Simple Plant Location Problem
This file contains documentation for programs used to solve the simple plant location problem. The objective function is to minimize the sum of the variable costs (distances from objects to their cluster’s exemplar) and the fixed costs (sum of the preferences for the selected exemplars). The programs are based on the following article:

Brusco, M. J., & Steinley, D. (2015). Affinity propagation and uncapacitated facility location problems. Journal of Classification, 32 (October), 432-480.
All programs are implemented in Fortran 90 and run at the DOS command prompt. The general structure is as follows:

1) Set the main input file, amat, containing the symmetric dissimilarity matrix. The first line of this file contains the # of objects, # of clusters (ignored), and the preference value for each exemplar.

2) Run the batch file ‘stages.bat’, which consists of the following STAGES.

STAGE1.EXE – this is a greedy heuristic that adds exemplars until no further improvement in the objective function. This is the first phase of the add-bump-shift routine of Kuehn and Hamburger (1963). If the number of clusters from this heuristic is p, then the program outputs a number of clusters equal to q = max(p-6, 2). This file is called seed, and contains the one row ‘q 1’, where q is the starting number of clusters and 1 is the first random number seed. The input and output files for the program are:

(1) amat – the input data file

(2) seed – an output file containing the number of clusters q = max(p-6, 2) and the current random number seed value initially set to 1. This file is read by STAGE2.EXE.

(3) heur – this output file contains the best-found objective value across all restarts of the simulated annealing heuristic. It is initialized to a large number (999999999999.0). This file is read and updated by STAGE2.EXE.

STAGE2.EXE – this program runs a fast simulated annealing heuristic to get a very good upper bound on the objective function value (in most cases, for problems that can be tackled with branch-and-bound, this stage will find the global optimum). This program is run multiple times in the batch file. Initially, there are 4 restarts using q clusters (each time changing the random number seed used to get the initial partition). Then, q is incremented (q to q + 1) and 4 restarts are run for the new level of q. In the current batch file, this process continues until q = p, but this could be expanded if desired. The input and output files for the program are:

(1) amat – the input data file

(2) seed – an input file for the number of clusters and the current random number seed value. This file is updated on each run: if the seed value is less than 4, then only the seed value is incremented by 1; however, if the seed value equals 4, then it is reset to 1 and the number of clusters is incremented by 1.
(3) heur – an input file for the best-found objective value across all restarts of the simulated annealing heuristic. This file is only updated if the current restart finds a better objective function value.

(4) permute – this file contains the best-found solution across all restarts of the simulated annealing heuristic. The first row in the file is p, the number of exemplars. The next p rows are the exemplar labels for the best-found solutions. The remaining rows are the n-p objects not selected as exemplars. Like heur, this file is only updated if a new best solution is found.
(5) results – this is an output file that contains the objective function value and computation time for the current restart of simulated annealing.

(6) lmult – this is an output file consisting of n zeros that will be read by the Lagrangian relaxation program, STAGE3.EXE
STAGE3.EXE – this program is Lagrangian relaxation to see if the best simulated annealing solution can be confirmed as the global optimum. In addition to the input data file, the program reads and initial upper bound from heur and an initial set of Lagrange multiplier values from lmult. The lmult file is updated with the final values of the Lagrange multipliers. Other output measures include the set of exemplars (exemplars) and a final containing a flag to indicate if the global optimum has been confirmed (bbflag). The input and output files for the program are:

(1) amat – the input data file

(2) heur – this input file contains the best-found objective value across all restarts of the simulated annealing heuristic.

(3) lmult – this is an output file consisting of n zeros that when read by the Lagrangian relaxation program, but updated to contain the final Lagrange multiplier values upon output.

(4) exemplars – the set of selected exemplars in Lagrangian solution.
(5) bbflag - this file contains a single value of 0 if either constraint satisfaction is achieved, or if the lower bound upper bound difference is less than .00001. In this case, no B&B is required. However, if the value in bbflag is 1, then branch-and-bound is required.

STAGE4A.EXE – if the global optimum is not confirmed by STAGE3.EXE (the value in bbflag is 1) then the program STAGE4A.EXE is used to obtain a good initial Lagrangian relaxation solution using only the selected variables found by the heuristic from the file permute in STAGE2.EXE. The input and output files for the program are:

(1) amat – the input data file

(2) heur – this input file contains the best-found objective value across all restarts of the simulated annealing heuristic.

(3) bbflag - this file contains a single value of 0 or 1. This program is only needed if the value in bbflag is 1.

(4) lmult – this is an output file consisting of n zeros that when read by the Lagrangian relaxation program, but updated to contain the final Lagrange multiplier values upon output.

(5) permute – this file contains the best-found solution across all restarts of the simulated annealing heuristic. The first row in the file is p, the number of exemplars. In this Lagrangian program, only the variables in this file are candidates for selection.

(6) exemplars – the set of selected exemplars in Lagrangian solution.

STAGE4B.EXE – this program uses the Galvao and Raggi (1989) branch-and-bound procedure to produce the global optimum solution. It reads the input data file (amat), the initial set of exemplars from permute, the bbflag file to see if the program is needed at all, and the initial set of Lagrange multipliers from STAGE4A.EXE in lmult. The optimal objective function value and set of exemplars are written to the screen. However, in the batch file, these results are piped to another file.
(1) amat – the input data file

(2) bbflag - this file contains a single value of 0 or 1. This program is only needed if the value in bbflag is 1.

(3) lmult – this is an input file for this program that contains the final Lagrange multiplier values from the previous program STAGE4A.EXE.

(5) permute – this file contains the best-found solution across all restarts of the simulated annealing heuristic. The first row in the file is p, the number of exemplars.

The final output across all stages is written to the file: PROB.RES
Example 1:
>> Copy the file ‘body_eucl’ to ‘amat’

>> Type ‘stages.bat’ at the command prompt

The output is as follows (my annotation in bold has been added):

This is the output from STAGE1.EXE

 25.818597900000000

P = 40 Z = 3994.77725 TIME = 0.20
This is the output from STAGE2.EXE (simulated annealing values). Note the big improvement relative to the Stage 1 objective value.

 3932.38919 6.19

 3932.38919 5.21

 3932.51665 4.95

 3932.38919 4.96

 3929.87227 6.29

 3929.87227 5.28

 3929.87227 5.02

 3929.87227 4.40

 3927.95685 5.88

 3927.95685 5.18

 3928.61297 5.12

 3929.28805 6.35

 3926.69755 5.79

 3926.69755 6.59 BEST FOUND VALUES HERE 3926.69755

 3926.69755 6.15

 3926.69755 5.88

 3929.88893 7.04

 3927.03094 7.24

 3928.56468 7.45

 3930.45394 7.53

 3928.71585 9.75

 3930.61810 8.52

 3928.71585 7.24

 3928.89808 8.07

 3931.48817 10.56

 3931.74880 7.54

 3931.49133 9.70

 3931.74880 7.86

This is the output from STAGE3.EXE (Lagrangian relaxation). Notice the gap between 3922.06122 and 3926.69755 – global optimality has not been confirmed, so we need branch-and –bound.

LAGRANGIAN RELAXATION 6 3922.06122 15.26
This is the output from STAGE4A.EXE

BEST SUBSET RELAXATION 1 3926.69755 0.34

 37 3926.697646389999136

This is the output from STAGE4B.EXE
 3922.350 3926.698 1 2 0

 3925.801 3926.698 2 2 0

 3926.255 3926.698 3 2 0

 3926.700 3926.698 4 2 1

 3926.685 3926.698 4 2 0

 3926.698 3926.698 5 2 1

 3926.698 3926.698 5 2 1

 3926.697 3926.698 3 2 0

 3926.698 3926.698 4 2 1

 3926.698 3926.698 4 2 1

 3924.090 3926.698 2 2 0

 3925.297 3926.698 3 2 0

 3926.601 3926.698 4 2 0

 3926.699 3926.698 5 2 1

 3926.698 3926.698 5 2 1

 3926.089 3926.698 4 2 0

 3926.699 3926.698 5 2 1

I deleted a ton of rows here

 3926.544 3926.698 9 2 0

 3926.700 3926.698 10 2 1

 3926.683 3926.698 10 2 0

 3926.698 3926.698 11 2 1

 3926.696 3926.698 11 2 0

 3926.698 3926.698 12 2 1

 3926.698 3926.698 12 2 0

 37 3926.697546390001662 Here the B&B algorithm found the global optimum
 3926.698 3926.698 13 2 1

 3926.698 3926.698 13 2 1

 3926.698 3926.698 9 2 1

 3923.109 3926.698 4 2 0

 3924.265 3926.698 5 2 0

 3925.840 3926.698 6 2 0

 3926.400 3926.698 7 2 0

 3926.699 3926.698 8 2 1

 3926.698 3926.698 8 2 1

 3926.100 3926.698 7 2 0

More rows deleted

 3926.701 3926.698 17 2 1

 3926.704 3926.698 17 2 1

 3926.700 3926.698 15 2 1

 3926.697546390001662

GLOBAL OPTIMUM 3926.69755 125.44

 134 31 2 11 32 77 99 125 137 139 144 151

 176 177 185 212 242 274 280 293 297 307 309 315

 325 327 338 348 351 359 368 429 441 450 479 480

 482
The confirmed global optimum is obtained with objective value 3926.69755. The total time was 125.44 seconds (on an outdated laptop!). The 37 exemplars (beginning with object 134) are written as output.
Example 2:

>> Copy the file ‘iris_eucl’ to ‘amat’

>> Type ‘stages.bat’ at the command prompt

The output is as follows (my annotation in bold has been added):

This is the output from STAGE1.EXE

 2.360084700000000 This value is preference
P = 11 Z = 84.27651 TIME = 0.01

This is the output from STAGE2.EXE (simulated annealing values). Note the big improvement relative to the Stage 1 objective value.

 90.89295 0.44

 90.89295 0.42

 90.89295 0.64

 90.89295 0.48

 87.51819 0.57

 87.51819 0.58

 87.51819 0.67

 87.51819 0.61

 85.35175 0.53

 85.35175 0.60

 85.35175 0.67

 85.35175 0.54

 83.51750 0.47

 83.51750 0.57

 83.51750 0.68

 83.51750 0.53

 83.26191 0.46

 83.25673 0.61

 83.25673 0.61

 83.25673 0.60

 83.14394 0.54

 83.14394 0.57

 83.14394 0.62

 83.14394 0.61

 83.03155 0.51 This is the best Stage 2 obj. value

 83.06016 0.55

 83.03155 0.53

 83.03155 0.62

This is the output from STAGE3.EXE (Lagrangian relaxation). Notice the gap between 83.03155 and 83.03037 – global optimality has not been confirmed, so we need branch-and –bound.

LAGRANGIAN RELAXATION 6 83.03037 1.03
This is the output from STAGE4A.EXE

BEST SUBSET RELAXATION 1 83.03155 0.04

 11 83.031648599997425

This is the output from STAGE4B.EXE
 83.033 83.032 1 2 1

 83.030 83.032 1 2 0

 83.032 83.032 2 2 1

 83.032 83.032 2 2 0

 83.032 83.032 3 2 0

 11 83.031548599999951 -Optimum found here
 83.032 83.032 4 2 1

 83.032 83.032 4 2 1

 83.032 83.032 3 2 1

 83.031548599999951

GLOBAL OPTIMUM 83.03155 0.17

 102 8 48 49 55 70 94 97 106 121 148

The confirmed global optimum is obtained with objective value 83.03155. The total time was 0.17 seconds (on an outdated laptop!). The 11 exemplars (beginning with object 102) are written as output.

Example 3:

>> Copy the file ‘faces_900’ to ‘amat’

>> Type ‘stages.bat’ at the command prompt

The output is as follows (my annotation in bold has been added):

This is the output from STAGE1.EXE
 60.000000000000000 This value is preference
P = 60 Z = 13704.79697 TIME = 0.71
This is the output from STAGE2.EXE (simulated annealing values). Note the big improvement relative to the Stage 1 objective value.

 13400.13923 18.61

 13399.71574 22.66

 13399.71574 32.79

 13399.71574 30.34

 13396.87618 31.39

 13396.87618 33.86

 13396.45269 29.70

 13396.45269 28.91

 13393.52035 28.64

 13393.52035 31.80

 13398.42678 31.95

 13393.25497 29.27

 13390.32263 29.56

 13390.32263 35.22 This is the best Stage 2 obj. value

 13390.32263 36.18

 13390.32263 30.14

 13392.46772 33.37

 13392.46772 44.50

 13392.46772 34.32

 13392.46820 27.76

 13394.77314 37.12

 13394.77314 39.86

 13394.77314 42.03

 13394.77314 36.89

 13398.26287 35.12

 13398.26287 40.76

 13398.26287 38.74

 13394.92715 38.50

This is the output from STAGE3.EXE (Lagrangian relaxation). Notice the gap between 13375.31625 and 13390.32263 – global optimality has not been confirmed, so we need branch-and –bound.

LAGRANGIAN RELAXATION 6 13375.31625 58.43
This is the output from STAGE4A.EXE
BEST SUBSET RELAXATION 1 13390.32263 1.06

 57 13390.322726099982901
This is the output from STAGE4B.EXE (MANY, MANY ROWS DELETED
 13375.942 13390.323 1 2 0

 13384.450 13390.323 2 2 0

 13387.491 13390.323 3 2 0

 13390.323 13390.323 4 2 1

 13388.356 13390.323 4 2 0

 13390.312 13390.323 5 2 0

 13390.323 13390.323 6 2 1

....

....

 13389.259 13390.323 30 2 0

 13390.350 13390.323 31 2 1

 13390.323 13390.323 31 2 0

 57 13390.322626099985428 -Optimum found here
 13390.324 13390.323 32 2 1

 13390.323 13390.323 32 2 1

 13389.643 13390.323 29 2 0

....

....

 13390.086 13390.323 15 2 0

 13390.323 13390.323 16 2 1

 13390.323 13390.323 16 2 1

 13390.322626099985428

GLOBAL OPTIMUM 13390.32263 4048.12

 298 667 197 2 580 495 412 887 7 9 31 68

 77 86 154 156 157 159 160 162 183 209 224 300

 303 304 306 338 362 374 396 406 411 453 459 489

 492 542 548 562 587 593 609 641 648 661 673 699

 787 793 795 798 799 801 828 834 839

The confirmed global optimum is obtained with objective value 13390.32263. The total time was 4048 seconds (on an outdated laptop!). The 57 exemplars (beginning with object 298) are written as output.

