most trophies (with gold counting twice as much as sil- 

ver) would receive an extra $25 gift card. This encouraged the players to treat 

PP as a game, getting through the levels using any means possible. It is possi- 

ble that with different framing, for example, allowing players to show off their 

best solution in front of the class, the players would focus more on physics and 

creativity. 
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DISCUSSION 

 
While the 10-step procedure described here focuses on constructing Bayes nets, 

many of the steps are still applicable when different approaches (e.g., IRT) are 

used as a scoring engine. For example, if the score was simply a tally of the 

number of levels the player completed, Step 5 would still require the designers to 

decide if all levels should be weighted equally or if some should be given extra 

weight. However, because Bayes nets are so flexible, they did require the design 

team to spend more time on certain steps to explore alternative representations. 

In particular, the flexibility of Bayes nets to model dependent observables  from 

a single game level was an important part of the early conceptualization of the 

game-based assessment, even though in later iterations much of the complexity 

was removed from the scoring model. Because of that flexibility, a more deliberate 

approach to design (in our case ECD; Almond et al., 2014; Mislevy et al., 2003, 

2014) was necessary. 

It is fairly simple to get a Bayes net model up and running quickly. This 

was especially true once the design team had built scripts using RNetica to con- 

vert the augmented Q-matrix into Bayes nets. One consequence of this building 

Bayes nets quickly meant that the design team could inspect and evaluate the 

amount of evidence from game levels under various circumstances and then ad- 

just the game accordingly. This supports an iterative development of the game- 

based assessment. As demonstrated in Almond and colleagues (2013), focusing 

on evidence provided by the levels can also be used to help validate and de- 

bug the game. On the other hand, if a game-based assessment was intended 

for high-stakes purposes, a more careful definition of the latent ability nodes 

(and a better external test to serve as a proxy for the latent node) would be 

needed. 

Bayes nets are not a panacea that allows any game to be converted into a game- 

based assessment. While the Bayes nets can flexibly combine the evidence from 

multiple dependent observables, they do not help if the game does not provide 

adequate evidence. In particular, if the game mechanisms are not well aligned with 

the competencies being measured, or if unmodeled competencies are necessary 

to succeed at the game, the game might provide inadequate evidence. Putting the 

focus on the desired evidentiary information into the early stages of the design 

process should help designers create games that provide sufficient evidence to 

assess an interesting collection of proficiencies. 
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