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Despite the increasing use of linear inverse modeling techniques to elucidate fluxes in undersampled marine
ecosystems, the accuracy with which they estimate food web flows has not been resolved. NewMarkov Chain
Monte Carlo (MCMC) solution methods have also called into question the biases of the commonly used L2
minimum norm (L2MN) solution technique. Here, we test the abilities of MCMC and L2MNmethods to recov-
er field-measured ecosystem rates that are sequentially excluded from the model input. For data, we use ex-
perimental measurements from process cruises of the California Current Ecosystem (CCE-LTER) Program that
include rate estimates of phytoplankton and bacterial production, micro- and mesozooplankton grazing, and
carbon export from eight study sites varying from rich coastal upwelling to offshore oligotrophic conditions.
Both the MCMC and L2MN methods predicted well-constrained rates of protozoan and mesozooplankton
grazing with reasonable accuracy, but the MCMC method overestimated primary production. The MCMC
method more accurately predicted the poorly constrained rate of vertical carbon export than the L2MNmeth-
od, which consistently overestimated export. Results involving DOC and bacterial production were equivocal.
Overall, when primary production is provided as model input, the MCMC method gives a robust depiction of
ecosystem processes. Uncertainty in inverse ecosystem models is large and arises primarily from solution
under-determinacy. We thus suggest that experimental programs focusing on food web fluxes expand the
range of experimental measurements to include the nature and fate of detrital pools, which play large
roles in the model.
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1. Introduction

The ability to compare ecosystem states quantitatively is essential
for elucidating the mechanisms underlying marine trophic interac-
tions and their relationships to biogeochemistry. Unfortunately, re-
construction of food webs is hampered generally by the sparsity of
ecological rate measurements. Linear inverse models (LIM) are pow-
erful data assimilation tools that have been developed to address this
problem of ecosystem underdeterminacy. LIM are designed to inte-
grate biomass assessments, rate measurements, and a priori knowl-
edge of trophic structure and organismal capabilities into best
estimates of the flow of energy or nutrient flows through an ecosys-
tem. Despite data limitations, pioneering work in inverse modeling
of plankton ecosystems (Jackson and Eldridge, 1992; Vézina and
Platt, 1988) has allowed parameter estimation and comparisons in a
variety of marine habitats. More recently, LIM have been used for di-
verse purposes including comparative analysis of bloom ecosystems
(Daniels et al., 2006), integration of rate measurements with stable
isotope determinations of trophic position in benthic communities
(van Oevelen et al., 2006), and to compare responses to nutrient en-
richment in different coastal systems (Olsen et al., 2006). Nonethe-
less, the lack of objective methods for assessing system constraints
(analogous to model errors) has largely confounded efforts to evalu-
ate the accuracy of model solutions for unmeasured rates.

LIM are based on a system of equations Ax=b that quantify the
mass balance and rate measurements that constrain the ecosystem
(van Oevelen et al., 2010; Vézina and Platt, 1988). They also incorpo-
rate a series of inequality constraints Gx≥h, which represent known
limits on the biology of ecosystem components (for instance gross
growth efficiency). However, the paucity of ecological measure-
ments relative to modeled flows (variables) leads invariably to an
under-determined system, and hence to infinite solutions that can
fit sparse data. To choose from among these solutions, investigators
have traditionally used the L2 minimum norm (L2MN) approach,
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Fig. 1. Model structure. Model compartments are phytoplankton (Phy), heterotophic
nanoflagellates (Hnf), microzooplankton (Mic), mesozooplankton (Mes), bacteria
(Bac), detritus (Det), and dissolved organic carbon (DOC). GPP = gross primary pro-
duction. Arrows show the direction of flow through the ecosystem. The two export
terms in the model (Det to export and Mes to HTL) are interpreted as sinking particu-
late organic carbon and mesozooplankton loss to higher trophic levels, respectively.
Not shown in the diagram are respiratory losses of each of the 5 living compartments.
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which selects the solution vector that minimizes the sum of squared
flow values. While this approach is parsimonious in a mathematical
sense (Niquil et al., 1998; Vézina and Platt, 1988), it imposes an arti-
ficial structure on the emergent ecosystem depiction. In particular, to
achieve minimum flows, the L2MN consistently inflates the respira-
tion of consumers at lower trophic levels (Stukel and Landry,
2010), minimizes the trophic level of higher consumers (Niquil et
al., 1998), and selects values for flows that lie on the outer bounds
of the allowable solution space (Steele, 2009; Stukel and Landry,
2010).

The Markov Chain Monte Carlo (MCMC) technique is an alterna-
tive approach for solving the under-constrained inverse ecosystem
problemby using randomwalk techniques to fully sample the solution
space and computing maximum likelihood results (Kones et al., 2006;
Kones et al., 2009; Soetaert and van Oevelen, 2009; van Oevelen et al.,
2010). Unlike the L2MN, this method makes no assumption about un-
derlying ecosystem structure, but chooses as most likely the mean
value of any given flow from among the set of all solutions that fit
the available data. It thus determines solution statistics for each vari-
able of interest (Kones et al., 2009) while avoiding the L2MN's tenden-
cy to choose extreme values (Stukel and Landry, 2010).

While the complete sampling of the solution space by the MCMC
offers advantages relative to the L2MN, no studies have shown that
it provides better approximations of ecosystem fluxes. To date, most
studies addressing the efficacy of inverse techniques have used simu-
lated ecosystems in which the ecologically relevant components were
prescribed (Vézina and Pahlow, 2003; Vézina et al., 2004). However,
simulated ecosystems behave according to their constructs in easily
predictable ways, while the underlying structures of actual ecosys-
tems are largely unknown, and hence less likely to be described accu-
rately by a model.

In the present study, we compare alternative L2MN and MCMC so-
lutions of inverse ecosystem models based on data from two cruises
of the California Current Ecosystem, Long-Term Ecological Research
(CCE-LTER) Program. During CCE cruises in May 2006 (P0605) and
April 2007 (P0704), a total of eight water parcels were tracked for
an average of 4 days each while various processes – including phyto-
plankton growth rate, protozoan and mesozooplankton grazing, net
phytoplankton accumulation, vertical carbon flux and bacterial
growth rates – were measured experimentally. By running the
model with both L2MN and the MCMC solution methods while se-
quentially withholding measurements, we are able to assess and
compare each minimization scheme's ability to predict the measured
data. We find that the L2MN method more accurately estimates phy-
toplankton production (when it is not a measured constraint). In con-
trast, if primary production is a model input the MCMCmethod was a
better predictor of ecosystem flows.

2. Methods

2.1. Model structure

Structuring an inverse ecosystemmodel involves inevitable trade-
offs between constraints (fewer compartments, less complexity) and
broad depiction of ecosystem processes (more compartments, greater
complexity). The level of complexity is a matter of judgment, but has
been shown to influence model results (Stukel and Landry, 2010).
Since the primary goal of this study was to compare methodologies,
we chose to err on the side of greater constraint, hence fewer com-
partments. We thus constructed a simple ecosystem (Fig. 1) with
one phytoplankton group (Phy), three size-structured grazing groups
(Hnf, Mic, Mes), bacteria (Bac), detritus (Det), and dissolved organic
carbon (DOC). Each grazing group was allowed to feed upon phyto-
plankton and smaller consumers. Bacterivory was allowed only for
nanoflagellates (Hnf) and microzooplankton (Mic). Egestion was in-
corporated as a flux from grazers to detritus, while phytoplankton
contributed to detritus through cell death. DOC was produced by di-
rect exudation from phytoplankton and the excretion and sloppy
feeding of grazers. DOC uptake by bacteria was modeled as a net up-
take to avoid the unbounded flows that result from inclusion of DOC
production by bacteria, a process that is poorly constrained by field
and laboratory measurements. Energy was dissipated through the
respiration of each group, by the vertical flux of detritus sinking out
of the euphotic zone, and by higher trophic level consumption of
mesozooplankton. The model thus had a total of 29 flows (Fig. 1),
constrained by experimental measurements of net primary produc-
tion, bacterial production, herbivorous grazing by the protistan com-
munity, herbivorous grazing by mesozooplankton (Mes), and export
of sinking particulates (some measurements were not made for all
of the eight experiments). The addition of seven mass-balance con-
straints (discussed below) led to a maximum of 12 constraints on
the ecosystem model.
2.2. Ecological measurements

Model data (Table 1) are from CCE-LTER process cruises in May
2006 (P0605) and April 2007 (P0704). During these cruises, homoge-
neous water parcels were located using site surveys with a Moving
Vessel Profiler (MVP: ODIM Brooke Ocean; Ohman, unpub.) and
marked with a drift array drogued at 15 m in the surface mixed
layer (Landry et al., 2009). Water parcels were typically followed for



Table 1
Measured inputs to themodel. Distance is initial position of drifter from shore. μ andm are the phytoplankton specific growth rate and protozoan grazing rates measured by the dilution
technique. MesoGr is themesozooplankton grazing rate as determined by the gut pigment technique. POCFlux is vertical carbon export. BacProd is bacterial production.ΔChl is the in situ
rate of change of chlorophyll over the course of the cycle. Bio denotes biomass. Euphotic depth is the depth of integration for biological measurements. Mean±95% C.L. ND=no data.
Column headings indicate cruise (e.g., 0605) and cycle number (e.g., 1).

0605-1 0605-2 0605-3 0605-4 0605-5 0704-1 0704-2 0704-3

Distance Km 29 166 11 89 356 39 255 63
14C-PP mg C m−2 d−1 4184±1767 563±28 4382±412 1474±251 483±159 1233±815 587±90 2314±910
μ d−1 0.273±0.060 0.159±0.051 0.243±0.168 0.346±0.068 0.073±0.053 0.293±0.139 0.136±0.032 0.285±0.030
m d−1 0.125±0.054 0.123±0.063 0.175±0.112 0.154±0.053 0.068±0.042 0.157±0.081 0.166±0.043 0.158±0.048
MesoGr d−1 0.088±0.046 0.057±0.029 0.112±0.092 0.065±0.007 0.013±0.003 0.475±0.089 0.044±0.008 0.219±0.133
POCFlux mg C m−2 d−1 322±200 72±44 ND 132±49 76±74 83±14 37±11 129±61
BacProd mg C m−2 d−1 ND ND ND ND ND 53±25 22±12 33±15
ΔChl d−1 0.070±0.238 −0.004±0.109 0.002±0.589 0.142±0.154 −0.173±0.152 −0.253±0.164 0.014±0.199 −0.069±0.519
PhyBio mg C m−2 7451±2094 2262±676 7333±2024 3085±629 1653±323 2613±1019 2079±165 2239±333
HnfBio mg C m−2 631±42 575±32 397±48 406±25 298±11 410±20 457±9 396±16
MicBioa mg C m−2 1733±1034 128±128 1390±2082 99±228 243±69 262±106 41±48 203±265
MesBio mg C m−2 1335±532 365±123 1329±408 757±188 243±44 2695±1077 391±87 1715±393
BacBio mg C m−2 756±263 810±29 489±77 520±45 917±53 539±49 907±54 885±93
POC mg C m−2 12,146±3331 4637±210 10,523±3155 5320±694 4845±669 4618±1416 4839±138 6022±752
DOC mg C m−2 20,801±7261 69,212±8569 9023±3958 30,761±1460 54,105±4014 30,231±2228 112,472±104,020 52,395±2052
MaxHNFBio mg C m−2 694 850 554 508 359 463 612 458
MaxMicBioa mg C m−2 5718 1648 10,483 1376 747 2194 653 1259
MaxMesBio mg C m−2 2120 549 1725 890 280 4095 488 1942
MaxPhyDensity mg C m−3 431 90.76 822.34 95.15 65.6 116.23 54.66 59.29
MaxHNFDensity mg C m−3 20 17.82 33.8 21.14 7.14 14.51 10.54 8.85
MaxMicDensitya mg C m−3 313 53.3 724.26 44.44 23.94 57.94 39.42 15.59
MaxBacDensity mg C m−3 29 11 30 13 20 14 14 16
Temp °C 11.7±0.4 13.8±0.2 12.9±0.3 14.2±0.2 15.0±0.2 11.9±0.2 13.9±0.1 11.8±0.3
Euphotic depth M 50 100 25 50 90 50 90 85

a Maximum microzooplankton concentration terms include autotrophic dinoflagellates as they are likely phagotrophic.

22 M.R. Stukel et al. / Journal of Marine Systems 91 (2012) 20–33
a 4-day experimental “cycle” while ecological rates were measured
simultaneously with net changes in the euphotic zone phytoplankton
community. Landry et al. (2009) showed that net changes in the phy-
toplankton community could be predicted to first order by the differ-
ences between measured rates of phytoplankton growth and
combined grazing pressures of herbivorous proto- and metazoans,
thus suggesting that the experimental measurements accurately
reflected the processes determining ecosystem changes.

Phytoplankton carbon production was determined by 14C uptake
(14C-PP) measurements made from 4-L samples incubated in situ at
6 depths on our drift array and subsampled (250 mL) in triplicate
for decay counts, with a separate 250-mL dark bottle used to correct
for non-photosynthetic carbon uptake or adsorption onto particles.
Rate estimates for phytoplankton growth and grazing were made as
chlorophyll-based euphotic-zone averages from the dilution method
for growth and microzooplankton grazing, and from the gut pigments
of mesozooplankton collected in day–night net tows (Landry et al.,
2009 and Ohman, unpubl. data). Microzooplankton grazing rates are
scaled to carbon equivalents by multiplying vertically integrated
14C-PP estimates times the ratios of protozoan grazing to phytoplank-
ton specific growth rate from dilution results. Mesozooplankton graz-
ing rates are similarly scaled to 14C-PP carbon units by their initial
chlorophyll-based ratios of grazing to growth. Net rates of change in
phytoplankton community biomass were assessed from daily
changes in vertically integrated chlorophyll concentrations at the
drifter location multiplied by the mean ratio of chlorophyll to phyto-
plankton carbon biomass calculated for each cycle from epifluores-
cence microscopy (A. Taylor, unpubl.).

Bacterial production was measured on the P0704 cruise by the
leucine incorporation technique (Kirchman et al., 1985; Simon and
Azam, 1989). Seawater samples were inoculated with 20 nM of
[4,5-3H]-L-leucine and incubated at in situ temperature for 1 h. The
incubations were terminated via addition of trichloroacetic acid
(TCA; 5% final concentration). Control samples were prepared by add-
ing TCA to each vial prior to the addition of seawater. TCA-killed sam-
ples were placed in the refrigerator for at least 1 h prior to filtration
on 0.2 μm pore size polycarbonate filters. The filters and the filtration
manifold were washed 2 times with 5% TCA. The filter was then re-
moved, placed into a glass vial, and allowed to dry. 5 mL of Ecolite scin-
tillation cocktail was added to each vial, shaken, and placed at room
temperature for at least 1 h before analysis on a Beckman Coulter
LS6000TA liquid scintillation counter.

Vertical carbon fluxes for the 2006 cruise were determined from
the 234Th–238U disequilibrium method (Pike et al., 2005) integrated
over the upper 100 m and from the C:234Th ratios on particles collect-
ed by an in situ pump at 100-m depth (Stukel et al., 2011). For P0605
Cycle 1, we used a steady state physical model that incorporated an
upwelling rate of 1 m d−1, but allowed upwelling rates to range
from negligible to 2 m d−1 to assess measurement uncertainty. For
the 2007 cruise, POC flux rates were determined from 234Th–238U dis-
equilibrium and the average C:234Th on particles collected with both
sediment traps and in situ pumps at 100-m depth.

2.3. Model solutions

In addition to measured rates and mass-balance equalities, the
model solutions were further limited by a set of 38 biological con-
straints including bounds on respiration, gross growth efficiency and
excretion for each group, as well as assimilation, maximum ingestion
and maximum clearance rates for the grazers (see Appendix 1). Except
for the measured net rates of change of phytoplankton, we assumed
that net accumulation rates of other biological components variedwith-
in ±10% of their average biomass d−1.

Since, the typical L2MN method (Vézina and Platt, 1988) tends to
zero out particular values and does not generate any confidence inter-
vals, we instead adopted an ensemble L2MN approach similar to the
L2MN Monte Carlo method used by Stukel and Landry (2010). For
each model input (measured rates and biomasses and steady-state
equalities), we generated a normal distribution from the experimental-
ly determinedmeans (zero for unmeasured steady-state equalities) and
variances. Inputs were then chosen randomly from these distributions
to allow for simultaneous variation of each input. Once the input pa-
rameters had been randomly selected, the L2MN solution was calculat-
ed using the algorithm of Vézina and Platt (1988) as implemented in
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MATLAB by Jackson et al. (2001). When the system of equations is solv-
able (i.e. there are no inconsistencies amongst the equalities and in-
equalities) a full rank solution can be used (k=size of b), and the
residual error will be zero. Often inconsistencies existed in the data
(e.g. when the difference of growth and grazing was less than the
rate of change of the phytoplankton population). In such cases we fol-
lowed the method of Olsen et al. (2006) and chose the highest rank
solution that could generate an answer that satisfied the inequality
constraints. For each cycle and numerical experiment, we solved the
L2MN for at least 10,000 independent (randomly selected) sets of
input parameters and determined our L2MN solution as the median
of these 10,000 sets, while also calculating 95% confidence intervals
for all ecosystem flows. When solutions did not converge to within
5% of a stable value, we computed additional solution sets until con-
vergence was reached.

To calculate a maximum likelihood solution that averages over the
entire possible solution space, we used the MCMCmethod of Kones et
al. (2009) adapted for use in MATLAB (code has been made available
on CCE LTER Datazoo website) from the R-Code of Van den Meersche
et al. (2009). We used a long jump length of 2000 to ensure that each
solution vector was independent of the vector preceding it. After a
burn-in period of 20 iterations, an additional 100 iterations were car-
ried out to characterize the solution space. For each cycle and numer-
ical experiment we ran the MCMCmethod at least 100 different times
(convergence to within 5% was tested) using randomly selected input
parameters (as we did for the L2MN method). This generated a total
of 10,000 solution vectors that account for both measurement error
and under-determinacy error. We calculated the median of these
10,000 solution vectors as our MCMC solution and also used them
to generate confidence intervals for all model outputs. When incon-
sistent parameter sets were drawn, we decreased the rank of the so-
lution, thus allowing for an inexact solution to the system of
equations, and followed the MCMC method of Van den Meersche et
al. (2009) with the probability of accepting new solution sets based
on the ratio of p(q1):p(q2), where:

p qð Þ∝e−
1
2σ

−2 A′q−b′ð ÞTW2 A′q−b′ð Þ

To test the ability of the L2MNandMCMCmethods to predict ecosys-
tem flows accurately, we conducted a series of numerical experiments
in which we withheld a particular in situ rate measurement (14C-PP,
microzooplankton grazing, mesozooplankton grazing, vertical POC
flux, or bacterial production) from the dataset and solved the inverse
problemwith both the L2MN andMCMC as described above. By varying
the input parameters based on the assumption of a normal distribution,
we generated medians and 95% confidence intervals that could then be
compared to the experimental fieldmeasurements. Since ourmodel re-
mains more constrained thanmost inverse ecosystemmodels with one
measurement input withheld, we also conducted experiments with
pairs of measurements withheld and with only primary production
specified as a measured rate.

2.4. Error sources

Inverse ecosystem modeling uncertainty can arise from three dis-
tinct sources: measurement error, solution error (underdetermined
system), and structural error. Structural error is difficult to assess
due to the vast array of possible model constructions, but we could
address the other two errors in our analysis. To assess the role of mea-
surement error, we ran MCMC simulations for 100 different random
sets of measurement inputs to each cycle (as above) and 1000 itera-
tions for each set of random measurements. We then computed the
mean for each set of random measurements, and used the variability
between these mean solutions to compute a coefficient of variation
(CV) due only to measurement uncertainty for each flow. We then
determined the solution (underdeterminacy) error by using the
MCMC to sample the solution space for the exact measurement values
of each cycle, and used the resultant set of solutions to compute a CV
for each flow derived only from model underdeterminacy.

2.5. Statistical analyses

We used two separate statistical analyses to assess the efficacy of
each solution method in retrieving withheld measurements from our
numerical experiments. First we computed the sum of the root mean
squared error (RMSE) to assess the deviation of the model predicted
rates from the withheld measurements (after log-transformation to
normalize the deviations) for each numerical experiment. While
this approach assesses the ability of the median to recover the with-
held measurement, it does not take into account the width of the
error bounds, which reflects how well the variable has been estimat-
ed. To assess the degree to which each method accurately depicts the
true uncertainty in its results, we also calculated double the fraction
of the modeled distribution that was less than the measured value (if
the median modeled value was greater than the measured value).
This corresponds to the p-value at which, given the modeled distri-
bution of the predicted measurement, our confidence interval
would fail to bracket the actual in situ measurement. For instance,
a p-value of 0.02 (corresponding to 1% of the model distribution fall-
ing below the measured value) would suggest that the 98% confi-
dence intervals of the modeled output would exclude the true
measurement value. We then computed the geometric mean of this
p-value for each numerical experiment (to determine average statis-
tics encompassing all cycles). For the few instances where the mea-
sured value fell completely outside the simulated model
distributions, we used the means and standard deviations from the
model to construct a normal distribution that was used to estimate
the p-value. Since distributions of RMSE and p-statistic were not nor-
mal, we used bootstrapping (sampling with replacement) techniques
to test significance at the 95% confidence level.

3. Results

3.1. Predictions of withheld data

Results of the numerical experiments to assess the predictive ca-
pabilities of the L2MN and MCMC solution schemes are shown in
Fig. 2 and Table 2. In the full dataset, the measured rate of change in
phytoplankton concentration (ΔP) is equal to the difference between
net production (14C-PP) and the sum of protozoan grazing, mesozoo-
plankton grazing, and phytoplankton loss to detritus (PHYtoDET).
Thus, the one unconstrained flow, PHYtoDET, is fixed by the mea-
sured rates. When the 14C-PP measurement is withheld from model
input, the difference between phytoplankton net growth and loss to
detritus is set by the phytoplankton rate of change and grazing mea-
surements. The individual magnitudes of phytoplankton net growth
and loss to detritus, however, are poorly constrained since we have
allowed phytoplankton to grow at rates of up to two doublings per
day with no explicit constraint on non-grazing mortality. To minimize
total system flow, the L2MN consistently sets a low PHYtoDET rate of
essentially zero, thus making 14C-PP roughly equal to the sum of ΔP
and grazing (Fig. 2a), which fits the measurement data well. In con-
trast, by sampling all possible solutions that satisfy the system con-
straints (or lack of them), the MCMC method leads to high flux
estimates for both primary production and PHYtoDET (Fig. 2b).
These two fluxes are highly correlated but poorly predicted when
the 14C-PP measurement is withheld.

The grazing rates of protozoans and mesozooplankton on phyto-
plankton are likewise constrained by the balance of ΔP, PHYtoDET
and 14C-PP. When the measured 14C-PP rates are provided, both solu-
tion schemes predict the grazing terms reasonably well, with the in



Fig. 2.Model estimation of measured parameters. Each measured rate was withheld from amodel implementation in order to assess the model's ability to predict the measurement.
Panels a, c, e, g, and i show the L2MN predictions. Panels b, d, f, h, and j show the MCMC predictions. Panels a and b are the predictions of 14C-PP when 14C-PP is not used as a model
input. Other measurements are protozoan grazing (c,d), mesozooplankton grazing (e,f), POC export (g,h) and bacterial production (i,j). In situ measurements are on the x-axis and
model predictions are on the y-axis. All units are mg C m−2 d−1. Dotted line is the 1:1 line. Error bars are 95% confidence limits.
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situ measurements typically falling within the 95% confidence inter-
vals for both the L2MN and the MCMC. Nonetheless, both solution
schemes underestimate grazing rates (Fig. 2c–f), especially when
they are large.

Vertical POC flux and bacterial production are comparatively less
constrained by the data. The L2MN method consistently overesti-
mates POC export, reflecting its tendency to shunt energy out of
the system as rapidly as possible (Fig. 2g). For three of the seven cy-
cles (POC flux was not measured on P0605, Cycle 3), measured ex-
port values fall below the 95% confidence intervals of the L2MN,
and for six of the seven cycles the 67% confidence intervals fail to
bracket the measurements. In comparison, the MCMC method pre-
dicts carbon export relatively well, with 95% confidence intervals
bracketing the actual measurement values for all seven cycles and

image of Fig.�2


Table 2
Summary statistics for numerical experiments in which measurement inputs were
withheld. First column shows the measurement being predicted. These were always
withheld from the model. PP = primary production, MicroGr = protozoan grazing,
MesoGr = mesozooplankton grazing, BP = bacterial production. Mean is the means
for all types of numerical experiments (one measurement withheld, two withheld, or
PP as the only input). Second column shows other measurements that were withheld.
Dash implies that the measurement being predicted was the only one withheld. ‘All-PP’
implies that primary production and mass balance constraints are the only model
equalities. Third and fourth columns are the root mean squared error of the L2MN
and MCMC methods, respectively (after log-transformation to normalize the devia-
tions). In two numerical experiments the median predicted for MesoGr by the L2MN
method was 0, leading to an infinite RMSE after log-transformation. Fifth and sixth col-
umns are the geometric mean of the p-values (see Methods). p-values can vary from
near 0 to 1, with a p-value of 1 implying that the model exactly predicts the measure-
ment. A p-value of 0.05 would suggest that the actual measurement value lies on the
95% confidence level of the model's predicted distribution. Shown in bold are values
for which the L2MN solution was significantly different from the MCMC at the 95% con-
fidence level.

RMSE p-stat

Measurement Withheld L2MN MCMC L2MN MCMC

PP – 0.14 0.64 0.582 1.2E−03
MicroGr – 0.31 0.41 0.097 0.072
MicroGr MesoGr 0.19 0.28 0.077 0.140
MicroGr POCFlux 0.38 0.43 0.056 0.081
MicroGr All-PP 0.19 0.26 0.067 0.173
MesoGr – Inf 0.66 0.062 0.077
MesoGr MicroGr 0.30 0.55 7.7E−05 0.103
MesoGr POCFlux Inf 0.59 0.070 0.082
MesoGr All-PP 0.30 0.57 3.3E−05 0.075
POCFlux – 0.39 0.30 0.051 0.537
POCFlux MicroGr 0.43 0.33 0.038 0.490
POCFlux MesoGr 0.48 0.28 0.014 0.578
POCFlux All-PP 0.48 0.31 0.028 0.515
BP – 0.34 0.77 0.595 6.6E−04
BP All-PP 0.52 0.74 0.223 0.010
Mean Single Inf 0.56 0.137 0.028
Mean Singlea Inf 0.53 0.088 0.073
Mean Double Inf 0.43 0.015 0.173
Mean All-PP 0.36 0.46 0.006 0.129

a The second mean for only one measurement withheld is the mean excluding nu-
merical experiments withholding 14C-PP.
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with even 50% confidence intervals bracketing the actual measure-
ment value for five of the seven cycles (Fig. 2h). Bacterial production
(BP), measured only on the P0704 cruise, was found to be surpris-
ingly low, with BP:14C-PP ratios of 0.04, 0.04, and 0.01 for Cycles 1
through 3, respectively. By minimizing DOC production, the L2MN so-
lution predicted the low BP rates with excellent accuracy (Fig. 2i).
The MCMC consistently overestimated BP by about a factor of five
(Fig. 2j).

Since even with one measurement withheld, our ratio of con-
straints to flows (variables) remains higher than in most other in-
verse ecosystem models, we also conducted numerical experiments
in which we withheld two measurements at a time and numerical ex-
periments in which primary production was the only measurement
input. The models continued to perform similarly in their predictions
of grazing, while the L2MN was a better predictor of bacterial produc-
tion and the MCMCwas a better predictor of carbon export. However,
increasing underdeterminacy led to a stark difference in the uncer-
tainty estimates of the two methods. While the error bounds sug-
gested by the L2MN method remained the same or even shrank
as additional measurements were withheld, the MCMC error limits
increased.

To test the significance of these trends we computed two statis-
tics: The RMSE compares how closely the median model value pre-
dicts the withheld measurement, while the p-statistic compares
how accurately the modeled probability distribution depicts our ac-
tual knowledge of the withheld measurement (including both the
median value and uncertainty). With respect to RMSE, the L2MN
typically performed better than the MCMC method, suggesting
that its predictions were usually closer to the true measurement
value. However, when averaged across all measurements, the differ-
ence between the RMSE of the L2MN and MCMC methods was not
statistically significant. For mesozooplankton grazing, the L2MN
method predicted a median value of 0 mg C m−2 for P0704-2,
which led to an infinite RMSE after log-transformation. When this
cycle is removed, the L2MN outperformed the MCMC at predicting
mesozooplankton grazing (RMSE=0.38 and 0.61, respectively),
when compared across all numerical experiments with a single
measurement withheld (RMSE=0.32 and 0.54), and with all nu-
merical experiments except for predicting primary production
(RMSE=0.36 and 0.51). However, the difference was not statistical-
ly significant for mesozooplankton grazing alone, or when every-
thing except primary production was averaged. By contrast, the
MCMC method performed better than the L2MN method with re-
spect to the p-statistic, except when the large errors between
MCMC predicted PP and 14C-PP were included. In particular, the
MCMC continued to perform relatively well even as model underde-
terminacy increased, while the L2MN performance dropped signifi-
cantly. When PP was the only model input, the MCMC predictions
included the measurements at a p-value of 0.129, while the L2MN
predictions would have excluded the measurements at a p-value
of only 0.006.

3.2. Composite ecosystem indices

To further compare the L2MN and MCMC methods we solved the
LIM with all measurement inputs (Tables 3 and 4) and computed
composite ecosystem indices for the different ecosystem states en-
countered on our cruises. While these indices are difficult to measure
in the field, they can be easily calculated from ecosystem models and
offer insights into the biases of each solution method.

One composite index is the gross growth efficiency (GGE) for all
heterotrophic compartments (Fig. 3). The MCMC method gave GGE
estimates of 17–24% for all grazer groups. The L2MN method, howev-
er, predicted low GGEs of 10–17% for both protozoan groups, but a
high GGE of N38% for mesozooplankton. The bacterial GGEs predicted
by the two methods were surprising. The MCMC method predicted
high GGEs (22–26%) when bacterial production was not measured
on the P0605 cruise and low GGEs (5–7%) when it was measured
(Fig. 3d). The GGE solutions from the L2MN showed the opposite pat-
tern. TheMCMC solutions for bacterial GGEs on the P0704 cruise were
driven to low values by the extremely low bacterial production mea-
surements. The L2MN predicted low GGEs when bacterial production
was not measured, thus allowing bacteria to respire most of the car-
bon they consumed (shunting it out of the ecosystem to minimize
the L2 norm). Conversely, high GGE was predicted when bacterial
production was measured because of consistently low DOC produc-
tion in the L2MN solutions.

To compare the overall utilization of primary production by differ-
ent ecosystem components, we computed the amount of energy in
three alternate pathways: the classical food chain (defined as the di-
rect flow of phytoplankton, both living and detrital, to mesozooplank-
ton), the multivorous food chain (defined as the flow reaching the
mesozooplankton that stems from protozoans grazing on phyto-
plankton), and the microbial loop (defined as the sum of bacterial res-
piration and the portion of protozoan respiration supported by BP).
The classical food chain was particularly well constrained. Although
variability of the pathway was high (ranging from b20% to N140% of
14C-PP), the L2MN and MCMC strongly agreed on the magnitude for
each set of ecosystem experiments (Fig. 4a). The solution methods
differed strongly, however, in representing the multivorous food
chain and the microbial loop, with the L2MN consistently predicting
less carbon utilization by both pathways. The L2MN predicted low
carbon flow from protozoans to mesozooplankton (Fig. 4b) due to



Table 3
MCMC solutions to the inverse ecosystem model. GPP = gross primary production. Fluxes are shown as SOURCEtoSINK, in units of mg C m−2 d−1. Compartments are phytoplankton (PHY), heterotrophic nanoflagellates (HNF), microzoo-
plankton (MIC), mesozooplankton (MES), bacteria (BAC), detritus (DET), and dissolved organic carbon (DOC). RES denotes respiration of the living compartments, while MEStoEXT and DETtoEXT are flows from mesozooplankton to higher
trophic levels and from detritus that sink out of the euphotic zone, respectively. Median and 95% C.L. Column headings indicate cruise (e.g., 0605) and cycle number (e.g., 1).

0605 Cycle1 0605 Cycle2 0605 Cycle3 0605 Cycle4 0605 Cycle5 0704 Cycle1 0704 Cycle2 0704 Cycle3

GPP 9100 (4980–14,061) 1284 (899–1721) 10,458 (6815–17,160) 3125 (2178–4215) 1017 (600–1623) 2995 (1014–5929) 1344 (899–2170) 5005 (2890–8031)
PHYtoRES 2939 (778–6391) 426 (117–812) 3545 (960–7763) 1032 (286–1968) 342 (91–741) 1137 (226–2860) 529 (146–1025) 2107 (728–4133)
PHYtoHNF 898 (46–2400) 221 (17–516) 1232 (36–3370) 364 (35–624) 174 (10–332) 170 (6–512) 280 (39–427) 185 (13–284)
PHYtoMIC 623 (27–2165) 147 (7–450) 979 (26–4917) 252 (15–678) 247 (16–760) 162 (6–619) 350 (65–603) 802 (197–1054)
PHYtoMES 1089 (51–2274) 139 (32–275) 1326 (28–2816) 252 (96–353) 70 (6–169) 1735 (600–3271) 98 (5–211) 1365 (298–2652)
PHYtoDET 1221 (78–3059) 134 (3–391) 1638 (77–5185) 135 (3–650) 233 (10–590) 145 (3–1423) 8 (0–349) 710 (11–2635)
PHYtoDOC 1643 (304–2895) 247 (54–360) 1775 (265–3308) 619 (151–884) 178 (31–324) 230 (37–843) 126 (18–375) 171 (50–651)
HNFtoMIC 330 (17–1135) 63 (3–224) 443 (26–1344) 85 (4–300) 56 (5–101) 141 (7–412) 52 (3–115) 78 (4–152)
HNFtoMES 255 (11–965) 52 (2–196) 238 (8–954) 74 (3–274) 29 (2–53) 112 (5–496) 63 (4–154) 227 (18–700)
HNFtoRES 749 (275–1501) 137 (59–267) 915 (373–1819) 195 (84–393) 124 (53–266) 319 (106–779) 137 (62–280) 436 (129–1183)
HNFtoDET 725 (182–1796) 148 (39–400) 775 (233–1690) 210 (55–577) 129 (33–352) 299 (64–984) 140 (39–375) 352 (71–1113)
HNFtoDOC 415 (143–904) 78 (31–167) 494 (192–1016) 109 (44–238) 69 (27–165) 161 (51–407) 71 (31–151) 196 (55–469)
MICtoRES 805 (303–1793) 132 (56–261) 1204 (433–3313) 211 (95–417) 158 (67–371) 286 (99–761) 166 (72–335) 523 (206–1264)
MICtoMES 602 (176–1495) 106 (35–257) 770 (249–2057) 163 (59–391) 113 (36–178) 213 (67–625) 136 (50–308) 353 (137–854)
MICtoDET 850 (210–2463) 147 (37–387) 1162 (284–3694) 251 (67–615) 183 (43–516) 264 (60–922) 186 (48–453) 431 (122–1151)
MICtoDOC 448 (157–1098) 75 (29–166) 655 (222–1872) 119 (49–254) 90 (34–225) 142 (47–392) 85 (36–177) 225 (96–490)
MEStoRES 790 (326–1541) 128 (65–243) 947 (429–1771) 197 (99–379) 116 (53–235) 667 (268–1656) 135 (64–278) 801 (339–1744)
MEStoDET 862 (228–1697) 145 (41–336) 826 (279–1589) 224 (64–508) 111 (31–284) 920 (267–2042) 140 (39–351) 764 (226–1544)
MEStoDOC 432 (167–904) 71 (32–148) 505 (218–1000) 107 (48–225) 63 (26–143) 328 (130–733) 69 (30–149) 336 (156–625)
BACtoRES 2626 (1231–4433) 407 (234–600) 3332 (1732–6801) 794 (419–1146) 374 (205–646) 958 (421–2058) 392 (213–720) 1108 (499–1707)
BACtoHNF 106 (6–204) 55 (3–116) 98 (5–190) 48 (3–87) 45 (2–100) 25 (1–66) 18 (1–71) 33 (1–74)
BACtoMIC 659 (103–1406) 71 (5–180) 820 (150–2058) 198 (30–312) 59 (3–173) 56 (1–231) 17 (1–87) 72 (2–186)
DETtoHNF 1536 (127–3626) 210 (12–655) 1522 (100–3507) 295 (17–1006) 187 (11–585) 863 (138–2305) 174 (9–558) 1137 (195–2608)
DETtoMIC 914 (41–3619) 139 (6–532) 1215 (53–4926) 177 (8–768) 151 (6–584) 479 (26–1871) 138 (6–593) 647 (30–1915)
DETtoMES 476 (19–1884) 93 (4–407) 366 (10–1744) 127 (5–585) 154 (8–454) 214 (8–1150) 114 (5–442) 363 (14–1634)
DETtoDOC 268 (10–1456) 42 (2–201) 514 (17–3219) 54 (2–264) 56 (2–275) 66 (2–392) 30 (1–154) 69 (2–411)
DOCtoBAC 3393 (1589–5618) 535 (309–777) 4231 (2217–8144) 1044 (543–1424) 485 (270–819) 1026 (469–2190) 421 (234–780) 1175 (531–1804)
DETtoEXT 256 (12–497) 56 (9–111) 388 (13–3028) 122 (61–178) 73 (4–145) 27 (0–99) 14 (0–42) 27 (0–180)
MEStoEXT 470 (181–1096) 81 (20–181) 581 (229–1396) 114 (45–262) 70 (9–180) 400 (132–1073) 90 (18–242) 499 (194–1160)
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Table 4
L2MN solutions to the inverse ecosystem model. Abbreviations as in Table 3. Median and 95% C.L.

0605 Cycle1 0605 Cycle2 0605 Cycle3 0605 Cycle4 0605 Cycle5 0704 Cycle1 0704 Cycle2 0704 Cycle3

GPP 5986 (3475–8440) 817 (758–981) 6613 (5659–11,276) 2099 (1742–2470) 697 (456–1157) 2051 (591–3689) 948 (748–1185) 3531 (2099–5213)
PHYtoRES 1502 (862–2160) 212 (189–262) 1691 (1409–2943) 508 (417–605) 187 (121–273) 534 (154–892) 247 (196–303) 911 (542–1351)
PHYtoHNF 911 (388–1615) 205 (101–333) 1382 (321–3880) 315 (192–470) 222 (67–347) 226 (50–450) 312 (204–433) 284 (259–293)
PHYtoMIC 904 (381–1612) 204 (98–333) 1327 (150–3732) 314 (190–469) 222 (67–936) 200 (32–426) 312 (204–449) 792 (238–1066)
PHYtoMES 1228 (382–2325) 169 (60–293) 1542 (0–3440) 258 (103–350) 74 (0–191) 1753 (589–3265) 93 (0–199) 1466 (464–2677)
PHYtoDET 330 (0–2608) 0 (0–291) 0 (0–4553) 60 (0–652) 207 (0–656) 0 (0–574) 0 (0–112) 0 (0–1892)
PHYtoDOC 209 (68–356) 22 (11–37) 198 (84–455) 94 (41–124) 10 (7–112) 31 (10–327) 19 (11–74) 73 (35–436)
HNFtoMIC 18 (0–105) 0 (0–17) 13 (0–459) 0 (0–5) 0 (0–4) 54 (0–101) 0 (0–0) 45 (0–119)
HNFtoMES 100 (0–216) 29 (0–65) 146 (0–694) 44 (17–76) 40 (10–55) 0 (0–0) 61 (33–91) 23 (0–146)
HNFtoRES 815 (290–1385) 147 (82–226) 1016 (366–2537) 244 (136–367) 180 (92–268) 284 (61–483) 212 (61–292) 412 (121–800)
HNFtoDET 121 (57–204) 24 (14–40) 186 (57–502) 41 (25–62) 29 (17–95) 45 (19–155) 35 (24–103) 61 (39–172)
HNFtoDOC 117 (49–198) 22 (13–35) 154 (55–414) 36 (22–53) 28 (17–41) 43 (20–70) 34 (22–46) 60 (37–117)
MICtoRES 820 (294–1389) 149 (83–227) 1005 (340–2423) 244 (137–367) 184 (104–362) 280 (61–495) 211 (61–295) 638 (205–1144)
MICtoMES 130 (13–250) 28 (12–64) 194 (36–891) 42 (23–76) 41 (15–179) 53 (0–100) 61 (33–95) 113 (0–212)
MICtoDET 122 (59–204) 24 (14–41) 185 (53–602) 41 (25–62) 29 (17–221) 45 (19–154) 35 (24–103) 95 (44–315)
MICtoDOC 118 (50–199) 22 (13–35) 153 (52–440) 36 (22–53) 29 (17–155) 42 (20–72) 34 (22–47) 94 (41–165)
MEStoRES 719 (259–1211) 112 (67–161) 860 (297–1505) 169 (89–266) 114 (53–174) 678 (257–1130) 127 (20–176) 696 (279–1161)
MEStoDET 180 (74–307) 27 (17–40) 217 (69–411) 41 (21–65) 28 (16–62) 197 (74–1070) 31 (19–43) 178 (84–540)
MEStoDOC 178 (67–301) 27 (16–38) 213 (69–366) 41 (21–65) 27 (15–44) 186 (79–392) 30 (8–42) 174 (82–288)
BACtoRES 626 (340–987) 92 (74–127) 732 (541–1928) 199 (155–256) 114 (66–203) 266 (129–463) 102 (72–143) 394 (225–702)
BACtoHNF 23 (0–64) 4 (0–14) 35 (0–194) 7 (0–26) 3 (0–20) 40 (0–69) 15 (0–33) 63 (0–79)
BACtoMIC 17 (0–56) 3 (0–14) 24 (0–299) 6 (0–26) 2 (0–10) 20 (0–150) 15 (0–33) 0 (0–109)
DETtoHNF 137 (0–807) 1 (0–84) 0 (0–812) 0 (0–185) 44 (0–183) 161 (20–330) 6 (0–33) 258 (64–804)
DETtoMIC 127 (0–803) 0 (0–82) 0 (0–705) 0 (0–185) 42 (0–178) 133 (11–305) 6 (0–32) 85 (0–571)
DETtoMES 218 (0–981) 30 (0–110) 0 (0–857) 53 (0–256) 101 (0–226) 0 (0–158) 78 (0–122) 27 (0–753)
DETtoDOC 0 (0–293) 0 (0–31) 0 (0–453) 0 (0–59) 18 (0–75) 0 (0–96) 3 (0–21) 0 (0–196)
DOCtoBAC 664 (370–1047) 98 (82–136) 774 (595–2089) 212 (171–272) 121 (71–251) 333 (180–610) 127 (93–169) 447 (268–769)
DETtoEXT 304 (83–527) 64 (15–114) 956 (359–3458) 126 (69–179) 77 (5–365) 48 (2–907) 20 (1–212) 76 (5–1147)
MEStoEXT 709 (248–1197) 104 (49–158) 849 (245–1506) 161 (82–259) 105 (30–170) 673 (236–1124) 119 (0–173) 688 (208–1158)
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the previously mentioned low gross growth efficiencies of proto-
zoans. Low activity of the microbial loop in the L2MN solutions
reflected the minimization of DOC production by phytoplankton and
grazers (Fig. 4c).
Fig. 3.Model predictions of gross growth efficiencies of heterotrophic nanoflagellates (a), mi
are on the x-axis and MCMC predictions are on the y-axis. Error bars are ± one standard de
the P0704 cruise (April 2007). Dotted line is the 1:1 line.
The percentage direct contribution of phytoplankton to vertical
POC flux (Fig. 5) compares the relative importance of sinking cells
and grazing processes to carbon export for the two solution methods.
While the MCMC method predicted relatively modest contributions
crozooplankton (b), mesozooplankton (c), and bacteria (d). In panels, L2MN predictions
viation. Filled squares are from the P0605 cruise (May 2006), open diamonds are from

image of Fig.�3


Fig. 4. Comparisons of the relative strengths of the different food web components by the
MCMC(y-axis) and L2MN (x-axis)models. Panel a is the classical food chain defined as the
sum offlows reaching themesozooplankton that derive from phytoplanktonwithout pro-
cessing by protozoans; these include grazing on living and detrital phytoplankton. Panel b
is the multivorous food chain, defined as the flow of carbon to mesozooplankton derived
from protozoa. Panel c is the microbial loop, defined as the sum of the respiration of bac-
teria and theproportion of protozoan respiration that is derived frombacterial production.
Flows for all cycles are normalized to 14C-PP (mg C m−2 d−1). Filled squares are from the
P0605 cruise, open diamonds are from the P0704 cruise. Dotted line is the 1:1 line.

Fig. 5. Fraction of vertical carbon export derived fromgravitational sinking of detrital phy-
toplankton, as determined by the L2MN (x-axis) and the MCMC methods (y-axis). Filled
squares are from the P0605 cruise, open diamonds are from the P0704 cruise. Dotted
line is the 1:1 line.

Fig. 6. Comparison of the uncertainties due to underdeterminacy of the inverse model
and to measurement errors. X-axis represents the coefficient of variation (CV) due to
measurement error; y-axis is the CV due to underdeterminacy. Fluxes to and from de-
tritus are highlighted. Flux from detritus (stars). Flux to detritus (squares). Black dia-
monds are detritus export (vertical POC flux). Dashed line is the 1:1 line.
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of gravitational phytoplankton sinking to export (1.7–36%), the L2MN
predicted widely varying contributions from 0% for five of the eight
cycles to over 70% on P0605-5.

3.3. Error sources

For the majority (75%) of our ecosystem flows, solution errors of
the inverse model exceeded the measurement errors (Fig. 6). The
exceptions were typically flows that were either directly measured
or highly correlated with the field measurements (e.g. mesozoo-
plankton grazing and POC flux were measured at sea, GPP was high-
ly correlated with 14C-PP). With the exception of POC export, flows
involving detritus exhibited particularly high solution errors. This
was especially the case for flows from detritus to grazers due to
our lack of a priori knowledge or experimental measurement of de-
trital fluxes.

4. Discussion

4.1. System characteristics of the CCE during springtime

Based on floristic patterns, Venrick (2002) divided the CCE region
into a temporally variable coastal domain dominated by large phyto-
plankton and a more stable offshore domain dominated by smaller
cells. Three of our experimental cycles (P0605-2, P0605-5, and
P0704-2) clustered with the offshore domain while the other five
were characteristic of the upwelling-influenced coastal area. In addi-
tion to significantly lower productivity rates (Table 1), the offshore

image of Fig.�4
image of Fig.�5
image of Fig.�6


Fig. 7. Comparison of food webs. Panel a compares the multivorous food chain fluxes (y-axis) to the classical food chain fluxes (x-axis). Panel b compares the microbial loop (y-axis)
to the classical food chain (x-axis). All food web fluxes are normalized to 14C-PP (mg C m−2 d−1). White squares are the offshore cycles. Black circles are the nearshore (upwelling
influenced) cycles. Error bars are ±1 SD. Dashed line is the 1:1 line.
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cycles were more similar to each other than the coastal cycles. All
three exhibited weak functioning of the classical food chain, but rela-
tively strong multivorous and microbial food webs (Fig. 7). In the
more variable inshore domain, the strength of the classical food
chain varied from 19 to 143% of 14C-PP and was strongly and positive-
ly correlated with the multivorous food chain, suggesting that varia-
tions in the activity of the mesozooplankton community exert a
major structuring influence on the coastal food web. The microbial
loop also varied more in the nearshore area, ranging from 52 to 86%
of 14C-PP (compared to 78 to 92% for the offshore region), but its rel-
atively high values for all experiments indicates that it is a major
pathway of carbon flow throughout the region.

Given the apparent importance of mesozooplankton in structuring
the coastal region, it is interesting to compare the modeled predic-
tions of trophic level (TL) for this community component. Spatial pat-
terns for the mesozooplankton TL were distinctly different on the two
cruises (Fig. 8). On P0605, the predicted mesozooplankton TL was not
strongly correlated with distance from shore. For P0704, however, the
predicted increase in mesozooplankton TL with distance from shore
agreed well with cruise measurements of feeding selectivity made
on the copepod C. pacificus and the euphausiid E. superba (M. Décima,
unpublished data). Across the range of ecosystem states sampled, the
inverse model also predicted that direct gravitational sinking of phy-
toplankton contributed less to export (varying from 1.6 to 36% of total
vertical flux in the MCMC model, Fig. 5), than grazing products, a
Fig. 8. Mesozooplankton trophic levels predicted by the MCMC (panel a) and the L2MN (pa
P0605 and white diamonds are P0704. Error bars are ±1 SD.
result that agrees well with pigment analyses from sediment traps
deployed in the CCE region (M. Stukel, unpublished data).

4.2. Inferences from inverse ecosystem models

Since the pioneering work of Vézina and Platt (1988), inverse eco-
system modeling methods have been frequently used to compare dif-
ferent ecosystems (e.g. Daniels et al., 2006) or to infer unmeasured
ecosystem flows (e.g. Jackson and Eldridge, 1992). However, investi-
gators have not systematically utilized field data to assess the efficacy
of inverse methods in approximating ecosystem structure. In the pre-
sent study, we utilized rate measurements from two cruises of the
CCE LTER program to test the accuracy of both the L2MN and MCMC
solution approaches for predicting cruise measurements and aggre-
gate properties of the ecosystem. With both methods, we used a
Monte Carlo technique of randomly varying the input parameters
(measurements) for each cycle to generate an ensemble solution
that incorporates measurement error. This ensemble solution is dis-
tinct from the typical exact solution that assumes perfect field mea-
surements of ecosystem rates. In particular, it averages out some of
the biases of the exact L2MN solution while generating more realistic
confidence intervals.

To evaluate the ability of inverse solution methods to predict
known quantities, we sequentially withheld individual cruise mea-
surements. Not surprisingly, both methods did a reasonable job of
nel b) solution approaches. X-axis is the initial distance from shore. Black squares are
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estimating micro- and mesozooplankton grazing rates, as these flows
are well constrained by related rate measurements (Fig. 2c–f). The
slight underestimate of grazing rates by both methods arose because
there were maximal constraints placed on grazing (see Appendix 1),
while PHYtoDET losses were unconstrained. The L2MN was far better
than the MCMC method in predicting primary production (Fig. 2a, b).
However, 14C-PP is a relatively easy measurement to make, and we
have not found a case for inverse models of pelagic ecosystems
where it has not been a measured input. Furthermore, the MCMC's
prediction of primary production might be significantly improved
by placing a more stringent upper bound on phytoplankton growth
rate. The maximum of two doublings per day that we allowed in the
present analysis is unrealistically high for the relatively cold water
of the CCE region during springtime.

Compared to production and grazing terms, model output of ver-
tical POC flux and bacterial production are not well linked to the
other measured rates since they depend on loosely constrained pro-
duction and utilization of detritus and DOC, as well as other energy
fluxes (like respiration) out of the ecosystem. Because they are the
type of poorly constrained and highly coupled ecosystem flows that
inverse models are often used to resolve, model predictions of verti-
cal carbon flux and bacterial production are perhaps the more reveal-
ing aspect of our analyses. The MCMC method was much more
accurate at predicting vertical carbon flux than the L2MN approach
(Fig. 2g,h). Confidence intervals of MCMC solutions consistently
bracketed measurement values and solutions were typically less
than a standard deviation away from the measured values. In con-
trast, the L2MN solutions consistently overestimated POC export. De-
spite broad uncertainties for this flow (average CV for the 7 cycles
was 1.98), 95% confidence intervals failed to bracket the measured
values for three out of seven field experiments. The overestimate
of POC export by the L2MN may seem surprising given its tendency
to maximize grazer respiration, but it follows logically from the
method's minimization of flows through the system. Rather than
Fig. 9. Model predictions of bacterial production (mg C m−2 d−1) with assumed DOC accum
lation in the euphotic zone at a rate of 1% d−1; panels c and d assume accumulation rates of 2
allow detritus to be reworked by grazers, the L2MN exports most de-
tritus directly out of the system.

The high L2MN model uncertainty (typically of a similar magni-
tude to MCMC model uncertainty) suggested by the 95% confidence
intervals in Fig. 2 is surprising, since the L2MN method only incorpo-
rates measurement uncertainty, while the MCMC method includes
uncertainty from both measurement inaccuracy and model underde-
terminacy. This result is counterintuitive, since most model uncer-
tainty was derived from underdeterminacy, and it arises because
the coefficient of variation due only to measurement uncertainty
was typically a factor of three larger in the L2MN method than in
the MCMC method. The high variability due to measurement uncer-
tainty in the L2MN model is due to the method's tendency to place
flows at their upper or lower allowable bounds, thus leading to a
strong correlation between a model flow and a single input parame-
ter (Stukel and Landry, 2010). For instance, HNF GGE is typically ex-
actly 10% and HNF respiration is maximized, hence HNF respiration
is tightly correlated with measured protozoan grazing. By contrast,
the MCMC method samples flows over their entire allowable ranges
and hence depends on the multiple measurement inputs that affect
its upper and lower bounds. If the uncertainty in different in situmea-
surements is uncorrelated, this will lead to decreased uncertainty in
modeled flows.

In contrast to the export predictions, our fewmeasurements of bac-
terial production by the leucine incorporation technique on the P0704
cruise were accurately predicted by L2MN, but substantially overesti-
mated by MCMC. This result needs to be interpreted with caution,
however, because we assumed that utilizable (i.e. labile) DOC concen-
tration remained constant in our experiments. Other studies have dem-
onstrated significant net accumulation of DOC in waters advecting
away from upwelling sources (Alvarez-Salgado et al., 2001; Wetz and
Wheeler, 2004). During the P0704 studies in the upwelling system off
of Point Conception, substantial net DOC accumulation may have oc-
curred as a consequence of excess grazing over phytoplankton growth
ulation. Figures are comparable to Fig. 2i, j. Panels a and b assume labile DOC accumu-
% d−1. Panels a and c are L2MN predictions, while panels b and d are MCMC predictions.
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(declining phytoplankton biomass; Landry et al., 2009), and dispropor-
tionately low rates of DOC utilization by bacteria (the 1–4% ratio of BP
to 14C-PP measured on P0704 is far below the typical marine average of
10–20%); (Ducklow, 2000). These low rates may have been due to low
bacterial biomass in the spring season or to cold temperature depres-
sion of specific growth rates.

If we modify the model to allow for even slight net production of
DOC (1 and 2% d−1; Fig. 9), the L2MN and MCMC do similarly well
in predicting bacterial production, with the MCMC becoming increas-
ingly better as DOC accumulation is increased, albeit with large un-
certainty. Measured DO14C production rates on springtime cruises
in the CCE region as part of the CalCOFI (California Cooperative Oce-
anic Fisheries Investigations) Program average roughly 20% of 14C-
PP (R. Goericke, unpublished data) during 24-h incubations. For the
L2MN solution, our estimates of PHYtoDOC were low, ranging from
2.5 to 6.4% of 14C-PP (mean 3.9%) across 8 experimental cycles. The
MCMC solutions, by contrast, predicted phytoplankton DOC produc-
tion rates of 7.4 to 43.8% (mean 31.3%), which compare more favor-
ably with the measured DO14C production rates on CalCOFI cruises.

Although respiration and GGE were not measured at sea, the dis-
tinct differences between the models' apportionment of grazer assim-
ilation into alternate pathways of production, respiration and
excretion allow for a useful comparison of the two solution methods.
In a meta-analysis of laboratory experiments determining GGEs of fla-
gellates, ciliates, dinoflagellates and crustaceans under food-replete
conditions, Straile (1997) found little variability across taxa, with all
having mean GGEs between 20 and 30%. The only size relationship
was a slight (statistically insignificant) decrease in GGE with increas-
ing size. This agrees well with mean GGE estimates of 23%, 20% and
17% for heterotrophic nanoflagellates, microzooplankton, and meso-
zooplankton, respectively, by the MCMC method. In contrast, the
L2MN predictions of substantially lower GGEs for protistan grazers
(11% and 12% for nanoflagellates and microzooplankton, respective-
ly) and much higher GGEs (39%) for the metazoans (Fig. 3) seem de-
cidedly unrealistic given the expectation that the GGEs of larger
consumers should be more sensitive to, and more likely to decrease
with, food limiting conditions in ambient pelagic ecosystems com-
pared to smaller protists.

4.3. L2MN and MCMC solution biases

Biases of the L2MN solution method are reasonably well under-
stood from previous studies. In particular, L2MN tends to zero out
minor flows (Vézina et al., 2004) and minimize the largest flows in
the model. It also often sets biological constraints (e.g. GGE) to either
maximum or minimum allowed values and minimizes the production
of DOC (Stukel and Landry, 2010). The MCMC is a much newer tech-
nique, and as such its inherent biases have not been as well character-
ized. By fully sampling the solution space, the MCMC avoids many of
the problems associated with the L2MN. In particular, the MCMC se-
lects more likely values near the middle of allowable parameter
ranges, rather than extremes (Fig. 3). However, we did identify one
MCMC behavior that can affect flux interpretations in models with
very slight structural differences. When sampling the solution space,
the MCMC method typically apportions unconstrained flows equally
between equivalent compartments. In our model construction, for ex-
ample, carbon can flow from nanoflagellates to respiration, DOC, de-
tritus, microzooplankton, or mesozooplankton. If we add another
pathway to those alternatives, for instance, by dividing microzoo-
plankton into two assemblages (larger flagellates and ciliates) that
both feed on nanoflagellates, the total flow into the combined micro-
zooplankton group will increase at the expense of the other outflows
from nanoflagellates. This is simply due to the larger number of path-
ways that can be constructed. Thus, with the MCMC technique (as
with the L2MN), it may be critically important to use identical struc-
tures when comparing different ecosystems or states.
5. Conclusion

Using data from 8 field experiments across a range of conditions in
the California Current Ecosystem, we found that inverse methods rea-
sonably estimated in situ measurements when measurement errors
are taken into account. While an ensemble version of the commonly
used L2MN technique clearly performed better than the newer MCMC
method when primary production was not specified as a model
input, the MCMC method more accurately depicted pelagic food web
flows when primary production was provided. In particular, the
MCMCmethodpredicted vertical carbonflux,whichdepends on a num-
ber of unmeasured rates; hence theMCMC appears to do especially well
in capturing the dynamics of the poorly resolved, but highly connected,
detrital pool. This skill, combined with its ability to generate realistic
confidence intervals even as the system becomes less constrained, sug-
gests that itmay performwell with the highly underdetermined ecosys-
tems often encountered. Nevertheless, results from inverse modeling
techniques are highly uncertain, as shown by coefficients of variation
that often exceed 50%. Despite the fact that our simple model, with
10–12 equations and 29 flows, was far more constrained than most in-
versemodels, most of the variability arose from the under-determinacy
of the solutions, rather than from measurement uncertainties. We thus
suggest that experimental programs focusing on food web fluxes ex-
pand the range of experimental measurements, in particular, measure-
ments that assess the nature and fate of the detrital pool, which plays a
large role in the model. Techniques that can ascertain the composition
of sinking detritus (e.g. Lundsgaard and Olesen, 1997) and rates of par-
ticle feeding (e.g. Wilson et al., 2010) are especially necessary for in-
creased understanding of POC flux in the pelagic ocean.
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Appendix 1. Model equalities (Ax=b) and inequalities (Gx≥h)

Equalities
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Inequalities:
Rate Pop Minimum Maximum

GGE HNF 10%1 40%1

MIC 10%1 40%1

MES* 10%1* 40%1*
BAC 5%2 30%2

BasalResp MES 2.314*10(log(9.1)+ log(2) * (T−25) / 10 *Biomass 3

Assim. Eff. HNF 50%4 90%4

MIC 50%4 90%4

MES 50%4 90%4

Respiration PHY 10% 55%5

HNF 20% ingestion6

MIC 20% ingestion6

MES 20% ingestion6

BAC 20% ingestion6

Excretion PHY 2% NPP6,7 55% NPP6,7

HNF 10% ingestion8 100% respiration9

MIC 10% ingestion8 100% respiration9

MES 10% ingestion8 100% respiration9

Max Ingestion HNF 24*10log(0.6509)+ log(2.8) * (T−20) / 10*Biomass10

MIC 24*10log(0.2375)+ log(2.8) * (T−20) / 10*Biomass10

MES 24*10log(0.1816)+ log(2.8) * (T−20) / 10*Biomass10

Max Clearance Rate HNF 24*10log(203,030)+ log(2.8) * (T−20) / 10*Biovolume10

MIC 24*10log(176,830)+ log(2.8) * (T−20) / 10*Biovolume10

MES 24*10log(112,780)+ log(2.8) * (T−20) / 10*Biovolume10

GPP PHY 140%NPP11 260%NPP11

NPP PHY 3*PhyBiomass12

1Straile (1997).
*Because metazooplankton have a basal respiration rate in addition to their activity-dependent metabolic cost, we have implemented a basal metabolic rate that must be paid first,
and constrained their GGE such that only 10–40% of the remainder of their intake can contribute to production. Thus the true GGE of the metazooplankton in our model will range
from slightly less than 10% to slightly less than 40%.
2 Del Georgio and Cole (2000).
3 Makarieva et al. (2008). An allometric and temperature specific basal metabolic relationship for copepods and krill was used to set a minimummetabolic rate for metazooplankton
that is in addition to their ingestion rate specific constraints.
4 Conover (1966).
5 Falkowski et al. (1985).
6Vézina et al. (2000).
7Baines and Pace (1991).
8Vézina and Pace (1994).
9Vézina and Platt (1988).
10Hansen et al. (1997). To ensure that we used maximal clearance and ingestion rates and because grazers are often believed to aggregate at regions of high prey density, the
maximum concentrations of prey and predator encountered on each cycle were utilized in setting maximum clearance and ingestion rates. Since epifluorescence microscopy
often significantly underestimates ciliate concentrations and all dinoflagellates (both pigmented and aplastidic) are likely phagotrophic, we included autotrophic dinoflagellate
biomass in the maximum microzooplankton biomass figures used for calculating clearance and ingestion rates. Biomass was converted to biovolume using conversion factors of
200 and 130 mg C cm−3 for heterotrophic nanoflagellates and microzooplankton, respectively (Menden-Deuer and Lessard, 2000) and a biomass to biovolume relationship
determined for mesozooplankton in the CCE (Lavaniegos and Ohman, 2007).
11Bender et al. (1999), Laws et al. (2000), Hashimoto et al. (2005).
12 Production rate based on a specific growth rate of 1.4 d−1 or two doublings per day (Calbet and Landry, 2004).
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