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Abstract

Detritus is a ubiquitous and diverse component of the pelagic ecosystem. It comprises a wide class of parti-
cles created by such diverse processes as cell death, egestion, and aggregation. Detrital particles span several
orders of magnitude in size and have distinctly different chemical and physical properties. As a consequence,
the propensity of detrital particles to serve as substrates for bacteria or grazers, passive particles drifting through
the ocean, or conduits for rapid flux into the deep ocean is highly variable. In this chapter, we review the diverse
nature of detrital particles and corresponding production and loss terms in the pelagic ocean, as well as current
attempts to include detritus in ecological and biogeochemical models. Our goal is to bridge the gap between
field experiments and modeling studies by highlighting properties of detritus that vary predictably between
classes and can be both measured in the field and incorporated into the next generation of pelagic ecosystem

models.

Section 1. Introduction

Detritus (nonliving particulate material) is an important,
but under-studied, component of marine food webs. It is pro-
duced by a variety of distinct biotic and abiotic processes
including (but not limited to) grazing, organismal death, and
aggregation. As a consequence of a wide range of production
mechanisms, detrital particles and aggregates can vary widely
in their chemical and physical properties. In particular, size,
porosity, and lability (the chemical composition of a particle
that determines nutritional availability to bacteria and graz-
ers) strongly affect the role and fate of different components
of the detritus. Detritus can be used by both particle-associ-
ated bacteria and grazers and plays a distinct role in marine
biogeochemical cycles as it sinks out of the euphotic zone or
is redistributed by advective transport.

Detritus dominates the standing stock of particulate matter
in the oceans, comprising over 50% of particulate organic
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matter (POM) in most surface ocean regions and an even
higher fraction at depth (Riley 1970; Yanada and Maita 1995).
Yet, compared with living organic matter, the detrital pool
remains understudied (for a review of total POM in the ocean,
see Volkman and Tanoue 2002). Early studies of nonliving
material in aquatic ecosystems focused primarily on dissolved
material (Wood 1968) or detritus in lacustrine, fluvial, and
coastal environments (Melchiorri-Santolini and Hopton 1972)
and were conducted prior to the discovery of abundant
marine bacterial populations. A decade later, another sympo-
sium (Roman and Tenore 1984) began to highlight a modern
view of marine detritus as a micro-habitat for bacteria (Jacob-
sen and Azam 1984; Pomeroy et al. 1984) and protozoans
(Goldman 1984), food source for mesozooplankton (Roman
1984a), and transporter of carbon to depth (Karl and Knauer
1984). In the three decades since, a wealth of new instruments
and techniques (including the proliferation of three-dimen-
sional biogeochemical models) has added greatly to the body
of detritus literature. Yet conversely, this proliferation of new
techniques has led to specialization and disconnect between
different sub-disciplines. Few studies consider multiple com-
ponents of the broader detrital pool, and ecosystem models
typically conflate this diverse class of particles into one or a
few model compartments. This coarse representation of a class
of particles with important biogeochemical roles is likely hin-
dering our understanding of heterotrophy in the surface
ocean and supply of organic matter to the mesopelagic.

The importance of detritus in marine ecological models is
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highlighted by the fact that detritus is one of only four state
variables included in simple nutrient, phytoplankton, zoo-
plankton, detritus (NPZD) models (Olson and Hood 1994;
Anderson 2005). Nevertheless, detritus has typically been
treated as little more than a pragmatic tool to introduce a
time-lag in remineralization or mediate vertical flux, whereas
many of the ecological roles of detritus have been neglected.
In fact, with few exceptions, the only way in which model
treatment of detritus is validated (if at all) is by comparison of
vertical detritus flux to total particulate organic carbon (POC)
export. Yet even this simple model validation is highly mis-
leading, as models typically assign detritus a slow sinking rate
(e.g., Fasham et al. 1990) that may be an order of magnitude
lower than in situ measured rates (McDonnell and Buesseler
2010). This imbalance implies that many models may drasti-
cally overestimate the standing stock of sinking detritus, with
concomitant effects on its availability to grazers and bacteria.
Depiction of accurate detritus dynamics will require both an
attempt by field investigators to frame their results in a man-
ner that is accessible to modelers and a willingness by model-
ers to rethink model construction.

In this chapter, we synthesize field and laboratory studies
detailing the nature, production, and loss terms of detritus in the
pelagic ocean, while also highlighting how detritus has been
treated in biogeochemical and ecosystem models. Our goal is to
simultaneously reveal gaps in our knowledge of detritus and sug-
gest opportunities for incorporating a more sophisticated view of
detritus into models. Whereas conceding that the diversity of
goals of biogeochemical models makes it foolish to suggest a sin-
gle approach for incorporating detritus into models, we hope to
facilitate the development of a common language for exchange
between modelers and experimentalists.

This review is broken into four parts. In the first section, we
highlight the diversity of marine detrital particles (including
organic material and minerals) and formation processes. In the
second, we discuss biotic and abiotic loss terms for detritus.
Together, these production and use processes determine the
detrital makeup, and hence, role of detritus within a given
ecosystem. We then review current model treatment of detritus,
before finally addressing potential avenues of future research.

Section 2. Components of detritus

Detritus, broadly defined as nonliving particulate matter,
constitutes a heterogeneous class of marine particles that is
often treated simplistically in representations of the pelagic
ecosystem. Marine detritus includes, but is not limited to,
‘dead’ phytoplankton, fecal pellets, molts and dead organisms,
aggregates, and terrigenous material (Fig. 1). These types of
detritus vary widely in size, porosity, and chemical composi-
tion, with different classes playing distinct biogeochemical
roles, including export of matter to depth, support of
epipelagic and benthic particle feeders, and host for particle-
attached bacteria and hence sites of intense remineralization
and nutrient regeneration. The balance of sinking, advection,
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and remineralization of detritus determines not only bulk
export rates, but also the depth of penetration of sinking par-
ticles into the ocean interior, and hence the duration that car-
bon will be sequestered from the atmosphere. For instance,
when salp fecal pellets are a dominant form of surface ocean
detritus, we can expect efficient carbon flux to the local ben-
thos (Pfannkuche and Lochte 1993; Phillips et al. 2009). How-
ever, a detrital pool comprised largely of porous aggregates
will likely be remineralized near the base of the euphotic zone
(Jackson and Checkley 2011) and/or transported long hori-
zontal distances as it sinks, resulting in a decoupling of pro-
duction and export (Plattner et al. 2005). Thus two ecosystems
with equal new production rates can have vastly different car-
bon export and sequestration potentials depending on their
detrital composition. Elucidation of the diversity of detrital
particles, as well as characterization of the similarities and dif-
ferences within, is thus critical for accurate coupling of pelagic
food web processes to global biogeochemical cycles. In this
section, we will address the myriad forms of detritus found in
the ocean, while paying particular attention to the distinct
ecological roles of each. We will also address some of the
methods used to sample these particles.

Dead phytoplankton

As the base of the pelagic food web, phytoplankton domi-
nate production processes, and hence dead phytoplankton
potentially form a dominant class of detrital particles. Never-
theless the term ‘dead phytoplankton’ needs some explana-
tion as it can be used to refer to a range of particles from non-
photosynthesizing phytoplankton (Berden-Zrimec et al. 2009)
to the phytoplankton membranes and organelles remaining
after sloppy feeding by mesozooplankton (Roy et al. 1989) or
viral lysis (Fuhrman 1999; Balch et al. 2007). Sandwiched
between those extremes are biochemically inert phytoplank-
ton, including resting spores (McQuoid and Hobson 1996),
and non-vital cells that may have permeable membranes or
lack nuclei (Alonso-Laita and Agusti 2006; Bidle and Bender
2008; Hayakawa et al. 2008). Some phytoplankton transported
beneath the euphotic zone on aggregates or through subduc-
tion may be treated effectively as detrital particles, yet still be
able to regain full metabolic health if returned to the surface.
Even cells contained within fecal pellets have been shown to
remain vital at times (Jansen and Bathmann 2007). Fluores-
cent stains (Timmermans et al. 2007), transmission electron
microscopy (Bidle and Bender 2008), membrane permeability
tests (Agusti and Sanchez 2002; Hayakawa et al. 2008), and
fluorescence methods (Berden-Zrimec et al. 2009) have all
been used to assess the vitality of phytoplankton cells. Few
studies have, however, applied these techniques in marine
ecosystems and generally phytoplankton cells in the surface
ocean are considered vital, whereas phytoplankton below the
euphotic zone are considered a part of detritus. For the
remainder of this section we will use the term ‘dead phyto-
plankton’ to refer to all phytoplankton that are unlikely to
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Fig. 1. Conceptual diagram of detritus properties. Panels A and B show properties of different components of the detrital communities, whereas pan-
els C and D show the likelihood of different detrital loss mechanisms acting on particles with different properties. Panels A and C show size versus poros-
ity (or density), and panels B and D show size versus lability. All graphs should be considered simple conceptual diagrams, as consistent and compara-

ble data for accurately classifying detritus is scarce.

photosynthesize in the future (including resting stages and
viable cells in the deep ocean). Although we focus on phyto-
plankton in this section as a result of their high biomass and
production, we note that many of the same discussions apply
to other nonvital protists and bacteria.

Dead phytoplankton exist in all regions of the ocean,
including the euphotic (Agusti and Sanchez 2002; Alonso-
Laita and Agusti 2006; Hayakawa et al. 2008), mesopelagic
(Knappertsbusch and Brummer 1995; Martin et al. 2011),
bathypelagic (Silver and Alldredge 1981), and benthic zones
(Garrison 1981; Pfannkuche and Lochte 1993; Smith et al.
1996). Within the euphotic zone, dead phytoplankton com-
prise a highly variable proportion of the total phytoplankton
cells (Alonso-Laita and Agusti 2006; Baudoux et al. 2008;
Hayakawa et al. 2008), and at times, may exceed 88% of total
phytoplankton (Alonso-Laita and Agusti 2006) and 80% to
90% of total biogenic silica (Krause et al. 2010). Whether or
not dead phytoplankton are counted amongst the living phy-
toplankton depends on the physiological state of the cells
(e.g., presence or absence of chlorophyll) and the method of
enumeration used. Euphotic zone cell viability has been
shown to be related to nutrient and irradiance levels (Tim-
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mermans et al. 2007) and season (Hayakawa et al. 2008). Nev-
ertheless, the differences in biogeochemical fate of living and
dead phytoplankton remains to be seen. Viable and nonviable
cells likely behave similarly with respect to grazing, aggrega-
tion, and export except in taxa where active buoyancy control
or grazer-deterrence are common.

Phytoplankton are often a dominant component of sinking
particles. Laboratory experiments have typically found very
low sinking rates for individual phytoplankton (Smayda 1970;
Smayda and Bienfang 1983). However, the large export flux
following the termination of diatom (Honjo and Manganini
1993; Martin et al. 2011) and coccolithophorid (Foster and
Shimmield 2002; Fischer and Karakas 2009) blooms suggests
that at times phytoplankton may sink much more efficiently.
Large phytoplankton flux events may be triggered by aggrega-
tion events (Alldredge et al. 1995) or packaging into fecal pel-
lets (Pfannkuche and Lochte 1993). Phytoplankton with min-
eral shells (siliceous and calcium carbonate) also play a
distinct role in vertical flux through a mineral ballasting effect
(Armstrong et al. 2002) that increases the sinking rate of not
only cells, but of other particles that contain the phytoplank-
ton remains.
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Fecal pellets

Globally, mesozooplankton directly graze roughly 12% of
total phytoplankton primary production (Calbet 2001). Total
mesozooplanton ingestion rates are likely significantly higher
due to grazing on protozoans and detrital particles (Zeldis et
al. 2002; Diodato and Hoffmeyer 2008) as well as carnivory by
higher trophic level mesozooplankton (Le Borgne et al. 2003).
Since mesozooplankton typically egest 30% of ingested car-
bon (Conover 1966; Pagano and Saintjean 1994; Cowie and
Hedges 1996; Liu et al. 2006), fecal pellet production is a sig-
nificant fraction of primary production and hence total detri-
tus production.

Fecal pellets vary widely in their physical and chemical
properties, which are dependent not only on the taxonomic
origin of the fecal pellets, but also the diet and metabolic state
of the zooplankton. Zooplankton fecal pellets vary in size
from 3 um “mini-pellets” (Gowing and Silver 1985) to cen-
timeter-sized salp fecal pellets (Matsueda et al. 1986). (We will
not consider the much less abundant fecal pellets of fish and
marine tetrapods in this review). While some fecal pellets are
amorphous, many mesozooplankton taxa produce recogniza-
ble fecal pellets that vary from tiny nondescript spheres to the
long cylindrical pellets of euphausiids or the tabular pellets of
salps (Turner 2002; Wilson et al. 2008). Most crustacean fecal
pellets are encased within a chitinous peritrophic membrane
(Fowler and Knauer 1986) that slows remineralization and
mechanical disruption, but may serve as an active site of bac-
terial colonization (Jacobsen and Azam 1984).

As fecal pellets contain ingested but unassimilated material,
they presumably have reduced nutritional quality compared
with the prey of mesozooplankton. In particular, they often
have increased mineral contents (Knappertsbusch and Brum-
mer 1995; Dagg et al. 2003; Ploug et al. 2008b) and high C:N
ratios (Checkley and Entzeroth 1985). Labile organic matter,
including polysaccharides, amino acids, and fatty acids, are
preferentially used by zooplankton and hence depleted in
fecal pellets (Cowie and Hedges 1996; Mayzaud et al. 2007).
However, some prey species resist digestion (Cowie and
Hedges 1996; Gorsky et al. 1999; Paffenhofer and Koster
2005), suggesting that their presence in the water column may
increase the content of labile organic matter contained in fecal
pellets. Additionally, gut passage time is inversely related to
ingestion rates so at high feeding rates in prey-rich regions
fecal pellets likely have lower C:N ratios and higher amounts
of amino acids than fecal pellets produced by mesozooplank-
ton existing in near starvation conditions.

Fecal pellet sinking speed is generally considered to be a
function of size and density (Komar et al. 1981; Yoon et al.
2001; Turner 2002), although at times in situ sinking veloci-
ties of small particles may exceed those of larger particles
(McDonnell and Buesseler 2010). Nevertheless, the general
trend of faster sinking speed for large pellets suggests that the
size spectra of fecal pellets directly impact their biogeochemi-
cal role. Few studies have sampled the distributions of fecal
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pellets suspended in the water column, hence size spectra of
euphotic zone fecal pellets can only be estimated from pro-
duction and removal rates. The taxonomic composition of
both the zooplankton and prey communities determine the
size spectra of produced fecal pellets. However, the size distri-
bution of the standing stock of fecal pellets in the surface
ocean is likely dominated by small pellets at all times. In fact,
a simple calculation suggests that if grazing was partitioned
between salps capable of producing large fecal pellets sinking
at 1 km d! (Caron et al. 1989) and copepods producing small
fecal pellets that sink at only 20 m d! (Small et al. 1979), then
even if salps dominated grazing rates by a ratio of 10:1, their
large fecal pellets would only represent 17% of the carbon in
the euphotic zone. Such calculations are complicated, how-
ever, by the fact that pellet disruption can lead to significantly
decreased sinking rates and retention in the surface (Alldredge
et al. 1987). Compared with their contribution to surface
ocean standing stocks, large fecal pellets typically dominate
the rate of carbon export, particularly in richer ecosystems
(Wilson et al. 2008). They have been suggested to potentially
control the rate of carbon export during spring conditions in
an eastern boundary current ecosystem (Stukel et al. 2011)
and are often found to be the dominant form of POC in sedi-
ment trap contents (Turner 2002; Ebersbach and Trull 2008;
Gleiber et al. 2012).

Crustacean molts

Crustacean molts are chitinous structures that are shed rou-
tinely as organisms mature from one stage to the next. Given
the prevalence of crustaceans among the pelagic mesozoo-
plankton, crustacean molts are most likely an important com-
ponent of the detrital pool. Jerde and Lasker (1966) found that
krill in the California Current region produced molts equal to
approximately 10% of their dry weight, with a frequency of 1
molt every 5-6 d, and suggested that Euphausia pacifica alone
could produce almost 1.5 g m~ of molt material every year.
Escribano and McLaren (1992) showed that copepod inter-
molt duration was inversely related to temperature and aver-
aged 2 days at 10.2°C compared with 5-6 days at 3.0°C for
Eurytemora herdmani. Molts are likely of low nutritional qual-
ity, due to the difficulty of breaking down chitin, which can
persist in the marine environment for over a month (Kirchner
1995). However, molts and mesozooplankton carcasses do
serve as an important substrate for particle-attached bacteria
(Kirchner 1995; Tang et al. 2010).

Dead mesozooplankton

Relatively little work has been done on the role of meso-
zooplankton carcasses in the marine environment, but they
may play a significant role in vertical flux of detritus. Meso-
zooplankton carcasses are large, dense particles that likely sink
rapidly. For example, small copepod carcasses sink at speeds >
800 m d' (Elliott et al. 2010). Krill molts and remains have
been shown to be a significant portion of the diet of particle
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feeders in an Antarctic midwater ecosystem (Hopkins 1985)
and their vertical flux exceeded that of fecal pellets in an olig-
otrophic area of the Western Mediterranean (Frangoulis et al.
2011). In shallow water regions where resuspension prevents
the rapid removal of carcasses by sinking, carcasses may be a
significant fraction of the apparent mesozooplankton biomass
(Genin et al. 1995; Elliott and Tang 2009) and even in deeper
regions carcasses may have a significant standing stock (Haury
et al. 1995; Tang et al. 2009).

Aggregates and marine snow

Aggregates, also known as “marine snow” when > 500 um,
can vary in size from tiny aggregates of picoplankton (Alber-
tano et al. 1997) to web-like aggregates that are several meters
in size (Precali et al. 2005). As a result of both the difficulty of
sampling aggregates without disruption and the range of sizes
involved, few studies have systematically sampled the full
size-spectrum of marine aggregates. Jackson et al. (1998) used
a combination of instruments to assess the size-spectra of par-
ticles in Monterey Bay, and found that particle mass was con-
centrated in 100 um-1 mm particles. Aggregates can be com-
posed of all the marine detritus types mentioned above, and
also contain still living material including bacteria and pro-
tists that have actively colonized the aggregates (Caron et al.
1986; Azam 1998; Kiorboe et al. 2002) and living phytoplank-
ton that sink out of the euphotic zone on marine snow parti-
cles (Passow et al. 1994). By transforming the size-spectrum of
particles in the ocean, aggregation provides additional food
sources for large zooplankton (Dilling and Brzezinski 2004;
Wilson and Steinberg 2010), increases vertical flux rates out of
the ocean (Alldredge and Gotschalk 1988; Ebersbach and Trull
2008; Guidi et al. 2008), and creates refugia for particle-asso-
ciated bacteria and microzooplankton (Ploug et al. 1999;
Simon et al. 2002).

The formation of aggregates is primarily by coagulation
processes that are controlled by both collision rates of smaller
particles and the probability that colliding particles will stick
together. At present, there is a vast gap between aggregation
theory (Burd and Jackson 2009) and in situ ecosystem and bio-
geochemical measurements, due to the inability to measure or
constrain many of the parameters used in coagulation models.
In particular the ‘stickiness’ parameter, which defines the
probability that two colliding particles will stick together, is
critical to coagulation models, but poorly understood and
likely to be highly variable. However, clever combinations of
new field instruments with model concepts are beginning to
allow for more direct assessment of the role of aggregates in
the pelagic realm (e.g., Jackson and Checkley 2011).

While aggregates can form by the collision of any two
marine particles, there are distinct classes of aggregates that
are common in the marine pelagic (Alldredge and Silver 1988).
On the small end of the size spectrum are micro-aggregates
formed abiotically by coagulation of colloids and nanogels
(Wells and Goldberg 1993). Formation rates of such aggregates
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can be enhanced in surface waters by bubble adsorption (Kep-
kay and Johnson 1988; Zhou et al. 1998) and laminar shear
(Passow 2000). Some precursors of such particles are fibrils
small enough to pass through 8 kDa dialysis bags (Passow
2000), though other studies have found that > 2 um colloids
are necessary for coagulation (Johnson et al. 1986). The aggre-
gation of colloidal material into particulate form likely
increases their bioavailability, stimulating bacterial respiration
and remineralization (Kepkay 1994). The adhesion of colloids
and DOM is the only form of aggregation that can truly be
considered to create detritus (other forms of aggregation sim-
ply alter the detritus size-spectrum). These micro-aggregates
are often transparent exopolymer particles (TEP), which are a
particularly abundant form of acid polysaccharide and are
visualizable with use of alcian blue stain (Passow 2002). Since
TEP can exist as discrete particles and are often associated with
aggregates, they are thought to play an important role in coag-
ulation (Passow et al. 1994; Passow 2002), though many other
exopolymers may also play a role (e.g., Samo et al. 2008).
These exopolymers are primarily produced abiotically from
coagulation of exudates (Mopper et al. 1995; Passow 2000)
produced by phytoplankton when high bacterial concentra-
tions are present or during periods of nutrient-stress that exist
during the decline phase of blooms (Staats et al. 2000; Passow
et al. 2001),

Many aggregates are formed by coagulation of phytoplank-
ton. All types of phytoplankton, from micron-sized cyanobac-
teria (Albertano et al. 1997) to large diatoms (Alldredge and
Gotschalk 1989), are capable of forming aggregates, although
most studies of phytoplankton aggregates have focused on
coagulation processes in diatom blooms (Thornton 2002).
Phytoplankton aggregation is believed to be controlled by the
production of exopolymers (high molecular weight, carbon-
rich polysaccharides) that increase the ‘stickiness’ of individ-
ual cells and chains. Exopolymers, including TEP, combined
with the high particle concentrations at the end of blooms,
may lead to mass flocculation events (Alldredge et al. 1995),
which have been observed in several regions (Alldredge and
Gotschalk 1989; Boyd et al. 2005; Martin et al. 2011) and even
been hypothesized to control maximum phytoplankton con-
centrations in the ocean (Jackson and Kiorboe 2008).

Another prevalent class of detritus is formed around the
discarded mucilaginous food webs of appendicularians and
pteropods. While appendicularians strain their prey out of the
water, their food webs (houses) eventually get clogged with
living and dead organic matter and are discarded. Appendicu-
larians are common throughout the oceans, and can produce
between 2 and 40 houses d (Sato et al. 2003). Houses vary
greatly in size and deflate after being discarded. Deflation
leads to a loss of particles that were collected on the active
house, and leads to an increased density and sinking speed of
detritus formed from houses (Lombard and Kiorboe 2010).
Discarded houses accumulate additional particles of various
types as they sink through the water column, and may form a
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large fraction of the 300-500 um particles in some ocean
regions (Lombard and Kiorboe 2010; Berline et al. 2011).
Houses created by large, less abundant appendicularian
species can be > 30 cm and have been shown to constitute a
significant and undersampled portion of carbon export in
Monterey Bay (Robison et al. 2005). Houses serve as food for
mesozooplankton (Alldredge 1976) and also as sites of ele-
vated bacterial and zooplanktonic respiration (Davoll and
Youngbluth 1990; Steinberg et al. 1997). Typical houses sink at
rates of 10-70 m d! (Lombard and Kiorboe 2010), though
sinking rate is likely higher for large houses or for houses with
high mineral content.

It is also important to consider the true heterogeneity in
aggregate composition and ecological and biogeochemical
roles (Alldredge and Gotschalk 1990). Aggregates can be
formed by the disruption and subsequent coagulation of fecal
material and may contain detrital particles ranging from col-
loidal picoplankton to rapidly sinking fecal pellets. Their
highly fractal nature, porosity, and variable density can lead to
widely varying sinking rates. Thus while aggregation is typi-
cally considered to increase sinking rates, it can also retard the
sinking velocities of the fastest sinking particles. Aggregates
can unquestionably serve as sites of increased microbial activ-
ity; though it is less certain that the aggregates support greater
microbial production than their constituent parts would have
prior to aggregation. While aggregation serves to make
micron-sized particles available for sinking and ingestion by
mesozooplankton (Waite et al. 2000; Wilson and Steinberg
2010), mesozooplankton may not actually derive nutrition
from ingested picoplankton as cyanobacteria are often found
intact in fecal pellets (Gorsky et al. 1999).

Terrigenous material

Lithogenic and terrigenous material dominates marine
sediments near the coast (Mayer et al. 2007; Goni et al.
2008). Near river mouths, entire communities can be con-
trolled by terrigenous input (Ayers and Scharler 2011). Even
far from land its role should not be ignored. Colored dis-
solved organic matter originating from the Amazon River
has been observed as part of a plume > 1000 km from the
river mouth (Del Vecchio and Subramaniam 2004; Hu et al.
2004). Atmospheric deposition also transports large quanti-
ties of nutrients, particularly Fe, from land to open ocean
areas downwind of major deserts (Jickells 1999; Krishna-
murthy et al. 2010). The variable speciation and solubility of
these Fe inputs greatly affects the fraction of Fe available to
phytoplankton as opposed to that adsorbed to detritus
(Johnson et al. 1997; Barbeau 2006). Trace elements believed
to be of lithogenic origin have also been found to be part of
sinking flux in the open ocean and attributed to atmospheric
deposition at station ALOHA in the North Pacific subtropical
gyre or lateral shelf inputs at station K2 in the northwest
Pacific subarctic gyre (Lamborg et al. 2008a). Nepheloid lay-
ers have also been shown to transport terrigenous material
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from the continental shelf to pelagic regions (McCave et al.
2001; Karakas et al. 2006; Hwang et al. 2009), and may play
a role in restructuring marine snow before it reaches the
seafloor (Ransom et al. 1998).

Sampling detritus

The study of marine detritus is difficult for many reasons
including: the dilute nature of particulate matter in the
pelagic ocean, the fragile nature of aggregates which get
destroyed during traditional sampling, and the difficulty in
distinguishing between organisms that were dead in the ocean
and organisms that died during collection or sample process-
ing. The study of detritus has typically proceeded by use of
one of four broad types of approaches. 1) Measurement of pro-
duction or sinking rates from which detrital importance is
inferred. 2) In situ measurement of particle size spectra
(including living particles). 3) Detrital stains that can discrim-
inate living from detrital plankton. 4) Collection of sinking
material, particularly by sediment traps.

The estimation of detrital production rates is relatively
straightforward for the production of detritus by mesozoo-
plankton. Both fecal pellet (Small and Ellis 1992; Poulsen and
Kiorboe 2006) and mucous feeding web (Sato et al. 2003) pro-
duction rates can be measured on plankton collected in situ,
and while the results of such studies can be highly variable,
the methods are robust and when combined with in situ
abundance data allow for the estimation of in situ production
rates. For detrital phytoplankton and aggregates, however,
estimating production rates is much more difficult. Non-
grazer related plankton death rates are difficult to assess (Brum
et al. 2013), while aggregate production rates are obfuscated
by our inability to directly measure particle stickiness (Burd
and Jackson 2009).

In situ measurement of particle size-spectra has been a field
of rapid, instrument-driven growth in recent years and is of
particular importance to the study of aggregates. Laser optical
plankton counters, and particularly those mounted on
autonomous gliders and profilers allow rapid measurement of
in situ particle sizes (Checkley et al. 2008), though it can be
difficult to differentiate zooplankton from aggregates, and
have been used to estimate aggregate formation and loss rates
(e.g., Jackson and Checkley 2011). Video plankton recorders
(Davis et al. 1992; Ashjian et al. 2005) and underwater vision
profilers (Stemmann et al. 2008; Picheral et al. 2010) generate
particle size-spectra while also photographing particles and
hence can be used to differentiate between aggregates and
organisms. In situ holography provides information about the
distribution of particles in the ocean, and can potentially pro-
vide incredibly useful information about the porosity and
fractal structure of aggregates (Katz et al. 1999; Malkiel et al.
2006; Graham and Smith 2010). Carbon Explorers
(autonomous free-drifting floats designed for carbon mea-
surements) have been developed with the ability to
autonomously produce profiles of particulate organic and
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inorganic carbon, or measure the sedimentation of particles
onto a glass plate at depth (Bishop 2009). Taken together,
these methods are just beginning to provide us with a wealth
of particle data that could previously only be found by inten-
sive in situ observation.

Detrital stains for protists (Williams et al. 1995; Verity et al.
1996) and mesozooplankton (Elliott and Tang 2009) allow dif-
ferentiation of living and detrital plankton collected in situ.
Further advances in confocal, epifluorescence, and scanning
electron microscopy enable researchers to probe the micro-
structure of aggregates, the relationship between viruses, bac-
teria, and aggregates, and the molecular composition of aggre-
gates (Holloway and Cowen 1997; Schumann and Rentsch
1998; Luef et al. 2009; Cattaneo et al. 2010).

Vertical particle flux rates, as well as the composition of
sinking material, has traditionally been studied with the use of
sediment traps, which are prone to both hydrodynamic (Baker
et al. 1988) and ‘swimmer’ (Knauer et al. 1979) biases.
Recently introduced neutrally buoyant sediment traps have
minimized hydrodynamic biases by traveling with water
parcels along an isopycnal layer, thus effectively eliminating
shear above the trap mouths (Buesseler et al. 2000; Lampitt et
al. 2008). Simultaneously, advancements in the study of mate-
rial collected within the traps has generated new information
on the nature of sinking particles. Acrylamide gels have been
deployed in the base of traps to prevent disruption of sinking
aggregates, and hence allow new information about the size
and porosity of sinking particles (Lundsgaard 1995; Waite et
al. 2000). Molecular and genetic techniques, in addition to the
microscopic techniques mentioned above, are now used to
infer the origin of organic matter found in traps from classifi-
cation of pigments (e.g., McCave et al. 2001; Lamborg et al.
2008b), lipids (e.g., Yamamoto et al. 2007; Christodoulou et al.
2009; Fischer and Karakas 2009), amino acids (e.g., Salter et al.
2010), and nucleic acids (e.g., Dell’anno et al. 1999; Suzuki et
al. 2003).

Section 3. Fate of detritus and mechanisms of loss

The downward flux of POM in the upper ocean exhibits a
non-linear decrease with increasing depth (Martin et al. 1987).
This pattern of exponential decrease in flux is consistently
found in all types of ocean regimes (Berger et al. 1988).
Because most of the sinking is done by particles in the larger
size categories (see Fowler and Knauer 1986), significant
processes leading to the fragmentation and loss of these parti-
cles must be occurring in the upper water column. Current
flux models, which rely heavily on empirical observations of
sinking material collected in traps, provide little insight into
the specific mechanisms responsible for flux attenuation
(Martin et al. 1987; Armstrong et al. 2001). POM flux is
reduced by a continuum of mechanisms ranging from purely
physical, abiotic mechanisms to biologically mediated mecha-
nisms. These processes include grazing, disaggregation, rem-
ineralization, and solubilization.
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Mechanical disruption

Disruption of large particles into small particles will result
in an increase in residence time in the upper water column,
effectively decreasing the downward flux of POM. Multiple
mechanisms of mechanical disruption exist, including both
biotic and abiotic processes. In understanding the potential
effect of mechanical disruption on the particle spectrum of
the ocean, we must remember that the minimal fluid shear
required to fragment aggregates increases exponentially with
decreasing size (Smith and Kitchener 1978), implying that the
larger aggregates are in fact more susceptible to this process.
Abiotic fragmentation of aggregates can be caused by fluid
shear, while biotic fragmentation can be induced by processes
associated with swimming and ingestion.

Physical fragmentation

The hydrodynamic regime in the ocean is generally tur-
bulent. Although large-scale motions contain most of the
energy in the ocean, they do not dissipate aggregates. The
range of scales of turbulence that can impact aggregates is on
the scale of microns to centimeters. For turbulence to affect
aggregates, it is necessary to have variations in fluid shear
across the length of the aggregate (Parker et al. 1972; Tomi
and Bagster 1978). Several theoretical mechanisms have
been proposed, including erosion (where small subunits
detach), instantaneous pressure fluctuations across the
aggregate (resulting in fragmentation), and filament fracture
(where organic filaments of the particle break) (Alldredge et
al. 1990). The strength of four types of large marine aggre-
gates (>0.5 mm, marine snow) were empirically investigated
by Alldredge et al (1990), by measuring the dissipation
energy required for their fragmentation in the laboratory.
The only types of marine snow found to fragment at dissipa-
tion rates < 1cm? s were the diatom flocs, whereas aggre-
gates of miscellaneous nature and appendicularian houses
did not fragment at rates > 1 cm? s. Because the normal dis-
sipation rates in the ocean range between10-? and 10 cm?
s (Dillon and Caldwell 1980), physical turbulence is not
likely to be one of the major processes leading to fragmenta-
tion of marine snow.

Biological fragmentation

There are a few processes induced by marine organisms that
can lead to fragmentation of detritus. Fragmentation can
occur due to turbulence created by swimming or direct frag-
mentation during swimming (Dilling and Alldredge 2000), or
by handling of aggregates without ingestion (e.g., Banse 1990;
Iversen and Poulsen 2007).

Due to their size and numerical abundance, mesozoo-
plankton are major contributors to biological fragmentation.
Disruption of marine snow by swimming euphausiids was sug-
gested as an important mechanism of particle fragmentation
in a field study in the California Current (Dilling and All-
dredge 2000). The direct action of beating pleopods on aggre-
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gates was shown to disrupt large particles into a variable num-
ber of daughter particles in the laboratory (Dilling and All-
dredge 2000; Goldthwait et al. 2004). The radius of effect, i.e.,
the distance from which particles could be pulled in and frag-
mented, as by Goldthwait et al (2004), is 6.7 mm for a
euphausiid of 1-2 cm in length. This means that in areas with
high concentrations of euphausiids and marine aggregates,
abundances of 1-10 animals m= would result in an interaction
with 5% to 50% of aggregates, and densities > 20 animals m
would lead to 100% of particles being affected (Goldthwait et
al. 2004). Dilling and Alldredge (2000), found the diel cycle of
increase in particle abundance and decrease in average parti-
cle size to correlate only with the abundance of the regionally
dominant euphausiid species, implying that this process
might also be important in the field.

Other mesozooplankton can also potentially affect the par-
ticle field via fragmentation during swimming. Ctenophores
have been observed to fragment appendicularian houses
(Steinberg et al. 1997), and larger animals with greater swim-
ming speeds such as salps and shrimps may also fragment
aggregates significantly (Goldthwait et al. 2004).

Handling of aggregates can significantly alter particle size
and composition, without the requirement of ingestion.
Copepods have been observed to fragment appendicularian
houses (Steinberg et al. 1997) and sloppy feeding may break
up marine snow (Banse 1990), but most studies have focused
on the effect of zooplankton on fecal pellets, which are an
important component of the aggregate particle assemblage.
There are three processes through which copepods can affect
fecal pellets in the field. The first involves grazing on the fecal
particle itself, called coprophagy, and has been shown for a
number of marine invertebrates (Frankenberg and Smith
1967). The other two important processes involve the han-
dling of fecal pellets. Handling of fecal pellets with consump-
tion of only the peritrophic membrane, which leads to a con-
servation of most of the POC but significant fragmentation of
the particle, is called coprorhexy (Lampitt et al. 1990). Finally,
coprochaly involves handling of fecal pellets with no inges-
tion, which can lead to subsequent fragmentation (Noji et al.
1991). Because these processes, and the relative importance of
each, are usually investigated together in laboratory experi-
ments, we will discuss them in a separate section. It is impor-
tant to remember that of the three, coprochaly would be the
only biologically disruptive process involving no ingestion,
and therefore technically should be listed with the processes
discussed above.

Grazing—Fecal pellet degradation

Mesozooplankton can alter fecal pellets by three processes
already mentioned: coprophagy (consumption of fecal pellets),
coprorhexy (fragmentation of fecal pellets, usually due to con-
sumption of parts of the peritrophic membrane), and coprochaly
(loosening of fecal pellets with no ingestion) (Paffenhéfer and
Strickland 1970; Lampitt et al. 1990; Noji et al. 1991).
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Coprophagy was determined to be an important feeding
strategy in a number of invertebrate species (Frankenberg
and Smith 1967), and significant rates of consumption were
determined for copepods in the laboratory (Paffenhofer and
Strickland 1970). Coprophagy was also found in a labora-
tory study using three species of copepods, but only for one
small copepod species; the other two fragmented pellets via
coprochaly and coprorhexy (Noji et al. 1991). Laboratory
experiments showed that the main effect of copepods on
fecal pellets were of coprorhexy and not coprophagy
(Lampitt et al. 1990). Electron micrograph images show
clear damage to the peritrophic membrane after interaction
with copepods, a behavior hypothesized to take advantage
of the higher nutritional status of the membrane (Lampitt et
al. 1990), due to active bacterial colonization in the few
hours after egestion (Jacobsen and Azam 1984; Lampitt et al.
1990). These same experiments showed that microbial
degradation is low before fragmentation, suggesting this
process is essential for the initiation of significant microbial
decomposition. Field studies have speculated on the impor-
tance of coprophagy by the cyclopoid Oithona spp., based
on negative correlations between abundance and fecal
material in the water column, suggesting it as a key foraging
strategy in oligotrophic environments (Gonzalez and
Smetacek 1994). Other studies, however, challenge this
notion based on combined field and laboratory experiments
and suggest that, instead, Oithona spp. is an indicator taxa
of environments characterized by high degradation rates
(Poulsen and Kiorboe 2006), or mediates fragmentation
without actual consumption (Kobari et al. 2010). Two dif-
ferent laboratory studies, together investigating the behav-
ior of four different calanoid copepods and the cyclopoid
Oithona spp. concluded that coprorhexy is the main effect of
copepods on fecal pellets (Poulsen and Kiorboe 2005;
Iversen and Poulsen 2007). Fecal pellets were generally
encountered during foraging and rejected as food items,
fragmenting in the process. Consumption of fecal pellets
was observed to vary inversely proportional to size, suppos-
edly consumed unintentionally with other food items
(Iversen and Poulsen 2007).

The picture that emerges from both laboratory and field
studies is that while coprophagy might be an important
strategy to procure enough carbon for metabolic demands,
the main effect of the zooplankton community on fecal pel-
lets’ standing stock and size spectrum is that of fragmenta-
tion, usually without significant consumption. A recent
study found that the protozooplankton were also significant
degraders of zooplankton fecal material, contributing 15% to
53% of the total degradation rate (Poulsen and Iversen
2008). The combined effect of fragmentation by mesozoo-
plankton, degradation by protozooplankton and remineral-
ization by bacteria are intricately related in reducing particle
size and therefore POC flux and detritus standing stock in
the upper ocean.
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Feeding on detritus

Mesozooplankton are generally thought to consume detri-
tus, including fecal pellets, marine snow, copepod carcasses,
etc., but direct evidence is generally limited. The first study to
document copepods feeding on detritus was by Paffenhofer
and Strickland (1970), where copepods were found to feed at
highest rates on diatom flocs, followed by fecal pellets, and
negligible rates on naturally occurring aggregates. Roman
(1984b) showed that copepods can supplement their diets by
consuming and assimilating detritus, but may require other
nutritional sources to grow. Two vertically migrating species of
California Current zooplankton were shown to feed on
marine snow in the laboratory, irrespective of the composition
of these aggregates, in the absence of other food choices
(Dilling et al. 1998). Consumption rates were on the low end
of the range reported for these two species, but assimilation
efficiencies were high, ranging from 64% to 83%, depending
on the nature of the aggregate (Dilling et al. 1998). As dis-
cussed above, the importance of fecal pellets as dietary
resources has been actively debated, and most recent evidence
suggests that coprophagy is of minor importance, especially in
the presence of other diet choices. A study comparing the con-
sumption of euphausiids on diatoms and aggregates made by
the same diatom species found higher rates for the aggregates,
even while in the presence of individual diatoms (Dilling and
Brzezinski 2004). This result is not surprising given the general
preference of zooplankters for larger particles (Frost 1972), and
the lack of nutritional difference between these two choices,
which is uncharacteristic of aggregates in the water column.
Evidence from stable isotopes suggests that detritus can be an
important dietary component for euphausiids in the field, at
least for some life history stages of E. Pacifica (Park et al. 2011).
The importance of consumption of detritus depends on the
availability of other food items, primarily phytoplankton, and
therefore will probably vary depending on season, depth, and
ecosystems studied (discussed further below). Roman (1984a)
used 3H-thymidine to assess mesozooplankton feeding on
particle-attached bacteria and found that grazing was higher
in productive regions (warm core rings) than oligotrophic
regions (the Sargasso Sea). Studies of mesozooplankton inhab-
iting depths below the euphotic zone, unlike the species men-
tioned above which inhabit rich upwelling systems and
migrate to shallow depths for nighttime feeding, show signif-
icant consumption of aggregates and marine snow. Schnetzer
and Steinberg (2002) found that marine snow and detritus
were important diet items in three vertically migrating zoo-
plankters in the Sargasso Sea, but seasonally variable. Stein-
berg et al (1997) found significant zooplankton communities
and higher metabolisms associated with large appendicularian
houses in the bathypelagic depths of Monterey Bay, and
marine snow and houses were also important components in
the guts of a mesopelagic copepod (Steinberg 1995). Zoo-
plankton in the Southern Ocean were found to rely heavily on
detritus during the fall season, when phytoplankton is in
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short supply (Hopkins 1985). Jackson (1993) pointed to the
importance of ‘flux feeding’ by web-making zooplankton, e.g.,
pteropods, capturing particles falling out of the euphotic zone.
Mesopelagic zooplankton have been found to contain
autotrophic picoplankton in their guts (Wilson and Steinberg
2010), cells that when alive are too small for direct consump-
tion, again indicating the importance of aggregate feeding for
deep dwelling organisms.

Despite this strong evidence for mesozooplankton inges-
tion of aggregates and fecal pellets, it remains unclear to what
extent they assimilate detrital carbon in situ. It is possible that
energy and nutrients derived from particle ingestion are ulti-
mately gleaned primarily from the diverse microbial commu-
nities associated with detritus, rather than from potentially
refractory detrital particles.

Variability in the effects of zooplankton on detritus

The first conclusive evidence for variability at both the sea-
sonal and diel scale was presented by Lampitt et al. (1993),
where marine snow at 270 m sampled with a camera system
was found to show a strong signal at both these scales. The
diel variability was investigated in a particle dynamics model
by Ruiz (1997), who concluded that turbulence was sufficient
to account for this daily pattern. However, laboratory results
have shown that turbulent energy dissipation rates in the
ocean are usually insufficient to break even the most fragile of
particle aggregates (Alldredge et al. 1990). A theoretical study
by Kiorboe (2000) suggested that 20% to 70% of aggregate car-
bon was degraded before it left a 50 m euphotic zone, and sug-
gested a major role for biology in this degradation of particu-
late matter. Diel variations in particulate flux were also
detected by Graham et al. (2000) in the Santa Barbara Chan-
nel (California). Particle concentrations increased, and average
particle size decreased, simultaneously correlating with the
abundance of large zooplankters (euphausiids), and further
implying a significant role in particulate fragmentation due to
biological processes (Dilling and Alldredge 2000). There is
debate on the ability of zooplankton to mix the ocean, but
some evidences does suggest that significant mixing in the
upper ocean is due to biology (see Huntley and Zhou 2004;
Kunze et al. 2007; Visser 2007). Given the strong correlations
found for the productive California Current region (Dilling
and Alldredge 2000), and the possibility that swimming of
zooplankton mixes the euphotic zone (Huntley and Zhou
2004), we can speculate that this process and this diel pattern
might be present wherever the standing stock and size of zoo-
plankters is significant.

For organisms that inhabit the bathypelagic zones, and rely
mainly on detritus as food items, there should be no signifi-
cant change in the relative proportion of detritus to their diet
with season, although the absolute contribution probably
increases when productivity is highest. However, studies on
the seasonal variability of organisms exclusively inhabiting
this part of the ocean are lacking. For organisms that switch
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their diets relative to prey availability, such as many vertically
migrating crustaceans, detritivory should increase in relative
proportion during low phytoplankton conditions. In fact, sea-
sonal variability in consumption of marine snow, where
dietary shifts were correlated with the phytoplankton com-
munity and detrital material increased in importance during
times of low phytoplankton standing stock was documented
by Schnetzer and Steinberg (2002). The reliance of the Antarc-
tic mesozooplankton community on detritus during austral
fall also points to the importance of this feeding strategy dur-
ing low productivity seasons (Hopkins 1985). Prevalence of a
detrital food web under ice during the Arctic winter (Sampei et
al. 2009) further indicates a stronger reliance on detritus as a
food source when phytoplankton are in short supply.

Photolysis and abiotic oxidative processes

Exposure of POC to high-intensity light in the euphotic
zone can induce a number of photodegradative mechanisms
including photolysis and oxidative degradation that increase
the lability of detritus. Photolysis and abiotic degradation by
oxidative processes, while not as widely recognized as disag-
gregation, contribute to the remineralization and solubiliza-
tion of POC in the upper ocean. Photolysis leads to the con-
version of high molecular weight organic compounds to low
molecular weight organic compounds. Since lower molecular
weight compounds tend to be more soluble than high molec-
ular weight compounds, this results in the partitioning of this
carbon from the particulate into the dissolved phase (Mayer et
al. 2006; Mayer et al. 2009).

Oxidative degradative processes fall into two categories:
photooxidation and autooxidation; both processes can lead to
complete remineralization of organic carbon to dissolved inor-
ganic carbon. Alternatively, by modifying the size and/or oxi-
dation state of POC (and thereby its solubility), these
processes can convert POC to dissolved organic carbon.

Photooxidative processes in phytoplankton (or phytodetri-
tus) result from the activity of singlet oxygen, an excited free-
radical form of oxygen. Singlet oxygen is generated as a result
of the photosensitization of chlorophyll and effectively
degrades the lipid components of cells (Girotti 2001; Rontani
et al. 2011). If enough singlet oxygen is produced, such that it
overwhelms the photoprotective capacity of the algal cell, it
can migrate outside the chloroplast and cause damage to
nearby heterotrophic cells. Thus, photooxidative damage to
phytodetritus-containing organic aggregates may impact sub-
sequent biodegradation of the material by limiting het-
erotrophic degradative processes in the euphotic zone
(Rontani et al. 2011 and refs therein). On the other hand, dis-
solved organic carbon (DOC) produced by photooxidation is
often more labile and accessible to bacterial degradation
(Mayer et al. 2009).

In contrast to photooxidation, autooxidation involves the
activity of free radicals derived from fragments of organic mol-
ecules. These radicals can be produced during the course of
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viral infection, autocatalytic cell death, or the hemolytic
cleavage of photosensitized organic molecules.

As is the case for the other degradative mechanisms we have
discussed, oxidative processes can affect different types of par-
ticles in different ways. Aged particles may be more susceptible
to remineralization to dissolved organic carbon by pho-
todegradation than fresh algal biomass, but algal biomass is
more likely to be oxidized to smaller organic molecules (Estapa
and Mayar 2010). Oxidized, dissolved organic carbon released
from detrital phytoplankton is available for microbial reminer-
alization and thus photooxidation is an important step in the
process of biological degradation (Estapa and Mayar 2010).

Bacterial solubilization and remineralization

It is well known that bacteria are important solubilizers and
remineralizers of POC, yet the relative contribution of bacte-
ria and zooplankton to remineralization at a given site can be
challenging to assess and is geographically variable (Steinberg
et al. 2008). Bacteria colonize POC at densities up to three
orders of magnitude greater than their free-living counterparts
(Simon et al. 2002). In addition, particle-attached (PA) bacte-
ria display significantly higher (potential) extracellular
hydrolytic enzyme activity (e.g., aminopeptidase, phos-
phatase, lipase and glucosidase activity) than their free-living
(FL) counterparts (Smith et al. 1992). Although it is known
that bacteria significantly contribute to POC flux attenuation,
the regulation of bacterial organic matter degradation largely
remains a black box.

Several recent reviews of microbial oceanography have
been written (Simon et al. 2002; Azam and Malfatti 2007; Aris-
tegui et al. 2009; Grossart 2010; Yokokawa and Nagata 2010;
Arnosti 2011; Stocker 2012), and it is not our goal to exhaus-
tively summarize their findings. Instead we plan to highlight
recent work of particular importance to bacteria-detritus inter-
actions, with a focus on methodologies and approaches that
can supply unique new information on the controls of bacte-
rial remineralization of detritus.

Incubation of aggregates with associated microbial com-
munities allows investigation of the joint detritus-microbe
system. Incubations have shown that internal cell state
appears to influence bacterial colonization rates with both
iron depletion (Tang and Grossart 2007) and starvation (Yam
and Tang 2007) leading to decreased swimming speeds and
particle encounter rates. The interaction of PA bacteria with
iron is complicated by the fact that bacteria also mediate the
release of iron from aggregates (Balzano et al. 2009). Meso-
cosm experiments have also suggested that growth rates are
lower and bacterivory higher for PA bacteria with only a 21-
min mean residence time for bacteria on aggregates (Tang et
al. 2006). Kiorboe et al. (2004) found that motile flagellates
could colonize particles and exert grazing control on PA bac-
terial concentrations.

PA bacteria incubated with natural aggregates exhibited
higher uptake rates for glucose and leucine than their FL coun-
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terparts, though uptake rates for the PA bacteria decreased as
the aggregate aged, highlighting the variable lability within
discrete classes of detritus (Azua et al. 2007). Microbial degra-
dation has also been linked to a decrease in short-chain and
monounsaturated fatty acids as aggregates age (Balzano et al.
2011). PA bacterial activity, including production of sugar and
protein-degrading enzymes was increased when aggregates
were incubated at higher temperatures, though the associated
increased degradation of aggregates was offset by increased
aggregate formation rates (Piontek et al. 2009). Carbon-spe-
cific degradation of copepod fecal pellets was unrelated to
copepod diet (and hence composition of fecal pellets), though
sinking rates were controlled by mineral ballasting with pro-
found effects on the remineralization length scale (Iversen
and Ploug 2010).

The use of fluorescently labeled substrates (Arnosti 2003)
provides additional valuable information on the lability of dif-
ferent fractions of the detrital pool. Since bacteria can only
transport small molecules across their cell membranes, to use
the complexed organic nutrients contained within POM they
must first cleave the material into digestible units with extra-
cellular hydrolytic enzymes (EHE). EHE from PA bacteria
cleave many distinct polysaccharides (Ziervogel and Arnosti
2008), though PA bacteria may more rapidly break down pro-
teins than carbohydrates and chitins (Kellogg et al. 2011).
Compared with FL bacteria, PA bacteria may exhibit higher
cell-specific cleavage rates (Kellogg et al. 2011), though per-
haps not on all substrates (Ziervogel et al. 2010), and also used
a wider diversity of substrates (Lyons and Dobbs 2012). EHE
produced by PA bacteria may also remain active in the water
column, with potential roles in degradation of DOM (Ziervo-
gel et al. 2010).

The activity of extracellular hydrolytic enzymes within
organic aggregates is likely regulated by numerous mechanisms
including substrate induction and microbial interactions.
Whereas it has yet to be demonstrated in POC, bacteria from
deep-sea sediments (ultimately derived from sinking POC)
have been shown to produce more enzyme activity in response
to amendments of plankton-derived POC (as compared with
DOC) (Boetius and Lochte 1994). Although the specific com-
ponent of POC-inducing enzyme activity was not identified,
Boetius and Lochte (1994) were able to demonstrate that the
enzyme activity of deep-sea sediment microbial communities
is dependent on the amount of POC added to the incubation
rather than the bacterial biomass present in the sediments.
Knowledge of specific inducers of degradative enzymes might
help to explain seasonal or geographic variability in the bacte-
rial contribution to total POC flux attenuation.

Genetic methods have been used to assess the taxonomic
similarity of FL and PA communities, but with mixed results.
At times the communities are quite similar (Ghiglione et al.
2009), suggesting rapid exchange between the communities,
which is in agreement with the incubation study of Tang et al.
(2006). However, other studies have found distinct differences
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between FL and PA groups (Kellogg and Deming 2009; Fuchs-
man et al. 2011). Hodges et al. (2005) found that this variabil-
ity may be related to the formation of algal blooms, which can
lead to growth of a PA specialist microbial community. Alter-
nately, genetic studies can be used to assess the biogeochemi-
cal role of PA bacteria and have shown that particle interiors
may be sites of manganese and sulfate reduction and sulfur
oxidation (Fuchsman et al. 2011). A novel single-cell sorting
and genome sequencing approach suggested chemolithoau-
totrophy by PA bacteria (Swan et al. 2011), whereas more tra-
ditional methods have found that aerobic anoxygenic pho-
totrophic bacteria are sometimes present in aggregates (Lami
et al. 2009).

Taken together, these studies suggest a multiplicity of
approaches for connecting metabolic pathways, bacterial tax-
onomy, and detritus substrate composition with biogeochem-
ical function. Nevertheless, it is clear from the paucity of data,
and at times, conflicting results that this field is still in its
infancy, and much work is needed before we reach predictive
ability with detritus-bacteria interactions.

Sinking

Gravitational carbon export from the surface to the deep
ocean, both in models and field studies, is generally consid-
ered to be mediated solely by detritus. This assumption stems
from the contents of sediment traps, which are often domi-
nated by dead phytoplankton, fecal pellets, and aggregates
(Turner 2002), and the supposition that net flux can only
occur through particles that sink down to depth and do not
return to the surface (e.g., not diel-migrating zooplankton).
Whereas there are a few classes of living particles that may
contribute to net gravitational flux, such as resting stages of
phytoplankton (Smayda 1970; McQuoid and Hobson 1996)
and benthic meroplankton, there is little doubt that detritus
dominates gravitational carbon export.

However, the heterogeneity of detrital particles suggests
that it is foolish to consider all components of the detritus
equally likely to sink out of the euphotic zone. Just as grazing
and bacterial colonization rates are dependent on the charac-
ter and nature of detrital particles, sinking rates are deter-
mined by properties of detritus, particularly density (or poros-
ity) and size (De La Rocha and Passow 2007; Trull et al. 2008).
Detritus sinking rates can vary by more than four orders of
magnitude (see Fig. 2 and references therein). Mineral ballast-
ing, whether by CaCO,, biogenic Si, or terrigenous particles,
has been shown to significantly increase detritus sinking rates
and hence penetration into the ocean interior (Armstrong et
al. 2009; Biermann and Engel 2010). Repackaging of organic
matter into fecal pellets can significantly increase sinking rates
(Bruland and Silver 1981; Turner 2002), whereas incorporation
of the smallest size-classes of detritus into aggregates can pro-
mote sinking of otherwise neutrally buoyant material.

Particle settling velocities are generally considered to
behave according to Stokes’ Law, which states that settling
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velocity is proportional to the density differential between the
particle and water and the square of the particle radius,
although it is important to note that Stokes’ Law is only actu-
ally valid for a sphere of uniform density. Settling rates have
been determined in several different ways including direct
observation of rapidly sinking larger particles (e.g., fecal pel-
lets and aggregates), relative concentration changes between
the top and bottom sections of settling chambers (Bienfang
1981), specially designed sediment traps with rotating cups
(Peterson et al. 2005), time-series analysis of multi-depth sed-
iment trap arrays recording temporal lags between flux events,
and inferences made from paired in situ flux and standing

Detritus in the pelagic ocean

stock measurements. Direct observations of sinking rates, both
laboratory measurements and in situ imaging techniques,
tend to find a strong relationship between size and settling
rate in rough agreement with Stokes’ Law (see Smayda 1970;
Turner 2002; Stemmann et al. 2004b). However, there is a dis-
tinct difference between the sinking rates of fecal pellets and
marine snow, with both typically showing positive relation-
ships with size, but fecal pellets generally having faster sinking
rates than aggregates (Fig. 2).

Despite the strong positive correlation between size and
sinking rate found amongst distinct types of particles, the het-
erogeneity of in situ detrital particles and aggregates obfus-
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Fig. 2. Sinking rate as a function of equivalent spherical diameter. Green circles are intact individual phytoplankton (Smayda 1970). Purple symbols are
mesozooplankton fecal pellets. Blue symbols are marine snow particles. Red symbols are in situ settling rates of mixed particle assemblages assessed by
dividing fluxes by stocks. Note that strong correlations exist between size and sinking rate for phytoplankton and mesozooplankton feces, with these two
types of particles falling on a similar line. Whereas individual experiments typically show correlations between size and sinking rate for marine snow aggre-
gates, there is not a strong trend across studies (likely reflecting the highly variable density of aggregates) and in general marine snow has a lower sink-
ing rate than fecal pellets of a similar size. By contrast, bulk in situ particles do not show a strong trend, and in fact, may decrease slightly in sinking rate
with increasing size. Blue diamonds represent aggregates made from calcifying Emiliania huxleyi cells (Ploug et al. 2008a; Engel et al. 2009; Biermann
and Engel 2010). Blue circles are aggregates formed from the diatom Skeletonema costatum (Ploug et al. 2008a). Blue triangles are natural marine snow
particles from the Southern California Bight (Ploug et al. 2008a). Blue stars are natural marine snow particles from Monterey Bay, CA and Bedford Basin
(Shanks and Trent 1980; Azetsu-Scott and Johnson 1992). Blue squares are appendicularian houses (Taguchi 1982). Purple squares are appendicularian
fecal pellets (Ploug et al. 2008a). Purple diamonds are copepod and euphausiid fecal pellets (Smayda 1971; Turner 1977; Yoon et al. 2001; Ploug et al.
2008a). Purple stars are salp, doliolid, and pteropod fecal pellets (Bruland and Silver 1981; Madin 1982; Yoon et al. 2001). Red diamonds are mea-
surements of bulk in situ sinking rates made by comparing size-distributions of particles collected in a sediment trap by optical determinations of water
column size-spectra made by Asper (1987), whereas red squares are similar measurements made by McDonnell and Buesseller (2010). Lines represent
relationships found by different authors for (1) crustacean fecal pellets (Small et al. 1979); (2) Chaetognath fecal pellets (Giesecke et al. 2010); (3) non-
calcifying E. huxleyi aggregates (Engel et al. 2009); (4) Marine snow (Alldredge and Gotschalk 1988); (5) Marine snow (Syvitski et al. 1995); (6) appen-
dicularian houses (Lombard and Kiorboe 2010); and (7) marine snow (Alldredge and Gotschalk 1989).
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cates this simple relationship. McDonnell and Buesseler
(2010) used a combination of underwater visual imaging of
water column particles with acrylamide gels affixed to sedi-
ment traps beneath them to assess sinking rate as a function
of size for particles sinking off of the Western Antarctic Penin-
sula. They found a bi-modal distribution of sinking rates dur-
ing a January cruise with high sinking rates for large particles
(equivalent spherical diameter [ESD] of > 1 mm) and small
particles (ESD < 100 mm), but in February they found a strong
inverse correlation between ESD and sinking rate. They attrib-
uted this difference to the presence of large, rapidly sinking
fecal pellets in January, while most other large and medium-
sized particles were aggregates that sank slower than individ-
ual siliceous cells of diatoms and radiolarians. Considered
from a broader perspective, the different size-dependencies of
sinking for discrete detritus types and in situ particles and
aggregates, suggest the possibility that the importance of dif-
ferent types of detritus to POC flux is a function of size, with
fecal pellets comprising a large portion of the 100-200 um size
fraction and aggregates dominant in the larger size fraction
(Fig. 2). Attempts to estimate fluxes from particle size spectra
(e.g., Jackson and Checkley 2011) may therefore hinge on the
ability to differentiate rapidly sinking particles from slowly
sinking particles of the same size.

Section 4. Modeling detritus

Detritus in typical biogeochemical models

Many types of models have been developed to address dif-
ferent aspects of ocean biology (see Fennel and Osborn 2005
for an overview). State variable models that cycle biomass
(e.g., NPZD type models that track a fixed number of ecosys-
tem compartments) tend to be the type of model that incor-
porates detritus as a dynamic of interest within a larger ecosys-
tem context (see Fig. 1 in Travers et al. 2007). Because detritus
is often considered as a closure term tuned to improve phyto-
plankton results, reviews of ecosystem models that thor-
oughly analyze phytoplankton and zooplankton components
(Arhonditsis and Brett 2004; Tian 2006) do not extend their
scope to detritus. History provides some explanation. Ecosys-
tem models have been used as a tool since the middle of the
twentieth century and were first developed to explore and
understand the growth of phytoplankton (Riley 1946). A
transformative development in the field of ecosystem model-
ing occurred when, in a seminal paper, Fasham et al. (1990)
connected an ecosystem model to ocean circulation. The focus
of the study was to reproduce and understand the observed
patterns of phytoplankton production at an ocean site near
Bermuda. The Fasham et al. (1990) model was a seven-com-
partment model that included nitrate, ammonium, dissolved
organic nitrogen, phytoplankton, zooplankton, bacteria, and
detritus. Sources of detritus in the Fasham et al. (1990) model
were mortality of phytoplankton and egestion from zoo-
plankton. The sinks of detritus were grazing by zooplankton,
decay, and sinking. After publication of the Fasham et al.
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(1990) model, the number of ecosystem models proliferated,
and there was also a rapid evolution in the number of appli-
cations of ecosystem models.

To explore how detritus is generally characterized in mod-
els, we used Web of KnowledgeS™ database to find papers pub-
lished between 1990 and 2010 that cite Fasham et al. (1990).
A total of 561 studies were found: 313 included ecosystem
modeling and 182 included an original model or a substantial
change to an existing model. We analyzed the pelagic ecosys-
tem component of the 182 models with the assumption that
some characteristics of each model were unique. In particular,
we were looking for the following in the ecosystem models:
the total number of state variables, the number of detritus
state variables, the sources of detritus, the sinks of detritus,
and physiological constraints on detritus production and/or
loss. We also tracked the coupling with physical models and
the geographic location of the model implementation. Over-
all, this analysis of the processes controlling detritus in mod-
els will help identify potential improvements, including
recent experimental and observational results that can be
made to models.

Detrital compartments comprised an average of 14.6 + 12%
of the total compartments in the models and ranged from 0%
to 60% depending on the focus of the study. Many of the
models without detritus variables also had fewer total vari-
ables. The goal of the simpler models was to model a particu-
lar process, frequently primary productivity, but still allow the
modeler to understand the underlying dynamics. In primary
productivity models that did not explicitly consider detritus,
the essence of detritus was incorporated when phytoplankton
and/or zooplankton were recycled back to nutrients or disap-
peared from the system. An additional benefit to simpler mod-
els was the low computational cost, and there was a clear
increase in the total number of state variables in more recent
models as computing resources increased. The majority, 70
models, had a single detritus variable (Fig. 3). Fasham et al.
(1990) included a single detritus variable so this finding may
be related to the original search criteria. Furthermore, the four
compartment NPZD model was a popular starting point for
more complicated models because it includes what many con-
sider to be the essential ecosystem components. In Fig. 3, Lee
et al. (2002) had the model that included 6 detritus variables.
The detritus variables were partitioned by nutrients (carbon,
nitrogen, and silica) and the origin (detritus, phytodetritus).
The Lee et al. (2002) included a high number, 19, of total state
variables and was one of the most complicated models ana-
lyzed. Dunne et al. (2005) had the model with the highest per-
centage, 60%, of detritus variables. This model had only 5
total state variables, and was focused on mechanistically mod-
eling detritus to better quantify the particle export ratio. Thus,
there are a range of detritus parameterizations in ecosystem
models that may have unanticipated effects on the model sim-
ulations, depending on how each detrital process is incorpo-
rated in the model.
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Fig. 3. A comparison of the distributions of the total number of state variables to the number of detritus state variables in the 182 original models found
to cite Fasham et al. (1990) in the Web of Knowledge database. Panel A is a histogram of the number of models of a given number of total state vari-
ables, whereas Panel B is a histogram of the number of models with a given number of detritus variables.

Table 1. The frequency of occurrence of detritus components
and rates among the 182 original models found by searching the
Web of Knowledge for papers that cited Fasham et al. (1990).

Number of models

Detritus partitions

Nutrients 32
Size 13
Origin 10
Sinking speed 8

Lability 1

Sources of detritus

Egestion 101
Mortality phytoplankton and zooplankton 94
Mortality phytoplankton 19

Sloppy feeding 9
Sinks of detritus

Remineralization 122
Sinking 111
Zooplankton grazing 50
Bacterial grazing 3

Fifty-seven models had two or more detritus variables (Fig.
3). The detritus variables were typically distinguished by one
of the following characteristics: nutrient type (carbon, nitro-
gen, phosphorus, and silica), size, lability, sinking speed, or
origin (Table 1). Nutrient type was the most frequently used
partition because many of the models included multiple ele-
mental cycles, although it is important to note that nutrient

62

partitioning of the detritus simply implies variable stoichiom-
etry for the detritus, but does not suggest the inclusion of
detrital pools that behave differently or have different origins.
Size was used to distinguish detritus with different sinking and
remineralization rates (e.g., large detritus typically had faster
sinking speeds than small detritus). The remineralization rates
of large versus small detritus varied greatly between studies.
Fennel et al. (2006) had a faster remineralization rate, 0.03 d!,
for small detritus compared with large detritus, 0.01 d.
Touratier et al. (2003) had equivalent remineralization rates
for both small and large detritus, 0.1 d-'. Slagstad et al. (1999)
had a faster remineralization rate, 0.33 d!, for large detritus
compared to small detritus, 0.05 d-'. On the other hand, many
of the models had sinking speed as a specific partition rather
than size, although in many cases, these partitions were equiv-
alent. Origin of detritus was also used to distinguish between,
for example, phytoplankton aggregations and zooplankton
fecal pellets (Druon and Le Fevre 1999; Jackson 2001; Skliris et
al. 2001). This type of partitioning had a more fluid connec-
tion between detritus creation and loss because the detritus
variables were not grouped then redivided to calculate the
transfer of organic matter within the system. Lability was a
specific characteristic considered in Stock and Dunne (2010),
which divided detritus into semilabile small detritus, labile
small detritus, and large detritus. The semilabile and labile
small detritus were nonsinking, and the large detritus was rap-
idly sinking. The lability differentiated between detritus that
decays at different rates: labile decayed immediately and the
semilabile decayed to labile on monthly to seasonal time
scales. Overall, models are inconsistent in how they incorpo-
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rate detrital types, which may prove important, especially
when the sources and sinks of detritus within models are con-
sidered.

Sources of detritus in the ecosystem models were typically
from phytoplankton and zooplankton mortality and zoo-
plankton egestion. Similar to Fasham et al. (1990), 21 models
included phytoplankton mortality but not zooplankton mor-
tality as a source of detritus. Fasham et al. (1990) considered
zooplankton mortality to be a closure term that included both
natural mortality and predation by higher predators. Rather
than including zooplankton mortality as detritus, a portion
was instantly exported from the mixed layer and another por-
tion was instantly converted to ammonium to simulate the
effect of higher predators on zooplankton without explicitly
including them in the model. The Fasham et al. (1990) model
was able to make this set of assumptions because it was a 0D
model in the mixed layer. However, most models, 94 in Table
1, considered both phytoplankton and zooplankton mortality
as sources of detritus because they did not use the Fasham et
al. (1990b) set of assumptions. The inclusion of both phyto-
plankton and zooplankton mortality fits with the observa-
tional evidence described previously. Sloppy feeding was
included in some of the models (Table 1). In some cases, the
term “sloppy feeding” was used to refer to the unassimilated
material that was ingested, and in other cases, it referred to
uningested products of grazing. Using the former definition,
sloppy feeding and egestion (fecal pellet production) were
equivalent, but in the latter definition, sloppy feeding was
separate from egestion. Three of the models included both
egestion and sloppy feeding (Haupt et al. 1999; Tian et al.
2000; Besiktepe et al. 2003). In Haupt et al. (1999), the rates of
detritus production due to egestion and sloppy feeding were
different, and both were parameterized as part of the slow-
sinking detritus state variable. Besiktepe et al. (2003) had only
a single detritus variable, and like Haupt et al. (1999) detritus
from egestion and sloppy feeding were produced at different
rates. Tian et al. (2000) had two detritus variables with sloppy
feeding producing small detritus and egestion producing large
sinking detritus. Last, in models that included small and large
sizes of detritus, there was frequently an aggregation rate that
represented the transformation of small detritus into large
detritus. Despite the differences among models in the division
of detritus into types, there was a consistency in having both
phytoplankton and zooplankton mortality and zooplankton
egestion as the main sources of detritus.

The main sinks of detritus in the ecosystems models were
remineralization and sinking (Table 1). Grazing of detritus by
zooplankton was also frequently included in the models and
was a feature of the original Fasham et al. (1990) model.
Edwards (2001) used existing NPZD models to theoretically
analyze the effect of zooplankton grazing on detritus (Steele
and Henderson 1981). He found that the addition of a detrital
compartment to a nutrient-phytoplankton-zooplankton
model made little difference to the qualitative behavior of the
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model if zooplankton were not allowed to graze on the detri-
tus. However, the addition of grazing on detritus significantly
altered the dynamics by decreasing the range of model param-
eters over which the model showed unforced oscillations and
slowing these oscillations. Forty percent of the models
included grazing on detritus so, based on the analysis of
Edwards (2001), there would likely be differences in results
across ecosystems based on this parameter alone. A small
number of models included bacteria as a sink of detritus. Bac-
teria are a major consumer of detritus, and, in the models, the
influence of bacteria on the decomposition of detritus was
typically included in the remineralization rate. If bacteria were
included as a state variable, their interaction was restricted to
the dissolved organic matter. However, detritus and bacteria
were explicitly linked in three of the models (Tian et al. 2000;
Kantha 2004; Nogueira et al. 2006). Nogueira et al. (2006)
acknowledge the “bacterial action on detritus,” but the para-
meterization was still mainly a remineralization closure term.
In contrast, Kantha (2004) and Tian et al. (2000) had a fraction
of the bacteria actively consume the particulate organic mat-
ter. By incorporating a detailed microbial loop, ecosystem
dynamics extended below the euphotic zone. In contrast to
the sources of detritus, there were major discrepancies in the
sinks of detritus in the models analyzed. Most of the models
did not include grazing of detritus by zooplankton or rem-
ineralization by explicit bacteria as sinks of detritus which,
based on the model analysis by Edwards (2001) and the obser-
vational evidence, have been found to be important.

Modeling detritus

This treatment of detritus in ecosystem models contrasts
with the output from detritus models, which indicate that the
complex processes controlling detritus are important. One of
the major questions that still needs to be addressed is: How
many detrital compartments, at a minimum, should be
included in an ecosystem model? Ruiz et al. (2002) experi-
mentally determined that there need to be multiple size
classes of detritus with explicit representation of aggregates in
biogeochemical models to accurately represent detritus flux to
deeper depths. Kriest and Oschlies (2008) used 198 size classes
to explore the increase in detritus sinking speed with depth
and particle size distributions in a one-dimensional model;
however, this many classes cannot be reasonably incorporated
into physically coupled 3D models. An alternate approach,
which explicitly models the size-spectra of POC (Burd and
Jackson 2009), has benefits in its ability to directly reflect in
situ size spectra measurements that are becoming increasingly
common. Such models, particularly when used in conjunction
with size-structured plankton models (Poulin and Franks
2010), are powerful tools because of the intrinsic inter-rela-
tionships between size, aggregation, disaggregation, and sink-
ing rate. However, classification of all detritus based solely on
size neglects the important role of lability in determining the
fate of detritus, which may be particularly important when
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attempting to answer questions related to bacteria or zoo-
plankton usage of detritus. Furthermore, the computational
cost of carrying a full discretized size-spectrum of detritus
makes such a model infeasible for inclusion in large-scale
three-dimensional models. Alternate size-spectra schemes,
particularly the use of moments to describe the particle size-
spectrum with only a few parameters (Kriest and Evans 1999;
Gehlen et al. 2006), are computationally more efficient, but
less accurate and more difficult to assimilate with the variable
nature of in situ particle production by plankton.

A small subset of these size-structured models focuses on
the biological and physical processes altering detritus explic-
itly. Jackson and Burd (2002) incorporated zooplankton with
different modes of feeding as well as bacteria and predators in
a theoretical model to explore the impact on sinking detritus.
Stemmann et al. (2004b) developed the most comprehensive
detritus model, which included the processes of settling, coag-
ulation, fragmentation, microbial activity, and zooplankton
consumption. These theoretical one-dimensional models
determined that a diversity of processes influence variation in
sinking and degradation of detritus.

Compared with the active research being done on aggrega-
tion in marine systems, few modeling studies have specifically
targeted the interaction between grazers or bacteria and mul-
tiple detrital classes. Blackburn et al. (1997) showed that
micro-scale nutrient patches around particles were available to
chemotactic bacteria, whereas Kiorboe and Jackson (2001)
showed that motile bacteria can use the solute enriched plume
behind a sinking particle to locate nutrient-rich particles. Sim-
ilarly, measurements of bacterial motility have been used to
model bacterial encounter and colonization of aggregates
(Kiorboe et al. 2002). Micro-scale and optimal foraging models
such as these have great potential for generating and testing
specific hypotheses about microbial-detritus interactions, but
are not generally applicable to large-scale simulations. An
alternate approach was taken by Miki and Yamamura (2005)
who addressed competition between DOC-specialist, POC-spe-
cialist, and generalist bacteria in a homogeneous water parcel,
and hence constructed a model that would be more amenable
to inclusion in general circulation models. Anderson and Tang
(2010) used a flow analysis model to compare the loss of sink-
ing detritus in the mesopelagic to three pathways (remineral-
ization by particle-attached bacteria, solubilization and subse-
quent remineralization by free-living bacteria, and
consumption by detritivorous zooplankton) and found a
dominant role for attached bacteria.

In a novel pair of papers, Stemmann et al. developed
(2004a) and tested (2004b) a one-dimensional ecosystem
model that explicitly dealt with particle aggregation and detri-
tus feeding on zooplankton at the DYFAMED site in the
Mediterranean Sea. The comparison provided some critical
insights into the processes determining the loss of detritus.
Particle size was determined to be important because the con-
sumption of large detritus in the shallower depths by meso-
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zooplankton in models was necessary to explain the patterns
in the observational data. Microbial degradation rates were
more important than zooplankton degradation rates at depths
greater than 200 m. Three years of data from 1993-1995 were
used in the analysis. The fit between the model and data were
much higher in 1995 compared with 1993 or 1994. The
authors suggested a potential reason to be the increased sam-
pling interval which was every ~ 5§ days in 1995 compared to
~ 40 days in 1993 and 1994. There were also differences in the
dominant phytoplankton groups which caused differences in
particle size and lability between years that also may have con-
tributed to differences in fit. The processes governing particle
degradation are proving to be complex, and further model
development and comparisons with data may provide addi-
tional insights.

Perhaps even more important than models that focus on
detrital interactions is a systematic approach for validating
detritus behavior in general plankton models. Unfortunately
the paucity of in situ detritus measurements makes model val-
idation more complicated for detritus than for other state vari-
ables. Model phytoplankton distributions, for instance, are
routinely validated with some combination of microscopy,
pigment, and sea surface chlorophyll measurements. Never-
theless, there are paths forward. The increased use of auto-
mated tools for generating particle size-spectra in the epi- and
mesopelagic (Checkley et al. 2008; Graham and Smith 2010)
provides valuable data for testing size-structured detrital mod-
els (Stemmann et al. 2004a; Jackson and Checkley 2011), but
could also be used as validation for mesopelagic detrital stand-
ing stocks predicted by three-dimensional ecosystem models.
In situ imaging devices offer potential to further divide parti-
cles into explicit classes (e.g., aggregates, fecal pellets, organ-
isms) that more fluidly parse into the detrital compartments
used in most models. Comparison of model rates of detritus
formation and destruction to in situ rates is another powerful
avenue for model validation. Biogeochemical models already
routinely compare detritus flux rates to estimates of carbon
export, but such methods can be expanded upon greatly. Fecal
pellet (Conover 1966) and appendicularian (Sato et al. 2003)
house production are reasonably well known functions of zoo-
plankton abundance and grazing. Likewise, estimates of aggre-
gate formation rates can be made from phytoplankton con-
centrations (Jackson and Kiorboe 2008; Burd and Jackson
2009). Meanwhile, estimates of sinking rates (McDonnell and
Buesseler 2010), export flux (Buesseler et al. 2008), bacterial
remineralization and solubilization (Mevel et al. 2008; Ploug
et al. 2008a; Kellogg et al. 2011), and grazing (Wilson et al.
2010; Park et al. 2011), made on discrete detrital classes can be
used to constrain detritus loss terms.

Our analysis has also identified some key parameterizations
of detritus that could be improved. We suggest that “sloppy
feeding” needs to be used more frequently and carefully in
models. In addition, since phytoplankton fragments are dis-
tinct in shape and size from intact phytoplankton cells or fecal
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pellets and likely are more labile and have slower sinking
speeds, we recommend separate consideration of these com-
partments. With respect to sinks of detritus, zooplankton graz-
ing has been identified as an important loss term and warrants
more consistent use (Edwards 2001; Stemmann et al. 2004b).
In general, within the models we analyzed, physiology was
rarely considered and detritus loss rates were rarely tempera-
ture-dependent. Respiratory physiology in particular will
become increasingly important if hypoxic regions continue to
expand.

Section 5. Recommendations

It is clear that there is a large disconnect between the het-
erogeneous nonliving POC pool in the ocean, and the para-
meterization of simple detrital compartments in ecosystem
models. Bridging this gap will require a concerted effort by
both experimentalists and modelers. Of immediate impor-
tance is the need for systematic characterization of the prop-
erties of different detrital classes (e.g., Ploug et al. 2008a). Most
projects to date focus on either a single detrital class (e.g.,
appendicularian houses) or use automated methods that typi-
cally discriminate particles only on size (not origin). Whereas
such studies have elucidated potential roles of different types
of detritus, such a reductionist approach is difficult to incor-
porate into ecosystem models, which cannot reasonably be
expected to carry multiple detrital compartments for each
class of detritus. Instead, there is a need for integrative studies
that compare and contrast different detrital classes, and hence
allow for an informed approach to amalgamating heteroge-
neous classes of particles into representative detrital pools that
may vary based on (for instance) size and lability. In much the
same way that sinking rate has been systematically studied as
a function of size for different detrital classes and unified with
Stokes’ Law (with the caveat that a priori prediction of excess
density remains difficult) and coagulation theory has formed
a basis for study of aggregation (with a similar caveat about a
priori prediction of the ‘stickiness’ parameter), we need to
address other relationships of detritus properties and loss
terms. While some questions (e.g., the relationship of bacter-
ial remineralization to particle size) may be amenable to our
current methodological practices, others may require a funda-
mental reassessment of how detritus is studied. For instance,
lability is an important determiner of the final fate of detritus,
and is hence important to include in models. However, it is
difficult to assess because it is a function of many different
physico-chemical parameters. One approach may be to mea-
sure relative lability by simultaneously collecting multiple
forms of detritus and incubating them with natural assem-
blages of marine bacteria. However, a more fruitful approach
may stem from current research into bacterial use of the
chemical constituents (e.g., simple carbohydrates, hydrocar-
bons, fatty acids, etc.) of detritus (Ziervogel et al. 2010; Lyons
and Dobbs 2012). If such methods can be extended to include
zooplankton use of detritus (e.g., Koski et al. 2010) and com-
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bined with chemical fingerprinting of different types of detri-
tus to assess their relative chemical compositions (Tsukasaki
and Tanoue 2010), lability could begin to serve as a concrete
structuring principle for model detrital compartments.

These focused experimental approaches must be paired
with a more fluid treatment of model detritus. It is of crucial
importance that detrital compartments be explicitly linked to
particular detritus production mechanisms so that losses may
correspond to a relevant suite of remineralization rates, sink-
ing rates, and grazing rates. The actual definition (and num-
ber) of different compartments will depend on the results of
experimental studies. For instance, if appendicularian houses
and phytodetrital aggregates are found to both have much
higher lability than mesozooplankton fecal pellets and molts,
and microzooplankton egesta are shown to behave similarly
to individual detrital phytoplankters, it may be possible to
conflate these different categories into small detritus, large
porous labile detritus, and large dense refractory detritus.
Regardless, each class of detritus should have distinct proper-
ties— including sinking, remineralization, and grazing rates—
that are directly constrained by in situ measurements. Alter-
nately, it may be possible to model detritus using size and
lability spectra, with each source, loss, and transformation
process explicitly acting on the moments and cross-products
of size and lability (see Burd and Jackson 2009). Such a
method may allow for a more accurate depiction of the full
heterogeneity of the detrital pool (for instance allowing labil-
ity to vary continuously with bacterial remineralization or
incorporating full aggregation/disaggregation dynamics), but
with significantly increased model complexity. Whichever
approach is undertaken, it is of paramount importance that
the heterogeneity of processes producing and consuming
detritus is considered and that model results are validated
with in situ measurements of detritus standing stocks and
related rates. Only a concerted joint effort between experi-
mentalists and modelers will allow this often dominant form
of particulate matter in the ocean to be mechanistically incor-
porated into ecosystem models.
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