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Imagine being asked to design an assessment as part of a class assignment. You have 
a  choice of topics to measure: math skills (e.g., two‐digit subtraction) or creativity 
(e.g.,  relative to creative problem solving). To get an “A” on the assignment, your 
assessment must be valid and reliable. Most of us would choose to develop the math 
assessment because designing a creativity assessment is really hard. Or is it?

Consider the image in Figure 22.1 that recently made its way through the Internet. 
The first two panels comprise the original image showing graphical representations 
for “knowledge” and “experience.” A week or two after the image initially appeared, 
a person tacked on a third panel to the pair, labeling it “creativity.”

The majority of us would agree that the newly altered image clearly provides positive 
evidence of creativity, and is likely more valid than evidence coming from responses to 
a series of self‐report questions addressing creativity (e.g., “I like to think of new ideas”). 
To understand the systemic implications of this example more fully we briefly discuss 
the connections between constructs, assessment, and learning illustrated by this figure.

Constructs

In education and psychology, the term construct typically refers to a complex 
psychological concept such as mathematics skills, reading ability, visual‐spatial 
processing, collaboration, curiosity, intelligence, creativity, conscientiousness, happi
ness, and anxiety. Generally speaking, we cannot directly measure constructs like we 
measure our weight and height because constructs are theoretical conceptualizations. 
However, we can make meaningful indirect inferences about an individual’s level of a 
particular construct based on an accumulation of targeted things they say and do in 
relevant circumstances (i.e., response data that contain evidence about constructs).

Assessing and Supporting 
Hard‐to‐Measure Constructs 

in Video Games
Valerie Shute and Lubin Wang

22

0002738796.INDD   535 5/12/2016   3:59:54 PM



536 Shute and Wang 

Some constructs such as creativity have historically been deemed “hard to measure” 
for a variety of reasons (e.g., lack of a clear and agreed‐upon definition, psychological 
and/or statistical multidimensionality of the construct, subjectivity of scoring, and so on). 
A few examples of hard‐to‐measure constructs that we have assessed in our own work 
include creativity (see Kim & Shute, 2015), problem solving (see Shute, Ventura, & 
Ke, 2015), persistence (see Ventura & Shute, 2013), systems thinking (see Shute, 
Masduki, & Donmez, 2010), gaming‐the‐system (see Baker, 2005; Wang, Kim, & 
Shute, 2013), and design thinking (see Razzouk & Shute, 2012), among others. Our 
general focus in this chapter is on optimal ways to assess hard‐to‐measure constructs, 
specifically within the context of well‐designed digital games. Our premise is that good 
games, coupled with evidence‐based embedded assessment, show promise as a means 
to dynamically assess hard‐to‐measure constructs more accurately and decidedly more 
engagingly than traditional approaches.

Assessment

Assessment involves more than just measurement. The term refers to collecting, 
a nalyzing, and interpreting information about a student’s understanding and/or 
performance relative to educational goals. An assessment can use a variety of proce
dures for evaluating student work and learning and thus represents a general collection 
of tools that includes standardized tests. For example, if one is interested in determining 
a student’s progress toward educational goals one can: (a) administer a test, (b) view a 
collection of relevant student work, (c) ask the student to evaluate her progress, 
(d) observe the student solve a complex task with manipulables, (e) examine and evaluate 
log file data from a digital environment, and so on.

That is, assessment is both an instrument and a process by which information is 
obtained relative to a known objective. But because inferences are made about what a 
person knows on the basis of her responses to a finite number of assessment tasks, 

Knowledge Experience Creativity!

Figure 22.1 Viral Internet image, circa 2014.
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there is always some uncertainty in inferences made on the basis of assessments. 
The goal in educational measurement is to collect relevant information about a student 
or a collection of students and to minimize uncertainty or error variance around 
reported information such as scores while doing so.

Consequently, key aspects of assessment quality are reliability and validity. 
Reliability refers to the consistency of assessment results across conditions like alter
native assessment forms, testing occasions, or testing environments. Validity refers 
to  the extent to which the assessment accurately measures what it is supposed to 
m easure, and the accuracy and defensibility of the inferences made from task or 
test results.

There are three closely related educational and political functions of assessment. 
The  first function involves “closing the loop,” or using actionable results to improve 
learning and make good decisions about what to do next – by the student, teacher, 
administrator, or other stakeholders. This is true whether the purpose of the assessment 
is to support student learning (formative uses) or accountability (summative uses).

A second related function of assessment is to “make student learning visible.” As we 
mentioned earlier, you cannot assess what another person knows, can do, feels, or 
believes unless there is some observable evidence of that learning. Establishing how to 
make learning visible, however, is difficult. Most of a person’s knowledge (and other 
mental states and traits) is invisible to others, and sometimes even to oneself. Because 
a person’s thoughts cannot be seen, one depends on indicators that suggest the nature 
or status of his or her knowledge.

A third important function of assessment is “diagnostic.” That is, assessment is part 
of a process used to determine students’ strengths and weaknesses in relation to 
e ducationally valuable competencies. As such, assessment provides a way to figure out 
the nature and extent of difficulties in a student’s understanding or problem‐solving 
efforts. To begin to use assessment to support student learning, we need to design tasks 
so that this information can be disentangled and interpreted in valid and reliable ways 
(see Hunt & Minstrell, 1996; Minstrell, 2001, for more on this topic).

In line with sound assessment design principles, a good diagnostic assessment 
system should allow the user to be able to infer competency estimates accurately for a 
student at various targeted “grain sizes” (i.e., the scope or generality of the competencies; 
see McCalla & Greer, 1994) to serve these three functions. This process begins with the 
design of a reasonable (i.e., accurate and informative) competency model, which provides 
the basis for task‐level (i.e., real‐time, formative) and overall (i.e., summative) diagnoses 
to occur (e.g., Jang, 2009; Leighton & Gierl, 2007; Rupp, Templin, & Henson, 2010; 
Shute, Ventura, Bauer, & Zapata‐Rivera, 2009; VanLehn, 2006).

Task‐level diagnoses can provide immediate support to the student via task‐
specific feedback. Estimates of more general competencies provide the basis for 
decisions concerning what to do next such as selecting a new task or offering other 
content to the student, providing practice, or some other instructionally helpful 
activities. This can be accomplished automatically behind the scenes via computa
tional selection rules and algorithms. Alternatively, diagnostic results can be provided 
to the teacher in the form of instructional prescriptions or suggestions about what to 
do next (e.g., proceed to the next topic or spend more time helping students understand 
the current topic).
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Learning

Learning refers to the acquisition of new knowledge and skills as well as other personal 
attributes, and is generally regarded as a constructive activity. However, the construction 
can assume many forms. Individuals differ in how they learn (processes) as well as what 
they learn (outcomes). In addition, there are many other variables that affect both 
processes and outcomes including abilities, interests, backgrounds, prior knowledge, 
skills, personality traits, affective states, self‐efficacy, and motivation (e.g., Shute, 
Lajoie, & Gluck, 2000).

Advances in the learning sciences suggest that acquiring and demonstrating new 
knowledge and skills occurs within an environment or context, which includes learners 
with specific cognitive and affective profiles and tools to support and assess learning 
(Pellegrino, Chudowsky, & Glaser, 2001). Assessment can play a key role in facilitating 
learning. That is, when we assess student learning, we are asking the question, 
“What have the students learned and how well have they learned it?”

Organization of Chapter

The rest of the chapter is split into six sections as follows. In the next section we identify 
some specific hard‐to‐measure constructs and describe what makes them especially 
difficult to measure. In the second section we argue for the use of well‐designed games to 
assess and support such hard‐to‐measure constructs. In the third section we recommend 
a particular assessment design framework called evidence‐centered design (ECD; see 
Mislevy, Steinberg, & Almond, 2003) coupled with a form of embedded assessment 
called stealth assessment (e.g., Shute, 2011) to measure and support learning in games. 
In the fourth section, we illustrate two projects that involve the stealth assessment of 
two hard‐to‐measure constructs (problem solving and creativity) within two different 
games (Plants vs. Zombies 2 and Physics Playground). The fifth section focuses on 
p sychometric rigor, especially relative to establishing the reliability and validity of 
stealth assessments. Finally, we conclude with a brief discussion of the obstacles to 
s urmount in this line of research and the future research needed.

Hard‐to‐measure Constructs and 
Why They are Hard to Measure

Hard‐to‐Measure Constructs

With the emergence of the Internet circa mid‐1990s, the world became more 
interconnected, effectively smaller, and more complex than before (Friedman, 
2005). Developed countries now rely on their knowledge workers to deal with an 
array of complex problems, many with global ramifications (e.g., climate change or 
renewable energy sources). When confronted by such problems, tomorrow’s workers 
need to be  able to think systemically, creatively, and critically (see, e.g., Shute & 
Torres, 2012; Walberg & Stariha, 1992). These skills are a few of what many 
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e ducators are calling twenty‐first‐century (or complex) competencies (see 
Partnership for 21st Century Learning, 2012; Trilling & Fadel, 2009).

Ensuring that students at any age succeed in the twenty‐first century requires fresh 
thinking about what knowledge, skills, and other personal attributes (i.e., what we 
call, collectively, competencies) are or should be supported in our schools. In 
addition, there is a need to design and develop valid assessments to measure and 
support these competencies. Except in rare instances, our current education system 
neither teaches nor assesses these new competencies despite a growing body of research 
showing that competencies such as persistence, creativity, self‐efficacy, openness, and 
teamwork can substantially impact student academic achievement (Noftle & Robins, 
2007; O’Connor & Paunonen, 2007; Poropat, 2009; Sternberg, 2006; Trapmann, 
Hell,  Hirn, & Schuler, 2007). As a result, many of our current assessments fail to 
assess what students actually can do with the school‐acquired knowledge and skills 
(Shute, 2009).

Measurement Challenges

Key measurement challenges for hard‐to‐measure constructs include (a) lack of a clear 
and consensual definition and/or operationalization of the construct, (b) theoretical 
multidimensionality of the construct where certain dimensions may have internal as 
well as external sources (e.g., see Jirout & Klahr, 2012 for problems relating to measuring 
curiosity), (c) difficulty disambiguating trait from state (e.g., anxiety and creativity – 
where some people tend to be generally anxious and/or creative, and others are only 
anxious and/or creative in certain settings or domains), (d) difficulty disambiguating the 
generality of the construct (e.g., is there a single “persistence” variable, or is persistence 
solely dependent on the context), and (e) reliance on outdated multiple‐choice and 
self‐report measures, the former narrowly focused and the latter flawed.

Self‐report measures in particular are subject to “social desirability effects” that 
can lead to false reports about behaviors, attitudes, and beliefs (see Paulhus, 1991). 
In addition, test takers may interpret specific self‐report items differently 
(e.g.,  what it means to “work hard”) leading to unreliability and lower validity 
(Lanyon & Goodstein, 1997). Finally, self‐report items often require that individuals 
have explicit knowledge of their dispositions (see, e.g., Schmitt, 1994), which is not 
always the case.

What we need are new valid performance‐based assessments that assess how 
students use complex competencies that are directly relevant for the real world. 
One challenge with developing a performance‐based assessment for a hard‐to‐measure 
construct is crafting appropriate situations or problems to elicit the competency of 
interest. One way to approach this problem is to use digital learning environments, 
including video games, to simulate a variety of problems for performance‐based 
assessment (Dede, 2005; DiCerbo & Behrens, 2012; Gobert, Sao Pedro, Raziuddin, 
& Baker, 2013; Quellmalz, Timms, Silberglitt, & Buckley, 2012; Shute, 2009). Digital 
learning environments can provide meaningful assessment environments by 
s upplying students with scenarios that require the application of various 
competencies.
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Well‐designed Games as Vehicles for Assessing 
and Supporting These Constructs

According to the findings from a three‐year ethnographic study on middle‐ and high‐
school students, playing video games with friends and family has become a daily 
r outine (Ito et al., 2010) and using video games for educational purposes is becoming 
more common. While navigating game environments, players engage in higher‐order 
thinking skills such as reasoning, decision making, and problem solving. Players often 
receive ongoing feedback in the form of scores or their in‐game characters’ progress 
along the storyline. Playing games is basically the process of developing and honing 
particular competencies required to advance in the game.

Moreover, players are often faced with various tasks that are challenging but ulti
mately attainable. Even when they get stuck, they experience what is called “pleasant 
frustration” (Gee, 2007) because that is the risk they chose to take, and solving very 
difficult problems yields a large sense of achievement. Interested educators and 
p ractitioners are beginning to recognize that certain video games can be great 
educational tools; however, not so many realize yet the potential of games as an 
assessment vehicle.

Well‐designed games can provide meaningful assessment environments by providing 
students with scenarios or tasks that require the application of various competencies 
(e.g., creativity, problem solving, and persistence). Furthermore, there is a convergence 
between the core elements of a good game and the characteristics of productive learning 
(Shute, Rieber, & Van Eck, 2011). That is, learning is at its best when it is active, goal‐
oriented, contextualized, and interesting (e.g., Bransford, Brown, Cocking, Donovan, & 
Pellegrino, 2000; Bruner, 1961); thus, learning environments should be interactive, 
provide ongoing feedback, grab and hold attention, and have appropriate and adaptive 
levels of challenge – all features of good games.

Gee (2003) has argued that the secret of a good game is not its 3D graphics and other 
bells and whistles, but its underlying architecture in which each level dances around the 
outer limits of the player’s abilities, seeking at every point to be hard enough to be just 
doable (see also Csikszentmihályi, 1990, on flow theory). Along the same line, psychol
ogists (e.g., Vygotsky, 1978) have long argued that the best instruction hovers at the 
boundary of a student’s competence. Moreover, a good game reinforces a sense of 
c ontrol – a critical metacognitive component for self‐regulated learning (Zimmerman 
& Schunk, 2001). Finally, both well‐designed games and productive learning processes 
employ ongoing feedback as a major mechanism of play/learning support. All of these 
features of well‐designed games warrant them as an appropriate vehicle to assess and 
support hard‐to‐measure constructs.

Consider the hard‐to‐measure construct of persistence as an illustration. Persistence 
can be broadly defined as the motivation to work hard despite challenging conditions and 
is considered to be a facet of conscientiousness. Conscientiousness has consistently been 
found to predict academic achievement from preschool (Abe, 2005) to high school (e.g., 
Poropat, 2009) to the postsecondary level (e.g., Noftle & Robins, 2007) and adulthood 
(e.g., Shiner, Masten, & Roberts, 2003). The traditional way to measure persistence is via 
self‐report which, as discussed above, has limitations. However, new performance‐based 
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methodologies record and score actual behaviors pertaining to that particular 
c ompetency within an interactive context like a game.

In Physics Playground (formerly “Newton’s Playground,” see Shute & Ventura, 2013), 
actions that a player takes that inform the persistence variable include (a) how long a 
person spends on a difficult problem (where longer = more persistent), (b) the number 
of failures and re‐tries before success, (c) incidences of returning to a hard problem 
after skipping it, and so on. Each instance of these “persistence indicators” updates the 
student model of this variable. Similarly, indicators for other facets of conscientiousness 
(e.g., perfectionism and organization) are captured and in turn update the overall model 
of conscientiousness. Over time, with a sufficient amount of evidence accumulated, 
the psychometric properties of the assessment (especially relative to reliability and 
validity) increase.

Evidence‐centered Design and Stealth Assessment 
in Well‐designed Games

As we discussed in the previous section, one main challenge for educators who want to 
employ or design games to support learning is making valid inferences – about what 
the student knows, believes, and can do – at any time, at various levels, and without 
disrupting the flow of the game (and hence engagement and learning). One way to 
increase the quality and utility of an assessment is to use ECD which informs the design 
of valid assessments and yields real‐time estimates of students’ competency levels 
across a range of knowledge and skills (Mislevy et al., 2003).

Evidence‐Centered Design (ECD)

The ECD approach provides a framework for developing assessment tasks that are 
explicitly linked to claims about personal competencies via an evidentiary chain 
(i.e., valid arguments that serve to connect task performance to competency estimates) 
and are thus valid for their intended purposes. ECD consists of several conceptual and 
computational models that work in concert where the goal is to help assessment 
designers coherently align (a) the claims that they want to make about learners and 
(b) the things that learners say or do in relation to the contexts and tasks of interest 
(e.g., Mislevy & Haertel, 2006; Mislevy et al., 2003, and for a simple overview, see Shute, 
Kim, & Razzouk, 2010).

In ECD, after conducting a thorough domain analysis relative to the construct in 
question, the conceptual assessment framework (CAF; see Mislevy et  al., 2003) is 
developed, consisting of five interrelated conceptual models. All five models are rele
vant to answering the questions of what‐when‐how to measure, but three of the five 
models are fundamental for structuring, operationalizing, planning, designing, and 
defending test‐score inferences. The three main models in the ECD framework include 
the competence/student model, evidence model, and task models, described in more 
detail later. Once the CAF is formulated, it feeds into the four‐process architecture 
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(see Almond, Steinberg, & Mislevy, 2002) which is a practical component in ECD for 
organizing and implementing the delivery of assessments.

Competency model (CM). What collection of knowledge, skills, and other attributes 
should be assessed? Variables in the competency model (CM) describe the set of 
knowledge and skills on which inferences are based (see Almond & Mislevy, 1999). 
Although ECD can work with simple one‐dimensional competency models, its strength 
comes from treating a competency as multidimensional. The term student model 
(which comes from the intelligent tutoring system literature, see Shute & Psotka, 
1996) is used to denote an instantiated version of the CM – like a profile or report card, 
only at a more refined grain size. Values in the student model express the assessor’s 
current belief about the level on each variable within the CM for a particular student.

Evidence model (EM): What behaviors or performances should reveal those compe-
tencies? An evidence model (EM) expresses how the student’s interactions with, and 
responses to a given problem constitute evidence about competency model variables. 
The EM attempts to answer two questions, namely (a) what behaviors or performances 
reveal targeted competencies and (b) what is the statistical connection between those 
behaviors and the variables making up the CM? The EM consists of two main parts: (a) the 
evidence rules (sometimes called the scoring model or rubrics) and (b) the statistical 
model (sometimes called the measurement model).

The evidence rules take as input the work product resulting from the student’s inter
action with a task, which might be the selection of an answer option, a short answer, a 
graphical response, a series of actions taken to solve a game level, and so on. As output, 
the evidence rules produce observable variables (i.e., scores/indicators) that are 
e valuative summaries of the work products (e.g., “If the student has selected option D, 
then the score takes the value of correct; otherwise the score takes the value of incor
rect”). In this case, the evidence rule takes the student’s response, or “work product,” to 
p roduce a score of correct or incorrect. Scoring can handle more complex cases with 
more than just dichotomous options of correct/incorrect.

Second, the statistical model expresses the relationship, in probability or logic, bet
ween the competency model variables and the observable variables (scores). It enables 
updating the competency model variables in a way that aggregates scores across tasks 
or performances. The statistical model may be as simple as number‐right scoring for a 
single competency variable or may employ multidimensional statistical approaches 
such as Bayesian inference networks/Bayes nets to update an overall competency and 
other competency variables (see Shute & Ventura, 2013 for an applied example).

Task model (TM): What tasks or problems should elicit those behaviors that comprise the 
evidence? The task model (TM) variables describe features of situations that will be used 
to elicit performance. A TM provides a framework for characterizing or constructing 
situations with which a student will interact to provide evidence about targeted aspects 
of competencies. The main purpose of tasks or problems is to elicit observable evidence 
about unobservable competencies. The EM serves as the glue between the TM and CM.

There are two main reasons why we believe that the ECD framework fits well 
with the assessment of learning in digital games. First, in games people learn in action 
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(Gee, 2003; Salen & Zimmerman, 2005). That is, learning involves continuous interac
tions between the learner and the game, so learning is inherently situated in context. 
Therefore, the interpretation of knowledge and skills as the products of learning cannot 
be isolated from the context, and neither should assessment. The ECD framework 
helps us to link what we want to assess to what learners do in complex contexts. 
Consequently, an assessment can be clearly tied to learners’ actions within digital games, 
and can operate without interrupting what they are doing or thinking (Shute, 2011).

The second reason that ECD is believed to work well with digital games is because it 
is based on the assumption that assessment is, at its core, an evidentiary argument. Its 
strength resides in the development of performance‐based assessments where what is 
being assessed is latent or not apparent (Rupp, Gushta, Mislevy, & Shaffer, 2010). In 
many cases, it is not clear what people learn in digital games generally. However, with 
the help of ECD, we can figure out just what we want to assess (i.e., the claims we want 
to make about learners) and clarify the intended goals, processes, and outcomes of 
learning so that suitable stealth assessment processes are created that support 
educational objectives in a meaningful and data‐driven way.

Stealth Assessment

For many people, tests are a source of anxiety. Test anxiety can have adverse effects on 
performance. New directions in educational and psychological measurement allow 
more accurate estimations of students’ competencies, and new technologies let us 
administer formative assessments during the learning process, extract ongoing, multi
faceted information from a learner, and react in immediate and helpful ways, as needed. 
As mentioned earlier, when embedded assessments are directly woven into the fabric of 
the learning or gaming environment so that they are virtually invisible, we call that 
stealth assessment (e.g., Shute et al., 2009).

The process of stealth assessment ensures that the assessment will neither disrupt 
flow (Csikszentmihályi, 1990) as learners fully engage in the gaming environment nor 
that it will cause anxiety that is often associated with traditional types of assessment. 
Such assessments are intended to support learning and remove (or seriously reduce) 
test anxiety while not sacrificing validity and reliability (e.g., DiCerbo & Behrens, 2012; 
Shute, Hansen, & Almond, 2008). Moreover, stealth assessments are supported by 
automated scoring and machine‐learning techniques to infer things that would be too 
hard for humans (e.g., estimating values of competencies across a network of skills).

Stealth Assessment and ECD

In digital gaming environments with stealth assessment, the CM accumulates and rep
resents belief about the targeted aspects of competencies, expressed as probability 
distributions for CM variables (Almond & Mislevy, 1999). EMs identify what the 
student says or does that can provide evidence about those skills (Steinberg & Gitomer, 
1996) and express in a psychometric model how the evidence depends on the CM 
variables (Mislevy, 1994). TMs express situations that can evoke required evidence. 
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One big question is not about how to collect this rich digital data stream, but rather 
how to make sense of what can potentially become a deluge of information.

As shown in Figure 22.2, as students interact with tasks/problems in a game during 
the solution process they are providing a continuous stream of data captured in a log 
file (arrow 1) that is analyzed by the evidence model (arrow 2). The results of this 
analysis are data (e.g., scores or classifications) that are passed to the competency 
model, which statistically updates the claims about relevant competencies in the student 
model (arrow 3).

The estimates of competency levels in CM variables can also be used diagnostically 
and formatively to provide feedback and other forms of learning support to students as 
they continue to engage in gameplay (arrow 4). This process of making valid inferences 
about competency states and then using that information as the basis for offering 
learning support to the student is important to support the growth of constructs.

Returning to our original premise, we believe that well‐designed games with 
e vidence‐based stealth assessment can be used to assess hard‐to‐measure constructs 
in  real time, more accurately and engagingly than traditional approaches (see 
Shute, Ventura, & Kim, 2013). Additionally, we posit that good games provide an 
environment that can potentially improve various competencies including hard‐to‐
measure constructs such as persistence. For example, games contain many problems 
that require players to persevere despite failure and frustration. That is, many good 
games can be quite difficult, and pushing one’s limits is an excellent way to improve 

1

4

2

3

Gameplay Update student model

Automated scoringCapture data in log file

Figure 22.2 Stealth assessment cycle.
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persistence, especially when accompanied by the great sense of satisfaction one gets on 
successful completion of a thorny problem (see, e.g., Eisenberger, 1992; Eisenberger & 
Leonard, 1980).

Examples of Stealth Assessments of Hard‐to‐Measure 
Constructs in Two Games

To garner more acceptance of the idea of using games as assessments – especially for 
hard‐to‐measure constructs – we having been designing, developing, validating, and 
testing various stealth assessments for the past eight or so years. Our focus in this 
section is to introduce two examples of using video games as stealth assessment vehicles 
to measure two hard‐to‐measure constructs – problem‐solving skills and creativity.

Stealth Assessment of Problem Solving Skills in Plants vs. Zombies 2

As Prensky (2005) has argued, video games provide a meaningful context for problem 
solving where players learn the rules of a particular game – what to do and what not to 
do in order to solve problems. Thus games can be a natural medium to assess problem 
solving skills. We recently worked with the GlassLab (https://www.glasslabgames.org/) 
on a project to design stealth assessments of problem‐solving skills in the game Plants 
vs. Zombies 2 (PvZ2). PvZ2 was developed by PopCap Games and published by 
Electronic Arts (July 2013) on the heels of the very successful first game of the series, 
Plants vs. Zombies. PvZ2 is a tower defense game utilizing a time‐travel theme wherein 
players are invited to a number of different worlds (e.g., Ancient Egypt, Pirate Seas, Wild 
West, and Far Future) across different eras with around 25 challenging levels per world.

The goal of this game is to fight off approaching zombies by growing powerful plants 
in the limited soil squares in front of the home base. Each world contains a standard set 
of zombies along with some new zombie types that are tougher than the original ones 
and that possess special abilities. Players are also offered new types of plants to place in 
the given space in front of their home base. Different types of plants have different 
powers and so they should be chosen and planted wisely to defeat zombies effectively 
and efficiently. Plants can gain additional power for a short period of time after a player 
drag‐and‐drops plant food onto them. New types of zombies and plants are acquired as 
the player advances through the game; see Figure 22.3 for a screenshot of the game.

We created a problem‐solving competency model after conducting a thorough 
review of the relevant literature (see Shute & Wang, 2015) and observing a number of 
experts’ gameplay solutions on YouTube; we also aligned the competency model vari
ables to the Common Core State Standards. That is, we selected standards (for grades 6–8) 
that are highly related to problem‐solving skill for inclusion in our problem‐solving 
competency model.

We ended up with four primary problem‐solving facets, (1) understanding the 
givens and constraints in a problem, (2) planning a solution pathway, (3) using tools 
effectively/efficiently during solution attempts, and (4) monitoring and evaluating 
progress. Our CM for problem‐solving within games of this type of genre (i.e., tower 
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defense, strategy games) is thus conceptualized as a combination of the four main 
variables along with their relevant indicators (i.e., what the player does in the game that 
provides evidence for each facet). After finalizing the CM, we delineated connections 
among the problem solving facets (theoretical) and the gameplay activities (observable 
indicators) for establishing the EM, which specifies relationships among the observable 
behaviors in the game and levels of the variables in the competency model.

Figure 22.4 displays an example of how we linked the CM variables with sample 
evidence (i.e., indicators) derived from gameplay. As players interact with the game, 
estimates related to their problem‐solving skills are updated as ongoing evidence 
accrues. For example, players are expected to collect sun power to grow certain types of 
plants. Different plants cost different amounts of sun power to grow, usually a function 
of the plant’s strength. Generally, at the beginning of the game, players are provided 
with a very limited amount of sun power. Players should use the initial sun power to 
grow sunflowers that will generate more sun power.

The lack of sun power at the beginning of the level is considered a constraint. If a 
player is not able to identify the constraint and plants something other than sunflowers 
early in the game, then the player would be scored “low” on this constraint facet and 
will likely fail that level because he or she will not have enough offensive plants to fight 
the approaching zombies later. Players who understand the constraint would likely 
plant as many sunflowers as quickly as possible at the beginning to allow for sustainable 
development.

Figure 22.3 Screen capture of PvZ2.
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To accumulate evidence across levels in the game, we use Bayesian networks or 
Bayes nets for short, which are graphical representations of the conditional dependencies 
between different variables (Almond, Mislevy, Steinberg, Yan, & Williamson, 2015); 
we created our Bayes nets using the software Netica (by Norsys Software Corporation). 
In our Bayes nets for the level relating to the sunflowers example, the relevant indicator 
was defined as “Player plants at least three sunflowers at the beginning before the 
second wave of zombies shows up.” There are two possible states of this indicator: “yes” 
(the player has accomplished this indicator in the current level) and “no” (the player 
did not accomplish the indicator). Successful completion of the indicator leads to an 
increase in the player’s score on the specific skill “analyze givens and constraints” and 
on the “overall problem solving skill.”

This is indicator no. 8 shown with a border in the lower‐left side of Figure  22.5, 
which illustrates the full problem‐solving Bayes net for level 9 of PvZ2. The upper five 
nodes represent the overall problem‐solving estimate along with the four main skills or 
facets of interest, which are the theoretical constructs on which we are making 
inferences. The lower nodes represent the gameplay indicators, which are the observables 
that will be used as the basis for rendering inferences.

Table 22.1 shows the conditional probability table for indicator no. 8 and this skill 
variable in level 9 of “Ancient Egypt.” We determined the distributions of conditional 
probabilities based on the DiBello‐Samejima models, which includes the item 
response theory parameters of discrimination and difficulty (see Almond, 2010; 
Almond et al., 2015).

The discrimination estimate for this indicator/item was set to 0.1 (i.e., low) and the 
difficulty was set to −0.3 (i.e., fairly easy). These parameters were determined via data 
we collected from a pilot study using the game.
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Example observables

[R] Player tries to place plants on mold, tombstones, seas, etc.

[R] Player uses iceberg lettuce in front of snapdragon

When spring beans fall asleep, player uses iceberg lettuce to
delay upcoming zombies

When the fight is intense (e.g., ratio of zombies to plants
exceeds 2:1), player shovels sunflowers in the back and
replaces them with offensive plants

Player collects falling sun, plant food, coins before they
disappear

Player plants with sun producers in the back (left), attack
plants in  the middle, and defensive plants up front (right)

Player chooses area effect plants + twin sunflowers for
levels that require “never have more than 15 plants”

Player replaces any damaged plants near the endangered
ones (within 1 square) quickly (within 5 seconds)

Analyze givens/constraints

Plan a solution pathway

Use tools effectively/efficiently

Monitor/evaluate progress

Figure 22.4 CM for problem solving in PvZ2; [R] means reverse coded.
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All discrimination and difficulty parameters for each indicator in each level were 
specified in an augmented Q‐matrix (Almond, 2010). In the basic format of the 
Q‐matrix, the rows represent the indicators relevant for problem solving in each level 
and the columns represent the four key skills or facets of problem solving. If an indicator 
is relevant to a skill, the value of the cell is “1”; otherwise it is “0.” We recommend always 
conducting a detailed task analysis before making the connection between competency 
variables and evidence so that proper indicators from the game can be identified to 
elicit specific evidence about the hard‐to‐measure construct. In the augmented version 
of the Q‐matrix, we additionally specified the values of the difficulty and discrimination 
parameters of each indicator at different levels. The values of difficulty and 
discrimination were used to determine the conditional probabilities between the 
indicator and the facet, which is important for future reference (e.g., examination or 
adjustment of the values).

Data from the PvZ2 project are currently being analyzed. We completed a small pilot 
test and adjusted conditional probability tables in our original PvZ2 Bayes nets based 
on participants’ performance data in the game as well as on an external measure of 
problem‐solving skill the players used before gameplay called MicroDYN (Wustenberg, 
Greiff, & Funke, 2012). Once the game and its updated data‐collection and accumulation 
processes are completed, our next step will be to conduct a full validation study of the 
stealth assessment problem solving measures against existing validated measures.

Specifically, we plan to use Raven’s progressive matrices (Raven, 1962, 2000) and 
MicroDYN as our external measures of problem‐solving skill and will correlate our in‐
game estimates of each of the four facets (as well as the overall measure of problem solv
ing) against the external measures to test construct validity. Results from a small validation 
study (n = 52) show that our stealth assessment measure of problem‐solving skills 
significantly correlates with both Raven’s (r = .40; p < .01) and MicroDYN (r = .48; p < .01) 
suggesting convergent validity (for more details see Shute, Ke, and Wang, in press).

Stealth Assessment of Creativity in Physics Playground

The second hard‐to‐measure construct we elected to discuss in this chapter is creativity. 
Lubart (1994) defines creativity as the ability to produce work that is both novel and 
relevant. Creativity is identified as one of the most essential twenty‐first‐century skills 
that separate students who are prepared for complex and challenging life and work 
environments from those who are not (Partnership for 21st Century Learning, 2012). 
The purpose of this example is to present how to model and assess creativity within a 
game called Physics Playground (Shute & Ventura, 2013).

Table 22.1 Conditional probability table for indicator no. 8 and specific skill in Level 9.

Analyze givens and constraints Yes No

High 55.4 44.6
Medium 51.3 48.7
Low 47.2 52.8
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Physics Playground is a two‐dimensional physics game designed to assess and 
support players’ conceptual physics understanding, persistence, and creativity. The 
goal of the game is to draw objects on a screen using a mouse and colored markers to 
help the green ball reach the red balloon. Created objects then come to life in line with 
the laws of physics. Different levels in the game require players’ application of their 
emergent conceptual understanding of Newton’s three laws of motion, as well as mass, 
gravity, conservation of energy and momentum (Shute et al., 2013). Players are provided 
with a simple tutorial at the beginning of the game to learn how to create what are 
called “agents of force and motion” (i.e., simple machines) to help them solve different 
puzzles. The agents of force and motion include ramp, lever, pendulum, and springboard 
(see Shute & Ventura, 2013, for more details about the game).

Based on the literature, creativity was defined as encompassing three main facets: 
fluency, flexibility, and originality (Guilford, 1956). Fluency refers to the ability to 
p roduce a large number of ideas (also known as divergent thinking and brain
storming); flexibility is the ability to synthesize ideas from different domains or 
categories (i.e., the opposite of functional fixedness); and originality means that ideas 
are novel and r elevant. There are other dispositional constructs that are an important 
aspect of c reativity, but, due to the nature of the game, we decided to focus on the 
cognitive skills of creativity. Figure  22.6 shows the CM variables of creativity and 
a  few examples of associated in‐game indicators identified as evidence for the CM 
variables.

Number of agents used in a problem

Example observablesFacets

Number of drawn objects per solved problem

Number of drawn objects per unsolved problem

Number of correct agents attempted in the problem

SD among frequencies of agent use [per session] [R]

Consecutive use of incorrect agent [R]

Difference between ball trajectory in a solution from
the expected trajectory

Openness to experience

Fluency

Flexibility

Originality

C
re

at
iv

ity

Dispositions

Cognitive
skills

Willingness to take risks

Tolerance for ambiguity

Figure 22.6 CM of creativity and sample indicators; [R] indicates reverse coded.
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To illustrate how the creativity stealth assessment works in Physics Playground, 
c onsider one of the game’s 74 levels called “Swamp People” shown in Figure  22.7a, 
which is a medium‐difficult level in the game. In a larger study (Shute et al., 2013) we 
tested the game with 167 middle school students and found the most common solution 
to “Swamp People” was to create a ramp from ball to balloon as shown in Figure 22.7b. 
Less f requently, students created a springboard to solve the level as shown in 
Figure 22.7c. In just one case, a student used a lever, situated above the alligator’s head 
to solve the problem as shown in Figure 22.7d.

When designing this level, the game designers did not expect anyone to use a lever 
solution, so the solution shown in Figure 22.7d provides positive evidence for flexibility 
and originality, with a higher weight for originality compared with solutions shown in 
Figures 22.7b and 22.7c. Evidence was identified and scored from gameplay and accu
mulated in the corresponding Bayes net. Each level in the game had its own Bayes net 
as the levels differed in terms of difficulty as well as set of applicable agents.

Figure 22.8 shows the Bayes net for the “Swamp People” level similar to the Bayes net 
in Figure 22.5 from the previous example. The upper four nodes represent the overall 
creativity estimate along with the three main skills (fluency, flexibility, and originality), 
which are the theoretical constructs on which we are making inferences. The lower 
nodes represent the gameplay indicators, which are the observables that will be used as 
the basis for rendering inferences; we only include the indicators for flexibility and 
originality for illustration purposes.

0:25 1:27

0:42 Agent menu Agent menu

Agent menu Agent menu

Objects left 8

(a) (b)

(c) (d)

Objects left 8

Objects left 10 Objects left 9

0:35

Figure  22.7 “Swamp People” level in Physics Playground (a) with typical ramp solution 
(b), less common springboard solution (c), and rare lever solution (d).
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Before using our data, we initialized this Bayes net with prior probabilities of each 
indicator node based on an approximately normal distribution except for the probabil
ities relating to “deviation from expected trajectory” because we assumed that student 
trajectories would more likely be “common” than “rare” and “unusual.” Although prior 
probabilities came from expert opinions, the estimates become more accurate as more 
student performance data are entered into the nets. Using the gameplay examples shown 
in Figure 22.7b, Figure 22.7c, and Figure 22.7d, the estimates for students’ creativity are 
updated. That is, at the end of a level, which occurs if the student successfully solves 
the problem or leaves the level, data from the log file are analyzed and observables 
(i.e., indicators) are automatically created, scored, and inserted into the Bayes net.

Consider Student 1 who solved the level with a ramp (Figure 22.7b) as an example. 
The log file showed that she created a ramp (a common and expected solution) to solve 
the level after just one failed attempt with a ramp. While this behavior would have a 
positive impact on the estimate of her emerging physics understanding (specifically 
related to potential and kinetic energy), it has a low impact on creativity. After her 
e vidence was inserted into the Bayes net, the updated probability distribution in the 
parent node for creativity suggests that she is likely to be “low” to “medium” in creativity. 
As shown in Figure 22.9, Pr (Creativity = high | evidence) = 0.20, Pr (Creativity = medium 
| evidence) = 0.37, Pr (Creativity = low | evidence) = 0.43. More evidence, of course, 
is needed to increase the confidence of this claim.

In contrast, consider Student 10 who had a different solution strategy. According to 
his log file, he first attempted a pendulum solution for about 47 seconds, which is not 
an applicable solution for this level (see evidence for “time on incorrect agent” node). 
Next, he switched to creating a springboard (see Figure 7c). After several failed attempts, 
he finally succeeded in getting the green ball up to the balloon. The updated Bayes net 
for this student is shown in Figure 22.10, which displays his estimates for creativity: 
Pr (Creativity = high | evidence) = 0.63, Pr (Creativity | medium) = 0.32. Pr (Creativity = 
low | evidence) = 0.05.

High 33.3
33.3
33.3

Medium
Low

Creativity

High 33.3
33.3
33.3

Medium
Low

Fluency

High 33.3
33.3
33.3

Medium
Low

Flexibility

High 33.3
33.3
33.3

Medium
Low

Originality

4.33
24.7
48.0
23.0

Correct agents attempted

3
2
1
0

25.0
38.7
17.7
18.7

Time on incorrect agent

0
0–2
2–5
>5

14.8
20.8
64.4

Deviation from expect trajectory

Rare
Unusual
Common

Figure 22.8 Bayes net fragment for creativity for “Swamp People” level.
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Next, consider Student 3 who tried using a springboard for a while (a viable agent to 
solve this problem) but then switched to using a lever to solve the problem (see 
Figure 22.7d), another viable agent. His Bayes net estimates are shown in Figure 22.11: 
Pr (Creativity = high | evidence) = 0.75, Pr (Creativity = medium) = 0.23, Pr (Creativity = 
low | evidence) = 0.02. Again, his creation of a lever to solve the problem was unique, 
impacting the originality facet quite strongly. More data are needed to see if the claim 
of being highly creative holds across multiple levels in the game.

Finally, consider Student 4 who continued to use a pendulum (i.e., an inapplicable 
agent for this level) to attempt to solve the level. She failed to solve it and left the level 
after playing for 6 minutes and 53 seconds; note that spending such a long time on 
an  unsolved level positively impacts her persistence estimate. Because she appeared 

High 20.0
36.6
43.4

Medium
Low

Creativity

High 22.8
35.6
41.5

Medium
Low

Fluency

3
2
1
0

0
0

100
0

Correct agents attempted

0
0–2
2–5
>5

100
0
0
0

Time on incorrect agent

Rare
Unusual
Common

0

100
0

Deviation from expect trajectory

High 22.2
37.8
40.0

Medium
Low

Flexibility

High 17.0
35.8
47.2

Medium
Low

Originality

Figure 22.9 Ramp solution (typical) to the “Swamp People” level.

High 62.8
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High 56.9
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10.6
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Fluency
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2
1
0

0
0

100
0

Correct agents attempted

0
0–2
2–5
>5

0
100

0
0

Time on incorrect agent

Rare
Unusual
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0

0
100

Deviation from expect trajectory

High 63.9
31.2
4.94
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Flexibility

High 63.0
33.9
3.16

Medium
Low

Originality

Figure 22.10 Springboard solution (less common) to the “Swamp People” level.
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fixated on creating only pendulums, this led to a low flexibility estimate. Although the 
ball trajectory in her solution attempts deviated quite a bit from the expected trajectory 
(positively impacting the originality facet), the ball never hit the red balloon so her 
solution attempts failed to solve the problem, which is a critical criterion in judging 
creativity. The actions she took on this level reduced her creativity estimates in 
the Bayes net, which is shown in Figure 22.12: Pr (Creativity = high | evidence) = 0.26, 
Pr (Creativity = medium | evidence) = 0.31, Pr (Creativity = low | evidence) = 0.43.

These four examples illustrated how different behaviors in playing the game can be 
used to infer students’ level of creativity for just one level in the game and for the overall 
construct and its skills or facets. We designed our log files so that we could capture 
players’ states relative to each indicator and feed that information to the Bayes nets. 

High 75.0
22.8
2.27

Medium
Low

Creativity

High 66.1
25.9
7.95

Medium
Low

Fluency

3
2
1
0

0
100

0
0

Correct agents attempted

0
0–2
2–5
>5
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0
0
0

Time on incorrect agent
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0
0

Deviation from expect trajectory

High 71.9
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Figure 22.11 Lever solution (rare but effective) to the “Swamp People” level.
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0
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Figure 22.12 Pendulum solution (unusual and ineffective) to the “Swamp People” level.

0002738796.INDD   554 5/12/2016   4:00:05 PM



 Assessing and Supporting Constructs in Video Games 555

Scores are updated immediately once new information enters the network, and they 
are accumulated over time and gameplay.

In the main interface of Physics Playground (see Figure 22.13), students, teachers, 
and parents may see the general progress of the player reflected in a score board in 
the  upper‐left part of the screen. In the game, successfully solving a level  –  after 
repeated  attempts  –  earns the player a silver trophy for the relevant agent (single 
point). Solving the level “elegantly” with less than three objects earns the player a gold 
trophy for the level, which is worth double points. Currently, Physics Playground only 
displays progress on physics understanding, relative to the agents of force and motion, 
but the same “scoreboard” idea can also be used to present creativity and persistence 
estimates.

Validation of In‐Game Measures

The preceding two examples showed how we adopted best practices of ECD to design 
stealth assessments embedded in a commercial game (PvZ2) and in a “homemade” 
game (Physics Playground) to assess two important yet hard‐to‐measure constructs 
within two different game environments. Our examples had reasonable CMs and EMs 
derived from extensive literature reviews, consultation with experts, and observing 
players engage in gameplay for both problem‐solving skill and creativity.

Figure 22.13 Physics Playground dashboard showing score board per agent of force and motion.
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The continuous nature of game‐based assessments provides for a broader and deeper 
sampling of relevant evidence than can be obtained from more traditional assessment 
formats. This, of course, should have positive implications for both reliability and 
validity. However, it is important to actually subject new stealth assessments to rigorous 
psychometric scrutiny. That is, the immediate next step needs to address the question 
of whether or not in‐game measures are reliable and, importantly, valid measures of 
what they purport to measure. We also need to test the degree to which these assessments 
results can generalize beyond their specific game environments, particularly to real‐
world settings involving problem‐solving skills and creativity. In short, we argue for 
adopting and adapting best practices for assessment design and validation from standard 
assessment contexts to game‐based assessment contexts (for more on lessons learned 
and best practices see Wang, Shute, & Moore, in press).

As mentioned earlier, in PvZ2 we conducted a pilot study, which was conducted to 
determine playability and also to examine preliminary validity evidence. Specifically, 
we collected gameplay data from 10 undergraduate students who played PvZ2 for about 
two hours who also completed an external measure of problem‐solving skill called 
MicroDYN, which had been validated previously (Wustenberg et al., 2012). To evaluate 
correlational patterns between stealth assessment estimates of problem solving and the 
external measures we first reduced the probability estimates of the overall problem‐
solving node (e.g., “high,” “medium,” and “low”) to a single number. To do this we 
assigned numeric values to the three states (+1, 0 and −1) and computed the expected 
a posteriori (EAP) estimate accordingly as 1*P(High) + 0*P(Med) −1*P(Low) = P(Cij = 
High) — P(Cij = Low) where Cij is the value for Student i on Competency j. This results 
in a competency estimate scale ranging from −1 to 1. As mentioned earlier, the  correlations 
between our problem‐solving EAP estimate from gameplay and the external measures 
of problem solving (Raven’s progressive matrices and MicroDYN scores) were 
significant. We next want to conduct a larger validation study with middle school students 
to examine reliability, validity, as well as near and far transfer.

With Physics Playground, our initial evaluation studies focused on establishing the 
reliability and validity of the physics and persistence stealth assessment measures, both 
of which were validated against appropriate external measures (Shute et  al., 2013; 
Ventura & Shute, 2013). While we have not fully validated the creativity stealth 
assessment, we plan to do so against some well‐established creativity tests such as 
Torrance Tests of Creative Thinking (Torrance, 1974), Wallach and Kogan’s Creativity 
Tests (Wallach & Kogan, 1965), and Guilford’s Alternative Uses Task (Guilford, 1967).

This brings up another issue that educators and researchers interested in these types 
of constructs need to address. Because both examples we presented were measured in 
a particular context (i.e., an interactive game environment), the conventional way of 
validating new assessments (i.e., testing correlations with existing measures) may not 
be the most reasonable method for validating hard‐to‐measure assessments in games.

For example, when validating our in‐game persistence measure in Physics Playground, 
the external measures commonly used to assess persistence are self‐reports on  questions 
with 5‐point Likert‐scales. Given the aforementioned problems with this format, 
we expected – and indeed obtained – a small, not significant correlation b etween 
in‐game performance and relevant items from the International Personality Item Pool 
(r = .01). When we correlated our in‐game persistence measure with a more appropriately 
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matched performance‐based measure, however, the correlation was, p erhaps not 
 surprisingly, much higher (r = .51; p < .01); for more details see Ventura and Shute (2013).

The external measure MicroDYN that we used in the PvZ2 pilot study is another 
example of a performance‐based measure. Each item in this problem‐solving assessment 
represents a real‐world system, requiring participants to figure out causal relations 
among different variables, and then manipulate the variables to control the system in 
specific ways. In our planned larger validation study, we expect that the observed cor
relations between our PvZ2 stealth assessment measures of problem solving and 
MicoDYN will extend to other external problem solving measures.

In addition to the possibility for improved reliability and validity that game‐based 
assessments may offer, another positive feature of game‐based assessment is that one 
source of evidence can inform multiple competencies. For instance, consider a case 
where a person spends a longer‐than‐normal amount of time on one particular level in 
Physics Playground. This evidence, coupled with similar cases of spending a long time 
on tough levels, would positively influence the persistence score, negatively influence 
the flexibility score, and suggest some issues that may exist regarding the student’s 
understanding of associated physics principles. In a related vein, Almond, Kim, 
Velasquez, and Shute (2014) noted that the hard‐to‐measure construct of creativity 
proved to be the most difficult of the three skills (physics understanding, persistence, 
and creativity) that could be measured in Physics Playground. Open‐ended game 
levels, like we presented earlier, permit multiple solution paths and are thus good 
v ehicles for measuring creativity.

One final thing to bear in mind when considering the use of games for assessment is 
how the game goals are framed. For instance, in one study with Physics Playground 
(Kim, 2014), during data collection, students were told that the person who completed 
the most levels would get an extra gift card. This one statement may have steered many 
students towards efficient rather than creative solutions. Other instructions would 
likely foster other gaming goals and behaviors.

Discussion

Researchers and practitioners are beginning to embrace the idea of using games as a 
medium to measure and enhance learning and the literature in this new area is 
moving from rhetoric to more rigorous and systematic analysis of what works, for 
whom, when, how, and why. Games are obviously not a panacea for educational 
woes but they are likely superior to traditional methods (e.g., multiple choice 
 assessments, self‐reports) when measuring twenty‐first‐century competencies. In 
this chapter, we discussed why some of the important twenty‐first‐century skills are 
hard to measure and presented our approach to measuring these skills. We believe that 
performance‐based stealth assessments embedded in games provide a meaningful 
context in which to measure many of these important skills such as creativity and 
problem solving.

We specifically showcased here two examples of how to model and assess some 
hard‐to‐measure but important constructs using a commercial game (i.e., Plants vs. 
Zombies 2 to measure problem‐solving skills) and a “homemade” game (i.e., Physics 
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Playground to measure creativity). The engaging game environments elicit players’ 
target competencies but without any of the test anxiety baggage. Both games are highly 
engaging, which can lead to greater validity of the assessment. Valid estimates of 
players’ competencies provide a solid basis for delivering on‐target and ongoing 
feedback to players that can foster learning, which is difficult to achieve in traditional 
classrooms through traditional tests.

In the Physics Playground project, we created many open‐ended levels in the game 
based on the task models, which made it possible for students to demonstrate different 
aspects and levels of creativity. We customized the log files in Physics Playground 
so that they captured all observable performance data necessary to input to the Bayes 
nets, which made the data analysis process efficient.

In the PvZ2 project, we are working with a ready‐made commercial game and, 
instead of creating tasks, we identified indicators of problem solving from each game 
level. In collaboration with the GlassLab technical team and with permission from 
Electronic Arts, we were able to modify the game code (minor changes) and log files 
(major changes) to ensure the capture of necessary data (e.g., x/y coordinates of where 
different plants were placed, timestamps of all actions) to input to the Bayes nets.

Based on our experiences to date in designing valid assessments of hard‐to‐measure 
constructs in game environments, we feel that it is most efficient and effective to bring 
together educators, game designers, and assessment experts to work together from the 
onset. This type of heterogeneous team is a critical part of creating an effective learning 
ecosystem. Having a shared understanding of educational and gaming goals is key to 
moving forward with the design of engaging, educational games.
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