
Supplementary Appendix S2 – Nutrient uptake uncertainty derivations. 

All of these uncertainty equations have been implemented into Excel spreadsheets and Matlab scripts that are available as supplementary material with this 

manuscript. 

Supplementary Appendix S2.1 – Uncertainty equations for ρ0 

The uncertainty in nutrient uptake as calculated by Eq. 1 can be computed as: 
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where ∂ρ0/∂x is the partial derivative of ρ0 with respect to parameter x.  These partial derivatives are found by differentiating the equation: 
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which is found by substituting Eq. 2 into Eq. 1.  The partial derivatives are: 
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Where Is,ex = IS(0) – IP(0) 
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Note that for all reasonable combinations of parameters and uncertainties that I tested, the terms associated with Eq. A6 and A9 (uncertainty in the initial isotopic 

ratio of PON and uncertainty in the isotopic ratio of the ambient nutrient pool) can be neglected with less than a 1% decrease in σρ0, thus: 
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Supplementary Appendix S2.2 – Uncertainty equations for ρkan (nutrient uptake with regeneration) 

When nutrient regeneration within the incubation bottle is suspected, more accurate nutrient uptake estimates can be computed using Eqs. 4 and 5: 

𝜌𝑘𝑎𝑛 = 𝜌0
−1+(1−𝑏)1−𝑎

(𝑎−1)𝑏
               (3) 

𝑏 =
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[𝑁]𝑎𝑚𝑏+[𝑁]𝑠𝑝𝑘
                (4) 

The uncertainty in nutrient uptake calculated by Eq. 4 can therefore be calculated from:  
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The simplest way to differentiate these equations is to rewrite Eq. 4 as: 

𝜌𝑘𝑎𝑛 = 𝜌0 × 𝑔(𝜌0, 𝑎, 𝑏) × ℎ(𝜌0, 𝑎, 𝑏)             (B14) 

where: 

 𝑔(𝜌0, 𝑎, 𝑏) = (−1 + (1 − 𝑏)1−𝑎)             (B15)  

ℎ(𝜌0, 𝑎, 𝑏) =
1

(𝑎−1)𝑏
               (B16) 

Since ρ0 (and hence b) is independent of a (the ratio of nutrient regeneration to “true” uptake rates in the incubation bottle), ∂ρkan/∂a can be derived relatively 

simply by differentiating g and h with respect to a and applying the multiplication rule for derivatives to Eq. A14: 
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ρ0 (and b) are functions of all other variables.  Thus for any of these variables (temporarily denoted as x) Eq. A14 must be evaluated as: 
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for variables, P, Ispk, Iamb, IP(T), and IP(0), which only appear in b through ρ0.  For variables T, Namb, and Nspk, we need to use the equations:  
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We can thus derive: 
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(
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+

𝑇

[𝑁]𝑎𝑚𝑏+[𝑁]𝑠𝑝𝑘

𝜕𝜌0

𝜕[𝑁]𝑎𝑚𝑏
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𝜕𝑔

𝜕[𝑁]𝑠𝑝𝑘
=

𝑎−1

(1−𝑏)𝑎
(

−𝑏

[𝑁]𝑎𝑚𝑏+[𝑁]𝑠𝑝𝑘
+

𝑇

[𝑁]𝑎𝑚𝑏+[𝑁]𝑠𝑝𝑘

𝜕𝜌0

𝜕[𝑁]𝑠𝑝𝑘
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𝜕𝑔

𝜕𝐼𝑠𝑝𝑘
=
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=
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×
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=
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=
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+
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𝜕𝜌0
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𝜕ℎ

𝜕[𝑁]𝑠𝑝𝑘
=

−1

(𝑎−1)𝑏2
× (

−𝑏
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+

𝑇
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)         (B37) 

𝜕ℎ

𝜕𝐼𝑠𝑝𝑘
=

−1

(𝑎−1)𝑏2
×

𝑇

[𝑁]𝑎𝑚𝑏+[𝑁]𝑠𝑝𝑘

𝜕𝜌0

𝜕𝐼𝑠𝑝𝑘
            (B38) 

𝜕ℎ

𝜕𝐼𝑎𝑚𝑏
=

−1

(𝑎−1)𝑏2
×

𝑇

[𝑁]𝑎𝑚𝑏+[𝑁]𝑠𝑝𝑘

𝜕𝜌0

𝜕𝐼𝑎𝑚𝑏
            (B39) 

Eqs. A20 – A39 and A3 – A10 can thus be inserted into Eq. A15 and A16.  These equations can be combined with Eq. A18 and the terms can be inserted into Eq. 

A13 to quantify the uncertainty in nutrient uptake if isotope dilution is occurring.    

Supplementary Appendix S2.3 – Uncertainty equations for ρ0,is 

When the added nutrients from the isotopically-labeled spike are expected to have substantially modified nutrient uptake rates in the incubation bottle relative to 

nutrient uptake rates in situ, the in situ uptake rates can be computed from the incubation uptake rates and knowledge of the half-saturation rate of the ambient 

phytoplankton community (KS) using the equation:  



𝜌0,𝐼𝑆 = 𝜌0 (
[𝑁]𝑎𝑚𝑏

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏
) (

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏+𝐾𝑆

[𝑁]𝑎𝑚𝑏+𝐾𝑆
)           (5) 

Uncertainty in KS is not expected to be symmetric.  It is more realistic to surmise that if KS is equal to 10-1 μmol L-1, then KS might range from 10-2 to 100 μmol 

L-1.  I therefore replace KS in Eq. 6 with:  

𝐾𝑆 = 10𝐿10𝐾𝑆               (B40)  

where L10KS = log10(KS).  To compute the uncertainty in Eq. 6, I then use the equation: 

𝜎𝜌0,𝑖𝑠 = √(
𝜕𝜌0,𝑖𝑠

𝜕𝑃
)
2
𝜎𝑃

2 + (
𝜕𝜌0,𝑖𝑠

𝜕𝑇
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2
𝜎𝑇
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𝜕𝐼𝑃(0)
)
2
𝜎𝐼𝑃(0)

2 + (
𝜕𝜌0,𝑖𝑠

𝜕𝐼𝑃(𝑇)
)
2
𝜎𝐼𝑃(𝑇)

2 + (
𝜕𝜌0,𝑖𝑠

𝜕𝐼𝑠𝑝𝑘
)
2

𝜎𝐼𝑠𝑝𝑘
2 + (

𝜕𝜌0,𝑖𝑠

𝜕𝐼𝑎𝑚𝑏
)
2
𝜎𝐼𝑎𝑚𝑏

2 + (
𝜕𝜌0,𝑖𝑠

𝜕[𝑁]𝑠𝑝𝑘
)
2

𝜎[𝑁]𝑠𝑝𝑘
2 + (

𝜕𝜌0,𝑖𝑠

𝜕[𝑁]𝑎𝑚𝑏
)
2
𝜎[𝑁]𝑎𝑚𝑏

2 + (
𝜕𝜌0,𝑖𝑠

𝜕𝐿10𝐾𝑆
)
2
𝜎𝐿10𝐾𝑆

2 

                 (B41) 

To differentiate Eq. 6, I start by defining: 

𝑦([𝑁]𝑎𝑚𝑏, [𝑁]𝑠𝑝𝑘) =
[𝑁]𝑎𝑚𝑏

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏
            (B42) 

𝑧([𝑁]𝑎𝑚𝑏, [𝑁]𝑠𝑝𝑘, 𝐾𝑆) =
[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏+𝐾𝑆

[𝑁]𝑎𝑚𝑏+𝐾𝑆
           (B43) 

Since y and z are not functions of P, T, IP(0), IP(T), Iamb, and Ispk:  

𝜕𝜌0,𝑖𝑠

𝜃𝑃
= (

[𝑁]𝑎𝑚𝑏

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏
) (

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏+𝐾𝑆

[𝑁]𝑎𝑚𝑏+𝐾𝑆
)
𝜕𝜌0

𝜃𝑃
          (B44) 

𝜕𝜌0,𝑖𝑠

𝜃𝑇
= (

[𝑁]𝑎𝑚𝑏

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏
) (

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏+𝐾𝑆

[𝑁]𝑎𝑚𝑏+𝐾𝑆
)
𝜕𝜌0

𝜃𝑇
          (B45) 

𝜕𝜌0,𝑖𝑠

𝜃𝐼𝑃(0)
= (

[𝑁]𝑎𝑚𝑏

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏
) (

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏+𝐾𝑆

[𝑁]𝑎𝑚𝑏+𝐾𝑆
)

𝜕𝜌0

𝜃𝐼𝑃(0)
          (B46) 

𝜕𝜌0,𝑖𝑠

𝜃𝐼𝑃(𝑇)
= (

[𝑁]𝑎𝑚𝑏

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏
) (

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏+𝐾𝑆

[𝑁]𝑎𝑚𝑏+𝐾𝑆
)

𝜕𝜌0

𝜃𝐼𝑃(𝑇)
          (B47) 



𝜕𝜌0,𝑖𝑠

𝜃𝐼𝑠𝑝𝑘
= (

[𝑁]𝑎𝑚𝑏

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏
) (

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏+𝐾𝑆

[𝑁]𝑎𝑚𝑏+𝐾𝑆
)

𝜕𝜌0

𝜃𝐼𝑠𝑝𝑘
          (B48) 

𝜕𝜌0,𝑖𝑠

𝜃𝐼𝑎𝑚𝑏
= (

[𝑁]𝑎𝑚𝑏

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏
) (

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏+𝐾𝑆

[𝑁]𝑎𝑚𝑏+𝐾𝑆
)

𝜕𝜌0

𝜃𝐼𝑎𝑚𝑏
          (B49) 

Since, ρ0 and y([N]amb,[N]spk) are not functions of KS: 

𝜕𝜌0,𝑖𝑠

𝜕𝐿10𝐾𝑆
= 𝜌0 (

[𝑁]𝑎𝑚𝑏

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏
)

𝜕𝑧

𝜕𝐿10𝐾𝑆
            (B50) 

𝜕𝜌0,𝑖𝑠

𝜕𝐿10𝐾𝑆
= 𝜌0 (

[𝑁]𝑎𝑚𝑏

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏
) (

−ln⁡(10)×[𝑁]𝑠𝑝𝑘×𝐾𝑆

([𝑁]𝑎𝑚𝑏+𝐾𝑆)
2

)          (B51) 

The derivative of Eq. 6 with respect to Namb and Nspk can be found as: 

𝜕𝜌0,𝐼𝑆

𝜕𝑁𝑎𝑚𝑏
=

𝜕𝜌0

𝜕𝑁𝑎𝑚𝑏
× 𝑦 × 𝑧 +

𝜕𝑦

𝜕𝑁𝑎𝑚𝑏
× 𝜌0 × 𝑧 +

𝜕𝑧

𝜕𝑁𝑎𝑚𝑏
× 𝜌0 × 𝑦        (B52) 

𝜕𝜌0,𝐼𝑆

𝜕𝑁𝑠𝑝𝑘
=

𝜕𝜌0

𝜕𝑁𝑠𝑝𝑘
× 𝑦 × 𝑧 +

𝜕𝑦

𝜕𝑁𝑠𝑝𝑘
× 𝜌0 × 𝑧 +

𝜕𝑧

𝜕𝑁𝑠𝑝𝑘
× 𝜌0 × 𝑦         (B53) 

  

where: 

𝜕𝑦

𝜕𝑁𝑎𝑚𝑏
=

[𝑁]𝑠𝑝𝑘

([𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏)
2              (B54) 

𝜕𝑧

𝜕𝑁𝑎𝑚𝑏
=

−[𝑁]𝑠𝑝𝑘

(𝐾𝑆+[𝑁]𝑎𝑚𝑏)
2
              (B55) 

𝜕𝑦

𝜕𝑁𝑠𝑝𝑘
=

−[𝑁]𝑎𝑚𝑏

([𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏)
2              (B56) 

𝜕𝑧

𝜕𝑁𝑠𝑝𝑘
=

1

𝐾𝑆+[𝑁]𝑎𝑚𝑏
               (B57) 



 

Supplementary Appendix S2.4 – Uncertainty equations for ρkan,is 

When isotope dilution and modified nutrient uptake rates resulting from the added tracer spike are both suspected to be quantitatively important, nutrient uptake 

should be computed from Eq. 7: 

𝜌𝑘𝑎𝑛,𝐼𝑆 = 𝜌𝑘𝑎𝑛 (
[𝑁]𝑎𝑚𝑏

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏
) (

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏+𝐾𝑆

[𝑁]𝑎𝑚𝑏+𝐾𝑆
)          (6) 

Uncertainty in Eq. 7 should be quantified using the following equation: 

𝜎𝜌𝑘𝑎𝑛,𝑖𝑠 =

√(
𝜕𝜌𝑘𝑎𝑛,𝑖𝑠

𝜕𝑃
)
2

𝜎𝑃
2 + (

𝜕𝜌𝑘𝑎𝑛,𝑖𝑠

𝜕𝑇
)
2

𝜎𝑇
2 + (

𝜕𝜌𝑘𝑎𝑛,𝑖𝑠

𝜕𝐼𝑃(0)
)
2

𝜎𝐼𝑃(0)
2 + (

𝜕𝜌𝑘𝑎𝑛,𝑖𝑠

𝜕𝐼𝑃(𝑇)
)
2

𝜎𝐼𝑃(𝑇)
2 + (

𝜕𝜌𝑘𝑎𝑛,𝑖𝑠

𝜕𝐼𝑠𝑝𝑘
)
2

𝜎𝐼𝑠𝑝𝑘
2 + (

𝜕𝜌𝑘𝑎𝑛,𝑖𝑠

𝜕𝐼𝑎𝑚𝑏
)
2

𝜎𝐼𝑎𝑚𝑏
2 + (

𝜕𝜌𝑘𝑎𝑛,𝑖𝑠

𝜕[𝑁]𝑠𝑝𝑘
)
2

𝜎[𝑁]𝑠𝑝𝑘
2 + (

𝜕𝜌𝑘𝑎𝑛,𝑖𝑠

𝜕[𝑁]𝑎𝑚𝑏
)
2

𝜎[𝑁]𝑎𝑚𝑏
2 + (

𝜕𝜌𝑘𝑎𝑛,𝑖𝑠

𝜕𝑎
)
2

𝜎𝐾𝑆
2 + (

𝜕𝜌𝑘𝑎𝑛,𝑖𝑠
𝜕𝐿10𝐾𝑆

)
2

𝜎𝐿10𝐾𝑆
2  

                 (B58) 

Using derivations nearly identical to those for Eq. 6, it can be shown that: 

𝜕𝜌𝑘𝑎𝑛,𝑖𝑠

𝜕𝑃
= (

[𝑁]𝑎𝑚𝑏

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏
) (

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏+𝐾𝑆

[𝑁]𝑎𝑚𝑏+𝐾𝑆
)
𝜕𝜌𝑘𝑎𝑛

𝜕𝑃
          (B59) 

𝜕𝜌𝑘𝑎𝑛,𝑖𝑠

𝜕𝑇
= (

[𝑁]𝑎𝑚𝑏

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏
) (

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏+𝐾𝑆

[𝑁]𝑎𝑚𝑏+𝐾𝑆
)
𝜕𝜌𝑘𝑎𝑛

𝜕𝑇
          (B60) 

𝜕𝜌𝑘𝑎𝑛,𝑖𝑠

𝜕𝐼𝑃(0)
= (

[𝑁]𝑎𝑚𝑏

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏
) (

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏+𝐾𝑆

[𝑁]𝑎𝑚𝑏+𝐾𝑆
)
𝜕𝜌𝑘𝑎𝑛

𝜕𝐼𝑃(0)
          (B61) 

𝜕𝜌𝑘𝑎𝑛,𝑖𝑠

𝜕𝐼𝑃(𝑇)
= (

[𝑁]𝑎𝑚𝑏

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏
) (

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏+𝐾𝑆

[𝑁]𝑎𝑚𝑏+𝐾𝑆
)
𝜕𝜌𝑘𝑎𝑛

𝜕𝐼𝑃(𝑇)
          (B62) 

𝜕𝜌𝑘𝑎𝑛,𝑖𝑠

𝜕𝐼𝑠𝑝𝑘
= (

[𝑁]𝑎𝑚𝑏

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏
) (

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏+𝐾𝑆

[𝑁]𝑎𝑚𝑏+𝐾𝑆
)
𝜕𝜌𝑘𝑎𝑛

𝜕𝐼𝑠𝑝𝑘
          (B63) 



𝜕𝜌𝑘𝑎𝑛,𝑖𝑠

𝜕𝐼𝑎𝑚𝑏
= (

[𝑁]𝑎𝑚𝑏

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏
) (

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏+𝐾𝑆

[𝑁]𝑎𝑚𝑏+𝐾𝑆
)
𝜕𝜌𝑘𝑎𝑛

𝜕𝐼𝑎𝑚𝑏
          (B64)  

𝜕𝜌𝑘𝑎𝑛,𝑖𝑠

𝜕𝑎
= (

[𝑁]𝑎𝑚𝑏

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏
) (

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏+𝐾𝑆

[𝑁]𝑎𝑚𝑏+𝐾𝑆
)
𝜕𝜌𝑘𝑎𝑛

𝜕𝑎
          (B65) 

𝜕𝜌𝑘𝑎𝑛,𝑖𝑠

𝜕𝐿10𝐾𝑆
= 𝜌𝑘𝑎𝑛 (

[𝑁]𝑎𝑚𝑏

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏
) (

−ln⁡(10)×[𝑁]𝑠𝑝𝑘×𝐾𝑆

([𝑁]𝑎𝑚𝑏+𝐾𝑆)
2

)          (B66) 

𝜕𝜌𝑘𝑎𝑛,𝐼𝑆

𝜕𝑁𝑎𝑚𝑏
=

𝜕𝜌𝑘𝑎𝑛

𝜕𝑁𝑎𝑚𝑏
× 𝑦 × 𝑧 +

𝜕𝑦

𝜕𝑁𝑎𝑚𝑏
× 𝜌𝑘𝑎𝑛 × 𝑧 +

𝜕𝑧

𝜕𝑁𝑎𝑚𝑏
× 𝜌𝑘𝑎𝑛 × 𝑦       (B67)  

𝜕𝜌𝑘𝑎𝑛,𝐼𝑆

𝜕𝑁𝑠𝑝𝑘
=

𝜕𝜌𝑘𝑎𝑛

𝜕𝑁𝑠𝑝𝑘
× 𝑦 × 𝑧 +

𝜕𝑦

𝜕𝑁𝑠𝑝𝑘
× 𝜌𝑘𝑎𝑛 × 𝑧 +

𝜕𝑧

𝜕𝑁𝑠𝑝𝑘
× 𝜌𝑘𝑎𝑛 × 𝑦       (B68)  

and: 

𝜕𝑦

𝜕𝑁𝑎𝑚𝑏
=

[𝑁]𝑠𝑝𝑘

([𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏)
2              (B69) 

𝜕𝑧

𝜕𝑁𝑎𝑚𝑏
=

−[𝑁]𝑠𝑝𝑘

(𝐾𝑆+[𝑁]𝑎𝑚𝑏)
2
              (B70) 

𝜕𝑦

𝜕𝑁𝑠𝑝𝑘
=

−[𝑁]𝑎𝑚𝑏

([𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏)
2              (B71) 

𝜕𝑧

𝜕𝑁𝑠𝑝𝑘
=

1

𝐾𝑆+[𝑁]𝑎𝑚𝑏
               (B72) 

 

 

Supplementary Appendix S2.5 – Uncertainty equations for ρreg (nutrient uptake with regeneration and temporally-varying 

isotope dilution) 



When substantial nutrient regeneration is occurring, ρkan may not be appropriate because it assumes that all of the regenerated nutrients will have isotopic ratios 

equal to the isotopic ratio of natural POM (i.e., it assumes that labeled nitrogen taken up during the experiment cannot be recycled) and it also assumes that ΔIP(t) 

is constant in time.  If we relax these assumptions, but instead assume that the PON concentration and substrate concentration are constant in time (which will be 

true if nutrient regeneration is complete), we can quantify nutrient uptake as: 

𝜌𝑟𝑒𝑔 = (𝑙𝑛 (
𝐼𝑆(0)−𝑎×𝐼𝑃(0)

𝑃
) − 𝑙𝑛 (

𝐼𝑃(0)−𝐼𝑃(𝑡)

[𝑁𝑠𝑝𝑘+𝑁𝑎𝑚𝑏]
+

𝐼𝑆(0)−𝑎×𝐼𝑃(𝑡)

𝑃
)) (

𝑃×[𝑁𝑠𝑝𝑘+𝑁𝑎𝑚𝑏]

𝑃+𝑎×[𝑁𝑠𝑝𝑘+𝑁𝑎𝑚𝑏]
)
1

𝑇
     (13) 

Uncertainty in Eq. 13 should be quantified using the equation: 

𝜎𝜌𝑟𝑒𝑔 = √(
𝜕𝜌𝑟𝑒𝑔

𝜕𝑃
)
2

𝜎𝑃
2 + (

𝜕𝜌𝑟𝑒𝑔

𝜕𝑇
)
2

𝜎𝑇
2 + (

𝜕𝜌𝑟𝑒𝑔

𝜕𝐼𝑃(0)
)
2

𝜎𝐼𝑃(0)
2 + (

𝜕𝜌𝑟𝑒𝑔

𝜕𝐼𝑃(𝑇)
)
2

𝜎𝐼𝑃(𝑇)
2 + (

𝜕𝜌𝑟𝑒𝑔

𝜕𝐼𝑠𝑝𝑘
)
2

𝜎𝐼𝑠𝑝𝑘
2 + (

𝜕𝜌𝑟𝑒𝑔

𝜕𝐼𝑎𝑚𝑏
)
2

𝜎𝐼𝑎𝑚𝑏
2 + (

𝜕𝜌𝑟𝑒𝑔

𝜕[𝑁]𝑠𝑝𝑘
)
2

𝜎[𝑁]𝑠𝑝𝑘
2 + (

𝜕𝜌𝑟𝑒𝑔

𝜕[𝑁]𝑎𝑚𝑏
)
2

𝜎[𝑁]𝑎𝑚𝑏
2 + (

𝜕𝜌𝑟𝑒𝑔

𝜕𝑎
)
2

𝜎𝑎
2  (B73) 

where: 

𝜕𝜌𝑟𝑒𝑔

𝜕𝑃
= (

1

(
𝐼𝑃(0)−𝐼𝑃(𝑡)

[𝑁𝑠𝑝𝑘+𝑁𝑎𝑚𝑏]
)𝑃+(𝐼𝑆(0)−𝑎×𝐼𝑃(𝑡))

)(
𝐼𝑃(𝑡)−𝐼𝑃(0)

𝑃+𝑎×[𝑁𝑠𝑝𝑘+𝑁𝑎𝑚𝑏]
)
1

𝑇
+

𝜌𝑟𝑒𝑔

𝑃
(

[𝑁𝑠𝑝𝑘+𝑁𝑎𝑚𝑏]

𝑃+𝑎[𝑁𝑠𝑝𝑘+𝑁𝑎𝑚𝑏]
)    (B74) 

𝜕𝜌𝑟𝑒𝑔

𝜕𝑇
= (

−1

𝑇
) 𝜌𝑟𝑒𝑔               (B75) 

𝜕𝜌𝑟𝑒𝑔

𝜕𝐼𝑃(0)
= (

𝑎

𝑎×𝐼𝑃(0)−𝐼𝑆(0)
−

𝑃

(𝐼𝑃(0)−𝐼𝑃(𝑡))×𝑃+([𝑁𝑠𝑝𝑘+𝑁𝑎𝑚𝑏])(𝐼𝑆(0)−𝑎×𝐼𝑃(𝑡))
) (

𝑃×[𝑁𝑠𝑝𝑘+𝑁𝑎𝑚𝑏]

𝑃+𝑎×[𝑁𝑠𝑝𝑘+𝑁𝑎𝑚𝑏]
)
1

𝑇
    (B76) 

𝜕𝜌𝑟𝑒𝑔

𝜕𝐼𝑃(𝑇)
=

−𝑃×[𝑁𝑠𝑝𝑘+𝑁𝑎𝑚𝑏]

(𝑃+𝑎[𝑁𝑠𝑝𝑘+𝑁𝑎𝑚𝑏])𝐼𝑃(𝑡)−[𝑁𝑠𝑝𝑘+𝑁𝑎𝑚𝑏]𝐼𝑆(0)−𝐼𝑃(0)𝑃
×

1

𝑇
  

𝜕𝜌𝑟𝑒𝑔

𝜕𝐼𝑠𝑝𝑘
= (

1

𝐼𝑆(0)−𝑎×𝐼𝑃(0)
−

[𝑁𝑠𝑝𝑘+𝑁𝑎𝑚𝑏]

(𝐼𝑆(0)−𝑎×𝐼𝑃(𝑡))([𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏)+(𝐼𝑃(0)−𝐼𝑃(𝑡))𝑃
) (

𝑃×[𝑁]𝑠𝑝𝑘

𝑃+𝑎×[𝑁𝑠𝑝𝑘+𝑁𝑎𝑚𝑏]
)
1

𝑇
    (B77) 

𝜕𝜌𝑟𝑒𝑔

𝜕𝐼𝑎𝑚𝑏
= (

1

𝐼𝑆(0)−𝑎×𝐼𝑃(0)
−

[𝑁𝑠𝑝𝑘+𝑁𝑎𝑚𝑏]

(𝐼𝑆(0)−𝑎×𝐼𝑃(𝑡))[𝑁𝑠𝑝𝑘+𝑁𝑎𝑚𝑏]+𝑃(𝐼𝑃(0)−𝐼𝑃(𝑡))
) (

𝑃×[𝑁]𝑎𝑚𝑏

𝑃+𝑎×[𝑁𝑠𝑝𝑘+𝑁𝑎𝑚𝑏]
)
1

𝑇
    (B78) 

For calculating derivatives with respect to Nspk and Namb, I define: 



𝑓 = 𝑙𝑛 (
𝐼𝑆(0)−𝑎×𝐼𝑃(0)

𝑃
)               (B79) 

𝑔 = 𝑙𝑛 (
𝐼𝑃(0)−𝐼𝑃(𝑡)

[𝑁𝑠𝑝𝑘+𝑁𝑎𝑚𝑏]
+

𝐼𝑆(0)−𝑎×𝐼𝑃(𝑡)

𝑃
)            (B80) 

ℎ = (
𝑃×[𝑁𝑠𝑝𝑘+𝑁𝑎𝑚𝑏]

𝑃+𝑎×[𝑁𝑠𝑝𝑘+𝑁𝑎𝑚𝑏]
)              (B81) 

Therefore: 

𝜌𝑟𝑒𝑔 = (𝑓 − 𝑔)ℎ
1

𝑇
               (B82) 

𝜕𝜌𝑟𝑒𝑔

𝜕𝑁𝑠𝑝𝑘
= (

𝜕𝑓

𝜕𝑁𝑠𝑝𝑘
−

𝜕𝑔

𝜕𝑁𝑠𝑝𝑘
) ℎ

1

𝑇
+ (𝑓 − 𝑔)

1

𝑇

𝜕ℎ

𝜕𝑁𝑠𝑝𝑘
          (B83) 

𝜕𝑓

𝜕[𝑁]𝑠𝑝𝑘
=

(𝐼𝑎𝑚𝑏−𝐼𝑠𝑝𝑘)[𝑁]𝑎𝑚𝑏

([𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏)((𝑎𝐼𝑃(0)−𝐼𝑠𝑝𝑘)[𝑁]𝑠𝑝𝑘+(𝑎𝐼𝑃(0)−𝐼𝑎𝑚𝑏)[𝑁]𝑎𝑚𝑏)
        (B84) 

𝜕𝑔

𝜕[𝑁]𝑠𝑝𝑘
= −

𝑃𝐼𝑃(𝑡)+(𝐼𝑠𝑝𝑘−𝐼𝑎𝑚𝑏)[𝑁]𝑎𝑚𝑏−𝑃𝐼𝑃(0)

([𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏)((𝑎𝐼𝑃(𝑡)−𝐼𝑠𝑝𝑘)[𝑁]𝑠𝑝𝑘+(𝑎[𝑁]𝑎𝑚𝑏+𝑃)𝐼𝑃(𝑡)−𝐼𝑎𝑚𝑏[𝑁]𝑎𝑚𝑏−𝑃𝐼𝑃(0))
     (B85)  

𝜕ℎ

𝜕[𝑁]𝑠𝑝𝑘
=

𝑃2

(𝑎[𝑁]𝑠𝑝𝑘+𝑎[𝑁]𝑎𝑚𝑏+𝑃)
2             (B86) 

𝜕𝜌𝑟𝑒𝑔

𝜕𝑁𝑎𝑚𝑏
= (

𝜕𝑓

𝜕𝑁𝑎𝑚𝑏
−

𝜕𝑔

𝜕𝑁𝑎𝑚𝑏
) ℎ

1

𝑇
+ (𝑓 − 𝑔)

1

𝑇

𝜕ℎ

𝜕𝑁𝑎𝑚𝑏
          (B87) 

𝜕𝑓

𝜕[𝑁]𝑎𝑚𝑏
=

−(𝐼𝑎𝑚𝑏−𝐼𝑠𝑝𝑘)[𝑁]𝑠𝑝𝑘

([𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏)((𝑎𝐼𝑃(0)−𝐼𝑠𝑝𝑘)[𝑁]𝑠𝑝𝑘+(𝑎𝐼𝑃(0)−𝐼𝑎𝑚𝑏)[𝑁]𝑎𝑚𝑏)
        (B88) 

𝜕𝑔

𝜕[𝑁]𝑎𝑚𝑏
= −

𝑃×𝐼𝑃(𝑡)+(𝐼𝑎𝑚𝑏−𝐼𝑠𝑝𝑘)[𝑁]𝑠𝑝𝑘−𝑃×𝐼𝑃(0)

([𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏)((𝑎×𝐼𝑃(𝑡)−𝐼𝑎𝑚𝑏)[𝑁]𝑎𝑚𝑏+(𝑎[𝑁]𝑠𝑝𝑘+𝑃)𝐼𝑃(𝑡)−𝐼𝑠𝑝𝑘[𝑁]𝑠𝑝𝑘−𝑃×𝐼𝑃(0))
     (B89) 



𝜕ℎ

𝜕[𝑁]𝑎𝑚𝑏
=

𝑃2

(𝑎[𝑁]𝑠𝑝𝑘+𝑎[𝑁]𝑎𝑚𝑏+𝑃)
2             (B90) 

 

 

 

𝜕𝜌𝑟𝑒𝑔

𝜕𝑎
= (

𝐼𝑃(0)

𝑎×𝐼𝑃(0)−𝐼𝑆(0)
−

𝐼𝑃(𝑇)×[𝑁𝑠𝑝𝑘+𝑁𝑎𝑚𝑏]

(𝑎×𝐼𝑃(𝑇)−𝐼𝑆(0))[𝑁𝑠𝑝𝑘+𝑁𝑎𝑚𝑏]−𝑃(𝐼𝑃(0)−𝐼𝑃(𝑡))
) (

𝑃×[𝑁𝑠𝑝𝑘+𝑁𝑎𝑚𝑏]

𝑃+𝑎×[𝑁𝑠𝑝𝑘+𝑁𝑎𝑚𝑏]
)
1

𝑇
+ (𝑙𝑛 (

𝐼𝑆(0)−𝑎×𝐼𝑃(0)

𝑃
) −

𝑙𝑛 (
𝐼𝑃(0)−𝐼𝑃(𝑡)

[𝑁𝑠𝑝𝑘+𝑁𝑎𝑚𝑏]
+

𝐼𝑆(0)−𝑎×𝐼𝑃(𝑡)

𝑃
))

−𝑃([𝑁𝑠𝑝𝑘+𝑁𝑎𝑚𝑏])
2

(([𝑁𝑠𝑝𝑘+𝑁𝑎𝑚𝑏])𝑎+𝑃)
2

1

𝑇
         (B91) 

 

 

Supplementary Appendix S2.6 – Uncertainty equations for ρreg,is 

When substantial isotope regeneration and modified nutrient uptake rates resulting from the added tracer spike are both suspected to be quantitatively important, 

nutrient uptake should be computed from Eq. 14: 

𝜌𝑟𝑒𝑔,𝐼𝑆 = 𝜌𝑟𝑒𝑔 (
[𝑁]𝑎𝑚𝑏

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏
) (

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏+𝐾𝑆

[𝑁]𝑎𝑚𝑏+𝐾𝑆
)          (14) 

Uncertainty in Eq. 14 should be quantified using the following equation: 

𝜎𝜌𝑟𝑒𝑔,𝑖𝑠 =

√(
𝜕𝜌𝑟𝑒𝑔,𝑖𝑠

𝜕𝑃
)
2

𝜎𝑃
2 + (

𝜕𝜌𝑟𝑒𝑔,𝑖𝑠

𝜕𝑇
)
2

𝜎𝑇
2 + (

𝜕𝜌𝑟𝑒𝑔,𝑖𝑠

𝜕𝐼𝑃(0)
)
2

𝜎𝐼𝑃(0)
2 + (

𝜕𝜌𝑟𝑒𝑔,𝑖𝑠

𝜕𝐼𝑃(𝑇)
)
2

𝜎𝐼𝑃(𝑇)
2 + (

𝜕𝜌𝑟𝑒𝑔,𝑖𝑠

𝜕𝐼𝑠𝑝𝑘
)
2

𝜎𝐼𝑠𝑝𝑘
2 + (

𝜕𝜌𝑟𝑒𝑔,𝑖𝑠

𝜕𝐼𝑎𝑚𝑏
)
2

𝜎𝐼𝑎𝑚𝑏
2 + (

𝜕𝜌𝑟𝑒𝑔,𝑖𝑠

𝜕[𝑁]𝑠𝑝𝑘
)
2

𝜎[𝑁]𝑠𝑝𝑘
2 + (

𝜕𝜌𝑟𝑒𝑔,𝑖𝑠

𝜕[𝑁]𝑎𝑚𝑏
)
2

𝜎[𝑁]𝑎𝑚𝑏
2 + (

𝜕𝜌𝑟𝑒𝑔,𝑖𝑠

𝜕𝑎
)
2

𝜎𝐾𝑆
2 + (

𝜕𝜌𝑟𝑒𝑔,𝑖𝑠

𝜕𝐿10𝐾𝑆
)
2

𝜎𝐿10𝐾𝑆
2  

                 (B92) 

Using derivations nearly identical to those for Eq. 6, it can be shown that: 



𝜕𝜌𝑟𝑒𝑔,𝑖𝑠

𝜕𝑃
= (

[𝑁]𝑎𝑚𝑏

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏
) (

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏+𝐾𝑆

[𝑁]𝑎𝑚𝑏+𝐾𝑆
)
𝜕𝜌𝑟𝑒𝑔

𝜕𝑃
          (B93) 

𝜕𝜌𝑟𝑒𝑔,𝑖𝑠

𝜕𝑇
= (

[𝑁]𝑎𝑚𝑏

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏
) (

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏+𝐾𝑆

[𝑁]𝑎𝑚𝑏+𝐾𝑆
)
𝜕𝜌𝑟𝑒𝑔

𝜕𝑇
          (B94) 

𝜕𝜌𝑟𝑒𝑔,𝑖𝑠

𝜕𝐼𝑃(0)
= (

[𝑁]𝑎𝑚𝑏

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏
) (

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏+𝐾𝑆

[𝑁]𝑎𝑚𝑏+𝐾𝑆
)
𝜕𝜌𝑟𝑒𝑔

𝜕𝐼𝑃(0)
          (B95) 

𝜕𝜌𝑟𝑒𝑔,𝑖𝑠

𝜕𝐼𝑃(𝑇)
= (

[𝑁]𝑎𝑚𝑏

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏
) (

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏+𝐾𝑆

[𝑁]𝑎𝑚𝑏+𝐾𝑆
)
𝜕𝜌𝑟𝑒𝑔

𝜕𝐼𝑃(𝑇)
          (B96) 

𝜕𝜌𝑟𝑒𝑔,𝑖𝑠

𝜕𝐼𝑠𝑝𝑘
= (

[𝑁]𝑎𝑚𝑏

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏
) (

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏+𝐾𝑆

[𝑁]𝑎𝑚𝑏+𝐾𝑆
)
𝜕𝜌𝑟𝑒𝑔

𝜕𝐼𝑠𝑝𝑘
          (B97) 

𝜕𝜌𝑟𝑒𝑔,𝑖𝑠

𝜕𝐼𝑎𝑚𝑏
= (

[𝑁]𝑎𝑚𝑏

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏
) (

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏+𝐾𝑆

[𝑁]𝑎𝑚𝑏+𝐾𝑆
)
𝜕𝜌𝑟𝑒𝑔

𝜕𝐼𝑎𝑚𝑏
          (B98)  

𝜕𝜌𝑟𝑒𝑔,𝑖𝑠

𝜕𝑎
= (

[𝑁]𝑎𝑚𝑏

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏
) (

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏+𝐾𝑆

[𝑁]𝑎𝑚𝑏+𝐾𝑆
)
𝜕𝜌𝑟𝑒𝑔

𝜕𝑎
          (B99) 

𝜕𝜌𝑟𝑒𝑔,𝑖𝑠

𝜕𝐿10𝐾𝑆
= 𝜌𝑟𝑒𝑔 (

[𝑁]𝑎𝑚𝑏

[𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏
) (

−ln⁡(10)×[𝑁]𝑠𝑝𝑘×𝐾𝑆

([𝑁]𝑎𝑚𝑏+𝐾𝑆)
2

)          (B100) 

𝜕𝜌𝑟𝑒𝑔,𝐼𝑆

𝜕𝑁𝑎𝑚𝑏
=

𝜕𝜌𝑟𝑒𝑔

𝜕𝑁𝑎𝑚𝑏
× 𝑦 × 𝑧 +

𝜕𝑦

𝜕𝑁𝑎𝑚𝑏
× 𝜌𝑟𝑒𝑔 × 𝑧 +

𝜕𝑧

𝜕𝑁𝑎𝑚𝑏
× 𝜌𝑟𝑒𝑔 × 𝑦       (B101)  

𝜕𝜌𝑟𝑒𝑔,𝐼𝑆

𝜕𝑁𝑠𝑝𝑘
=

𝜕𝜌𝑟𝑒𝑔

𝜕𝑁𝑠𝑝𝑘
× 𝑦 × 𝑧 +

𝜕𝑦

𝜕𝑁𝑠𝑝𝑘
× 𝜌𝑟𝑒𝑔 × 𝑧 +

𝜕𝑧

𝜕𝑁𝑠𝑝𝑘
× 𝜌𝑟𝑒𝑔 × 𝑦        (B102)  

and: 

𝜕𝑦

𝜕𝑁𝑎𝑚𝑏
=

[𝑁]𝑠𝑝𝑘

([𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏)
2              (B103) 



𝜕𝑧

𝜕𝑁𝑎𝑚𝑏
=

−[𝑁]𝑠𝑝𝑘

(𝐾𝑆+[𝑁]𝑎𝑚𝑏)
2
              (B104) 

𝜕𝑦

𝜕𝑁𝑠𝑝𝑘
=

−[𝑁]𝑎𝑚𝑏

([𝑁]𝑠𝑝𝑘+[𝑁]𝑎𝑚𝑏)
2              (B105) 

𝜕𝑧

𝜕𝑁𝑠𝑝𝑘
=

1

𝐾𝑆+[𝑁]𝑎𝑚𝑏
               (B106) 

 

 

Supplementary Appendix S2.7 – Propagation of uncertainty with paired measurements 

Most frequently scientists compute uncertainty in ρ0 by conducting incubations in duplicate or triplicate and then computing the standard deviation (SD) or 

standard error of the mean (SE = SD/sqrt(Ninc)) of the paired measurements where Ninc is the number of incubations conducted.  They then use this standard 

deviation as the uncertainty in the measurements.  This approach is inaccurate, however, if the error in any of the input arguments (T, P, IP(T), IP(0), Ispk, Iamb, 

[N]spk, [N]amb is expected to be correlated.  Correlated errors are highly likely to occur in situations where a single value is used for each incubation.  For instance, 

it is rare for the ambient nutrient concentration ([N]amb) to be measured independently in each incubation bottle.  Instead, it is commonly measured on a separate 

sample drawn from the same environmental sampling bottle.  If this single measurement of [N]amb is applied to each incubation, the resultant nutrient uptake rates 

(ρ0) computed from Eq. 1 (or Eq. A2) should not be considered independent.  By contrast, in a typical set of triplicate uptake incubations, P an d IP(T) are 

measured at the end in each experimental bottle.  These variables can thus be considered independent.  To accurately quantify uncertainty in such incubations 

when SD or SE are used instead of the uncertainty in each individual parameter, I begin by defining X1, …, XNmeas as the variables that are measured 

independently for each incubation and Y1, …, YNassume as the variables that are not measured independently for each incubation bottle, where Nmeas is the number 

of variables independently measured in each incubation bottle and Nassume is the number of variables that are assumed to be identical in all incubation bottles.  

The goal of most incubation experiments is to estimate the true nutrient uptake rate in situ (ρ).  However, in practice, we instead find the arithmetic mean of 

nutrient uptake in several incubation bottles, using Eqs. 1, 4, 6, or 7.  For instance: 

𝜌0̅̅ ̅ =
1

𝑁𝑖𝑛𝑐
∑ 𝜌0,𝑖
𝑁𝑖𝑛𝑐
𝑖=1                (B107) 

where Ninc is the number of incubations conducted and ρ0,i is the computed uptake rate in the ith incubation.  Since ρ0,i is a function of X1,i, …XNmease,i and Y1, …, 

YNmeas, it follows that 𝜌0̅̅ ̅ must also be a function of X and Y.  However, when constant values are assumed for Y1, …, YNmeas, the sample standard deviation (SD) 

and sample standard error of the mean (SE = SD/sqrt(Ninc)) will depend on σX, but not σY.  Using constant values for Y for calculating ρ0,i is equivalent to 

assuming σY = 0.  I will thus define: 



𝜎′𝜌0̅̅̅̅ =
1

𝑁𝑖𝑛𝑐

√∑ ∑ (
𝜕𝜌0,𝑖

𝜕𝑋𝑖,𝑘
)
2

𝑁𝑚𝑒𝑎𝑠

𝑘
𝑁𝑖𝑛𝑐

𝑖 𝜎𝑋𝑖,𝑘
2           (B108) 

which is the uncertainty in Eq. A73 if all variables Y have zero uncertainty and measurement error in all parameters X is assumed to be uncorrelated.  Since these 

are the same assumptions inherent to calculating the sample standard deviation (SD) or sample standard error of the mean (SE), it follows that SE = 𝜎′𝜌0̅̅ ̅̅ .  

However, since both SE and 𝜎′𝜌0̅̅ ̅̅  neglect uncertainty in Y, it is clear that they will be biased estimators for the true uncertainty in ρ.  Instead, the true uncertainty 

in ρ can be calculated as:  

𝜎𝜌0̅̅̅̅ =
1

𝑁𝑖𝑛𝑐

√∑ ∑ (
𝜕𝜌0,𝑖

𝜕𝑋𝑖,𝑘
)
2

𝑁𝑚𝑒𝑎𝑠
𝑘

𝑁𝑖𝑛𝑐

𝑖 𝜎𝑋𝑖,𝑘
2 + ∑ ∑ (

𝜕𝜌0,𝑖

𝜕𝑌𝑖,𝑘
)
2

𝑁𝑚𝑒𝑎𝑠
𝑘

𝑁𝑖𝑛𝑐

𝑖 𝜎𝑌𝑖,𝑘
2 + ∑ ∑ ∑ (

𝜕𝜌0,𝑖

𝜕𝑌𝑖,𝑘
) (

𝜕𝜌0,𝑗

𝜕𝑌𝑗,𝑘
)

𝑁𝑚𝑒𝑎𝑠
𝑘=1

𝑁𝑖𝑛𝑐

𝑗(𝑗≠1)
𝑁𝑖𝑛𝑐

𝑖 𝜎𝑌𝑖,𝑘,𝑌𝑗,𝑘  (B109) 

Since Yi,k = Yj,k, the covariance (𝜎𝑌𝑖,𝑘,𝑌𝑗,𝑘) is equal to 𝜎𝑌𝑖,𝑘
2.  If I make the simplifying assumption that:  

(
𝜕𝜌0,𝑖

𝜕𝑌𝑖,𝑘
) = (

𝜕𝜌0,𝑗

𝜕𝑌𝑗,𝑘
)               (B110) 

I can simplify Eq. A75 to: 

𝜎𝜌0̅̅̅̅ ≈
1

𝑁𝑖𝑛𝑐

√∑ ∑ (
𝜕𝜌0,𝑖

𝜕𝑋𝑖,𝑘
)
2

𝑁𝑚𝑒𝑎𝑠

𝑘
𝑁𝑖𝑛𝑐

𝑖 𝜎𝑋𝑖,𝑘
2 + 𝑁𝑖𝑛𝑐

2∑ (
𝜕𝜌0,𝑖

𝜕𝑌𝑖,𝑘
)
2

𝜎𝑌𝑖,𝑘
2𝑁𝑚𝑒𝑎𝑠

𝑘        (B111) 

and if I substitute in Eq. A74, remembering that SE = 𝜎′𝜌0̅̅ ̅̅ , I get an estimate for the uncertainty resulting from combining the measured standard error with 

uncertainty in the variables Y1,…YNassume that were applied to all incubations: 



𝜎𝜌0̅̅̅̅ ≈ √𝑆𝐸2 + ∑ (
𝜕𝜌0,𝑖

𝜕𝑌𝑖,𝑘
)
2

𝜎𝑌𝑖,𝑘
2𝑁𝑚𝑒𝑎𝑠

𝑘             (B112) 

I will assume that uncertainty in [N]spk, arises from variability from one spike to another, rather than from inaccurate calibration of the pipet that affects all 

spikes.  In such a case [N]spk is also independent across the different incubations (note that although in reality errors in [N]spk should be considered weakly 

correlated, σNspk is only a minor contributor to σρ0, so this assumption introduces little error to the final estimate).  IP(0), Ispk, and Iamb are usually assumed to take 

the same value in all incubations and hence cannot be considered independent.  However, σIP(0), σIspk, and σIamb are all minor contributors to σρ0, so I will neglect 

them here.  That leaves [N]amb and T as the correlated variables most likely to impact our estimates of in situ nutrient uptake measured using duplicate or 

triplicate incubations.  Although it might seem that T should be uncorrelated between experiments (since incubation start time, filtration start time, and filtration 

end time can be measured independently) the greatest uncertainty in T actually arises from uncertainty in what time should be used for the termination of the 

incubation (e.g., beginning of filtration, midpoint of filtration, or end of filtration).  In the example I have illustrated here, uncertainty in ρ0 can be calculated as:  

𝜎𝜌0̅̅̅̅ ≈ √𝑆𝐸𝜌0
2 + (

𝜕𝜌0

𝜕𝑇
)
2
𝜎𝑇

2 + (
𝜕𝜌0

𝜕𝑁𝑎𝑚𝑏
)
2
𝜎𝑁𝑎𝑚𝑏

2          (B113) 

Where SEρ0 is the sample standard error calculated from multiple replicate incubations using Eq. 1 and a constant value for Namb and T in all incubations and 

∂ρ0/∂T and ∂ρ0/∂Namb are given by Eqs. B4 and B8.  Using the same arguments as advanced above, it is easy to show that when correcting for isotope dilution or 

increased uptake in the incubation bottle relative to in situ using Eqs. 3, 13, 5, 6, or 14 respectively, uncertainty can be calculated as: 

𝜎𝜌𝑘𝑎𝑛̅̅ ̅̅ ̅̅ ̅ ≈ √𝑆𝐸𝜌𝑘𝑎𝑛
2 + (

𝜕𝜌𝑘𝑎𝑛

𝜕𝑇
)
2
𝜎𝑇

2 + (
𝜕𝜌𝑘𝑎𝑛

𝜕𝑁𝑎𝑚𝑏
)
2
𝜎𝑁𝑎𝑚𝑏

2 + (
𝜕𝜌𝑘𝑎𝑛

𝜕𝑎
)
2
𝜎𝑎

2       (B114)  

𝜎𝜌𝑟𝑒𝑔̅̅ ̅̅ ̅̅ ̅ ≈ √𝑆𝐸𝜌𝑟𝑒𝑔
2 + (

𝜕𝜌𝑟𝑒𝑔

𝜕𝑇
)
2

𝜎𝑇
2 + (

𝜕𝜌𝑟𝑒𝑔

𝜕𝑁𝑎𝑚𝑏
)
2

𝜎𝑁𝑎𝑚𝑏
2 + (

𝜕𝜌𝑟𝑒𝑔

𝜕𝑎
)
2

𝜎𝑎
2       (B115) 

𝜎𝜌0,𝑖𝑠̅̅ ̅̅ ̅̅ ≈ √𝑆𝐸𝜌0,𝑖𝑠
2 + (

𝜕𝜌0,𝑖𝑠

𝜕𝑇
)
2
𝜎𝑇

2 + (
𝜕𝜌0,𝑖𝑠

𝜕𝑁𝑎𝑚𝑏
)
2
𝜎𝑁𝑎𝑚𝑏

2 + (
𝜕𝜌0,𝑖𝑠

𝜕𝐿10𝐾𝑆
)
2
𝜎𝐿10𝐾𝑆

2      (B116) 

𝜎𝜌𝑘𝑎𝑛,𝑖𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ≈ √𝑆𝐸𝜌𝑘𝑎𝑛,𝑖𝑠
2 + (

𝜕𝜌𝑘𝑎𝑛,𝑖𝑠

𝜕𝑇
)
2
𝜎𝑇

2 + (
𝜕𝜌𝑘𝑎𝑛,𝑖𝑠

𝜕𝑁𝑎𝑚𝑏
)
2
𝜎𝑁𝑎𝑚𝑏

2 + (
𝜕𝜌𝑘𝑎𝑛,𝑖𝑠

𝜕𝑎
)
2
𝜎𝑎

2 + (
𝜕𝜌𝑘𝑎𝑛,𝑖𝑠

𝜕𝐿10𝐾𝑆
)
2
𝜎𝐿10𝐾𝑆

2  (B117)  



𝜎𝜌𝑟𝑒𝑔,𝑖𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅ ≈ √𝑆𝐸𝜌𝑟𝑒𝑔,𝑖𝑠
2 + (

𝜕𝜌𝑟𝑒𝑔,𝑖𝑠

𝜕𝑇
)
2

𝜎𝑇
2 + (

𝜕𝜌𝑟𝑒𝑔,𝑖𝑠

𝜕𝑁𝑎𝑚𝑏
)
2

𝜎𝑁𝑎𝑚𝑏
2 + (

𝜕𝜌𝑟𝑒𝑔,𝑖𝑠

𝜕𝑎
)
2

𝜎𝑎
2 + (

𝜕𝜌𝑟𝑒𝑔,𝑖𝑠

𝜕𝐿10𝐾𝑆
)
2

𝜎𝐿10𝐾𝑆
2  (B118) 

where ∂ρkan/∂T, ∂ρkan/∂Namb, and  ∂ρkan/∂a can be calculated from Eqs. B17, B19, B20, B21, B28, and B36; ∂ρreg/∂T, ∂ρreg/∂Namb, and  ∂ρreg/∂a can be calculated 

from Eqs. B75, B87, B91;  ∂ρ0,is/∂T, ∂ρ0,is/∂Namb, and ∂ρ0,is/∂L10KS  can be calculated from Eqs. B45, B51, and B52; ∂ρkan,is/∂T, ∂ρkan,is/∂Namb, ∂ρkan,is/∂L10KS , and  

∂ρkan,is/∂a can be calculated from Eqs. B60, B65, B66, and B67; and ∂ρreg,is/∂T, ∂ρreg,is/∂Namb, ∂ρreg,is/∂L10KS , and  ∂ρreg,is/∂a can be calculated from Eqs. B94, 

B101, B100, and B99. 


