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1. Introduction

The biological carbon pump (BCP), a mechanism whereby atmo-
spheric CO2 is fixed into organic matter by marine phytoplankton and
transported into the deep ocean, is responsible for the removal of 5 – 13
Pg C yr−1 from the atmosphere (Henson et al., 2011; Laws et al., 2011,
2000). Future changes in the BCP could thus cause a substantial per-
turbation to the global carbon cycle. Unfortunately, our ability to pre-
dict such changes is hampered by the large uncertainty in the current
magnitude of the BCP and by the dearth of studies that have assessed
interannual variability in particle flux out of the euphotic zone. While
important contributions have been made by time series studies in the
oligotrophic North Pacific and Sargasso Sea (Church et al., 2013; Lomas
et al., 2013), there remains a critical need for research focusing on
process-oriented quantification of interannual variability in the BCP,
especially in dynamic coastal regions.

The BCP consists of several distinct processes including sinking,
vertical mixing and subduction of organic matter, and active transport
by vertically-migrating organisms (Ducklow et al., 2001; Steinberg and
Landry, 2017). For this study, only gravitationally mediated flux of
particulate organic carbon (POC) is considered (hereafter termed “ex-
port”). Globally, both net primary production (NPP) and export are
contingent on a variety of chemical, physical and biological processes
(Ducklow et al., 2001; Turner, 2015) such as nutrient availability
(Cermeño et al., 2008), heterotrophic bacterial abundance (del Giorgio
and Duarte, 2002), and water column stability (Sarmiento et al., 1998).
Uncertainties in the global budget thus stem from complex and region-
specific relationships between net primary productivity (NPP) and ex-
port production. Satellite observations provide a unique platform from
which synoptic, global time series can be calculated given the use of
suitable models. However, while current export models have the ability
to estimate broad spatial patterns in export, they struggle to predict
intra-regional variability in export efficiency (Stukel et al., 2015). Re-
mote sensing models for export production typically encapsulate either

specific mechanisms (e.g., aggregation of microphytoplankton, meso-
zooplankton grazing, or mineral ballasting; Armstrong et al., 2002,
Siegel et al., 2014) or generalized empirical relationships (e.g., Dunne
et al., 2005; Laws et al., 2011). In comparison, models of NPP have
enjoyed success in predicting regional patterns (Kahru et al., 2009;
Jacox et al., 2015) thanks to both strong coupling between NPP and
other ecosystem variables and to an extensive in situ dataset to which to
compare the models. Improved regional models are clearly a pre-
requisite for reducing the uncertainty within global budgets and al-
lowing for more accurate predictions of the marine carbon cycle under
different climate change scenarios.

The California Current Ecosystem (CCE) is an eastern boundary
current ecosystem with both coastal boundary and wind-stress curl
upwelling, and substantial offshore advection influenced by Ekman
transport. Spatial gradients in export efficiency (defined herein as the
ratio of export to NPP) in the CCE (moderate in coastal regions and
higher offshore; Stukel et al., 2011, 2013) do not agree with the pat-
terns predicted by some common export models which assume negli-
gible horizontal advection or strong local coupling between NPP and
export production (e.g. Dunne et al., 2005). The combination of large
horizontal gradients in POC, Chl-a, and biomass (Goericke and Ohman,
2015; Ohman et al., 2013) with strong surface currents requires con-
sideration of spatiotemporal decoupling in water column processes
(Olivieri and Chavez, 2000; Plattner, 2005). In fact, within the CCE-
LTER dataset there is an inverse relationship between export efficiency
as measured by sediment traps and 14CPP (Stukel et al., 2013; Morrow
et al., in this issue), a pattern inconsistent with general expectations
that are incorporated into many remote-sensing models of export pro-
duction.

In this paper, we first investigate mechanistic relationships between
water column processes and carbon export measured during Lagrangian
experiments conducted on a series of CCE LTER cruises. These cruises
were planned to sample different sources of ecosystem variability in-
cluding onshore-offshore productivity gradients, ENSO phases, and
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seasonal climatological patterns. We then develop an empirical model
to predict export and export efficiency across these different conditions.
The model is then compared to several alternative formulations each
representing a specific hypothesis. The model is applied to remote
sensing measurements to calculate regional maps of export efficiency
and export production and compared with previously published model
results. Of particular importance are the regional patterns of export
production and export anomalies from 1998 through 2016 (including
the 2014–2015 warm anomaly and the 2015–16 El Niño).

2. Methods

2.1. Cruise data

Data used to parameterize the model came from five cruises of the
California Current Ecosystem Long Term Ecological Research (CCE
LTER) program: P0605 (May 2006), P0704 (April 2007), P0810
(October 2008), P1408 (August 2014), and P1604 (April 2016). Each
cruise was designed to quantify ecosystem rates within homogenous
water parcels representing different regions of the CCE (Fig. 1). This
was accomplished through a quasi-Lagrangian drifter framework over
2–5 day periods (Landry et al., 2009, 2012) involving sediment traps,
an in situ incubation array, and repeated water column surveys. In each
case selection of water parcels for drifter deployment was guided by
free-fall Moving Vessel Profiler surveys (Ohman et al., 2012). Key
measurements used in this study include primary production (H14CO3-
uptake; Morrow et al., in this issue) and gravitational particle export
(sediment traps and 238U-234Th disequilibrium, Stukel et al., 2011,
2012, 2013). The present study makes use of results from 22 Lagrangian
experiments, including 63 days of drifting sediment trap deployments
(8 – 22 tubes per deployment), 542 234Th:238U measurements and 602
primary production measurements. Bulk rates and associated errors for
the 2–5 day Lagrangian experiments (hereafter ‘cycles’) were calculated
through averaging these profiles for each experimental cycle (Table 1).

The Lagrangian framework provides contemporaneous measure-
ments of multiple ecosystem variables over short biological timescales,
thereby providing a snapshot of the ecosystem state within defined
water parcels. The five cruises were designed to sample a wide range of
physical and biogeochemical gradients within the CCE domain: sea
surface temperature ranged from 12.2 °C to 19.8 °C, NPP ranged from
119mg C m−2 d−1 to 4170mg C m−2 d−1, and sediment trap export at
100m ranged from 32 to 299mg C m−2 d−1 (for data source, see
Section 4). The cycle locations spanned the dominant ecological gra-
dient in the region from coastal upwelling to offshore oligotrophic
(Fig. 1). While the P0605, P0704, and P0810 cruises all occurred during
El Niño neutral conditions (hereafter “cool” years), the P1408 and
P1604 cruises occurred during anomalously warm SST periods coin-
ciding with an anomalous warming pattern in the northeast Pacific
during 2014–2015 and the 2015–16 El Niño, respectively (Bond et al.,
2015; Di Lorenzo and Mantua, 2016; Jacox et al., 2016). Within this
study, the CCE domain is defined by the standard CCE control volume:
the bounding box formed by CalCOFI line 76.7 out to Station 76.7–100
and line 93.9 out to Station 93.9–100 (Fig. 1). This volume is a practical
boundary for spatial integrations.

2.1.1. Primary productivity
Primary productivity during each cycle was measured through in

situ H14CO3 incubations conducted at 6–8 depths spanning the euphotic
zone. Water samples were transferred from a Niskin bottle into poly-
carbonate incubation bottles using silicon tubing. Incubations were
conducted in either 4 L polycarbonate bottles (P0605, P0704, P0810) or
triplicate 250mL bottles (P1408 and P1604). Dark bottle incubations
were conducted to correct for non-photosynthetic bicarbonate utiliza-
tion and/or adsorption onto particles. All samples were incubated on
our Lagrangian array at the depth from which they were sampled. After
approximately 24 h, incubations were retrieved and filtered onto GF/F
filters, placed in liquid scintillation cocktail, and counted for 14C ac-
tivity. Vertically-integrated primary production was determined by

Fig. 1. CCE LTER Domain and Drifter Tracks. Each panel is a map of CCE domain (box outline) along with the CalCOFI survey grid (grey circles in A-E; white circles
in F) and drifter tracks (numbered red lines) for each cycle: A. P0605, B. P0704, C. P0810, D. P1408, E. P1604. F. Bathymetric map of the study region. SSChl-a
concentrations are shown in the shading for A-E while depth is shown in F.
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trapezoidal integration.

2.1.2. Sediment trap
We used drifting VERTEX-style sediment traps with an 8:1 aspect

ratio (height: diameter) topped by a baffle constructed from smaller
tubes with a similar 8:1 aspect ratio (Knauer et al., 1979). During each
experimental cycle (except on cruise P0605), cross frames consisting of
8 or 12 trap tubes were deployed at 100m (sometimes an additional
cross frame was deployed at 50–60m depending on the maximum ex-
tent of the euphotic zone estimated at sea by CTD fluorescence). All trap
deployments were deeper than the mixed layer depth. Tubes were filled
with a hypersaline, poisoned brine solution (0.4% formaldehyde final
concentration). Upon recovery, the overlying seawater was gently si-
phoned before the samples were split for analysis using a Folsom
splitter: C and N were measured with a CHN analyzer or isotope ratio
mass spectrometer, C:234Th ratios were determined as described below,
and pigments (Chl-a and pheopigments) were measured by the acid-
ification method. See Stukel et al. (2013) and Morrow et al., (in this
issue) for more details.

Measured export was normalized to the base of the euphotic zone by
assuming exponential decrease in export flux with depth:

= ∙f f γΔdexp( )eup sedtrap where γ is the remineralization length coeffi-
cient (averaging 0.0063m−1 in the shallow CCE; Stukel et al., 2015)
and Δd is the separation between the base of the euphotic zone (defined
as the 1% light level averaged over multiple CTD casts for each cycle)
and the sediment trap depth (typically either 50m, 60m or 100m).
This led to a maximum change of 44% in measured export (Cycle
P0704-1) and an average change of 15% across entire dataset. P0605
data (based only on 234Th since sediment traps were not utilized; see
below) was not corrected in this manner. Instead 234Th:238U dis-
equilibrium was integrated over the euphotic depth.

2.1.3. Thorium export measurements
During all cruises, 234Th:238U disequilibrium measurements were

taken using the standard small volume method (Benitez-Nelson et al.,
2001; Pike et al., 2005). Vertical 234Th profiles were then used in a
steady-state export model (see Savoye et al., 2006 and references
therein) with C:234Th ratios determined from> 50-μm particles col-
lected by in situ pumping (McLane Industries) at 100m for P0605 and

from particles collected in the sediment trap on subsequent cruises.

2.2. Remote sensing products

Merged satellite data products for SST, Chl-a, NPP, and POC have
been developed for the CCE-LTER domain (http://www.wimsoft.com/
CC4km.htm). The Chl-a product is empirically optimized for this region
(Kahru et al., 2012, 2015) and merged from multiple sensors (OCTS
1996–1997, SeaWiFS 1997–2010, MERIS 2002–2012, MODIS-Aqua
2002-present, and VIIRS 2012-present) with a spatial resolution of
4 km. NPP is based on the derived Chl-a and multi-sensor merged PAR
data using a modified VGPM model (Kahru et al., 2009). Monthly
composited average fields were used throughout to reduce gaps due to
cloud cover. Regional maps of the diffuse attenuation coefficient
(KD,490) were retrieved from the NASA ocean color website (https://
oceancolor.gsfc.nasa.gov/) with the same spatial and temporal scales.

2.3. Model framework & hydrodynamic model

The goal of this paper is to develop a model that can be used to
predict interannual variability in export flux in the CCE. It is crucial
that such a model be capable of capturing intra-regional variability in
export. We make the assumption that functional relationships between
ecosystem processes and physical drivers are consistent within the re-
gion, thus we can make a “space-for-time” assumption and utilize the
broad spatial variability across the region to elucidate relationships
between export under different productivity regimes. This assumption
is supported by results showing that the functional relationships be-
tween export, primary productivity, and mesozooplankton grazing re-
mained similar between El Niño neutral phases, the 2014–2015 North
Pacific warming event and subsequent 2015–2016 El Niño, and across
seasons (Morrow et al., in this issue). We analyzed an empirical re-
lationship between export and various ecological drivers which led to a
parameterization tuned for the CCE region. A linear functional form
was used as there was no evidence that a different form would be better
suited. A type II ordinary least squares (type II OLS) regression was used
when applying the model for prediction while a type II major axis (type
II MA) regression was used to assess the relationships within the cruise
data.

Table 1
Environmental conditions, water column parameters and sediment trap fluxes for each cruise cycle. NPP, Chl-a, POC are integrated over the euphotic zone. Export
was calculated based on sediment trap derived flux and normalized to the base of the euphotic zone using a remineralization correction:

= − ∙Export SedTrap Z Z*exp (( ) 0.0063)SedTrap eu . Export during P0605 cycles (*) was based on 234Th:238U disequilibrium profiles and not sediment traps. Data is
available from the CCE Datazoo site (see Section 4 for data source).

Cruise/Cycle Distance
Offshore (km)

NPP (mg C m−2

d−1)
Chl (mg Chl-a
m−2)

POC (mg C m−2) SST (C) SedTrap Depth
(m)

SedTrap (mg C
m−2 d−1)

Euphotic Depth
(m)

Export (mg C m−2

d−1)

CCE-P0605–2 109 522 (9) 27 (3) 4730 (280) 14.6 – – 78 72 (12) *
CCE-P0605–4 14 1442 (252) 50 (10) 5400 (870) 14.8 – – 32 133 (13) *
CCE-P0605–5 63 458 (153) 31 (8) 4880 (750) 16.4 – – 63 76 (19) *
CCE-P0704–1 26 1215 (829) 67 (21) 5300 (1550) 12.4 100 144 (6) 42 207 (9)
CCE-P0704–2 175 573 (84) 31 (7) 5120 (340) 14.2 100 32 (3) 65 40 (4)
CCE-P0704–4 50 2295 (916) 74 (13) 6730 (960) 12.4 100 170 (20) 49 234 (28)
CCE-P0810–1 41 551 (180) 55 (41) 5140 (1900) 17 50 112 (17) 41 119 (18)
CCE-P0810–2 220 478 (31) 23 (2) 4040 (530) 16.9 100 69 (6) 58 89 (8)
CCE-P0810–3 70 888 (79) 40 (3) 4500 (1390) 15.9 60 120 (6) 41 136 (7)
CCE-P0810–4 70 672 (85) 80 (21) 9250 (1550) 16 50 216 (2) 28 248 (3)
CCE-P0810–5 127 1670 (307) 66 (9) 5600 (420) 15.0 60 127 (14) 29 155 (17)
CCE-P0810–6 177 316 (41) 21 (3) 3020 (290) 17.2 60 112 (12) 58 114 (13)
CCE-P1408–1 24 386 (106) 117 (33) 9700 (2050) 16.8 60 159 (3) 30 192 (4)
CCE-P1408–2 42 320 (9) 56 (10) 7670 (1480) 16.8 60 124 (7) 35 145 (8)
CCE-P1408–3 52 280 (10) 31 (3) 5160 (350) 18.6 60 111 (7) 44 123 (7)
CCE-P1408–4 200 119 (10) 20 (2) 3520 (350) 19.1 70 51 (2) 56 56 (2)
CCE-P1408–5 355 132 (5) 18 (1) 3620 (390) 19.8 100 42 (1) 75 50 (1)
CCE-P1604–1 278 220 (55) 31 (2) 5010 (710) 17.5 100 72 (4) 73.5 85 (4)
CCE-P1604–2 174 261 (63) 27 (1) 4140 (110) 15.3 97 40 (2) 86 43 (2)
CCE-P1604–3 55 865 (228) 52 (8) 6730 (2030) 13.4 57 120 (5) 43 131 (5)
CCE-P1604–4 18 1658 (339) 116 (19) 13750 (4400) 14.4 47 251 (4) 16 305 (5)
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2.3.1. Sea surface temperature-advection relationship
The relationship between regional advection and SST was quanti-

fied using a 1/10th degree Regional Ocean Modeling System (ROMS)
simulation, which was run for a three-month period ending with the
cruise period (hereafter “3-month run”). Initial and boundary condi-
tions for the ROMS simulation were from the CCS 31-year historical
reanalysis (http://oceanmodeling.ucsc.edu/reanalccs31/) for the time
period prior to 2010 and the near-real-time CCS estimation (http://
oceanmodeling.ucsc.edu/ccsnrt/) for dates after 2010. Atmospheric
forcing were derived from Coupled Ocean/Atmospheric Mesoscale
Prediction System (COAMPS). The 3-month run model was compared to

a one-month duration 4DVARS data-assimilative ROMS model which
was tuned to observed cruise conditions and used the same boundary
conditions as above. Since the comparison between the two simulations
yielded nearly identical results, the 3-month run was used instead of the
4DVARS model for all cruises (except for P0704 where the 4DVARS
model was used) in order to have sufficient run-time for analysis (see
below). The ROMS simulation starts approximately 2 months before
each cruise and continues until the end of the cruise.

The Larval TRANSport (LTRANS) software package is an offline,
Lagrangian particle tracking model designed for integration with ROMS
to allow for tracking of particle position and characteristics over time

Fig. 2. A. Plot of observed e-ratios
against distance offshore. “Warm” and
“Cool” years are shown as red circles
and blue squares respectively. Line
shows least-squares linear regression.
B. Same as in (A) for predicted e-ratios.
Points show the Dunne et al. (green
squares), Laws et al. (orange squares)
and Henson et al. (green open trian-
gles) model predictions along with
least-squares linear regressions. B. Plot
of predicted e-ratio from Dunne et al.
export model against observed e-ratios
(same legend as A). Labeled line is 1:1
correspondence. D and E. Same as (C)
for the Hensen et al. and Laws et al.
export models, respectively. F. Same as
(C, D, E) for the model proposed in this
study. Linear regressions and 95% CI
are shown for each of the models (C, D,
E, F; grey).
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(North et al., 2006). It was used here to track neutrally-buoyant par-
ticles within the water column. Initially particles were released at the
location and time of each cycle evenly throughout the euphotic zone.
The model was run backward in time, thus tracking the history of each
water parcel occupied on the five cruises used in this study. The age of
the water mass was defined as the median time since each particle had
originally entered the euphotic zone. Euphotic depth was calculated
from KD,490 as in Tang et al. (2007) and tuned for the CCE region by
comparing predicted euphotic depth (1% PAR) to in situ measurements:

= +z 35eu K
1.54
D,490

.
For each cycle, 10,000 particles were released of which 58% (mean;

range: 14—100%) left the euphotic zone during the simulation. Water
parcel age was calculated as the median time between when the par-
ticles entered the euphotic zone and the cruise cycle occurred. For cy-
cles where less than 50% of the particles exited the euphotic zone
during the model run, age was estimated by assuming constant particle
exchange between the euphotic zone and the deeper water column:

=
−Age Age ( )predicted obs

N
N

1exchanged

total
where Ageobs is the median age of the

particles that left the euphotic zone, and Nexchanged and Ntotal are
number of particles exchanged and in total (i.e. 10,000), respectively.
Comparisons between the two hydrodynamic models (3-month run and
the 4DVARS run) showed that contemporaneous velocity fields were
highly correlated and led to similar particle trajectories when applied to
analogous LTRANS initializations.

2.4. Statistical analysis

Confidence intervals for both types of models (type II OLS and type
II MA, see 2.3) were calculated through a non-parametric bootstrapping
procedure: 10,000 distinct datasets were computed using a random,
paired sampling of new (x, y) coordinates based on a normal distribu-
tion centered on the observation with a standard deviation equal to
measurement uncertainty (σx, σy). The model was then fit to each da-
taset resulting in a distribution of the slope and intercept at each value.
Model uncertainty is defined to be the 1 SE interval from the bootstrap
analysis (68% confidence window for a normal distribution) averaged
over the input data set. This metric provides a single number compar-
ison between the variance in the dependent variable over the observed
range of the independent variable.

3. Results and discussion

3.1. Spatial patterns in export production

Observed NPP and export production were highest in the coastal
upwelling region (Table 1). However, the e-ratio (=export/NPP) fol-
lowed an inverse relationship with elevated e-ratios offshore and low e-
ratios along the coast (Fig. 2 A,B). While most hypotheses regarding
ecosystem efficiency predict high e-ratios in productive coastal waters
(e.g. Buesseler and Boyd, 2009; Michaels and Silver, 1988), the only
nearshore water parcels with high e-ratios (> 25%) in this study were
encountered during the P1408 cruise when primary productivity was
depressed throughout the CCE. Indeed, primary productivity even in
these nearshore cycles in August 2014 (P1408-1 & 3) exhibited values
that were more representative of oligotrophic offshore regions
(280–386mg C m−2 d−1, Table 1) than conditions typically en-
countered in the coastal upwelling zone. Across the dataset, we found a
strong negative correlation between e-ratio and NPP (P < 0.001;
Fig. 3). This confirms prior results derived from independent 234Th:238U
disequilibrium and sediment trap methodologies (Stukel et al., 2013)
and agrees with intra-regional variability found in the e-ratio to NPP
relationship measured in the Gulf of Mexico and Southern Ocean (Maiti
et al., 2016, 2013).

Most published global export models have utilized SST and NPP
and/or sea surface Chl (SSChl) as inputs due to the relatively

straightforward algorithms used to determine these variables by sa-
tellite. We compared our cruise observations to three prominent global
export models and parameterized as in Stukel et al. (2015): Dunne et al.
(2005), Laws et al. (2011), and Henson et al. (2011). Identical remote
sensing fields were used throughout. While the magnitude of April-May
average export flux in the CCE control volume determined by the
Dunne, and by the Laws models (94, and 102mg C m−2 d−1, respec-
tively) was in approximate agreement with the observed export values
(mean: 131mg C m−2 d−1, range: 40 – 305mg C m−2 d−1), both
modeled e-ratio trends departed from observations (Fig. 2 C, D, E, F).
Both the Laws and Dunne models predicted that the e-ratio would be
higher in coastal regions as a result of a positive correlation of e-ratio
with NPP. These assumed relationships between primary production
and export efficiency are directly opposite to our observed relationship
of an inverse correlation between NPP and e-ratio in the CCE (Fig. 3).
The Henson model (which computes e-ratio as a function of tempera-
ture) predicted a nearly constant e-ratio across the CCE. It is thus clear
that these models do not correctly represent intra-regional variability in
the e-ratio and particle flux. Hence, we suggest that a CCE-specific al-
gorithm is necessary. Here, we make the assumption that spatial
variability in ecosystem processes driving export flux can be used as a
proxy for temporal variability in these same processes (space-for-time
assumption). Independent evidence based on the relationship between
sediment trap material and mesozooplankton grazing suggest that
carbon export within the CCE is invariant during different climatic re-
gimes (Morrow et al., in this issue). Therefore, a single carbon export
model should be appropriate for the CCE domain across inter-annual
variability.

3.2. Observed temperature and export production

Our first step toward estimating export from satellite was to identify
suitable predictors of export that can be detected using satellite remote
sensing tools. Plausible predictors for export within the CCE include
NPP, POC and Chl-a concentrations, SST, and distance offshore. All of
these relationships were investigated and NPP and SST were identified
as the two strongest predictors of export. A Type II OLS linear regres-
sion of e-ratio plotted against SST showed a significant positive slope
(P < 0.001):

= × −SSTe-ratio 0.056 0.698 (1)

Fig. 3. Scatterplot of export efficiency against NPP for all cruise cycles. Warm
cruise years and cool cruise years are shown in red and blue, respectively; while
each cruise is indicated by the indicated symbol. Error bars show 1 SE of
measurement uncertainty. Black dashed line is a type II MA linear fit with the
95% confidence interval shown by shading.
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where the slope was 0.056 ± 0.008 (mean± 1 standard error) and the
intercept was − 0.698 ± 0.122. The Root Mean Squared Error (RMSE)
assessing the model-data misfit was 62.4 with an R2 of 0.67 (Table 2).
Model uncertainty was 29.0% (1 SE). This positive relationship between
SST and e-ratio was initially surprising. Increased temperature speeds
up heterotrophic processes, including remineralization by hetero-
trophic bacteria and particle consumption by protists and metazoan
zooplankton (Ikeda, 1985; Kirchman et al., 2009; Laws et al., 2000;
Marsay et al., 2015). Conversely, cold temperatures in this region are
indicative of upwelling and the introduction of nitrate that can support
new production and eventual export (Dugdale and Goering, 1967;
Eppley and Peterson, 1979). We thus find it unlikely that temperature is
a direct driver of increased export efficiency. Rather, we hypothesize
that temperature is a proxy for other processes affecting spatial varia-
bility in export flux in the CCE, with lateral advection as the most likely
process.

Regionally, the relationship between SST and export efficiency
(Fig. 4) is robust (overlapping relationships were found in both “warm”
and “cool” cruise years). As a region with coastal upwelling and Ekman
transport, which entrains recently upwelled water and advects it off-
shore, the positive correlation between SST and e-ratio can be explained
as a mutual correlation with water mass age. As upwelling occurs, cold,
nutrient-rich waters are introduced to the euphotic zone leading to high
rates of NPP and biomass accumulation. The dominant advective pat-
terns then move the water parcel offshore while nutrients are drawn
down and the water gains heat from the atmosphere. As the nutrients
are depleted, phytoplankton production declines but export production

may remain higher than predicted (based on this reduced NPP) as a
result of the time lag between particle production and particle export.
When combined with offshore Ekman transport, this temporal lag
drives a spatial decoupling of export and new production that has been
predicted from model results (Olivieri and Chavez, 2000; Plattner,
2005) and observed in field data (Stukel et al., 2011) in the CCE.

3.2.1. Regional advection and temperature: Advection model to explain the
temperature relationship

We suggest that the relationship between e-ratio and SST is not
mechanistic, but instead provides a proxy for the temporal-spatial de-
coupling between production and export. Due to horizontal advection,
coastally produced POC is rapidly transported offshore leading to de-
pressed e-ratios close to shore and elevated e-ratios offshore. Therefore,
since temporal lags drive the relationship, we can think of the con-
trolling factor to be the age of water (defined herein as the time since
the water parcel was upwelled into the euphotic zone). Upwelled water
is approximately a consistent temperature and, importantly, nearly al-
ways colder than the ambient atmospheric temperature in the region,
leading to positive heat flux into the water (particularly during the
spring, summer and fall periods that we sampled). Due to the high heat
capacity of the water, mixed-layer and euphotic zone water parcels in
the CCE likely reach equilibrium temperature only after a period of
weeks to months.

To assess the temperature-age relationship, we used results from a
physical circulation model (ROMS) to force a particle advection model
(LTRANS) that was run backward in time to determine the median
length of time since each water parcel that we studied at sea entered the
euphotic zone. The results of the LTRANS-ROMS simulation show the
fraction of the water that was upwelled versus time for the length of the
simulation (see Supp. Table 1). While the distribution of particle ages
was quite variable and often multimodal (e.g. distinct events), calcu-
lating the age of the water parcel based on the median allows for a
robust estimate without relying a priori on a particular age distribution.
Comparing the LTRANS-calculated age versus SST, we find a significant
(p < 0.01) positive relationship verifying that SST and age since up-
welling covary within the CCE (Fig. 5). This supports our supposition
that the SST-e-ratio relationship is not causal, but instead is a byproduct
of the advective nature of the system. The large degree of variance
within this dataset may be suggesting that either the SST e-ratio

Table 2
Summary and comparison of model formulations. Statistics were calculated
from a type II ordinary least squares regression. Function f is the NPP model
shown, function g was applied to the residuals of f(NPP), and f′ is a function
predicting e-ratio from SST (see 3.1.3).

Model Formula RMSE R2 Mean Conf. (95%)

SST Export =NPP * f(SST) 62.4 0.67 29.0%
NPP Export =m *NPP +offset 52.2 0.88 27.3%
Add 1 Export = f(NPP) + g(SST) 52.2 0.88 55.4%
Add 2 Export = f(NPP) + g(Chl-a) 38.2 0.93 58.4%
Add 3 Export = f(NPP) + g(distance) 47.6 0.90 71.6%
Add 4 Export = f(NPP) + g(POC) 35.9 0.94 54.6%

Fig. 4. Plot of e-ratio (Sed Trap Flux / 14CPP) against SST (°C) for the indicated
cruises. Colored bands indicated the 95% confidence intervals on the re-
lationship for just the “warm” cruises (orange; P1604 and P1408) and for all
cruises (blue).

Fig. 5. Scatterplot showing age of water parcel based on LTRANS-ROMS model
results against the measured SST for each cycle of P1604, P1408, P0810 and
P0605 (Table 1). Dashed line is type II MA linear regression with 95% con-
fidence interval determined from a bootstrapped jackknife procedure (sample
with replacement; shaded region).
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relationship is more complicated than this analysis allows for or that
the LTRANS simulation fits are over-simplifying an otherwise complex
time series of mixing and diffusion.

We recommend against using SST as a predictor of interannual
variability in export flux in the CCE, because interannual variability in
surface temperature can alter the SST-age relationship. Specifically, we
should expect that during warm phases of ENSO or the Pacific Decadal
Oscillation or during potentially unrelated warming events, such as the
2014 warm anomaly, surface temperatures at a given water parcel age
would be warmer than if initial temperatures were cooler. An SST-based
algorithm would thus inflate export estimates during periods when our
mechanistic understanding of temperature-respiration relationships
suggests we should expect lower export efficiency. In other words, be-
cause the SST to e-ratio relationship is not causal, we should not expect
temporal stationarity to hold for this particular relationship.

The likelihood that the age of the water parcel and offshore ad-
vection were the ultimate drivers of the SST to e-ratio relationship also
has important implications for our expectations of NPP to e-ratio re-
lationships. If slowly sinking particles are being produced nearshore
and advected offshore (or if neutrally-buoyant particles are being pro-
duced nearshore and converted into sinking particles by aggregation or
compaction into mesozooplankton fecal pellets as they are advected
offshore) we should expect that a portion of the NPP in coastal regions
serves to support export in offshore regions.

3.3. NPP and export production

Fundamentally, NPP sets the maximum energy within an ecosystem;
therefore, it is a valuable predictor of the magnitude of many ecosystem
processes. Without strong evidence to support any specific functional
form for the NPP-export relationship, we selected a linear fit (Eq. (2)). A
type II OLS linear regression with bootstrap error suggested a statisti-
cally significant positive relationship (slope = 0.081 ± 0.021) be-
tween export and NPP with a significant (p < 0.001) positive intercept
(71.9 ± 19.3 mg C m−2 d−1).

= × +Export NPP0.081 71.9 (2)

This NPP-model had a Root Mean Squared Error (RMSE) of 52.2
with an R2 of 0.88. Model uncertainty is 37.2%. The non-zero intercept
can be interpreted as a background level of well-mixed POC that is
produced in the coastal region and sinks slowly. Such an interpretation
of the data is supported by an analysis of the sediment trap collected
material. When compared to autochthonous phytoplankton production
and mesozooplankton grazing, export rates remain elevated leading to
positive export even as NPP tends towards zero (Fig. 6). Furthermore,
this “residual” export is expected to have no pigment content, and thus
is likely derived from older, recalcitrant particles (for a detailed ana-
lysis see Morrow et al., in this issue). Since the CCE region is strongly
advective, slowly sinking particles may be transported considerable
distances before they settle past the depth horizon sampled by the se-
diment traps. Across the water parcels that we sampled, the median
value for the bulk turnover time of POC with respect to sinking (POC
standing stock / export) was 56 days, highlighting the potential for
extensive advective transport of particles prior to export. Stukel et al.
(2017b) used sinking rates parameterized from in situ data and a par-
ticle transport model to estimate that in the CCE, exported POC was
produced (on average) 9–78 km from where it eventually crossed the
100-m depth horizon.

While other commonly used functional relationships guarantee a
zero intercept (e.g., power function), the advective nature of the CCE
suggests that local export should never decrease to zero. The non-zero
intercept can be interpreted as the export due to a class of slowly
sinking, non-pigmented POC that becomes well-mixed within the eu-
photic zone due to a longer residence time compared to quicker settling
particles. Importantly, this statistically robust offset highlights the de-
coupling between particle production and measured export of these

long-lived, slowly sinking particles.

3.3.1. NPP-export relationship
To test the applicability of the model under different climatic con-

ditions (i.e., to test the space-for-time assumption), we assessed the
relationship's sensitivity to intra-annual (seasonal), and inter-annual
(ENSO cycles) variability. The relationship proved robust across these
partitionings of the dataset (Supp. Fig. 2). The 95% confidence interval
on the type II linear regressions overlapped significantly in each case
and a positive intercept was always found (although the intercept was
not always significant at the 95% confidence interval, because fewer
data points were available when the data were partitioned, Fig. 7).

Export efficiency has been found to be contingent on a number of
physical drivers and ecosystem processes including water column
structure, species composition, and the composition of the POC itself.
The linear relationship proposed here implies that across the domain a
constant proportion of primary productivity is exported as rapidly
sinking particles (i.e., the slope of the regression). This is likely a
generalization of a more complex relationship that varies in space and
time. Hence, the empirical model (Eq. (2)) was also compared against
several additional formulations involving both physical and ecosystem
metrics including distance offshore, SST, and concentrations of POC
and Chl-a (Table 2).

3.3.2. NPP model extension
While the NPP model (Eq. (2)) explains 88% of the variance in the

sediment trap flux measurements (Table 2), several extensions of the
model were tested using measurements with remote sensing proxies
(Supp. Fig. 2). Additional variance in the flux measurements was ac-
counted for by regressing on the residuals of the NPP model (Supp.
Fig. 2). This additional explanatory power is balanced by a corre-
sponding increase in model uncertainty. By including SST in the NPP
model, model uncertainty increased from 27.3% to 55.4% without
gaining any explanatory power (R2 = 0.88). This lends further support
to our supposition that the strong relationship between SST and e-ratio
was in fact caused by the offshore advection of POC, which is already
accounted for by our base NPP model (Eq. (2)).

The inclusion of Chl-a led to an increase of explanatory power
(0.93) and an increase in model uncertainty (from 27.3% to 58.4%).

Fig. 6. Comparison of carbon export flux and bulk pigment fluxes out of the
base of the euphotic zone. Pigment flux consists of the sum of Chlorophyll-a and
phaeopigment flux estimates. Colors and symbols are as in previous figures with
red squares representing anomalously warm cruise years and blue circles for
anomalously cool cruise years. Error bars show 1 standard error in the mea-
surements. Regression is type II MA regression with 95% confidence intervals
shown by shading.
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Similarly, adding POC led to an increased R2 value (0.94) with an in-
crease in uncertainty (to 54.6%). This suggests that the inclusion of
these parameters is potentially useful as it reflects biomass and hence is
likely related to where on the temporal sequence (i.e. new production
and biomass accumulation → maximum biomass → net biomass de-
crease and high e-ratio) a particular water parcel is located. POC and
Chl-a concentrations may thus reflect, in part, the accumulated amount
of refractory biomass in the system. However, the increased uncertainty
suggests that the addition of these parameters is not justified for use in a
predictive model. Each additional parameter increases the risk of
overfitting the model and thereby reducing its utility when extended to
other parts of our regional domain. We believe a 2-parameter model is
most suitable when compared to the size of the dataset (n= 22).

3.4. Interannual variability in satellite-derived export production

Fig. 8 shows April-May anomalies in export production calculated
from satellite data using Eq. (2). Regional annually-averaged export
production dropped from a climatological mean of 109.7mg C m−2 d−1

to 100.3mg C m−2 d−1 during the peak of the 2015–16 El Niño event in
2015, a decrease of 8.6%, with the largest anomalies taking place in the
coastal zone (15.3% decrease; Table 3; Supp. Table 2). Similarly, in
spring 1998 (during the 1997–98 El Niño), export production dropped
by 7.1% regionally, with coastal zone export dropping 14.0%. These
decreases in particle export were accompanied by concomitant de-
creases in NPP that were ultimately caused by reduced coastal upwel-
ling (Kahru et al., 2018). While the decreased export was seen
throughout the region during the 1998 El Niño, the region north of
Point Conception actually experienced above-average modeled spring-
time NPP and export during the 2014–2015 warm anomaly and
2015–2016 El Niños. (Fig. 8). Whether this increase reflected different
upwelling patterns driven by substantial differences in the physical
processes associated with each El Niño (Jacox et al., 2016) is beyond
the scope of this manuscript.

A full time-series of reconstructed export production in the CCE
from 1998 to 2017 (Fig. 9) shows a substantial decline in export in all
seasons during the 2014–2015 warm anomalies and the 2015–2016 El
Niño relative to the preceding decade, particularly in the productive
coastal upwelling region that drives much of the variability in export
flux in the CCE. Such a result is not surprising, given the increased
stratification, decreased nutrient concentrations, and decreased phyto-
plankton biomass observed region-wide (McClatchie et al., 2016).

3.5. Caveats, future research, and other mechanisms of export

The model embedded within Eq. (2) reflects a hypothesis about the

processes driving particle flux in the CCE. Specifically, it suggests that
there are two classes of sinking particles; a slowly-sinking recalcitrant
particle class that reflects allochthonous particle production and is
impacted by substantial horizontal advection, and a rapidly-sinking
particle class that is reflective of autochthonous particle production in
the water immediately above the sediment trap. Results of other studies
(Stukel et al., 2013; Morrow et al., in this issue) suggest that the latter
particle class is primarily composed of sinking mesozooplankton fecal
pellets, while the former is likely marine snow comprised of degraded
POM of unknown origin. The robustness of this relationship with re-
gards to seasonal or interannual variability in the CCE gives us some
confidence in its applicability to estimate interannual variability in
export flux. However, it is important to consider that the underlying
hypothesis (i.e., export driven by a combination of longer-lived parti-
cles and autochthonous production) could be represented by other
functional forms. For instance, perhaps the export of longer-lived par-
ticles (which are likely derived disproportionately from the high pro-
ductivity regions near the coast) is not constant, but decreases slightly
with distance from shore. Indeed, when considered on longer spatial
scales, such a scenario is almost certainly true - otherwise we would
expect much higher export ratios in the oligotrophic subtropical gyre
than are actually measured (Church et al., 2013; Neuer et al., 2002).
Furthermore, it is possible that the production of rapidly-sinking par-
ticles is not a constant fraction of NPP, but instead shows a quadratic or
power law relationship to NPP. Such a relationship might be expected
given trophic shifts from protozoan grazers to mesozooplankton grazers
when primary productivity is principally attributable to large phyto-
plankton. The ability to resolve a more complex model, however, will
require substantially more simultaneous export and NPP measurements
across the CCE.

Despite the above discussion, there are conceptual reasons to be
confident that the true underlying relationship may not deviate too far
from Eq. (2). First, while it might be assumed that increased Ekman
transport during upwelling-favorable conditions would lead to in-
creased particle transport offshore and hence a higher export of long-
lived particles offshore, increased Ekman transport is typically accom-
panied by increased subduction. Thus, water parcels may spend less
time at the surface and the decreased age of the water parcels may
offset increased advective transport. It is thus likely that the increased
Ekman transport does not drive a substantial increase in the gravita-
tional sinking flux of recalcitrant particles, but instead leads to in-
creased rates of POC subduction (Levy et al., 2013; Stukel et al.,
2017b). Second, although it is commonly assumed that the production
of labile particles should increase faster than primary production (e.g.
Laws, 2004; Michaels and Silver, 1988; Siegel et al., 2014), these
models often assume steady state. In a temporally dynamic, spatially

Fig. 7. A. Export flux vs Net Primary Productivity along
with type II major axis regression. Error bars indicate 1 SE
of measurement. Grey band is 95% confidence interval for
the regression on all data. Red squares indicate data from
P1604 and P1408 (i.e. “warm” years) while blue circles
indicate all other cruises (P0605, P0704, and P0810; i.e.
“cold” years). B. Same as in (A) showing 95% confidence
windows for regression on “autumn” (P0810) cruise and
the other years only (orange squares and green circles,
respectively). C. Same as (A) with 95% confidence win-
dows for warm-year and cool-year cruises (red squares and
blue circles, respectively).
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Fig. 8. Spatial map of export production anomaly (%) for April & May of the indicated year across the CCE domain based on the NPP model. Climatological values
were calculated from averaging export between 1998 and 2016. (A) 1998, (B) 2006, (C) 2007, (D) 2008, (E) 2014, (F) 2015, (G) 2016. H. Spatial map of clima-
tological April-May carbon export production (1998–2016 mean; mg C m−2 d−1).
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heterogeneous ocean with substantial horizontal advection, non-steady
state impacts can substantially modify the NPP-export relationship.
Most importantly, while we find a shift from grazing by mesozoo-
plankton in upwelling regions to grazing by protists in oligotrophic
areas, this is often accompanied by a shift in the growth: grazing bal-
ance. In coastal regions, with abundant nutrients and large diatoms,
growth often exceeds grazing and the community has net biomass ac-
cumulation. In offshore regions, grazing typically exceeds growth as
phytoplankton biomass declines and hence total grazing is higher than
would be expected from NPP measurements. A simple trophic model
used to estimate fecal pellet production from in situ measurements in
the CCE actually estimated a higher ratio of fecal pellet production: NPP
in the offshore region where protists dominated because of this growth:
grazing imbalance (Stukel et al., 2011). It is thus possible that spatial
variability in growth: grazing ratios offset spatial variability in protist:
mesozooplankton grazing.

Another surprising result of our analyses relates to the balance be-
tween new and export production in warm versus neutral ENSO phases.
Increased upwelling during cold years introduces additional nitrate into
surface waters, leading to increased primary production and an in-
creased f-ratio (new production / total production). Thus, if new pro-
duction is balanced by sinking particle flux as postulated by Eppley and
Peterson (1979), we would anticipate increased e-ratios during cold
years, which is the opposite of the prediction derived from Eq. (2) and
supported by our in situ measurements. However, new production and
net community production (the balance of photosynthesis and eco-
system respiration, which is functionally similar to new production) are
substantially higher in the CCE than export flux (Harrison et al., 1987;
Stukel et al., 2013, 2011). While increased upwelling during cool ENSO
phases should drive increased f-ratios in the region, these increased f-
ratios are likely balanced not by increased export of sinking particles,
but by an increase in other export processes (e.g., subduction and active
transport; Song et al., 2012). Stukel et al. (2017a) found that subduc-
tion of suspended or slowly sinking particles was a substantial export
term in the CCE, and that the aforementioned decreases in Ekman
transport during warm years likely leads to decreased subduction
throughout the region. Furthermore, mesoscale features (fronts and
eddies) have been linked to substantial increases in subduction rates in
the CCE (Stukel et al., 2017a) and the frequency of sea-surface fronts
was substantially lower during the 2014–2016 marine heat wave
(Kahru et al., 2018). Active transport in the CCE is primarily driven by
vertically migrating euphausiids and copepods (Stukel et al., 2013).
These crustaceans generally have lower biomass during warm ENSO
phases and the 2014–2016 marine heat wave (Lavaniegos and Ohman,
2007; Lilly and Ohman, in this issue), suggesting decreased active
transport during warm ENSO phases. Taken together, these results
suggest that during El Niños, new production decreases substantially, as
does active transport and passive flux of particles by subduction, while
export of sinking particles shows a more moderate decline.

Our results highlight the importance of intensive, process-oriented
studies and the development of region-specific algorithms for de-
termining interannual variability in export flux. However, they also
make it clear that much work remains. What is the origin, sinking
speed, and remineralization rate of long-lived POM? Does mesozoo-
plankton grazing control the production of rapidly sinking particles, or
are particle formation rates and sinking speeds modulated by other
processes (e.g., Fe-limitation, Brzezinski et al., 2015)? Do these results
(derived from homogeneous water parcels) apply to dynamic frontal
regions where export seems to be enhanced in the CCE (Krause et al.,
2015; Stukel et al., 2017a)? Does recalcitrant POM flux explain inverse
relationships between NPP and e-ratio measured in other regions (Maiti
et al., 2016, 2013)? Are our results applicable to other upwelling sys-
tems, such as the Equatorial Pacific? Future progress will require spa-
tially-resolved time-series of export flux, novel biogeochemical (Bishop
et al., 2016; McDonnell et al., 2015) and ecological (Amacher et al.,
2013) sampling approaches capable of assessing the mechanisms
driving export flux, and new synthetic modeling approaches capable of
combining such diverse observational data into predictive models of
carbon flux (Coles et al., 2017; Jackson and Burd, 2015).
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Table 3
Summary of CCE regional model results for select years. Shown are the modeled
export production (mg C m−2 d−1) for the region (entire CCE Domain), the
coastal zone (< 150 km offshore) and the Offshore zone (> 250 km offshore)
and averaged for the indicated year. Export efficiency is shown in the par-
entheses.

Year Regional Coastal Zone Offshore

1998 101.9 (27%) 127.6 (19%) 93.2 (35%)
1999 107.3 (25%) 130.5 (18%) 99.0 (30%)
2006 111.7 (23%) 160.6 (15%) 98.1 (30%)
2007 114.2 (22%) 146.9 (16%) 105.8 (25%)
2008 115.4 (21%) 151.4 (15%) 105.7 (25%)
2014 106.0 (25%) 133.7 (15%) 97.2 (36%)
2015 100.28 (29%) 125.6 (19%) 95.4 (33%)
2016 108.2 (24%) 152.7 (15%) 98.9 (30%)

Fig. 9. (A) Time series of NPP (mg C m−2 d−1) within the CCE domain (black),
the coastal CCE waters (green), the transitional CCE waters (magenta) and the
offshore CCE waters (blue). (B) Same as A with NPP normalized (% anomaly) to
the climatological mean from 1998 to 2016. (C) Same as A with export flux as
calculated from the model (Eq. (2)). (D) Same as C with export normalized (%
anomaly) to the 1997–2016 climatological mean. Vertical red lines indicate
each CCE-LTER cruise, while blue shaded regions are the 1997–98 and 2015–16
El Niños.
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found on the CCE LTER Datazoo website: http://oceaninformatics.ucsd.
edu/datazoo/catalogs/ccelter/datasets.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the
online version at doi:10.1016/j.dsr.2018.08.007.
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