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Abstract

We report on a design of a Turing tournament and its initial implementation to learning in
repeated 2 person games. The principal objectives of the tournament, named after the original
Turing Test, are (1) to find learning algorithms (emulators) that most closely simulate human
behavior, (2) to find algorithms (detectors) that most accurately distinguish between humans
and machines, and (3) to provide a demonstration of how to implement this methodology for
evaluating models of human behavior. In order to test our concept, we developed the software
and implemented a number of learning models well known in the literature and developed a
few detectors. This initial implementation found significant differences in data generated by
these learning models and humans, with the greatest ones in coordination games. Finally, we
investigate the stability of our result with respect to different evaluation approaches.

JEL classification: D83, C63, C92, H41
Keywords : Turing tournament, emulators, detectors, learning models, repeated games.
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1 Introduction

Studying the dynamic of human learning and adaptation is an area of social science that

has generated a lot of research interest. There are many models attempting to explain how

individuals learn in various game theoretic settings. We can begin with two of the classical

models – Fictitious Play and Cournot Best Reply (see Boylan and El Gamal, 1993, for an ex-

perimental evaluation of these models). Crawford (1991, 1995) considers Evolutionary models.

Stahl (1997, 1999) explores boundedly rational rules. Roth and Erev (see 1995, 1998, 1999)

and others use a Reinforcement Learning model to explain learning in repeated stage games.

Camerer and Ho (1999a, 1999b) develop the Experience Weighted Attraction (EWA) models.

All of the above models have been evaluated by using standard econometric methods (maxi-

mum likelihood or grid search) to fit the models to experimental data. Using these methods,

one can get estimates of the parameters of the models, test various hypotheses about these

parameters and compare models to each other.

Arifovic and McKelvey (2002) describe a methodology for evaluating models of human

behavior in social sciences based on the idea of the Turing test (Turing, 1950).1 They propose

a two sided tournament, called a Turing Tournament, which would solicit machine algorithms,

called emulators, that mimic human behavior and machine algorithms, they call detectors, that

are designed to distinguish between human behavior and that generated by the emulators.

In the tournament, the emulators generate data sets with information on actions of com-

puter agents in a given environment. The human behavior is represented by datasets generated

in the experiments with human subjects in the same environment. The detectors are then

presented with all the data sets, both those generated by emulators and by experiments with

1In a famous paper in 1950, Alan Turing (1950) addressed the question of determining when machines can
“think.” His proposal was to replace this question with the more manageable question of when a machine can
mimic human behavior. Turing’s answer was the so called Turing Test : a machine is sufficiently human when
a third party can not distinguish between the behavior of the machine and a human. In Turing’s version, the
third party is a human interrogator who is allowed to ask whatever questions he or she wants to both the
machine and a human. Both the machines and humans have their answers put on tape for the interrogator to
read.
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human subjects, and try to distinguish between machine and human datasets. They do so by

assigning a probability that a given data set is human rather than machine generated. Each

detector gets a score based on how close its decisions are to the true state. The detector that

obtains the highest score is a winner of the tournament. The winning emulator is a machine

algorithm to which the winning detector assigns the highest probability of being human.

The tournament is designed along the lines of the original Turing test. Both tests try

to answer the question “Man or machine?” However, the major difference in Arifovic and

McKelvey’s modification is in the evaluation stage. Researchers in the field of experimental

economics and (or) behavioral economics who deal both with human and machine generated

data would probably acknowledge that they can often tell the difference between human and

machine data when they see the data charts. The way to implement this knowledge, and the

real challenge of the tournament, is to develop good performing detectors. That is why in

the tournament’s design, instead of humans trying directly to assess whether some output is

generated by the machine or human, this role is assigned to detectors.

Arifovic and McKelvey suggest a number of environments where the implementation of

the Turing tournament could be interesting. In this paper we describe an implementation of

the Turing tournament to a class of repeated games with full information. Since this is a new

concept of evaluation of models’ performance, we first test our design of the tournament. In

this paper, we report the initial results that we have obtained.

We submitted to the tournament the source code for the programs of several emulators

(a number of well-known learning algorithms that have been extensively studied in the lit-

erature). We also submitted the source code for several relatively simple detectors. These

detectors compute various measures using presented datasets, such as closeness to Nash equi-

librium, closeness to payoff dominant outcome, changes in players’ payoffs over time etc.

Based on the values of these measures, detectors assign a probability that a particular dataset

is human. For this initial tournament, we used experimental data collected by McKelvey and
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Palfrey (2002) under various information and matching conditions. For our purposes, we used

the data generated in full information, fixed matching treatment. We choose a fixed matching

protocol in order to move the research agenda a step further, towards development of the

algorithms that behave well in the repeated game theoretic framework. The development of

the new algorithms better suited for repeated games has taken place simultaneously with the

initial implementation described in this paper. Camerer, Ho and Chong (2002) introduced

Sophisticated EWA model. McKelvey and Palfrey (2002) developed strategic learning models

for repeated games and introduced Strategic EWA learning. Hanaki et al. (2005) devel-

oped algorithm for learning in repeated games that was directly motivated by results of this

implementation of the Tournament.

The games we consider are: Ochs Game, Stag Hunt, Ultimatum Game, Centipede Game,

Prisoner’s Dilemma, Battle of Sexes and the Game of Chicken. We then generated machine

datasets for the above games using the programs developed for various emulators. The main

emulators that we implemented include Fictitious Play, Cournot Best Reply, Adjusted Re-

inforcement, and Experience Weighted Attraction Learning. We also had several variants of

mixed models where players were using different emulators to make their decisions. Our initial

simulations (for specific parameter values of learning algorithms) show that there are often

significant differences between human and machine generated data. These results serve as fur-

ther motivation to conduct the Tournament and invite submissions of sophisticated emulators

and detectors.

When very accurate detectors are established through the Tournament, evaluation of the

learning models would not require presence of human data under identical conditions as in

statistical evaluation. The performance of the models can be studied under various conditions

prior to collecting human data and, in fact, used in developing new experimental designs. In

addition, since many detectors use a particular logic in their decision (for example the ability

to coordinate), results from a particular detector would allow evaluation of specific features
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of the model.

We would like to emphasize that this implementation of emulators and detectors was for

primarily for testing purposes. While we tried to implement a number of well-known learning

algorithms, we used the parameter sets reported in the literature, but did not try to get the

optimal sets for each of the games. In addition, our detectors represent just an initial attempt

to tackle the problem of developing those types of algorithms. The objective of the paper is

to present the methodology that can be used to test the models of human behavior in a setup

of repeated 2 person games. The results that we present here are obtained based on a single

run of the tournament. In the subsequent stages, the tournament will run iteratively until, in

statistical terms, significant detector and emulator are identified.

We give a description of the Turing tournament design as we apply it to repeated games’

environments in Section 2. A description of an initial implementation of the Tournament is

given in Section 3. We report the results of the tournament and some comparison between

human and machine generated data in Section 4. Concluding remarks are given in Section 5.

2 Details of the Turing Tournament

In this section, we describe an implementation of the Turing Tournament methodology to

repeated normal form games. We have two categories of entries, both of which are computer

programs. Emulators are computer programs that simulate human players’ behavior in a class

of repeated games. Detectors are programs that assign probabilities of whether a given data

set that they encounter is machine or human generated.

2.1 Definitions:

Define a two person normal form game to be a file containing an S1 × S2 × 2 array of real

numbers umlp (m = 1, .., S1; l = 1, ..., S2; p = 1, 2). This represents the stage game in an N
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round repeated 2 person game, where player p has Sp strategies, and umlp is the payoff to

player p if player 1 adopts strategy m and 2 adopts l.

Define a dataset to be a file containing a Q×N matrix of integers. This represents the result of

running an N round repeated game experiment with Q subjects, matched in pairs (1 matched

with 2, 3 with 4, etc.) The (q, n)th entry in the dataset is the strategy choice of player q in

round n.

2.2 Valid Entries

An emulator is a computer program that takes as input a normal form game, and generates

as output a dataset.

A detector is a computer program that takes as input a normal form game, together with a

set of D datasets, and gives as output a vector r of length D, r = (r1,..., rd..., rD), where each

component rd is between 0 and 1 and represents the probability that the detector assigns to

a dataset d ∈ {1, D} being human.

2.3 Stages of the Tournament:

Stage 1: After all entries have been submitted, a set of J normal form games is selected.

For each normal form game, H datasets are generated based on human play (by running H

experiments with human subjects).

Stage 2a: For each normal form game, each of the submitted emulators generates one dataset.

If there are E emulators, this gives a total of D = H + E datasets.

Stage 2b: For each selected normal form game, each detector k is run with input consisting

of the normal form game j, and the set of D datasets, one at the time. In other words, a

detector works with a single dataset, assesses probability and is then presented with another
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dataset.2 This yields an output vector rkj of length D for each detector k and normal form

game j. For 1 ≤ j ≤ J define zkj
d to be rkj

d if the dth dataset is human, and 1− rkj
d otherwise.

The score for detector k is

vk =
1

DJ

∑

d,j

log(zkj
d ).

The score of emulator e (which generates one of D datasets for each game) against detector

k is

ve
k =

1

J

∑
j

log(zkj
e ).

Stage 3: We repeat Stage 2 (a and b) T times, obtaining average scores for each detector,vk,

and emulator,ve
k : 3

vk =
1

T

∑
t

vkt,

where vkt is the value of vk obtained on the tth trial, and

ve
k =

1

T

∑
t

ve
kt,

where ve
kt is the value of ve

k on the tth trial. The value of T depends on the results reported

at each iteration t of the tournament. We stop the tournament at the iteration T when the

best detector and the best emulator are significantly different (at 95% confidence level) from

the second placed detector and the second placed emulator.

Stage 4: The detector k∗ with the highest score vk is declared to be the winning detector.

The winning emulator is defined to be the emulator e∗ that minimizes ve
k∗ .

4

2It does not work with a combination of datasets.
3In the initial implementation that is described in this paper, we ran the Tournament only once, i.e. T = 1.
4In the unlikely event of a tie among two or more detectors, in terms of their expected scores, at 0.05
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We chose the logarithmic scoring rule described above because it is a strictly proper scoring

rule, i.e. one in which a forecaster maximizes (optimizes) by forecasting/revealing exactly his

or her true beliefs about the situation.5 In addition, logarithmic scoring rule has increasing

”punishment” for marginal error, compared to scoring rules based on absolute deviations from

the true state. In the Tournament, if a detector makes a big error with one of the datasets,

it received a very large negative score (logarithm of almost zero) and therefore is unlikely to

become the winner. With scoring rules based on absolute deviations, a detector can perform

poorly in one case, but still receive a very high score by performing well with other datasets

(for example other types of games).

Prior to the beginning of the Tournament each entrant knows the details of the tourna-

ment as described above, including scoring rules for detectors and emulators. Specifically,

each entrant knows that there will be a series of two person normal form games with given

N and Q. Entrants do not know how many human datasets, H (determined exogenously by

the researcher), or emulator generated datasets, E (determined endogenously based on sub-

missions), there will be in the Tournament. The complete instructions for submissions can be

found at [enter GEB reference Instructions].

2.4 Evaluation approaches

The purpose of the Tournament is to identify an emulator that most closely resembles human

behavior and find a detector that is most accurate in distinguishing humans from algorithms.

We next comment on different approaches for identifying the best detector and the best

emulator based on the scores they generate. While theorems in social choice theory argue

significance level, the detectors will share the prize. Similarly, if there is a tie among two or more emulators
in terms of their expected scores against the winning detector, at 0.05 significance level, the prize will be
shared among them. Detailed Tournament instructions can be found as electronically available supplemental
material.

5For a thorough discussion and proofs of proper scoring rules we refer the reader to many articles in the
literature like Savage (1971), O’Carroll (1977), Winlker (1969) and others. There are also many examples
of applications of proper scoring rules in statistics, economics and meteorology, for example, Gneiting and
Raftery (2004), Hanson (2002), Staël von Holstein (1970) and other.
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that there is no perfect aggregation rule, we find it instructive to report ranking of emulators

and detectors using a few different weighting rules.

2.4.1 Scoring of Detectors

Our working scoring scheme, the baseline scoring scheme, described earlier is to assign each

detector an average score over all human and emulator entries (the emulator/human scores

are in turn averaged across games). The advantage of this approach is that no data on

performance is wasted. The disadvantage is that the score becomes sensitive to outliers. Given

the logarithmic score rule used, all scores have an upper bound of zero and a lower bound of

minus infinity.6 Therefore when a detector makes one big error (eg. assigns a probability 1

of being human to an emulator), it is sufficient to significantly decrease the detector’s score

even if it performed well in other cases.

Depending on the objectives in selecting the best detector, the disadvantage described

above may serve as a rationale for another scoring scheme (scoring scheme 2). Suppose that

we are interested in the best worst case detector, i.e. we adopt a minimax choice strategy.

The best detector then is the one that makes the minimum worst error across all datasets. In

a way this scoring scheme ensures against large deviations.

A third scoring scheme we consider to determine the best detector is based on a median

game performance. A median game rule finds the average score for each game for a detector

and then picks the median of the games’ average scores for a given detector to find its “median

game score.”7 This approach eliminates disadvantages of the first approach - sensitivity to

outliers. It also eliminates the effect of the particularly good score in situations when a

detector performs exceptionally well in just one or two specific games. On the other hand, a

drawback of this scoring scheme is that most of data on performance is not utilized. Many

6In the computer implementation of our scoring rule, if zkj
d = 0, then we assign a large, in absolute terms,

negative constant as a score for a detector for a given dataset.
7In case of the even number of games the rule takes the average of two games.
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other weighting schemes could be applied. However, the above described when taken together

should give a good characterization of detectors’ performance as they allow us to identify

sensitivity of detectors to outliers, as well as their average and median game performance.

2.4.2 Scoring of Emulators

Our working approach in evaluating the emulators in based on the scores they receive against

the best detector. The best emulator then is the one that the best detector assigns the highest

probability of being human. An advantage of this scoring scheme is that the most accurate

detector is used. Note that since we know the true state of a dataset (human or emulator

generated), the detectors are evaluated objectively based on the ”true state of nature.” It

therefore seems advantageous to rank emulators based on the most accurate rule. However

this scoring scheme may have a disadvantage. If a detector uses a specific ”logic” in deciding

on the probability of being human, then an emulator with a the same ”logic” would be more

likely to win.

An alternative scoring scheme, unweighted mean, is to use all detectors equally, so that

the best emulator is the one that has the best average score across all detectors. However in

this case even ”poor” detectors participate equally in assigning the winner, which biases the

outcome.

An approach that decreases this problem, weighted mean, is weighting detectors according

to their performance. We implement weighting procedure in the following way. Suppose that

each detector k gets a score vk, where vmin is the score of the worst detector. Then each

detector k is assigned the following weight

wk =
vk − vmin∑
k(vk − vmin)

The worst detector is assigned a weight of zero and all other detectors are assigned weights
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proportional to their performance. Poor detectors still participate in the scoring, but their

impact is smaller than in the second scheme. Although the relation of this scoring scheme to

our working scheme is less trivial, there are cases when the working scheme is clearly superior

to this weighting. For example suppose that there are three categories of detectors. One

detector performs poorly and has a score vmin, the second category is a number of detectors

C, each with the score v2 (close to vmin) and the third category is one detector with the highest

score v3. Then emulator i is assigned a score

C(v2 − vmin)

C(v2 − vmin) + v3 − vmin

vi
2 +

(v3 − vmin)

C(v2 − vmin) + v3 − vmin

vi
3.

For C > (v3 − vmin)/(v2 − vmin) greater weight is assigned to less accurate detectors which

decreases the accuracy of evaluation. Therefore, when the number of poor detectors is large,

a better evaluation method is to determine the winning emulator based on the best detector.

The fourth approach we study is the median game approach, which finds the mean score

for each game for an emulator and then picks the median of the game scores to determine the

winner. We provide empirical illustration of these evaluation approaches in section 4 of the

paper.

The design of the Tournament is such that evaluation of emulators relies on the detection

ability of detectors. Since detectors are evaluated objectively based on the ”true state” (human

or machine) of all datasets, human data indirectly affects scores given to emulators. If all

submitted detectors are not accurate in distinguishing human and machine data, the scores

of emulators have little use for conclusions since emulators are evaluated against the best

detector. To avoid this situation we need to introduce a reference score that the best detector

needs to exceed to be the winner. In this implementation our reference is the score of a

detector that assigns all datasets probability 0.5 of being human. This detection is equivalent

to “I do not know” conclusion and we call this detector “Random”. If the best submitted

detector receives a higher than this threshold score, its detection ability is reasonably accurate
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and therefore emulators’ scores against the best detector are insightful.

3 A Preliminary Version and Test

We report the results of the initial implementation of the Turing Tournament conducted at

the California Institute of Technology. During the initial phase, we set up a tournament using

experimental data collected by McKelvey and Palfrey (2002) on repeated two-person games.

Eight two-person games were used. Table 1 gives a listing of the games, and Table 2 provides

a listing of the set of all Nash Equilibria for each game.

We used only the experiments corresponding to full information repeated games. This

consisted of two experiments with Pasadena City College (PCC1 and PCC2) subjects and one

experiment with California Institute of Technology (CIT) subjects. There were 16 subjects in

each experiment (except one with 14 subjects). Each experiment consisted of eight sessions,

in each of which subjects were matched in pairs and played one of the eight games above for 50

rounds with the same player (subjects made moves simultaneously). At the beginning of the

session, subjects were told the game matrix. After each round, subjects were told the choice

of the subject they were matched with, and the payoffs received by each subject. In each

new session, a different game was used, and subjects were re-matched using a zipper design,

i.e. each subject played with the same partner only once (except in the experiment with 14

subjects, in which it was necessary to rematch once the players that had already played in

one of the sessions.)

3.1 Emulators

We started the evaluation of the existing learning models by implementing the following

algorithms as emulators : Random, Cournot, Fictitious Play, Adjusted Reinforcement (Roth

and Erev (1998, 1999, EWA (Camerer and Ho (1999a and 1999b). We also created a number
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of emulators consisting of mixed models where different players made decisions according

to different learning models. We included two new algorithms in the Tournament, Alg1 – a

coordination based algorithm written by Svetlana Pevnitskaya, and Alg2 – a Quantal Response

Equilibrium, QRE (McKelvey and Palfrey, 1995) based algorithm written by Brian Rogers.

We would like to emphasize that (with the exception of Alg1 and Alg2 that were written

while we were developing the tournament software) the learning models that we implemented

were not specifically developed for repeated games with full information. Camerer, Ho and

Chong’s (2002) Sophisticated EWA model as well as models by McKelvey and Palfrey (2002)

and Hanaki et.al (2005) would be excellent entrants to the Tournament since they allow

for repeated games. However, these models were not available at the time of this initial

implementation.

The emulators were implemented as follows:

Random Play: Each choice available to the player is assigned the same probability. For

n× n game, the probability of choosing j is pj = 1
n

for any j. There is no updating.

Fictitious Play: Players choose a best response to the historical average of past play of their

opponents. The first round choice is random.

Cournot Best Reply: A player chooses best response to the previous move of the other

player. The first round choice is random.

Adjusted Reinforcement: Players adopt mixed strategies so that the probability that player

i will play strategy j at time t is

pi
j(t) =

qi
j(t)∑

j

qi
j(t)

,

where qi
j(t) is the attraction of strategy j to player i at time t. The updating rule for

attractions is
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qi
j(t + 1) = (1− ϕ)qi

j(t) + Ek(j, x− xmin),

where ϕ is the “forgetting” (or recency) parameter, x is received payoff, xmin is the

smallest possible payoff and

Ek(j, x− xmin) =





(x− xmin)(1− ε) if j = k

(x− xmin)ε
1

m−1
otherwise

is a function which determines how the experience of playing strategy k and receiving

reward x− xmin is generalized to update each strategy j. Here m is the number of pure

strategies.

We defined initial attraction of strategy j, qj(1), to be the expected value of playing j

assuming that the other player chooses randomly. In the pure Adjustment Reinforcement

algorithm, we used ϕ = .1 and ε = .1. These values are based on Roth and Erev’s (1998)

results where they estimated ϕ = .1 and ε = .2 and the acceptable range of parameter

values as 0 < ϕ < 0.2 and 0.02 < ε < .3.8

Experience Weighted Attraction: There are two main variables that are updated after

each round of experience: N(t) – the number of observation-equivalents of past expe-

rience; and Aj
i (t) – player i’s attraction of strategy sj

i after period t has taken place,

N(t) and Aj
i (t) begin with some prior values, N(0) and Aj

i (0). These prior values can

be thought of as reflecting pre-game experience. The experience weight starts at N(0)

and is updated according to

N(t) = ρN(t− 1) + 1, for t ≥ 1

8The values of the parameters were not estimated for our class of games. Some data generated by this
implementation of the Adjusted Reinforcement Learning model might not reflect the performance of the model
with optimized parameters.
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where ρ is a depreciation rate or retrospective discount factor. The attraction of a

strategy j for player i at time t is updated according to

Aj
i (t) = {φN(t− 1)Aj

i (t− 1) + [δ + (1− δ)I(sj
i , si(t))]πi(s

j
i , s−i(t))}/N(t)

The factor φ is a discount factor or decay rate, which depreciates previous attrac-

tion and πi(s
j
i , s−i(t)) is a payoff to player i of choosing j, given the choice of other

player(opponent) at time t. Finally, I(sj
i , si(t)) is an indicator function that equals 1

when sj
i = si(t) and 0 otherwise. The probabilities are updated using the logistic form

pj
i (t + 1) = exp[λAj

i (t)]/
∑

k

exp[[λAk
i (t)]

Besides the payoff matrix, the inputs of this emulator are: N(0), Aj(0), ρ, φ, δ, and

λ. The initial attractions Aj(0) are determined in the same way as in the Adjusted

Reinforcement model. For the “pure” version of the emulator we used N(0) = 10,

ρ = .95, φ = .99, δ = .2, λ = .35. In mixed models we also used the following

values of the parameters: ρ = .95, φ = 1, δ = .6, λ = .2, N(0) = 15 and ρ = .94,

φ = 1, δ = .4, λ = .4 , N(0) = 16. These values are based on Camerer and Ho (1999b)

estimation results where they obtain for different games ρ = {.961, .946, .935, .926}, φ =

{1.040, 1.005, .986, .991}, δ = {0, .73, .413, .547}, λ = {.508, .182, .646, .218}, N(0) =

{19.63, 18.391, 15.276, 9.937}.9

Alg1: 10 The players first “identify” a game, analyzing the payoffs of the opponent as well as

their own. The main objective is to look for coordination games, and symmetric, Pareto

superior payoffs. Then players try to coordinate. If the opponent deviates, the player

9Again as in the case of the Adjusted Reinforcement Learning, the values of the parameters were not
estimated for our class of games. Some data generated by this implementation of EWA model might not
reflect the performance of the model with optimized parameters.

10Due to S. Pevnitskaya.
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uses “punishment” to try to enforce coordination.

Alg2: 11 This algorithm works in the following way. If there is a unique Nash equilibrium in

mixed strategies, then play according to the Quantal Response Equilibrium (QRE).12

Otherwise, if maximum payoffs for both players are in the same cell, they play this with

probability, γ which is chosen randomly, from the uniform distribution, in the interval

[.8, .99].

We also implemented a number of emulators consisting of mixed models – i.e., emulators where

different players played according to decisions rules specified by different learning models. It

is worthwhile pointing out that in the design of the Tournament, there is no restriction on

the parameter values that emulators are allowed to use for any particular setup. In other

words, once they are presented with the game payoff matrix, emulators are allowed to set

(and change) the parameter values of the algorithms they are using.

We generated the emulators’ data sets in the following way. For each emulator, we gen-

erated 16 robots (this corresponds to the number of human subjects who participated in the

experiments) who used a particular emulator to play the game. The matching of robots who

played a repeated game and their re-matching after each game was performed following the

experimental zipper design described above. After each round of a given repeated game,

robots received the same information as the human subjects did, i.e. what the strategy choice

of the robot they were matched with was. A separate data file was generated for each game.

3.2 Detectors

Detectors reported in this section serve only as an initial attempt to identify the differences

in human and emulator behavior. We implemented the following six detectors:

11Due to B. Rogers.
12Gambit program (http://www.hss.caltech.edu/gambit/Gambit.htm) is used to solve a for QRE. The QRE

parameter λ is chosen randomly, from the lognormal distribution, with the distribution parameters chosen such
that the mode of the distribution is equal to 2.
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Random (Zero Information): Each dataset is equally likely to be human or machine – i.

e., assigned a probability .5.

Dates: Datasets are split in two groups according to the time-stamp they have. The smaller

groups are assigned to be human with high probability.13

Fast convergence: This detector assumes that humans converge to a particular play faster

that emulators. It assigns a probability of ρ =0.7 that a dataset is human if both players

choose the same move more than 90% of the time. Otherwise, it assigns a probability

of ρ =0.3.

Payoff Change: This detector looks for payoff differences between the beginning and end of

playing the game: humans are more likely to have greater difference in payoffs in the

beginning and end of the game than machines. We find the average of pair i’s payoffs in

the first and last 12 rounds and compute the difference di. Then compute average of di

over all pairs for dataset k, Dk. The ranking of Dk’s is mapped into probability interval

of being a human.

High Payoffs: This detector exploits the difference between human and machine generated

data in terms of the average payoffs earned during a given game. Humans are more

likely to get higher payoffs. The detector finds average subject’s payoff for each dataset

and ranks them. This ranking is mapped into the probability interval.

Coordination Detector: 14 This test identifies a coordination game and counts the number

of alternations between optimal cells, Count. If the total possible number of alternations

is J , then the probability that a dataset is human is 1− |Count−εJ |
J

.15

13This detector was added just for the purpose of testing how our software worked. In the current version of
the Tournament, this detector would not be successfully implemented as all the datasets, machine and human,
that detectors look at have the same data stamp.

14Due to S. Pevnitskaya.

15This test appears to be accurate in distinguishing humans from machines in coordination games. In the
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4 Results

In this section we first present the comparison between the human and emulator generated

behavior. We then report the results of the Initial Turing Tournament.

4.1 Overview of Human and Emulator Behavior

Figures 1-8 compare the human to the machine data for four of the emulators: Cournot Best

Reply, Fictitious Play, Adjusted Reinforcement, and EWA. Polygons in these figures represent

the possible per stage average payoff space. The row player’s payoffs are on the horizontal

axis, and the column player’s payoffs are on the vertical axis. Each data point represents

the average payoff over the course of the 50 rounds for a pair of subjects who are matched

together. The red dots represent the human data, and the black dots represent the emulator

data. In each figure, pink circles represent Nash equilibria of a stage game.

The figures reveal that the Cournot Best Response and the Fictitious Play usually get to

one of the equilibria of a given game. This rarely coincides with the data points generated

by humans. At the same time, Adjusted Reinforcement and EWA have scattered data points

that are not close in many cases to the clusters of human data observations. They also rarely

get close to the region of the payoff space where equilibrium points are located. In order to

investigate this further, we introduce a statistical measure that we call a center estimate. This

is the point, (x̄, ȳ) in the payoff space which minimizes the sum of Euclidean distances to all

data points for the emulator or human data

min
x̄,ȳ

∑
i

√
(xi − x̄)2 + (yi − ȳ)2

initial Tournament, each file contained data for all eight games and this test was the winner of the Tournament
with the score of 16.5 out of 18. However it looked primarily at coordination game and ignored the rest of the
data (since the detectors were not required to assign a probability for each game). This result motivated us
to change the structure of the Tournament such that a detector has to assign probability to data from each
game.
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where xi and yi are payoffs to the row and the column players (who are matched together in a

pair i) respectively and (x̄, ȳ) is the center estimate. The center estimate is shown as a yellow

dot in each polygon. It indicates the center of the cluster of observations generated for specified

emulator or human data. Figures 1-8 illustrate that data generated by some emulators have

practically no deviation and are clustered around a single point, while observations generated

by other emulators are scattered over the whole polygon. We obtain the Euclidean standard

deviation for each data set and illustrate them on the graphs as circles, red for human data

and black for emulators around the center estimates. The radius of a circle is equal to the

standard deviation.16 Numerical values of the center estimates and standard deviations are

shown in Table 3.

We find that the center estimate clearly illustrates information about the emulators and the

human data. In the Ochs game (Figure 1), Cournot Best Reply has the center estimate almost

coinciding with the center estimate of the human data, but human data standard deviation is

greater. Fictitious Play does a relatively good job, as its center estimate is close to the human

data, and its standard deviation (although the circles do not overlap) is greater, and thus

closer to the standard deviation of the human data. Adjusted Reinforcement does really well

in this game. Its center estimate is close to the human data center estimate, and the standard

deviation, although smaller, is within the circle depicting human data dispersion. EWA’s

center estimate is fairly far away from the human data center estimate. It also generates a

standard deviation greater than the human data one, with some overlap.

In the 2 × 2 Stag Hunt game (Figure 2), all of the emulators’ data points and their

center estimates are concentrated around a Pareto inferior equilibrium. The center estimate

of human data is close to the Pareto superior equilibrium. We obtain a very similar result

in 3 × 3 Stag Hunt (Figure 3) which has 3 equilibria that can be Pareto ranked. It is clear

16Note that, for a given game, the human data presented in each figure are the same. Also, in each figure,
two center estimates for both emulator and human data are presented with yellow dots. However, the circles
that indicate deviations are presented in black for emulators, and with red for human data. The larger the
circle, the more dispersed the data points are.
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that the center estimate for the human data is very close to the Pareto optimal equilibrium,

while the same estimates for all of the four emulators are very close to the equilibrium with

the lowest stage-game payoff.

In the 3× 3 Ultimatum game (Figure 4), Cournot Best Reply and Fictitious Play are far

away, with their center estimates, from the human data. However, Adjusted Reinforcement

does a much better job. Its center estimate is very close to the human data center estimate,

and its circle is within the boundaries of the human data circle. EWA does not do as well

as Adjusted Reinforcement, but still does a pretty good job. Its center estimate is closer to

the human data center estimate than are the center estimates for Cournot Best Reply and

Fictitious Play.

For 3× 3 Centipede game (Figure 5), the Fictitious Play and the Adjusted Reinforcement

center estimates are the closest to the human data. However, Fictitious Play’s standard

deviation is very small compared to humans, while Adjusted Reinforcement standard deviation

indicates dispersion of the data more in line with the human data. Cournot Best Reply’s data

points are all concentrated around the Nash equilibria, while EWA’s points are in a different

corner of the payoff polygon.

In case of Prisoner’s Dilemma (Figure 6), the center estimate for human data is close to

the cooperative outcome with a fairly large standard deviation. However, center estimates of

all of the emulators are far away from the human data one.

When it comes to Battle of Sexes game (Figure 7), Cournot Best Reply has its center

estimate relatively close to the human data, but the standard deviation is a lot larger as

some of its data points are concentrated in pure strategy, stage game equilibria. The center

estimates of the remaining three emulators are far away from the human data center estimate.

Finally, in case of the Game of Chicken (Figure 8), the center estimates of all of the

emulators are far away from the human data center estimate.

Two features observed in the figures representing the Prisoner’s Dilemma and Battle of
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the Sexes games are worth pointing out. First, in the Prisoner’s Dilemma game (Figure

6), all the data points generated by Cournot Best Response and Fictitious Play are close

to the Nash equilibrium. The data points generated by RL and EWA are scattered mostly

in the lower left side of the payoff polygon, not reaching either the Nash equilibrium or

Pareto optimal cooperative outcome. However, most of the data points that resulted from

human interactions are concentrated close to the cooperative outcome (although there is some

noticeable dispersion).

Secondly, in the Battle of the Sexes Game (Figure 7), none of the four presented emulators

were able to pick up the coordination that occurred in the human data. In the human data,

subjects would frequently achieve more than could be achieved by independent randomization

by alternating back and forth between the pure strategy equilibria. Thus, on odd moves,

they would go to the equilibrium preferred by one of the players, and on even moves to the

equilibrium preferred by the other. At the same time, Cournot Best Responses and Fictitious

Play generated points very close to one of the pure strategy Nash equilibria, and RL and

EWA generated data points scattered around, without getting close to the point (5,5) of the

polygon’s payoff space.

Next, in tables 4-11, we report mean values and standard deviations of the payoffs of row

and column players as well as the total average payoff per each of the eight games for the

above discussed emulators (plus Alg1 and Alg2). A number of observations regarding game

specific results are worth pointing out.

The data recorded in the 2× 2 Stag Hunt game show that there is not much difference in

terms of average payoffs of row and column players in the observations generated by humans

and the observations generated by our emulators. Relatively high payoffs reflect the fact that

both humans and emulators frequently played the payoff dominant equilibrium.

However, in the 3× 3 Stag Hunt, humans get payoffs significantly higher than most of the

emulators. The difference is that humans continue to frequently play the payoff dominant Nash
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equilibrium while the emulators frequently choose the equilibrium with the lowest payoffs for

both players. The exceptions are emulators Alg1 and Alg2. Alg1 achieved a highest possible

average payoff for both column and row players (5,5). This means that Alg1 players always

played the payoff dominant equilibrium.

In the Centipede game, Alg1 again gets the higher payoff than human subjects or any

other emulator by alternating between two cells with the highest payoff for each player.

Finally, in the Prisoner’s Dilemma game, human data reveals on average higher payoffs for

both row and column players than the emulator generated data. The exception is Alg1 which

has a higher average payoff for each player as well as a higher total average score than any

of the human data sets. This score reveals cooperation outcome for each round of the games,

as the standard deviation for both the row and the column player is 0. This is a higher level

of cooperation than any of the ones exhibited by human data. The CIT data set does have

values close to the cooperative outcome, 7.46 (1.27 standard deviation) for row player and

7.60 (.79 standard deviation) for the column player.

In the 3 × 3 Ultimatum game, human row players get lower payoffs than machine row

players, while the reverse is true of the column players. Human subjects tend to divide the

pie more evenly than the emulators.

4.2 Results of the Initial Tournament

The overview of the human and emulator behavior provides insight to the scores of individual

emulators and detectors that we obtained in the initial implementation of the Tournament.

Table 12 gives the results of a run of the tournament. The first column lists the detectors that

were implemented and the second column gives their overall scores against all of the datasets

(using baseline scoring scheme). The following three columns give the scores of the detectors

for each of the human datasets, followed by columns presenting the scores of the detectors

against each of the emulators that were implemented. In this run of the tournament, the
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Coordination detector won with the lowest negative score of -0.684 and the emulator that had

the best score against this detector is Alg1. The detector that comes in the second place is the

Random detector. Tables 13 and 14 show, respectively, how the detectors performed across

the games, and how they performed on each dataset for the Battle of the Sexes game.

Table 13 reveals that the Coordination detector gets the highest score, -0.28, in the data

related to the Battle of the Sexes (Coordination) game. This detector was mainly designed to

detect coordination in the Battle of Sexes game that occurs in the human data where subjects

alternated between the two Nash equilibria. Looking back at Table 12, we see that Alg1, again

designed to emulate this type of coordination has the best score against the winning detector.

This is largely due to its good performance in the Battle of the Sexes game where it was hard

for the coordination detector to detect that it was facing machine generated data.

Another notable observation is that the High payoff detector gets the best score in the

Chicken game and the worst in the Ultimatum game. This means that human subjects are

able to realize that playing symmetric payoff cell (5, 5) gives greater payoffs than alternating

between Nash equilibria. This behavior is hard to capture with the existing learning models.

On the other hand, in the Ultimatum game, humans do not receive as high payoffs as many

emulators do. All human datasets show significantly lower difference in the payoffs between

column and row players (for human datasets, the range is between .36 and .43 while for

emulator datasets, the range is between .93 and 3.92).

4.3 Stability of Results to Different Evaluation Approaches

We next investigate the impact of the alternative ways of scoring the detectors and emulators.

Our baseline scoring is sensitive to outliers. Note however, that the actual tournament includes

a large number of iterations that should take care of this problem. We report below the scores

and the ranking of the detectors and emulators, using additional scoring rules as described

earlier in section 2.4.
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4.3.1 Detectors

Table 15 reports detectors’ scores for different scoring rules, the mean value (our baseline

average rule), the highest worst score obtained (minimax), and the median game score. The

mean column shows the tournament results according to our baseline rule that have been

discussed in the previous section. Table 16 reports the detectors’ ranking according to these

different scoring rules.

When we use the worst score rule, the Random detector comes in first. This is due to the

fact that each of the other 5 detectors had some of their scores lower than those generated

by the Random detector. The Random detector always assigns probability 0.5 and therefore

always makes a 0.5 deviation from the true state. That is why it always receives a score of -

0.693. However, every other detector may make a worse error by assigning a probability greater

than 0.5 to the emulator generated data or lower than 0.5 to human data. Payoff Change,

High Payoffs and Coordination detectors made relatively large mistakes at least once.

Looking at the scores according to the median game scoring rule, Coordination detector

and Random detector have exactly the same score and are both assigned the same place, 2,

in the table. Coordination detector was mainly designed to detect coordination games and

games with Pareto dominant payoffs and distinguish between human and emulator data based

on the level of coordination observed in the players’ decisions. However, this detector does

not include a sophisticated response to games that do not contain a coordination element

or Pareto dominant outcome. Thus, when this detector is uncertain about the type of the

game, it just assigns a probability 0.5 that the data file is human. This feature lowered the

score of this detector, and resulted in a median game score of -0.693, which is the score of

the Random detector. The fact that its median score is equal to the Random median score

comes from the number of such unidentified games presented to Coordination detector in the

Tournament. This can be seen in Table 13 that reports the scores that detectors received for

each individual game. Coordination receives a score of -0.69 (which is the score received for
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giving a probability of 0.5) for Ochs, Ultimatum, Centipede, and Chicken games; the games

that do not contain the coordination element that this detector was designed for. We could

have increased the score for this detector if, for example, we combined it with the elements

of the Payoff Change detector, which performed relatively well in a median game. However,

our efforts were primarily focused on developing the methodology and the tournament itself,

rather than designing the best detector.

Two alternative scoring schemes are based on specific single scores (minimum or median)

generated by the detectors. We find that detector that performs best using the baseline

approach still shows good performance based on the alternative scoring schemes. The baseline

rule also has advantages as described in section 2.4.1 and illustrated empirically in this section.

For example, Random detector that always makes a fixed error comes best using minimax rule.

Payoff Change detector comes first using Median game scoring scheme, however performs worst

based on the Minimax scoring scheme, since it makes large mistakes in some datasets.

4.3.2 Emulators

In the Tournament design, we have scores of each emulator against each detector. The winning

emulator is chosen based on scores against the most accurate detector. In this section, we

present results of several other scoring schemes (as described in section 2.4.2) and report the

results in Table 17.

We investigate the impact of four scoring schemes. The first is the Winning detector scor-

ing scheme used in the Tournament implementation. The reported scores are those that each

emulator obtained versus the winning detector. The second scoring scheme is the Unweighted

mean that uses scores generated by all detectors for all emulators and finds average by assign-

ing equal weight to all detectors. The emulator’s score is thus a simple average of its scores

against each one of the detectors. The third scoring scheme is the Weighted mean where the

emulator’s score is given as a weighted average of the scores against each of the detectors
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as described in section 2.4.2. The fourth is the median game scoring scheme in which each

emulator’s median game score against the detector is reported. Table 18 reports emulators’

ranking when the above evaluation schemes are used.

The Random emulator that assigns the same probability to each choice available to the

player is ranked 7th according to our Baseline scoring scheme. However, it has a 3rd rank using

the Median game scoring scheme. Cournot’s performance is better with the Winning detector

scoring scheme (the Baseline) than any other. In fact, while it scores 3rd place with this

method, it takes low 6th or 7th place with other scoring schemes. The ranking of Fictitious

is similar to that of Cournot, i.e. relatively high ranking with the Winning detector scoring

scheme, 3rd place again, while 6th place with all the other schemes. Despite changes in ranks

of some emulators as described above, the performance of these emulators does not change

significantly for different scoring rules. All these emulators have scores relatively similar to

each other and changes in ranks are caused by small deviations. The scores of the winning

emulators (Alg1 and Alg2) on the other hand are consistently larger than the rest and are

sometimes twice as large as the scores of the rest of the emulators (for example Unweighted

mean scores in table 17).

The winning emulator based on the Winning detector scoring scheme, Alg1, comes con-

sistently first using all but one scoring scheme (where it comes second). Alg1 and Alg2 which

were designed for the repeated game setting using the features observed in the experimental

data, take first or second place when either one of the scoring schemes is used. The results

of the Tournament are robust to different scoring schemes. The above considerations and

analysis that we conducted provide support for the use of our baseline scoring approach in

the Tournament.
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5 Conclusion

We presented the design and an initial implementation of the Turing Tournament to learning

in two person repeated games. We developed a program that implements the tournament. In

addition, we used a number of emulators (mainly, well known algorithms from the literature on

learning) and developed a few detectors in order to test how the tournament performs. These

emulators and detectors were then treated as submissions to the tournament. For human

data, we used the experimental results from McKelvey and Palfrey (2001) and created human

datasets that were then shuffled with datasets generated by emulators. Finally, our detectors

evaluated the datasets. We studied and illustrated results of different scoring schemes for

determining the winning emulator and detector. Based on theoretical considerations and

empirical evidence of stability of results, we find support for the baseline approach of the

current design.

The analysis of our results shows that there are often significant differences between

datasets generated by humans and those generated by emulators, at least for the versions

of the emulators we implemented and parameter values that we used. Our results show that

there is room for improvement in developing new emulators or more appropriate and better

implemented versions of the existing emulators. In addition, the differences between human

and machine behavior demonstrate that there is room for development of good detectors,

which is a new and complex task. Once the best detector(s) has been objectively established

in the Tournament, it can be used to test performance of learning models prior to collect-

ing human data. Future research can address performance of detectors and emulators under

different matching and information conditions.
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Table 1: List of Stage Games used in the First Phase test.

L R
U 21 3 3 5
D 3 5 5 3

Game 1: Ochs Game

L R
U 3 3 3 1
D 1 3 6 6

Game 2: 2× 2 Stag Hunt

L M R
U 3 3 3 2 3 1
M 2 3 4 4 4 3
D 1 3 3 4 5 5

Game 3: 3× 3 Stag Hunt

L M R
U 3 3 3 3 3 3
M 4 2 4 2 0 0
D 5 1 0 0 0 0

Game 4: 3× 3 Ultimatum

L M R
U 4 1 4 1 4 1
M 2 8 16 4 16 4
D 2 8 8 32 64 16

Game 5: 3× 3 Centipede

L R
U 8 8 1 9
D 9 1 2 2

Game 6: Prisoner’s Dilemma

L R
U 18 6 3 3
D 3 3 6 18

Game 7: Battle of Sexes

L R
U 5 5 2 6
D 6 2 1 1

Game 8: Chicken
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Table 2: Nash Equilibria of the Games

Nash Equilibria Payoffs
Game Row Column Row Column

1 Ochs (1
2
, 1

2
) ( 1

10
, 9

10
) 24

5
4

2 2× 2 Stag Hunt (1, 0) (1, 0) 3 3
(0, 1) (0, 1) 6 6

( 6
10

, 4
10

) ( 6
10

, 4
10

) 3 3
3 3× 3 Stag Hunt (1, 0, 0) (1, 0, 0) 3 3

(0, 1, 0) (0, 1, 0) 4 4
(0, 0, 1) (0, 0, 1) 5 5
(1

2
, 1

2
, 0) (1

2
, 1

2
, 0) 3 3

(1
2
, 0, 1

2
) (1

2
, 0, 1

2
) 3 3

(0, 1
2
, 1

2
) (0, 1

2
, 1

2
) 4 4

4 3× 3 Ultimatum (1, 0, 0) (q1, q2, q3)
1 3 3

(0, 1, 0) (q1, q2, q3)
2 4 2

(0, 0, 1) (1, 0, 0) 5 1
5 3× 3 Centipede (1, 0, 0) (q1, q2, q3)

3 4 1
6 Prisoner’s Dilemma (0, 1) (0, 1) 2 2
7 Battle of Sexes (1, 0) (1, 0) 18 6

(0, 1) (0, 1) 6 18
(5

6
, 1

6
) (1

6
, 5

6
) 11

2
11
2

8 Chicken (1, 0) (1, 0) 2 6
(0, 1) (0, 1) 6 2
(1

2
, 1

2
) (1

2
, 1

2
) 7

2
7
2

1(q1, q2, q3) ∈ Co[(0, 0, 1), (3
5 , 3

20 , 1
4 ), ( 3

5 , 0, 2
5 ), (0, 3

4 , 1
4 )].

2(q1, q2, q3) ∈ Co[(0, 1, 0), (4
5 , 1

5 , 0)].
3(q1, q2, q3) ∈ Co[(1, 0, 0), (6

7 , 1
7 , 0), ( 30

31 , 0, 1
31 ), ( 6

7 , 6
49 , 1

49 )].
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Table 3. Center Estimates Coordinates and Standard Deviations

Game data x̄ ȳ σx̄,ȳ

Ochs Cournot 3 3 3.08
Fictitious 3.46 4.51 3.48
AdjReinf 3.73 3.62 2.41

EWA 3.79 3.78 2.18
human data 4.93 4.94 2.41

2× 2 Stag Cournot 9.88 9.88 8.57
Fictitious 10.20 4.45 2.62
AdjReinf 7.44 7.98 5.01

EWA 6.07 3.91 2.96
human data 10.86 10.73 4.91

3× 3 Stag Cournot 1.98 2.14 0.71
Fictitious 5.80 1.59 1.84
AdjReinf 5.10 4.60 3.67

EWA 3.15 4.38 2.66
human data 7.51 7.65 3.32

3× 3 Ultimatum Cournot 4.10 1.23 2.39
Fictitious 21.83 17.80 5.24
AdjReinf 16.80 14.52 7.92

EWA 8.49 31.44 2.80
human data 11.53 11.69 7.11
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Table 3: Center Estimates’ Coordinates and Standard Deviations, cont.d

Game data x̄ ȳ σx̄,ȳ

Centipede Cournot 4.96 1.04 0.59
Fictitious 2.91 2.65 1.83
AdjReinf 3.84 2.74 1.96

EWA 2.75 1.20 1.32
human data 2.46 2.81 0.74

Prisoner’s Dilemma Cournot 2.89 2.90 2.52
Fictitious 3.24 3.27 1.22
AdjReinf 3.15 3.13 1.73

EWA 3.16 3.20 1.40
human data 4.96 4.97 1.01

Battle of Sexes Cournot 3 3 2.91
Fictitious 3.53 3.58789 2.10
AdjReinf 3.34 3.9 2.17

EWA 3.31 3.30733 1.90
human data 5.79 5.80 1.1

Chicken Cournot 7.84 4 0.8
Fictitious 8.84 4.34 3.31
AdjReinf 13.05 3.88 2.68

EWA 7.47 4.15 2.98
human data 6.90 4.04 1.04
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Table 4: Ochs Game

Row Column Total
Dataset n Mean Std Dev Mean Std Dev Payoff

CIT 16 8.85 5.06 3.88 0.37 12.72
PCC1 14 6.51 1.41 3.96 0.18 10.47
PCC2 16 8.08 0.83 4.01 0.19 12.08

Random 14 8.14 0.84 4.02 0.15 12.16
Cournot 16 7.96 0.15 4.00 0.00 11.96

Fictitious 16 4.53 0.13 4.39 0.13 8.92
AdjReinf 14 6.76 1.21 4.26 0.16 11.02

EWA 16 8.49 3.27 4.36 0.34 12.84
alg1 16 12.00 0.00 4.00 0.00 16.00
alg2 12 4.87 0.80 4.31 0.11 9.17
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Table 5: 2× 2 Stag Hunt

Row Column Total
Dataset n Mean Std Dev Mean Std Dev Payoff

CIT 16 5.95 0.10 5.94 0.12 11.88
PCC1 14 5.12 1.08 5.07 1.19 10.19
PCC2 16 4.75 1.17 4.94 1.10 9.68

Random 14 3.24 0.35 3.13 0.25 6.37
Cournot 16 4.63 1.80 4.63 1.80 9.25

Fictitious 16 5.59 0.98 5.59 0.98 11.17
AdjReinf 14 4.04 0.84 4.01 0.85 8.05

EWA 16 4.00 0.73 4.03 0.58 8.03
alg1 16 6.00 0.00 6.00 0.00 12.00
alg2 16 5.23 0.17 5.24 0.20 10.47
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Table 6: 3× 3 Stag Hunt

Row Column Total
Dataset n Mean Std Dev Mean Std Dev Payoff

CIT 16 4.98 0.03 4.98 0.03 9.96
PCC1 14 4.07 0.79 4.03 0.87 8.10
PCC2 16 4.64 0.43 4.64 0.63 9.28

Random 14 3.01 0.19 3.08 0.20 6.09
Cournot 16 2.69 0.83 2.69 0.83 5.38

Fictitious 16 3.23 0.45 3.23 0.45 6.46
AdjReinf 14 3.37 0.50 3.49 0.34 6.86

EWA 16 3.23 0.29 3.26 0.16 6.49
alg1 16 5.00 0.00 5.00 0.00 10.00
alg2 16 4.57 0.09 4.58 0.12 9.15

38



Table 7: 3× 3 Ultimatum

Row Column Total
Dataset n Mean Std Dev Mean Std Dev Payoff

CIT 16 2.28 1.02 1.88 0.84 4.16
PCC1 14 2.63 0.69 2.27 0.72 4.90
PCC2 16 2.55 0.43 2.12 0.75 4.67

Random 14 2.62 0.29 1.61 0.20 4.23
Cournot 16 4.96 0.03 1.04 0.03 6.00

Fictitious 16 4.92 0.05 1.08 0.05 6.00
AdjReinf 14 3.33 0.35 1.93 0.25 5.26

EWA 16 2.73 0.28 1.80 0.18 4.53
alg1 16 4.00 0.00 2.00 0.00 6.00
alg2 16 2.80 0.28 1.79 0.18 4.59
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Table 8: 3× 3 Centipede

Row Column Total
Dataset n Mean Std Dev Mean Std Dev Payoff

CIT 16 19.63 9.73 17.06 5.38 36.69
PCC1 14 13.04 9.79 9.73 7.54 22.77
PCC2 16 10.75 4.73 12.38 4.68 23.13

Random 14 12.31 3.33 8.54 1.11 20.86
Cournot 16 4.01 0.11 1.21 0.09 5.21

Fictitious 16 6.54 4.61 4.49 2.84 11.03
AdjReinf 14 17.20 9.71 18.96 6.00 36.16

EWA 16 8.22 0.36 31.68 0.38 39.90
alg1 16 36.00 0.00 24.00 0.00 60.00
alg2 16 19.48 3.54 16.14 1.81 35.61
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Table 9: Prisoners Dilemma

Row Column Total
Dataset n Mean Std Dev Mean Std Dev Payoff

CIT 16 7.46 1.27 7.60 0.79 15.05
PCC1 14 5.17 2.21 5.60 2.08 10.77
PCC2 16 6.03 1.97 6.17 2.05 12.20

Random 14 4.88 0.74 5.29 0.59 10.17
Cournot 16 2.05 0.06 2.01 0.04 4.06

Fictitious 16 2.05 0.06 2.01 0.04 4.06
AdjReinf 14 4.22 1.23 4.45 1.78 8.66

EWA 16 3.97 1.49 4.03 1.25 8.01
alg1 16 8.00 0.00 8.00 0.00 16.00
alg2 16 5.53 0.64 5.39 0.64 10.92
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Table 10: Battle of the Sexes

Row Column Total

Dataset n Mean Std Dev Mean Std Dev Payoff

CIT 16 11.28 0.64 10.38 2.31 21.66

PCC1 14 7.91 2.91 9.66 2.49 17.57

PCC2 16 9.71 2.93 8.66 3.17 18.38

Random 14 7.59 0.71 7.25 0.99 14.85

Cournot 16 6.75 4.44 12.75 6.83 19.50

Fictitious 16 10.05 5.25 13.41 5.93 17.21

AdjReinf 14 8.16 3.43 9.05 3.88 23.46

EWA 16 4.82 0.95 5.60 2.34 10.41

alg1 16 12.00 0.00 12.00 0.00 24.00

alg2 16 7.24 0.97 7.09 1.10 14.33
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Table 11: Chicken

Row Column Total

Dataset n Mean Std Dev Mean Std Dev Payoff

CIT 16 4.70 0.69 4.69 0.75 9.40

PCC1 14 4.49 0.59 4.46 0.61 8.95

PCC2 16 4.27 0.82 4.07 1.16 8.34

Random 14 3.46 0.43 3.67 0.30 7.13

Cournot 16 3.75 1.30 2.75 0.43 6.50

Fictitious 16 3.75 1.30 2.75 0.43 6.50

AdjReinf 14 3.71 1.01 3.95 0.84 7.65

EWA 16 3.60 0.65 3.40 0.62 7.00

alg1 16 5.49 0.05 3.52 0.18 9.02

alg2 16 3.80 0.42 3.73 0.42 7.54
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Table 15: Detector Scores

Mean ”Minimax” Median Game
Random -0.693 -0.693 -0.693
Dates -0.968 -1.609 -1.124
Ninety% -0.830 -1.609 -0.812
Payoff Change -0.742 -4.605 -0.670
High Payoffs -0.908 -4.60 -0.843
Coordination -0.684 -3.219 -0.693
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Table 16: Detector Ranking

Mean ”Minimax” Median Game
Random 2 1 2
Dates 6 2 6
Ninety% 4 2 4
Payoff Change 3 5 1
High Payoffs 5 5 5
Coordination 1 4 2
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Table 17: Emulators’ Scores

Rand Courn Fict Reinf. EWA alg1 alg2

Winning Detector -0.50 -0.76 -0.76 -0.66 -0.56 -1.956 -1.100

Unweighted Mean -0.77 -0.61 -0.79 -0.77 -0.72 -1.40 -1.070

Weighted Mean -0.72 -0.51 -0.64 -0.75 -0.69 -0.79 -1.18

Median Game -0.78 -0.56 -0.67 -0.76 -0.76 -1.28 -1.14
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Table 18: Emulator Ranking

Rand Courn Fict Reinf. EWA alg1 alg2

Winning detector 7 3 3 5 6 1 2

Unweighted Mean 4 7 3 5 6 1 2

Weighted Mean 4 7 6 3 5 2 1

Median Game 3 7 6 5 4 1 2
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Figure 1: Ochs Game
(Each token gives the payoffs to a matched pair of subjects)

Note: Must be viewed in color. Red=Human, Black=Machine
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Figure 2: 2× 2 Stag Hunt
(Each token gives the payoffs to a matched pair of subjects)

Note: Must be viewed in color. Red=Human, Black=Machine
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Figure 3: 3× 3 Stag Hunt
(Each token gives the payoffs to a matched pair of subjects)

Note: Must be viewed in color. Red=Human, Black=Machine
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Figure 4: 3× 3 Ultimatum
(Each token gives the payoffs to a matched pair of subjects)

Note: Must be viewed in color. Red=Human, Black=Machine
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Figure 5: 3× 3 Centipede
(Each token gives the payoffs to a matched pair of subjects)

Note: Must be viewed in color. Red=Human, Black=Machine
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Figure 6: Prisoner’s Dilemma
(Each token gives the payoffs to a matched pair of subjects)

Note: Must be viewed in color. Red=Human, Black=Machine
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Figure 7: Battle of the Sexes
(Each token gives the payoffs to a matched pair of subjects)

Note: Must be viewed in color. Red=Human, Black=Machine
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Figure 8: Chicken
(Each token gives the payoffs to a matched pair of subjects)

Note: Must be viewed in color. Red=Human, Black=Machine
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