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Artificial Intelligence

Before defining what artificial intelligence is, a brief
discussion on intelligence itself is needed. The con-
cept of intelligence has captivated and confounded
educators, philosophers, psychologists, theologians,
and neurophysiologists alike throughout the ages.
Despite the profusion of words generated on the
topic, researchers have only succeeded in concluding
that, “intelligence is what intelligence tests meas-
ure.” Although a succinct definition is unavailable,
there are a number of behaviors that can be classified
as “intelligent.” For instance, understanding lan-
guage, employing inductive, deductive, and
commonsense reasoning, solving mathematics prob-
lems and puzzles, and even planning shopping trips
all demand intelligence. Traditionally, these actions
have been restricted to humans. However, since the
early 1950s, electronic computer systems have also
succeeded in performing these same tasks. Systems
such as these, then, possess “artificial intelligence.”

1. The History of Artificial Intelligence

Throughout history, humans have attempted to imi-
tate themselves, producing objects that are modeled
after humans, yet which possess characteristics above
and beyond human capabilities. This preoccupation
may be traced back as far as early cave drawings
where people were depicted in heroic battles with
wild beasts. The Greeks also had a propensity to
invent “superhumans,” or artificial intelligences, that
served as the gods in their mythology. As such, these
artificial intelligences behaved as humans in some
contexts, but ultimately were capable of feats beyond
mere human powers.

Automata, or self-locomoting contrivances,
appeared around 200 BC in Hellenic Egypt
(McCorduck 1979). Some of these mechanisms pro-
phesied and gestured to awestruck audiences by
means of quicksilver, hydraulics, or pulleys and
strings. Technically these devices cannot be classified
as true artificial intelligences since the source of their
intelligent behaviors resided in sources extrinsic to
their structure, that is, in the hands of priests or
actors.

The sixteenth century saw a profusion of automata.
These mechanisms were not “thinking machines™ but
clever combinations of gears, fabric, and im-
agination. One such smart automaton, the chess-
plaving Turk in the early 1800s, travelled the world

and amazed audiences with its chess expertise. To
the dismay of the many who wanted to believe, the
Turk was subsequently proven fraudulent since it was
operated by a small person who sat in the box that
allegedly housed the chess-playing machinery. How-
ever, the quest persisted for a truly intelligent, self-
contained machine.

The conception of the first multipurpose computer
may be tentatively attributed to Charles Babbage, a
mathematics student at Cambridge in the early part
of the nineteenth century. His first dream was to
develop an automatic means of calculating logarithm
tables. He succeeded in 1822 with the “difference
engine,” a small model of the original conception.
Meanwhile, his dreams embraced the notion of
creating an all-purpose machine which he called the
“analytic engine.” Due to the constraints of the tech-
nology at the time, he was never able to make this
dream come true.

With the advent of general-purpose digital com-
puters, the stage was set for artificial intelligence.
The originator of digital computers, or at least of the
initial specifications for them, was Norbert Weiner
(1894-1964). Essentially, his specifications included
“a numerical central processor whose mechanism
would be electronic and not mechanical, based on a
binary rather than a decimal system; a machine with
built in abilities to make logical decisions, and an
apparatus for easy storage and manipulation of data”
(McCorduck 1979 p. 44). John von Neumann
played a key role in the development of the digital
computer.

Alan Turing (1912-1954) provided the first major
link between modern computing systems and think-
ing. He was a British mathematician/logician who
envisioned a computing system capable of not only
“number crunching” but symbolic manipulation as
well. What he proposed was the possibility of an
abstract, universal computing device that is today
called a Turing machine. In addition, he developed
the “imitation test,” now known as the “Turing test,”
which is a means of determining a machine’s “intel-
ligence.” The Turing test consists of “an interrogator
communicating via teleprinters with a human and a
computer. The interrogator can attempt in any way
possible to determine which is which through con-
versation over the communication links” (Roberts
1981). This test stands today as the ultimate challenge
in artificial intelligence.

Dartmouth College, New Hampshire, in 1956 was
the site of an embryonic formalization of artificial
intelligence. The occasion was a conference bringing
together a small group of people from diverse
backgrounds and places. It was here that the term
“artificial intelligence” was coined by John
McCarthy. The common thread linking these people
was their belief in the digital computer’s potential to
“think.” John McCarthy, Marvin Minsky, Nathaniel
Rochester, and Claude Shannon were the or-

333




Artificial Intelligence

ganizational members of this group. Some of the
others attending this momentous conference
included: Trenchard More, Arthur Samuel, Oliver
Selfridge, Ray Solomonoff, Allen Newell, and
Herbert A. Simon. This meeting began charting the
course for the field of artificial intelligence in the
future.

In this New Hampshire setting, the group met
and exchanged ideas and research for two months.
Probably the research that most adequately demon-
strated machine intelligence at this conference was
the work done by Newell, Simon, and their colleague
J. C. Shaw. They had implemented a list-processing
language at the Rand Corporation and had succeeded
in creating a program, the Logic Theorist, which
could prove theorems in Whitehead and Russell’s

" Principa  Mathematica. Moreover, they were
developing their General Problem Solver (GPps) pro-
gram which, by way of forward reasoning, could
solve general problems.

The Gps employed a “means—end analysis” where
the goal was to make the present state of the problem
and the desired state the same. This was achieved by
generating subgoals that progressively reduced the
difference between the goal and the present state. A
hierarchy of goals and subgoals can be used to guide
the problem solver to a point where a legal trans-
formation may be applied to achieve the final
subgoal. For example, consider the problem of
transferring A to B. The process is a depth-first
search, and the goals stack hierarchically as: (a)
transfer A to B, (b) reduce the difference between
A and B by modifying A, (c) apply operator Q (legal
transformation) to object A.

The goal addresses changing the current situation
to the desired state and the rules define which
transformations or operations are legal. This heuris-
tic may be applied to the solution of a relatively
simple problem like “Cannibals and Missionaries,”
where three cannibals and three missionaries have
to cross a river in one boat. The cannibals cannot
outnumber the missionaries, though, on either side
of the river, or the missionaries will be eaten. The
heuristic may also be applied to a more complex
domain like chess with the goal being the capture of
the opponent’s king. The means—-end analysis is a
powerful tool when the domain has limited knowl-
edge, but problems arise with more complex problem
spaces. The GPS represented the first successful, arti-
ficial intelligence system.

The research developments subsequent to the
Dartmouth conference lay beyond the imagination
of those present in 1956. Artificial intelligence has
since infiltrated many scientific fields and branched
out into many subspecialty areas with seemingly
limitless possibilities of exploration. Before some of
the diverse applications of artificial intelligence today
are discussed, some basic concepts must first be
delineated.
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2. Basic Concepts and Theories ‘

The original purpose of the computer was to perform
mathematical operations very quickly, eliminating
the drudgery of calculations and possible human
error. Everything in a computer is represented as a
string of binary digits, zeros and ones, called “bits.”
Typically, the bits are interpreted as a code for deci-
mal digits; however, with a slight extension of this
principle, they can also be grouped and interpreted
as characters. Once this is done, word and sentence
interpretation is a fait accompli, and more complex
groupings of words become possible. This process
is called “symbol manipulation” and is essential to
developing programs that show intelligent behavior.

Of the many programming languages available
today, two are currently favored by artificial intel-
ligence researchers: LISP (for list processing) and
PROLOG (for programming logic). Both languages
are designed for symbolic manipulation and each has
its adherents. Since they are higher level languages,
programming is less cryptic than with older machine
languages. Furthermore, the newer languages rep-
resent an attempt to achieve some global modularity
within the programming context and several things
intrinsic to these systems (e.g., pattern matching and
general search heuristics) make them more under-
standable, modifiable, and hence, more “user
friendly.”

With the tools now available for working with
symbols (words), some conceptual issues of how
people think must be addressed, particularly issues
of types of knowledge and production rules. These
are of crucial importance if the purpose of artificial
intelligence is, in fact, to model human thinking, or
in the case of “expert systems,” to surpass it.

2.1 Types of Knowledge

Knowledge that a person has about the world can be
divided into two major categories. First, “declarative
knowledge” corresponds to factual knowledge about
the world, similar to textbook knowledge. Such a
declarative representation would be: “Canberra is
the capital of Australia.” Knowledge of this type has
been included in computer systems for years. The
other knowledge type posited is of a “procedural”
nature; that is, knowledge of how to do something.
Heuristics, judgment rules, general inference pro-
cedures, and so on illustrate components of pro-
cedural knowledge. Typifying this type of knowledge
would be knowing how to multiply two numbers
together. Programming this knowledge is somewhat
more difficult than for declarative knowledge since
much of what people know how to do has become so
automated that explication—step by step—is some-
times nearly impossible. For instance, imagine trying
to teach someone how to ride a bicycle with only
verbal instructions. Since the media of communi-
cation with a computer is by way of words, the
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procedural decomposition into discrete units with
all units contributing to a coherent and complete
representation is required. Task analysis (Resnick
1976} in cognitive psychology does just that, sys-
tematically breaking down a cognitive task (e.g.,
solving a geometry problem) into its component
parts.

2.2 Production Rules

“If-then™ statements, or condition—action rules, are
called “production rules” and allow the system to
execute the appropriate actions given the satisfaction
(matching) of a particular condition or set of con-
ditions. Once an area has been decomposed, pro-
cedural knowledge may be represented. allowing for
the representation of individual chunks of knowl-
edge. Also, this type of rule representation is more
convenient for programming inductive learning
where, by progressive extension and hierarchical
structuring, incremental building up of the knowl-
edge base occurs. Variables may replace constants
at the higher levels, allowing for generalizations
to be made as well as organization of data to be
effected.

As more complex domains are encountered and
represented, it becomes increasingly important to
deduce the effects of actions from axioms about the
world rather than representing each effect explicitly.
Deductive rules can be programmed via “if-then”
relations; and if the precondition of a deductive
operator holds, the effects may be added to the
database. This is an example of an adaptive learning
system which is one that can modify its own pro-
duction rules (Waterman 1970). Basically, there are
three ways of achieving this: adding new rules,
deleting old rules, or changing existing rules. This
corresponds to the human experience of learning.

Learning, then, is much more than simply adding
new facts to a database. It involves relating some-
thing new to what is already known in a complex,
coherent manner. Therefore, both types of knowl-
edge, declarative and procedural, must be repre-
sented and utilized for a machine to possess a meas-
ure of intelligence. Ideally, the system should also
include “executive functions.” or some form of self-
awareness. Brown (1978) has proposed six
components of an executive control system. These
include the ability to: (a) predict the system’s capacity
limitations, (b) be aware of its repertoire of heuristic
routines and their appropriate domain of utility, (c)
identify and characterize the problem at hand, (d)
plan and schedule appropriate problem-solving strat-
egies, (¢) monitor and supervise the effectiveness of
those routines it calls into service, and (f) dynamically
evaluate these operations in the face of success or
failure so that termination of strategic activities can
be better timed.

Implementing all of these functions into an oper-
ating computer system is not a far-off goal of the
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future but a reality of today in many artificial intel-
ligence programs.

3. Applications of Artificial Intelligence

Humans differ from computers in a variety of ways.
One distinction is in the use of logic in problem
solving or decision making. Whereas computers
engage in strict logical reasoning, humans often
display “semilogical” reasoning (Duda and Gaschnig
1981) which incorporates intuitions, prior experi-
ences, pet theories, and other things into a problem-
solving task. One branch of artificial intelligence
specifically attends to the modeling of human
behavior. This is called “computer simulation™ and
serves the function of confirming psychological
theories or models. Another important difference is
that humans have capacity limitations while com-
puters have storage capacities well beyond human
abilities. Any occupation that requires large, inter-
connected knowledge bases with difficult decision-
making tasks (e.g.. medical diagnosis) could be done
also by computers. The first artificial intelligence
application discussed is that known as “expert
systems.”

3.1 Knowledge-based Expert Systems

The first thing to be done in creating a computer
expert system is to engage in intensive/extensive
interviews with human “experts” in a particular field.
The purpose of this task is to amass the knowledge
necessary for the knowledge base as well as to capture
some of the human, “semilogical” elements for
rendering judgments. For example. one system
called MYCIN (Shortliffe 1976) is an “expert” in diag-
nosing bacterial infections. The way it works is based
on the “if-then” rules discussed earlier. In addition,
weights or “certainty factors” are attached, reflecting
the degree to which the system believes in the correct-
ness of an hypothesis, given the evidence presented.
These values range from +1 to —1 where greater
values indicate hypothesis validity and values closer
to —1 indicate that the hypothesis is probably false.
A zero value may be interpreted as insufficient evi-
dence. An illustration of a MYCIN rule would be:

If: (a) the stain of the organism is grampos, and
(b) the morphology of the organism is
coccus, and
(c) the growth conformation of the organ-
ism is chains,
Then: There is suggestive evidence (0.7) that
the identity of the organism is streptococcus.

MYCIN requires specific information about the
patient. Therefore, it asks questions (displayed on
the computer terminal) that will aid in diagnosing
the problem. On the basis of the answers supplied
by the user (usually the attending physician), the task
now involves a four-stage decision problem. First,
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the computer must decide which organisms, if any,
are causing significant disease. Second, it must deter-
mine the likely identity of the significant organisms.
Next, the system must decide which drugs are poten-
tially useful. Finally, a selection must be made of the
best drugs for the patient based on the diagnosis.

The organization of the hundreds of rules (almost
500 in the original system) is in the form of rule
networks. Furthermore, a separation exists between
(a) rules forming the knowledge base from (b) the
information about the current problem, and (c) the
methods for relating the general knowledge to the
problem at hand by way of the rule interpreter.
This separation of functions allows for modifying
the knowledge base without disturbing the other
programs (current database or rule interpreter). Also
this type of system maintains an ongoing record of
its reasoning path, capable of describing the rules it
selected and why. Therefore, it may be employed as
a tutorial/consultant device.

Another expert system currently in use is PROS-
PECTOR, a system for mineral exploration. This rule-
based model effects a relation between the geologist’s
field evidence and relevant geological hypotheses
(Duda and Gaschnig 1981). PROSPECTOR can evalu-
ate the likelihood of an area’s containing a particular
ore, as well as provide an explanation as to why the
site should or should not be selected for drilling.
DENDRAL, developed at Stanford University
(Feigenbaum et al. 1971), engages in a heuristic
search of chemicals to determine reasonable
structural representations of organic molecules
from mass-spectrogram data, nuclear-magnetic-res-
onance data, and additional information provided by
the user. This system has currently succeeded in
surpassing chemical experts in speed and accuracy
of judging chemical compounds for the molecular
families covered by its rules.

Expert systems exist that can prove theorems in
mathematics, plan the construction of robots, or the
configuration of computers (DEC’s VAX systems),
tutor students in a given domain (via drill and
practice, learning games, or discovery learning),
diagnose heart diseases, and much more. Any
domain which can be described by rules is a potential
candidate for expert system representation. How-
ever, there must be at least one human expert in the
field both to input knowledge and to corroborate the
computer’s output for any domain. This forces people
to formalize their thinking by making concrete and
explicit what may have formerly been based on
subjective interpretations or “feelings.”

3.2 Natural Language Processing

When two people communicate with each other using
language, they effortlessly use complex and, as yet,
little understood processes. What transpires is a com-
munication in much more than just the lexical
meanings of exchanged words. Languages that are
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used as the principal means of communicating in
daily affairs of humans are called “natural lan-
guages.” These contrast with other, more formal
languages which have been invented by people for
particular kinds of communication and are called
“artificial languages.” Examples of artificial lan-
guages include predicate calculus, LISP, and even
musical notation.

It has been very difficult to develop computer
systems capable of generating and “understanding”
even parts of a natural language. This is due in part
to the difficulty in programming all of the necessary
contexts and experiences two humans have in
common when they converse. Much of what becomes
communicated is left implicit; that is, the particular
context the persons are sharing allows them to relate
on a mutually shared, more abstract level (stream-
lined messages), leaving many things as “under-
stood.”

In order for a computer to understand natural
language, a complete delineation of the present
environment (i.e., the context) would need to be
input, as well as a means for the computer to make
inferences from the statements. To further confound
issues, individuals communicate by use of analogies,
humor, and even “body language” which makes the
programming task seemingly impossible.

Despite these problems, systems have been devel-
oped that understand spoken and written fragments
oflanguage. Some of the earlier programs, like ELIZA
(Weizenbaum 1976), used pattern matching of
keywords to elicit a preprogrammed response. The
semantic content of the sentence was ignored, with
only the structuring elements (keywords) utilized
to effect the response. This system was based on
Rogerian, nondirected psychotherapy in which a “cli-
ent” would type into the computer a problem, such
as, “I've been having problems with my mother,” and
the computer, focusing on the keywords “problems”
and “mother” would respond, “Please tell me more
about your mother,” and so on.

These early systems were comparatively unsophis-
ticated programs with preset semantic knowledge. In
the mid-1960s and early 1970s real-world knowledge
was being incorporated into programs with inference
rules and semantics, allowing for a fuller “under-
standing” of the text by the computer.

One such system that dealt with natural language
processing was Bobrow’s STUDENT program (1962)
which solved elementary algebra word problems
directly as they were stated in English in high-school
mathematics books. The system’s database contained
some general knowledge about the world, such as:
three feet equals one yard. and distance equals
velocity X time. An example of a problem that
STUDENT could solve would be: “If the number of
customers Tom gets is twice the square of 20 percent
of the number of advertisements he runs, and the
number of advertisements he runs is 45, what is the
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number of customers Tom gets?” STUDENT’s solution
to this problem is not based on any conventional
linguistic analysis method. Rather, the focus is on its
known goal: to translate the input problem into a set
of simultaneous algebraic equations, which could
then be given to a subroutine for equation solving.
Words or phrases were “translated” into arithmetic
operators, constants, or variables and then solved
mathematically.

The STUDENT program represents a special
purpose system and, as such, is restricted to its par-
ticular domain of algebra word problems. Other
systems have been designed from the start as
experiments in the analysis and representation of
general knowledge.

Quillian (1968) at Carnegie-Mellon University
built one of the first computer representations of
general knowledge based on semantic classifications.
Each word in the system was defined in the com-
puter's memory by a network of labelled links to
other words. This “semantic memory” included such
link relations as class inclusion, size, color, logical
relations to other words, and so forth. In order to
compare two words, the computer would first need
to access the words, then describe all paths existing
between the two words.

Present systems have evolved to the point where
question answering is possible, accepting simple Eng-
lish queries which specify what information the user
needs, then generating fairly complex programs
specifying “how” the computer should retrieve the
information. LADDER, developed at SRI Interna-
tional, has these capabilities with a large database
that includes over 100 fields (Naval issues) in 14 files,
as well as records on over 40,000 ships.

Two problems had to be overcome for successful
operation of this system. First, the system required
a translation from English into a formal language
and, second, the system had to convert that statement
of what was requested into a statement of how to
get it. This second problem addresses the issue of
“automatic programming” and may be understood
as a “supercompiler” within the system that generates
a program in response to interpreted demands.

LADDER accepts input in the form of specific ques-
tions on ships, and it supplies appropriate answers.
This seems simple enough on the surface, but the
interpretive processes that go on inside the machine
are complex. There is a dictionary for making spelling
corrections, interpretations of partial sentences
(“ellipses”) based on preceding statements (context),
a process for understanding pronoun usage and some
colloquialisms, and more. A sample of LADDER’s
communication follows (Hendrix and Sacerdoti 1981
p.314):

1. Give me the length of the Kenedy.
Spelling — KENNEDY
PARSED!

—

Give the length of the ship KENNEDY JF
LEN = 1072 (feet)

2. Width and draft
PARSED!
Trying Ellipsis: GIVE ME WIDTH AND
DRAFT OF THE KENNEDY
Give the beam and draft of the ship
KENNEDY JF
(Beam = 130 Draft = 36)

3. Who is her commander?
PARSED!
Give the rank and name of the commander
of the ship KENNEDY JF
(Rank CAPT Name MOFFETT P)

While LADDER is very helpful for providing infor-
mation from English input, it represents expertise in
but a limited domain. Further work in this area must
include knowledge bases that are independent of the
language processing system itself. This is important
for generalizing the application of the system and
for allowing flexibility in dealing with the changing
contexts that occur in real-world communications.

Other related work in the area of natural language
processing includes speech understanding systems
(e.g., the HEARSAY II model by Lesser and Erman
1979), machine translations of documents into
another natural language, document understanding
which could assimilate information and output a sum-
marization, and document generation which would
translate stored information in the computer memory
into natural language. In addition, robots that com-
municate in a natural language will bring into reality
what was previously only the content of science
fiction.

Once machines have the ability to understand natu-
ral language, then almost anyone will be able to
interact successfully with a computer. First, however,
more research in the field of psycholinguistics is

" required for a fuller understanding of the components

of communication such as the representation and
utilization of real-world knowledge, the role of plan-
ning and reasoning in communication, and so on.
Once this is accomplished, such a system will surely
pass the Turing test of machine intelligence.

3.3 Robotics

No overview of artificial intelligence would be
complete without some discussion of robotics. Itisan
exciting field and exists today due to the integration of
a number of subspecialty fields in artificial intelli-
gence, such as machine vision, planning and schedul-
ing, automatic programming. problem solving, and
$0 on, into a single system. This research has led to
several techniques for modeling states of the world
(environmental representations) and for describing
changes from one world state to another. Resulting
from this modeling is a better understanding of how

337




Artificial Intelligence

B

a computer can: (a) represent a given world; (b)
generate plans for actions; (c) execute a particular
task; and (d) monitor the effectiveness of the exe-
cuted plans. The solutions to these modeling prob-
lems have had various degrees of success in labora-
tories working with robots, with the work progressing
in conjunction with the development of computers,
sensors, and effectors (i.e., devices for effecting a
particular change, such as a mechanical arm).

In a most general sense, “robot” refers to a
mechanical device that displays humanlike abilities
to perform physical tasks (Raphael 1976). One of the
first modern robots was developed in the early 1960s
at Johns Hopkins University. It was a mobile unit,
completely self-contained with no cable or radio link
to any computer, power supply, or human operated
terminal. Its power source was a battery and its
decision-making abilities were minimal so that the
final system design was of a machine whose sole
purpose in life was to charge its own battery.

The way this mission was executed was based on
a number of related elements. First, as the robot
traversed a hallway, sonar measurements kept it
relatively centered. By combining photocells, lenses,
and circuits, the robot could find electric outlet cover-
plates into which it would put its plug-shaped “hand”
in order to “feed” itself.

Following this creation, laboratories around the
world began actively engaging in robot research and
development. The basic components in a robot
system are sensors, effectors, and computers.
Sensors serve to detect light intensity, color, touch,
pressure, heat, sound, distance to obstacles, and so
forth. Incorporating such human senses as taste and
smell has, as yet, been deemed unnecessary. Some
commonly used sensors are television cameras and
photoelectric cells for “seeing,” contact switches for
“touch,” pressure and force sensors, and mechanisms
that allow the robot to know the position and status
of allits robot parts. Presently, there is research going
on for developing means of distance perception. One
example is a two-camera system at the Jet Propulsion
Laboratory (Pasadena, California) whereby a robot
can compute distances by comparing two pictures.

Effectors can assume the form of mechanical arms
or hands, elaborate or specific, simple or general.
Also, wheels and other means of robot mobility are
classified as effectors. Finally, computers used in
robots are becoming more compact yet with larger
memory stores, and are faster and less expensive as
well.

Although there are impressive practical uses of
robotics throughout the world, the first-generation
robots were constructed mainly out of pure research
curiosity. After the initial flurry of excitement in the
1960s and early 1970s, emphasis shifted from building
single system robots to more emphasis on the
component parts. This trade-off is due to the prob-
lems of designing a system that has general-purpose
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problem-solving skills versus one with more focused
expertise. The next generation of robots, which will
arise from the work being done today on the indi-
vidual parts, may possibly resolve this conflict by
their being an expert in a given domain (e.g., house-
keeping) but also possess a wide repertoire of general
problem-solving skills.

As can be seen from the preceding applications
of artificial intelligence, there is a diverse group of
problems currently under investigation. In addition,
many important applications have been necessarily
omitted from discussion, such as the work being
done with computer-assisted instruction (CAI) (see
Computer-assisted Learning), computer perception,
problem-solving methods, knowledge acquisition,
programming languages, metaknowledge (i.c..
awareness of one’s own cognition), and combina-
torial and scheduling problems, to name a few. New
ways of exploiting the computer’s potential are being
devised all of the time. While the Turing test has vet
to be passed, the time is not far off when a machine
will be demonstrating humanlike, general intelli-
gence. As Turing wrote in the 1950’s:

I believe that at the end of the century the use of words
and general educated opinion will have altered so much
that one will be able to speak of machines thinking
without expecting to be contradicted. (Roberts 1981)

4. Future Research

As computers are becoming less expensive and more
widely available, their applications are becoming
more diverse as they assume more roles in society.
Furthermore, the potentials for application are only
bound by imagination.

The future applications of artificial intelligence
will proceed from the development of science and
technology. For instance, knowledge-based expert
systems will have more extensive and better organ-
ized knowledge resources with predictive abilities
combined with their tutorial and consultative skills.
Such systems may be able to predict natural
catastrophes (e.g.. earthquakes) or financial
catastrophes (e.g., stock market plunges). Expert
systems will become more widely available for per-
sonal use, in homes and offices, giving advice or
instructions on a broad range of topics. Presently the
creation of expert systems requires much time for
the interviewing of experts. In the future, this process
may be automated. This will follow from simplifying
user/computer interactions as well as from incor-
porating adaptive production systems in which a com-
puter can “learn by doing.” Recognition of analogies
between present and past problems will allow for
greater computer flexibility and generalizability of
skills.

Development of computer software will result in
new programming languages, further simplifying the
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interaction between user and computer. Addi-
tionally, developments in the field of natural-lan-
guage processing will one day produce machines
capable of carrying out instructions supplied by
written or spoken commands. These computers will
be fluent and skilled in the use of many natural
languages.

Hardware advances in the form of more reliable
and less expensive sensors, effectors, and computers
will surely be utilized in creating the next generation
of robots. These robots will not only be invaluable
assistants, doing the work people tend to put off until
tomorrow, but will also assume responsible positions
in jobs that are dangerous (e.g., steel mill furnace
operator) or just tedious (e.g., assembler in a
factory).

Additional hardware advances will make it pos-
sible for the parallel processing of several rules sim-
ultaneously in a rule-based system, rather than by
serial application. This will speed up processing time
and simulate some human processing abilities. The
coordination of a large community of somewhat inde-
pendent systems will lead to more general machine
intelligence, with the systems communicating with
each other to solve problems cooperatively.

Cognitive psychologists, by answering more
questions on the representation and organization of
knowledge types in memory, can provide more
detailed structural specifications for implementation
in the domain of computer simulation. Likewise,
determinations of how humans deal with knowledge
that is uncertain or indefinite will profit computer
simulations. For a machine to function intelligently,
it must also have some commonsense knowledge of
cause and effect.

Other areas in the future of artificial intelligence
that will be explored include the incorporation of
metaknowledge into the system. This is invaluable
in all intelligent behaviors, from communication to
problem solving. Systems with this “executive™ or
introspective function will know when and how to
apply other knowledge.

As implied in the forgoing article, artificial intel-
ligence has important applications in education.
Computers will be appearing in greater numbers
in the schools, providing a medium for children’s
expression and experimentation. This may be
accomplished through programmed instruction in
which course material is organized and tailored to
the individual (see Individualized Instruction). By
the computer’s presenting material on a television
screen and recording learners’ responses, students’
progress and mistakes can be recorded and summa-
rized for teachers for evaluation and possible remedia-
tion. Instruction in spelling, arithmetic, and lan-
guage learning may be given to pupils by the
computer. with private tutorials built into the system
in order to address individual needs. Finally, by
turning the tables and allowing children to “teach”

T i A S e P

computers via programming, pupils learn problem-
solving skills by being forced to specify their ideas in
the designing of algorithms and in organizing the
problem-solving task into chunks or subroutines.

Finally, educators are concerned that the artificial
intelligence of machines be directed entirely to
humane uses. To this end, Asimov created the
“Three Laws of Robotics” which may typify the
conscious concern of moral and ethical issues by
those working with “smart” machines:

(a) a robot may not injure a human being through inac-
tion. allow a human being to come to harm;

(b) a robot must obey all commands given by a human
being except in the event that such orders might
conflict with the First Law; and

(c) a robot must protect its own existence as long as such
protection does not conflict with either the First or
the Second Law. (Asimov 1970)

See also: Computers in Education; Computer Technology
and Telecommunications; Programmed Learning
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V. Shute

Assertiveness Training

Assertiveness training is a systematic approach devel-
oped by behavior therapists (Wolpe 1958) to help
people learn effective ways of interacting with others
in a variety of interpersonal situations. Specifically,
assertiveness training has been employed to teach
people how to: (a) stand up for their legitimate rights;
(b) initiate and refuse requests; (c) give and receive
compliments; (d) initiate, maintain, and terminate
conversations; (e) express love and affection; (f)
express personal opinions; and (g) express justified
anger and annoyance to and/or with a variety of
people, including friends, intimate others, parents,
family, authority figures, and strangers (Galassi and
Galassi 1978).

Effectiveness, from an assertiveness training
perspective, is defined in terms of two components.
First, an effective response is one that has a high
probability of achieving a person’s goals in an inter-
action (e.g., refusing an unreasonable request).
Second, it is one that considers the rights and feelings
of the other person(s) involved in an interaction and
has a low probability of threatening, humiliating, or
otherwise hurting them. Behaviors that meet both of
these criteria have been traditionally called assertive
and have been distinguished from aggressive and
nonassertive responses. Aggressive behaviors are
those that may achieve a person’s goals, but have a
high probability of degrading, threatening, humiliat-
ing, or hurting recipients of the response (i.e., usually
offensive expressions that do not consider the rights
and feelings of others). Nonassertive responses are
those that often fail to achieve the person’s goals
through nonexpression (e.g., agreeing to an
unreasonable request), avoidance (e.g., avoiding
situations where a conversation may have to be
initiated with a stranger), or weak expression (e.g.,
asking for a favor in a hesitating, overly apologetic
manner).
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Thus, assertiveness training attempts, in a sys-
tematic way, to teach people specific verbal,
nonverbal, and cognitive skills to express their
feelings, needs, preferences, and opinions in a poten-
tially nonoffensive, nonthreatening, and nonaversive
manner in specific interpersonal situations. Asser-
tiveness training has been conducted in both indi-
vidual and group counseling and educational contexts
and typically employs such training procedures as
role playing, modeling, instructions, feedback.
prompting, and specific homework assignments.
More recently, imaginal rehearsal, cognitive restruc-
turing, and decision-making strategies have been
employed with some success. Although specific
exercises devoted to helping people become
aware of their rights as human beings have been
advocated (e.g., Lange and Jakubowski 1976), no
reports of research testing their efficacy have yet
appeared.

An additional important goal of assertiveness
training, when practiced by a knowledgeable trainer,
is that of helping people generate a variety of
responses to particular situations and of aiding them
to learn to decide for themselves when and under
what conditions a direct, but nonoffensive expression
of opinions, needs, or feelings is appropriate. Stated
simply, a second goal of assertiveness training is to
provide participants with a choice of responses that
may be used in their everyday interactions. A person
who is continually expressing his or her opinions,
wants, and feelings in all situations, at all times, and
with all people is likely to be no more effective than
the person who is never able to make his or her wants
and desires known to others. This important goal
is one that is overlooked by many poorly trained
practitioners. The potential consumer of asser-
tiveness training would be well-advised to terminate
participation in any program that denies his or her
right to choose when to be assertive, and that pro-
motes the view that one must always be assertive
to be interpersonally effective and psychologically
healthy.

Readersinterested in learning more about teaching
assertiveness should acquire knowledge on: (a) the
history and theory of assertiveness training, (b)
research on assertiveness training outcomes and tech-
niques, and (c) practical guidelines for conducting
assertiveness training. A starting curriculum would
include the seminal works of Salter (1949) and Wolpe
(1958, 1968); research reviews by Bellack (1979);
Brown and Brown (1980), Galassi and Galassi
(1978), McFall (1982), and Rich and Schroeder
(1976); and the professional manuals of Eisler and
Frederickson (1980), Lange and Jakubowski (1976),
Shelton and Ackerman (1974), and Trower et al.
(1978). Two excellent articles (Ralph 1982, Shelton
1977) pertaining to ethical and professional issues in
assertiveness training would also be included in an
introductory curriculum.
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