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Abstract

We propose a universal and straightforward test for validating assump-
tions in the structural models. Structural models impose a causal structure,
take data as an input, and then produce exact structural parameters. We
simulate the new data while breaking the original causal structure. We
then feed the model the simulated data and then see whether it produces
different results. If its conclusions are the same, then the models’ implica-
tions are not sensitive to the underlying data, and the model fails the test.
We then apply our test to the models analyzing monetary policy. We find
out that simple SVARs successfully pass the test and can be used to identify
monetary policy effects. On the other hand, DSGE models estimated via
full-information methods such as Smets and Wouters (2007) fail the test
and potentially force their conclusions on the data.
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Introduction

In the ideal world, it is easy to find the causal effect of policies. We need to

simulate the world many times, generate arbitrary policy changes, see the re-

sults, and average them. Unfortunately, it is typically not possible since we live

only in one actual world. Thus, economists often use structural models to make

assumptions about the causal relationships between variables and then ensure

that such models are consistent with the data. After that, we can see the effect

of the policy under consideration in the model and then assume that this policy

will have a similar impact on the world in the actual data. However, this exer-

cise poses certain risks. For example, the models can be misspecified and have

incorrect causal relationships but can still be consistent with the data. Dynamic

general equilibrium models are at risk of being misspecified and fitting the data,

as they allow for many shocks and match very persistent data. Thus, how can

one check if the model is accurate when it is consistent with the data? In this

paper, we propose such a test.

The idea is to simulate alternative data where policy under consideration is

irrelevant and then feed this data to the model. If the model correctly detects

that the policy does not affect other variables in the simulated data, we hold the

model as accurate and effective. However, suppose the model insists that the

policy under consideration has a strong effect on other variables. In that case,

we conclude that the model is misspecified, forcing its policy conclusions on the

data. We then consider two applications of the test for monetary policy, where

we investigate whether monetary policy has a casual effect on the rest of the

economy.

In the first application, we consider a simple recursive structural VAR exer-

cise proposed by Stock and Watson (2001), where they investigate the effect

of the Fed funds rate changes on unemployment and inflation. The authors es-

timate a recursive structural VAR with three variables and compute an impulse
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response to Fed funds rate shock. They find that an increase in the Fed funds rate

shock increases unemployment and lowers inflation. Our goal is to see what the

Stock and Watson (2001) model says if we feed it the simulated data whereby

construction monetary policy does not affect the economy.

Figure 1: The Diagram of Causal Effects Between Interest Rate r, Unemployment
u, and Inflation π in the Actual and Simulated Data

We split the data from Stock and Watson (2001) into an impulse block con-

sisting of the interest rate and a We split the data from Stock and Watson (2001)

into an impulse block consisting of the interest rate and a response block, which

includes two other variables: inflation and unemployment. The diagrams in Fig-

ure 1 allow visualizing the relationship between these three variables. The left

chart in Figure 1 reflects the actual data. Arrows show the causal effect of one

variable on others, and we allow for all possible causal relationships. In the cen-

tral chart, two left arrows from the interest rate to unemployment and inflation

are missing. Their absence reflects that monetary policy does not have a causal

effect on inflation and unemployment. However, the reverse is not valid, and

inflation and unemployment still can have a causal impact on unemployment.

We denote this setup as simulated data with dependent blocks or simply DB. Fi-

nally, the diagram on the right reflects the case where we remove all causal links
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between the blocks. In this case, the interest rate is independent of inflation

and unemployment, while unemployment and inflation can have causal effects

on each other as they stay within the block. We denote this environment as a

simulation with independent blocks or simply IB.

We begin with the simulation of dependent blocks, displayed on the central

chart in Figure 1. We create a simulated response block by reproducing the

relationship between the variables within the actual data response block. In par-

ticular, we match with the actual data the volatilities of simulated inflation and

simulated unemployment and their correlations with each other and their lags.

We then simulate the impulse block, and we allow it to depend on the simulated

response block. Thus, we denote this specification as dependent blocks or sim-

ply DB. For example, the interest rate can depend on simulated unemployment

and simulated inflation, similar to the data and consistently with the Taylor rule.

Also, we match covariance and autocorrelation properties of the actual interest

rate. The simulated data’s key feature is that monetary policy does not affect

output and inflation. We run the simulation 300 times and then estimate the

original SVAR model on each case’s simulated data.

In the simulated data, we find that an unanticipated increase in the fed funds

rate leads to a mean zero response of unemployment and inflation. This result

is not surprising since the simulated Fed funds rate has no causal effect on simu-

lated unemployment by construction. Moreover, the decrease in inflation in the

actual data in response to the fed fund rate shock in the actual data significantly

differs from the simulations. The increase in unemployment obtained in the ac-

tual data stays within the confidence interval for the simulated data response.

Nevertheless, it is close to the boundaries and has a correct sign. Overall, the ef-

fect of the interest rate on inflation and unemployment in the actual data differs

from the simulations. Thus, the model is capable of differentiating between two

sets of data-generating assumptions.
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We then run a more conservative simulation with independent blocks, dis-

played on the right chart in Figure 1. In the IB case, a simulated interest rate by

construction does not react to simulated output and inflation and does not affect

macroeconomic data. We still match covariance and autocorrelation properties

within the impulse and response blocks and remove links between them. Recur-

sive SVAR estimation still performs well, and our results are largely similar to

the estimation with dependent blocks described above.

As a result, we conclude that the SVAR recursive structure used by Stock and

Watson (2001) allows differentiating between alternative causal structures and

can be successfully used for testing the effects of monetary policy.

In the second application, we test a traditional dynamic general equilibrium

model developed by Smets and Wouters (2007). They estimate a medium-scale

New Keynesian model on the US macroeconomic data and determine that such a

model has good predictive power and can be used to assess the monetary policy’s

effect. We split the data from Smets and Wouters (2007) into the impulse block,

which consists of the interest rate, and the response block, which includes six

other variables: log hours worked, as well as the growth rate of GDP, consump-

tion, investment, real wage, and GDP deflator. We simulate the response block

by reproducing the covariance and autocorrelation of the actual response block.

We then move to the simulation of the impulse block. We allow the simulated in-

terest rate to depend on simulated output and simulated inflation similar to the

data and match covariance and autocorrelation properties of the actual interest

rate. The simulated data’s key feature is the absence of any effect of the simu-

lated monetary policy on any of the six other variables. We then run a Bayesian

estimation on the simulated data and find that monetary policy strongly affects

output and inflation, even though the opposite is true. The impulse response ob-

tained under actual data are indistinguishable from the results obtained under

simulated data.
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We then run a more conservative IB test, where the impulse and response

blocks are entirely independent of each other. The simulated interest rate does

not react to simulated output and inflation and does not affect any of the six

macroeconomic series. We still match covariance and autocorrelation properties

within the impulse and response blocks and remove links between them. The

result stays the same. The estimated Bayesian model implies strong effects of

the monetary policy.

Why is it the case that the Smets and Wouters (2007) find strong monetary

policy effects even when it is irrelevant? In reality, monetary policy might fail

for many reasons, money neutrality, failure of the central bank to communicate,

problems with the transmission of lower fed funds rate into lower mortgage

rates, and lack of desire from households and firms to borrow and spend. In

the model, the monetary policy fails to have a substantial effect only if prices

are flexible. However, the actual volatility of prices is small; and the model con-

cludes that the monetary policy has strong effects for stable observed inflation

even when the central banks can do little to help the economy. Are there any

other indicators that the exercise is failing? If the monetary policy is irrelevant,

but the effect of monetary shocks is assumed to be strong, we still should observe

these shocks’ small role in variance decomposition, which is precisely the case

in Smets and Wouters (2007). In their paper, monetary policy shocks explain

only a small percentage of output variation despite having a potentially strong

effect. Thus, variance decomposition plays a complementary role to our test in

detecting false positives.

We do not interpret our results as evidence against full-information methods

of estimation of structural models. However, we object to the excessive focus of

such models and methods on consistency with the data. Our exercise points that

it is crucial to distinguish between the cases when the model fails and when it

succeeds. The traditional New Keynesian model allows very few possible mon-
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etary policy scenarios to have weak effects. However, it often allows a large

number of possibilities when it can match the data. Consequently, it fits the data

even when if its policy conclusions are incorrect. Regarding monetary policy,

newer generations of models should focus on the transmission mechanism, in-

cluding commercial banks’ excess reserves, collateral requirements, etc. In this

case, the monetary policy cannot stimulate the economy either because of the

transmission mechanism or flexible prices.

Related Literature

Our paper relates to Chari et al. (2005), who criticize SVAR conclusions based on

their conclusions drawn from the data simulated under the real business cycle

theory. In a certain way, we generalize their approach by applying it to any struc-

tural methodology and practically any null hypothesis. Our key advantage is that

we do not need to tinker with particular structural assumptions and details of

the model; we simulate alternative inputs. In terms of SVARs, we relate to the

debate on the usefulness of SVARs by Cooley and Dwyer (1998) and Christiano

et al. (2007). Our advantage is that we generalize this debate by being agnostic

about the particular nature of the models.

Concerning dynamic general equilibrium models and a New Keynesian model,

our work relates to the criticism of New Keynesian models by Chari et al. (2008),

and its estimation by Christiano et al. (2005) and others. We differ from this lit-

erature by not taking any particular stance for or against any specific model.

Instead, we simulate alternative data by tweaking the assumptions about the

policy under consideration, feed it to the model, and then investigate whether

conclusions of the model are consistent with the assumptions used in the simu-

lation of the data.
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The General Methodology

Let’s consider a stationary dataset yt consisting of two blocks of variables y1t and

y2t so that yt = [y1t , y
2
t ]. We are interested in the causal links from variables in

block y1t on y2t . The set y1t can include the fed funds rate, government purchases,

capital requirements, or other variables. We are going to refer to these variables

as a group by impulse block. We denote the remaining variables in y2t as the

response block. The response block typically includes variables such as GDP,

consumption, investment, trade balance, and others. Let us also assume that a

model f implies some causal relationship between the two blocks. Formally, the

model can be represented as a system of equations f(y1t , y
2
t , θ, et) = 0, where θ

is a set of models parameters, and et is a set of exogenous variables, such as

measurement error or possibly other exogenous shocks. Such a model can be a

structural DSGE model, SVAR model, or even a reduced form linear regression

that potentially links two blocks. Under the null hypothesis θ = θ0, there is no

causal relationship between the two blocks. In the typical estimation exercise,

we identify a mean/mode value of θ∗ and the confidence interval [θ̄, θ]. If this

interval excludes θ0, then the null hypothesis is rejected, and we assume that the

causal effect from y1t to y2t is consistent with the data.

Our goal is to evaluate the model f . , We simulate dataset ỹt, also consisting

of the impulse block ỹ1t and the response block ỹ2t . The simulated data should be

similar to the actual data with all respect but the impulse block’s effect on the

response block. In particular, our null hypothesis is that the impulse block

does not affect the response block.

We do not generate the model under θ0. Our simulation is model-free, agnos-

tic, and relies only on the properties of data yt. We build the data ỹ1t and ỹ2t , and

by construction ỹ1t has no causal effect on ỹ2t . We run the simulation many times,

and in each iteration i, we obtain a value θ̃i from the estimation of the original

f model on the new simulated data. Having a set of θ̃i allows building a new
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confidence interval for the estimated parameters [ ¯̃θ; θ̃]. We now check whether

the value θ∗ obtained in the estimation of the model on the actual data belong to

the new confidence interval θ∗ ∈ [ ¯̃θ; θ̃]. If it does, we claim that the model cannot

identify causal links in the data as it suffers from false positives or type I error.

We also check whether the null hypothesis θ0 belongs to the interval θ0 ∈ [ ¯̃θ; θ̃].

If it does not, the model has too tight restrictions that force rejecting the null

hypothesis.

To proceed with the estimation, we do not need to understand the functional

relationships in the model f . All we need for the model is to spit out the par-

ticular set of parameters θ∗ once we feed the data to the model. After that, we

simulate the data many times, estimate the model each time i and obtain the

value of θ̃i. Having the set of θ̃i allows us to obtain the necessary confidence

interval [ ¯̃θ; θ̃] and check whether the original value θ∗ is a part of this interval.

Following the steps described below, we construct the simulated data consistent

with the null.

1. Estimate a regression for the response block in the actual data:

y2t = Λ̂2y
2
t−1 + e2t . (1)

Then after obtaining the residual term e2t , construct the variance V2:

V̂2 =
1

T − k
∑

e2t (e
2
t )
′. (2)

Build η2 using Cholesky decomposition so that

η2η
′
2 = V̂2. (3)

Matrix η2 allows having a similar variance of the residual in the simulations

relative to the actual data. In this step, we evaluate the relationships within
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the response block. In the next step, we are going to match them in the

simulated data.

2. Build the simulated series for the response block

ỹ2t = Λ̂2ỹ
2
t−1 + η2ε

2
t , (4)

where ε2t are standard white noises, independent across time and variables.

In this step, we simulate the response block y2t in equation (4) to not be

affected by the impulse block. It depends only on exogenous shocks, as

well as its own lagged values.

3. Estimate the relationship in the actual data for the impulse block.

We allow for two possibilities here. First, while we assume that the impulse

block does not have a causal effect on the response block, we allow the

impulse block to depend on the response block. We refer to this case as

dependent blocks or DB. For the second possibility, we simulate the impulse

block to be completely independent of the response block. We refer to this

case as independent blocks or IB. The mathematical relationships for both

DB and IB cases are outlined below.

(a) The impulse block values can depend on contemporaneous response block

values (DB):

Dependent Blocks : y1t = Λ̂11y
1
t−1 + Λ̂12y

2
t + e1t . (5a)

In this case, the variables in the simulated block y1t depend not only

on their lagged values y1t−1 and exogenous shocks e1t , but contempo-

raneous variables from the response block y2t as well.

(b) The impulse block is completely independent of the response block (IB):
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Independent Blocks : y1t = Λ̂11y
1
t−1 + e1t . (5b)

In this case, the variables in the simulated block depend only on their

lagged values y1t−1 and exogenous shocks e1t .

We then run the regression (5a) or (5b) on the actual data and obtain the

residuals e1t , In the next step, we construct a variance of e1t :

V̂1 =
1

T − k
∑

e1t (e
1
t )
′. (6)

We then decompose the variance V̂1 using Cholesky decomposition into the

product of η1 and its transpose so that

η1η
′
1 = V̂1. (7)

4. Build the simulated series for the impulse block as dependent block (DB) in

(8a) 1 or as an independent block (IB) in (8b) so that

ỹ1t = Λ̂11ỹ
1
t−1 + Λ̂12ỹ

2
t + η1ε

1
t , (8a)

ỹ1t = Λ̂11ỹ
1
t−1 + η1ε

1
t , (8b)

where ε1t is the standard white noise, independent across time.

5. In each simulation i, apply the model f to the simulated data, estimate struc-

tural parameters θi and determine whether shocks to ỹ1t cause the effect on

ỹ2t . If the impact is significant, then the model generates a ”false positive” or

type one error.
1We credit Jonathan Kreamer for suggesting it during one of the Macro workshops at FSU.
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6. We repeat the steps above for N times and establish the mean effect of the

impulse block on the response block ¯̃θ =
∑N

i=1 θ̃i and the confidence intervals

[ ¯̃θ; θ̃].

7. Determine whether the value of estimated parameters on the actual data θ∗

is a part of the confidence interval [ ¯̃θ; θ̃]. If it is, then the model is unable

to identify the causal relationship in the data. Also, determine whether the

parameter θ0, under which there is no relationship between the ỹ1t and ỹ2t

according to the structural model, is a part of the interval [ ¯̃θ; θ̃]. If it is not,

then the restrictions of the model might be too tight.

Application of the steps listed above does not require a deep understanding

of the model tested. The model takes the raw data as input and then generates

a specific set of parameters. The methodology proposed here modifies the input

data without touching the mechanics of the model. It then compares the model’s

conclusions with the assumptions that guide the simulation of inputs. However,

one of the consequences is that the methodology is silent on the particular flaws

of the model if the latter generates type one error.

One way we partly address the degree of misspecification is by having two

versions of the test. In a less conservative version of the test, we allow the

impulse block to depend on the response block while not the other way around.

In this case, having some interdependency between impulse and response blocks

allows it easier for the model to generate the results that the impulse block can

have a causality on the response block. Thus, we have a more conservative

version of the test; we break all links between the impulse and the response

block in the simulated data and then examine whether the model generates

corresponding conclusions. If the model still insists on the causal relationship

between the blocks, the case of ”false reject” is more severe.

We consider applying the methodology to the structural VAR estimation and

Bayesian DSGE estimation in the following sections.
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Example 1. A Toy VAR Model from Stock and Watson

(2001).

Summary of the Original Exercise

The canonical structural vector autoregression model considers the relationship

between economic activity and monetary policy. In the classical example de-

scribed below, we consider the relationship between inflation πt, unemployment

ut and a Fed funds rate Rt following Stock and Watson (2001). In particular, we

have a recursive VAR ordered as 1) inflation, 2) the unemployment rate, and 3)

the interest rate:

Yt = A1Yt−1 + A2Yt−2 + A3Yt−3 + A4Yt−4 + Cut, (9)

where Yt is a vector of [πt, ut, Rt], and C is a lower triangular matrix, while ut

is a vector of uncorrelated exogenous disturbances. Consistently with Stock and

Watson (2001), our VAR allows for four lags of each variable and covers the

quarterly data from 1960:I-2000:IV.

The particular recursive arrangements of the variables in a VAR are not arbi-

trary. In the original paper, the authors run a Granger-causality test and show

inflation predicting unemployment. Still, the fed funds rate does not help with

predicting unemployment. Unemployment helps to predict inflation, while the

Fed funds rate does not improve the forecast of inflation. Finally, both inflation

and the unemployment rate improve the prediction of the Fed funds rate. These

results are consistent with the chosen recursive arrangement. The shock to infla-

tion affects both the contemporaneous Fed funds rate and unemployment. The

unemployment shock affects the current inflation rate, and the Fed funds rate

shock affects both unemployment and inflation with a lag.
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In Figure 2 below, we replicate the original exercise by generating the im-

pulse response after estimating a recursive structural VAR:
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Figure 2: IRF with SVAR Estimation on the Actual Data

These results are intuitive. We interpret inflation shock as a negative supply

shock, reported in the first row of Table 1. As expected, this shock leads to an

increase in inflation, unemployment, and interest rate. On the other hand, an

increase in unemployment reflects a negative demand shock. As expected, the

second row of Table 1 demonstrates that an increase in unemployment leads to

lower inflation, higher unemployment, and lower interest rate. The last three

subplots in the third row describe the effect of a rise in the interest rate. As a

negative demand shock, it leads to lower inflation, higher unemployment, and

higher interest rate. Overall, these results are intuitive and do not raise any

suspicions about the statistical procedure.

We are primarily interested in the third row, which addresses the effect of

monetary policy on the economy. In the next section, we simulate the new data

assuming that the monetary policy is irrelevant.
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Simulating the Alternative Data

In this section, we simulate the data under the assumption that monetary policy

does not affect the economy. We want the simulated data to be similar to the

actual data in all aspects except the effect of monetary policy. While in the actual

data, we are agnostic about monetary policy’s impact, we know that monetary

policy is irrelevant in the simulation. More formally, we state the null hypothesis

below:

Null Hypothesis 1 Monetary policy does not affect the economy.

Consistently with the general methodology, we separate the actual data into

two blocks. The impulse block y1t consists only from the Fed funds rate or y1t =

[Rt]. The response block y2t consists of both inflation and unemployment or

y2t = [πt, ut]. We are then ready to apply the general methodology.

1. We estimate the AR(1) process for the response block following (1), con-

sisting of inflation and unemployment. Our goal here is to preserve the

relationship between inflation, unemployment, and their lagged values in

the simulations.

2. Here, we build the simulated values of inflation and unemployment using

pseudo-random generators according to equation (4).

3. We estimate the relationship in the actual data between the Fed funds rate,

its lags, and other variables. Consistently with the general methodology,

we allow for two possibilities. According to the first dependent or DB case

described in (5a), we allow the fed funds rate to depend on contempora-

neous unemployment and inflation. In the second independent block or IB

case, we allow the fed funds rate to be completely independent of other

variables and follow an AR(1) process according to equation (5b).
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4. We simulate the data for the Fed funds rate for both cases. In the first DB

case, where the interest rate depends on inflation and unemployment, the

data is simulated according to (8a). In the second IB case, the fed funds

rate is simulated according to (8b).

5. We apply recursive VAR estimation to the simulated Fed funds rate, infla-

tion, and unemployment and build the impulse response function in each

iteration.

6. We repeat the procedure N=300 times and establish the mean impulse

response for the identified shocks in the simulated data and the confidence

intervals for the simulated impulse responses.

7. We compare the impulse response from the actual data with the confidence

intervals of the simulated data impulse responses.

We then proceed to the simulation with dependent blocks displayed in Figure

3. In this environment, the fed funds rate does not have any causal effect on the

unemployment rate or inflation. The reverse is not valid, and the unemployment

rate and inflation might have a causal impact on the Fed funds rate. Our central

focus is the third row of the figure. We find that a positive interest rate shock

has no effect on unemployment or inflation in the simulated data. This result

is entirely consistent with the data generating process, where the interest rate

has no causal impact on neither inflation nor unemployment. This is not the

case in the actual data. The increase in the interest rate leads to lower inflation

after ten quarters in a statistically significant way relative to the simulated data.

While the interest rate also leads to a higher response of unemployment in the

actual data, the response stays within the confidence interval of the simulated.

Overall, the effect of interest rate shock on unemployment and inflation in the

actual data differs from the simulated data.
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The first row of figure three also shows the startling difference between sim-

ulated and actual data. Inflation shock seems to move inflation, unemployment,

and interest rate stronger than in the simulated data in a statistically signifi-

cant way. Moreover, higher inflation shock causes higher interest rates in the

actual data, which is consistent with the economic intuition. In the simulated

data, however, a positive inflation shock leads to lower interest rates. Thus, we

can conclude that the inflation shock has sharply different effects relative to the

simulated data in the actual data.

The second row of figure three demonstrates the effect of the unemploy-

ment or demand shock. Again, we see the sharp difference between actual and

simulated data. While in the actual data, higher unemployment leads to lower

inflation, in the simulated data, we see inflation increasing with higher unem-

ployment. Moreover, while higher unemployment leads to a lower interest rate

in the actual data, in the simulations, we observe higher interest rates in re-

sponse to unemployment. As before, the results in the simulations seem to be

inconsistent with economic intuition. In all diagrams for the second row in the

figure, we observe statistically significant differences between simulated and ac-

tual data.
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Figure 3: SVAR Estimation for the Simulated Data with Dependent Blocks

Figure 4 displays the impulse response functions for estimating the recursive

structural vector autoregression for the simulated data with independent blocks.

We preserve the relationship between inflation and unemployment in the sim-

ulated data since these variables both enter the response block. On the other

hand, simulated Fed funds rate data is entirely orthogonal to the simulated in-

flation and simulated unemployment. Overall, the simulated Fed funds rate’s

persistence and volatility are similar to the actual data, while its relationships

with simulated unemployment and inflation are not.

In Figure 4, we are primarily interested in the third row, which shows how a

positive shock to the fed funds rate affects itself, unemployment, and inflation.

As expected, an increase in the interest rate leads to a mean zero response in un-

employment and inflation. Like in figure 3, the response of inflation in the actual

data is lower than in the simulated data in a statistically significant way. Also,

similar to figure 3, a higher interest rate leads to higher unemployment, which
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is consistent with economic intuition, but the results stay within the simulated

data’s confidence interval.

Like in figure 3, higher inflation shock leads to higher unemployment in the

actual data and lower unemployment in the simulated data, delivering statisti-

cally different results. Moreover, positive inflation shock leads to a mean zero

response in the interest rate, which is consistent with the data generating pro-

cess, as the interest rate is entirely orthogonal to inflation and unemployment.

In contrast, in the actual data, higher inflation leads to a higher interest rate in

a statistically significant way relative to the simulated data, which is also consis-

tent with economic intuition.

Finally, we turn our look to the second row, which shows the effect of an un-

employment shock. Higher unemployment leads to lower inflation in the actual

data and higher unemployment in the simulated data, similar to the results dis-

played in figure three. This difference is statistically significant. As expected, an

unemployment shock on average leads to a zero mean effect on the interest rate,

as the latter is entirely independent of unemployment. In the actual data, how-

ever, a positive shock to unemployment leads to a lower interest rate. As before,

this result is statistically significant and consistent with economic intuition.
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Figure 4: IRF with SVAR Estimation on the Simulated Data with Independent
Blocks

To summarize, we find the results for the SVAR estimation to be strongly

positive. Simple lag restrictions allow differentiating between simulated and

actual data for all three shocks. In almost all cases, the difference between the

responses in simulated and actual data is statistically significant. Moreover, the

results in the simulated data seem to be often inconsistent with the economic

intuition, which makes sense as we simulate the alternative realities.

The success of the SVAR estimation seems to be partly driven by its model-

free agnostic assumptions. The methodology intrinsically allows monetary pol-

icy to have both positive and negative effects, both strong and weak. Having

very mild restrictions and strong results allows differentiating the cases in the

actual data relative to counterfactual scenarios.
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Example 2. Smets and Wouters (2007).

While in the previous section, we analyze the problem of false positives arising in

structural vector autoregressions, this section looks into the estimated dynamic

general equilibrium model developed by Smets and Wouters (2007).

Summary of the Original Exercise

In this section, we apply the test to the bayesian estimation of the New Keynesian

DSGE model developed by Smets and Wouters (2007). The authors demonstrate

that the New Keynesian model with price and wage rigidities can successfully

match the data in the paper.

They estimate the model using seven economic time series: the log difference

of real GDP, real consumption, real investment, real wage, log hours worked, the

log difference of the GDP deflator, and the Fed funds rate. We denote these series

by 4yt,4ct,4it,4wt, lt, πt, and rt.

The model also has seven exogenous processes to match the data: total factor

productivity εat , investment-specific technology εit, risk premium εbt , exogenous

spending εgt , price mark-up εpt , wage mark-up εwt , and monetary policy shocks εrt .

The behavior of these shocks follows the seven equations below:
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εgt = ρgε
g
t−1 + ηgt + ρgaη

a
t , (10)

εbt = ρbε
b
t−1 + ηbt , (11)

εit = ρiε
i
t−1 + ηit, (12)

εat = ρaε
a
t−1 + ηat , (13)

εpt = ρpε
p
t−1 + ηpt − µpη

p
t−1, (14)

εwt = ρwε
w
t−1 + ηwt − µwηwt−1, (15)

εrt = ρrε
r
t−1 + ηrt . (16)

Shocks εbt , ε
i
t, ε

a
t , ε

r
t follow AR(1) processes, and shocks εgt , ε

p
t , ε

w
t follow ARMA(1,1)

process. These processes are characterized by ten parameters of persistence

ρg, ρb, ρi, ρa, ρp, ρw, ρr, ρga, µp, µw and volatilities σa, σb, σg, σl, σr, σp, σw. All of

these parameters are going to be estimated and discussed further below.

Having the same number of shocks as variables allows the model exactly to

match the data. While this certainly gives advantages in estimation, it also makes

it harder for the model to fail. Regardless of how misspecified is the endogenous

structure and policy implications, the model perfectly fits the data.

The endogenous structure of the model is more complex and is described be-

low in 14 equations (17)-(30). There are also 14 endogenous variables: output

yt, consumption ct, investment it, value of capital qt, capital services used in pro-

duction kst , physical capital kt, capital utilization zt, the rental capital rkt , price

mark-up µpt , inflation πt, wage mark-up µwt , the real wage wt, hours worked lt,

and interest rate rt.
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yt = cyct + iyit + zyzt + εgt (17)

ct = c1ct−1 + (1− c1)Etct+1 + c2(Lt − Etlt+1)− c3(rt − Etπt+1 + εbt) (18)

it = i1it−1 + (1− i1)Etit+1 + i2qt + εit (19)

qt = q1Etqt+1 + (1− q1)Etrkt+1 − (rt − Etπt+1 + εbt) (20)

yt = φp(αk
s
t + (1− α)lt + εat ) (21)

kst = kt−1 + zt (22)

zt = z1r
k
t (23)

kt = k1kt−1 + (1− k1)it + k2ε
i
t (24)

µpt = mplt − wt = α(kst − lt) + εat − wt (25)

πt = π1πt−1 + π2Etπt+1 − π3µpt + εpt (26)

rkt = −(kt − lt) + wt (27)

µwt = wt −mrst = wt − (σllt +
1

1− λ/y
(ct − λ/γct−1)) (28)

wt = w1wt−1 + (1− w1)(Etwt+1 + Etπt+1)− w2πt + w3πt−1 − w4µ
w
t + εwt (29)

rt = ρrt−1 + (1− ρ){rππt + rY (yt − ypt )}+ r4y[(yt − ypt )− (yt−1 − ypt−1)] + εrt

(30)

Equation (17) defines goods market clearing. Investment-output share iy is

defined by the following relationship iy = (γ − 1 + δ)ky, where γ is the steady-

state growth, and ky is the steady-state output ratio. Capital utilization costs

zy = Rk
∗ky, where Rk

∗ is the steady-state rental rate of capital. Government share

gy is defined exgenously, and consumption share follows cy = 1− iy − gy.

In the Euler equation (18), c1 = (λ/γ)/(1+λ/γ), c2 = [(σc−1)(W h
∗ L∗/C

∗)]/[σc(1+

λ/γ)], and c3 = (1 − λ/γ)/[(1 + λ/γ)σc]. The deep parameter λ reflects the de-

gree of habit formation. Variables W h
∗ , L∗, and C∗ correspond to the steady state

values of wages, hours, and consumption. This equation shows that the current
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consumption is affected by the past consumption, future expected consumption,

expected growth in hours, real interest rate, and the exogenous shock εbt .

In the equation describing investment dynamics (19), i1 = 1/(1 + βγ1−σc),

i2 = [1/(1 + βγ1−σc)γ2ϕ], φ is the steady-state elasticity of the capital adjustment

cost function, and β is the household discount factor. Investments depend on

their past and expected future value, the cost of capital qt, and the investment-

specific technology shock εit.

In the equation for the value of capital (20), q1 = βγ−σc(1 − δ) = [(1 −

δ)/(Rk
∗) + (1 − δ)]. The value of capital increaes with its expected future value,

as well as expected real rental rate on capital. It declines in response to higher

real interest rate and risk premium shock εbt .

In the aggregate production function (21) output yt increases with higher

capital kst and labor services lt, and total factor productivity εat .

Capital services in equation (22) increase with the capital installed in the

previous period kt−1 and its utilization zt. Utilization of capital in equation (23)

increases with the rental return rkt . Its sensitivity z1 = (1 − ψ)/ψ, and ψ is a

function of the elasticity of the utilization adjustment cost, normalized to be

between zero and one. In the equation for capital accumulation (24), k1 =

(1 − δ)/γ and k2 = (1 − (1 − δ/γ))(1 + βγ(1−σc))γϕ. Capital here increases with

previous capital, flow of investment, and investment-specific technology shock.

Price markup µpt in equation (25) depends on the capital-labor ratio, real

wage wt, and total factor productivity εat . Inflation πt in the Phillips curve (26)

depends positively on the past, expected future inflation, and markup shock

εpt . It decreases with the current price markup µpt . Here π1 = ιp/(1 + βγ1−σcιp),

π2 = βγ1−σc/(1+βγ1−σcιp), and π3 = 1/(1+βγ1−σc)[(1−βγ1−σcξp)(1−ξp)/ξp((φp−

1)εp + 1)].

The rental rate of capital rkt in (27) decreases with capital-labor ratio kt − lt

and increases with real wage wt. Wage markup follows (28), where it depends
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on the difference between the real wage and the rate of substitution between

consumption and leisure. In this equation, σl is the elasticity of labor supply

with respect to the real wage.

Behavior of real wages is described in (29), where w1 = 1/(1 + βγ1−σc),

w2 = (1 + βγ1−σcιw)/(1 + βγ1−σc), w3 = ιw/(1 + βγ1−σc), and w4 = 1/(1 +

βγ1−σc)[(1− βγ1−σcξw)(1− ξw)/(ξw((φw − 1)εw + 1))]. The real wage depends on

its past and expected values, wage markup, expected, current, and past inflation,

and wage-markup shock εwt .

Monetary policy in equation (30) follows a Taylor rule, where the interest

rate rt reacts to its past value, inflation, output gap, and output gap change.

Having the model description completed, we are ready to proceed with its

evaluation.

Introducing the Null and Building the Simulated Data

As before, we decompose the data into two blocks: the impulse block and the re-

sponse block. The impulse block consists of only the interest rate or algebraically

y1t = [rt], and six other variables compose the response block, or mathematically

y2t = [4yt,4ct,4it,4wt, lt, πt]. We construct the new simulated data using the

methodology described above and assume the null hypothesis to hold.

Null Hypothesis 2 Monetary policy does not affect the economy.

According to the null, the movement of the interest rate should not have any

effect on the data. However, the null still allows the rest of the economy to

affect the monetary policy. Thus, we are not ruling out existing monetary policy

rules, where the interest rate is affected by GDP growth and inflation. Below we

outline the application of the general methodology to the problem.

1. In this step, we treat the original quarterly data on the interest rate, GDP

growth, consumption growth, investment growth, wage growth, hours
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worked, inflation as stationary. Thus, these data do not require any fur-

ther modifications or filtering. More formally, x1t = y1t and x2t = y2t .

2. We estimate the AR(1) process for the response block following (1), con-

sisting of GDP growth, consumption growth, investment growth, wage

growth, hours worked, and inflation. Our goal here is to preserve the rela-

tionship between the variables and their lags within the response block.

3. Here, we build the simulated values of GDP growth, consumption growth,

investment growth, wage growth, hours worked, and inflation using pseudo-

random generators according to equation (4).

4. Similarly to the previous section, we estimate the relationship in the fed

funds rate’s actual data. As before, we allow for two possibilities. In the

DB case, we allow the fed funds rate to depend on contemporaneous GDP

growth and inflation according to (5a). In the second IB case, we allow the

fed funds rate to be independent of six other series and follow and AR(1)

process according to equation (5b).

5. We simulate the data for the Fed fund rate for both cases. For dependent

blocks or DB case, the interest rate depends on inflation and gdp growth,

and the data is simulated according to (8a), where Λ̂12 =

[
λy12 0 0 0 0 0 λπ12

]
.

Thus, we allow interest rate to depend on contemporaneous inflation and

output following Taylor rule. For independent blocks or IB case, Fed fund

rate is simulated according to (8b).

6. The simulated raw data for both the impulse block x̃1t and the response

block x̃2t is identical to the stationary counterparts ỹ1t and ỹ2t since the raw

data in the paper are already differenced out.

7. We apply the Bayesian DSGE estimation to the simulated Fed fund rate,

GDP growth, consumption growth, investment growth, wage growth, hours
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worked, and inflation.

8. We repeat the procedure N=300 times and establish the mean impulse

response for the identified shocks in the simulated data and the confidence

intervals for the simulated data estimation.

After building the simulated data, we are ready to apply the model to these

data and evaluate its conclusions regarding the relationship between the impulse

and the response block.

Applying the Model to the Simulated Data

We simulate the series for 1000 periods and then use the last 232 observations,

making the simulated data consistent with the authors’ actual data. We run the

simulations 300 times, and in each of the cases, estimate the model and obtain

the mode. We then build the confidence interval for modes.

We report the results in Table 1 and Table 2 given below. In both tables, col-

umn 2 describes the mode value of the estimation performed on the actual data

using the Metropolis-Hasting (MH) algorithm. Columns 3-5 report the mean

value and the confidence interval for the parameters in the simulated data,

where the impulse block can depend on the response block. Notice, in these

columns, the quantiles are computed from sorting modes within 300 simula-

tions. In other words, five % quantile for simulated posterior group corresponds

to a mode of estimated parameters for a particular simulation. Finally, columns

6-8 correspond to the simulated IB case, where the impulse block is orthogonal

from the response block.
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Table 1: Prior and Posterior Distribution of Structural Parameters

Actual Mode Simulated Mode DB Simulated Mode IB

Mode Mean 95% 5% Mean 95% 5%

ϕ 4.97 4.69 6.97 2.83 4.89 6.99 2.94

σc 1.32 1.03 1.62 0.60 0.93 1.40 0.55

h 0.73 0.67 0.86 0.40 0.70 0.87 0.44

ξw 0.72 0.76 0.85 0.63 0.76 0.86 0.62

σl 1.59 1.65 2.36 0.66 1.66 2.40 0.64

ξp 0.63 0.54 0.67 0.48 0.55 0.71 0.48

ιw 0.57 0.61 0.74 0.48 0.61 0.74 0.47

ιp 0.23 0.29 0.38 0.19 0.28 0.37 0.18

ψ 0.44 0.37 0.64 0.08 0.35 0.62 0.07

Φ 1.69 1.64 1.76 1.51 1.62 1.74 1.51

rπ 2.01 1.77 1.93 1.52 1.75 1.96 1.46

ρ 0.81 0.88 0.91 0.83 0.88 0.91 0.83

ry 0.08 0.11 0.19 0.02 0.11 0.21 0.02

r4y 0.21 0.13 0.17 0.08 0.13 0.17 0.07

π̄ 0.60 0.63 0.83 0.47 0.63 0.85 0.47

100(β−1 − 1) 0.17 0.18 0.21 0.16 0.18 0.21 0.17

l̄ 0.55 0.06 2.37 -3.20 -0.14 2.16 -3.33

γ̄ 0.45 0.49 0.59 0.35 0.49 0.60 0.36

ᾱ 0.30 0.29 0.35 0.23 0.30 0.36 0.23
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Table 2: Posterior Distribution of Shock Processes

Actual Mode Simulated Mode DB Simulated Mode IB

Mode Mean 95 % 5% Mean 95 % 5 %

σa 0.43 0.48 0.52 0.43 0.48 0.52 0.43

σb 0.23 0.19 0.37 0.10 0.18 0.38 0.10

σg 0.55 0.69 0.72 0.61 0.68 0.72 0.61

σl 0.41 0.49 0.67 0.30 0.48 0.70 0.28

σr 0.24 0.25 0.28 0.22 0.27 0.30 0.23

σp 0.14 0.20 0.24 0.14 0.20 0.24 0.14

σw 0.24 0.26 0.30 0.22 0.26 0.30 0.22

ρa 0.96 0.96 0.99 0.88 0.95 0.99 0.87

ρb 0.20 0.68 0.90 0.15 0.70 0.91 0.15

ρg 0.97 0.96 0.99 0.91 0.96 0.99 0.90

ρl 0.77 0.69 0.96 0.46 0.68 0.96 0.44

ρr 0.14 0.19 0.30 0.09 0.24 0.34 0.11

ρp 0.92 0.90 0.98 0.73 0.90 0.99 0.70

ρw 0.97 0.88 0.98 0.63 0.87 0.98 0.61

µp 0.75 0.63 0.82 0.39 0.62 0.83 0.37

µw 0.87 0.78 0.92 0.53 0.78 0.92 0.53

ρga 0.60 0.64 0.79 0.47 0.65 0.80 0.47

We are ready to discuss the results displayed in Table 1 and Table 2. Table

1 shows that most of the structural parameters not relevant for monetary policy

are similar between the actual and simulated data. When we look at the sen-

sitivity of the interest rate to inflation rπ, its value 2.03 is higher for the actual

data than for the simulated data with dependent blocks, which varies between

1.41 and 1.89, however it falls within the 90 percent interval for the simulation
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with independent blocks. For the sensitivity of the interest rate to output growth

r4y, its value in the actual data 0.22 is higher than the value within 90 % confi-

dence intervals for both the simulation with independent blocks (0.13;0.21) and

dependent blocks. On the other hand, the sensitivity of interest rate to output

gap ry for actual data is well within the 90 % confidence interval for both simu-

lations with dependent and independent blocks. When we look at the monetary

policy’s persistency ρ, its value is 0.81 in the actual data than the confidence

interval (0.87; 0.93) for the simulated data with dependent blocks and the sim-

ulated data with independent blocks (0.84;0.92). Overall, the results in Table

1 suggest that the interest rate reacts somewhat more to inflation and output

growth than in the simulated data. However, we do not observe big economic

differences between the estimated results on simulated and actual data despite

having a statistical difference.

In Table 2, the standard deviation of the monetary shock averaged across

the simulated data is 0.27, which is equal to the upper 95 % bound for the

estimation performed on the actual data, which is equal to 0.24. The mode

of autocorrelation for the monetary shock in the simulated data is 0.13 with

dependent blocks and 0.22 in the independent blocks, which is higher than the

mode of the estimated value of 0.12 from the actual data. Overall, monetary

shocks appear to be more volatile and persistent in the simulated data than

in the actual data, pointing towards a more significant monetary shocks role.

This result is surprising since, in the simulated data, monetary policy is entirely

irrelevant.

Impulse responses for the monetary policy in the simulated data are given

below in Figure 5 for dependent blocks and in Figure 6 for independent blocks.

The solid line in each figure corresponds to the impulse response generated from

the estimation performed on the actual data, where the interest rate goes up by

one standard deviation. We compose the dashed line by averaging three hundred
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impulse responses in the simulated data, computing each impulse response for

the mode of parameters.

Both Figure 5 and Figure 6 demonstrate that the interest rate’s effect on av-

erage increases when the estimation is performed on the simulated data for a

comparable shock to monetary policy. This finding is surprising because mone-

tary policy does not affect macroeconomic data in the simulation. Nevertheless,

it is consistent with the fact that monetary shocks have higher standard devia-

tion and persistence in simulated data. The estimation performed on the actual

data implies that an increase in the interest rate by 0.24 percentage points leads

to a decline in output by 0.2 percent. However, a rise in interest rate by 0.27

percent leads to a reduction in output by 0.35 percent for the simulated data in

Figure 5. These results strongly imply that the model cannot distinguish the es-

timation on the actual data from the simulated cases, where the monetary policy

does not affect the real economy.
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Figure 5: Impulse Response Functions To A Monetary Policy Shock in The Actual
and Simulated Data with Dependent Blocks
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Figure 6: Impulse Response Functions To A Monetary Policy Shock in The Actual
and Simulated Data with Independent Blocks

We then shift our focus to the variance decomposition results displayed in

Table 3 and Table 4. Table 3 shows the variance decomposition of output Y, labor

L, inflation π, and interest rate r for the seven exogenous processes described

above. Our primary focus in this table is the last column, which corresponds

to the portion of the variance explained by monetary shocks εr. We see that

monetary shocks explain a smaller percentage of output, labor, and inflation in

the actual data relative to simulated data with dependent or independent blocks.

This result is intuitive since these shocks have lower volatility and persistence

relative to the simulation. The only exception to this rule is the interest rate

itself, where shocks in the actual data explain 12 percent of its total variation.

In comparison, in the estimation with dependent blocks, they explain 11 percent

of the variation.
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Table 3: Variance Decomposition

Temp. TFP Risk Premium Ex. spending Inv. Specific Price Markup Wage Markup Mon. Pol.

εa εb εg εi εp εw εr

Y actual 25.49 1.45 3.02 13.77 8.52 45.40 2.35

L actual 1.87 2.29 8.49 13.80 5.97 64.56 3.02

π actual 2.30 0.50 0.66 5.13 30.64 56.74 4.04

r actual 6.96 6.81 2.81 28.50 7.61 34.25 13.07

Y simulated 38.16 10.81 4.28 13.99 14.83 10.65 7.27

L simulated 6.38 19.34 13.24 17.35 11.97 19.49 12.23

π simulated 3.47 5.26 0.38 2.29 58.30 23.64 6.67

r simulated 4.57 40.72 1.50 9.43 15.31 13.33 15.14

Y simulated IB 35.77 11.58 4.48 13.06 14.49 11.47 9.14

L simulated IB 6.03 19.92 12.65 16.07 10.91 19.56 14.85

π simulated IB 3.39 4.50 0.29 1.81 58.64 23.80 7.56

r simulated IB 4.26 40.53 1.12 6.78 14.91 14.31 18.10

Table 3 displays the mean contribution of monetary shocks across 300 simu-

lations, and Table 4 shows the confidence interval of contribution to the variance

of monetary shocks across different simulations. These results strongly suggest

no statistical difference between the contribution to the variance of monetary

shocks in the actual and simulated data. For example, while monetary shocks

explain 12 percent of the interest rate movement in the actual data, the 90

percent confidence interval for the simulated data with dependent blocks is be-

tween 3 percent and 28 percent, and between 4 and 37 percent with indepen-

dent blocks. The results in Table 4 also strongly suggest no statistical difference

between monetary shocks’ role in actual and simulated data.
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Table 4: Contribution of Monetary Shocks in Variance Decomposition of Aggre-
gate Variables

Actual Simulated Mean DB Simulated Mean IB

Mode Mode 95% 5% Mode 95% 5%

y 2.35 7.27 17.77 1.98 9.14 19.20 2.19

l 3.02 12.23 25.47 4.11 14.85 28.32 4.16

π 4.04 6.67 13.53 2.15 7.56 15.81 2.01

r 13.07 15.14 29.85 5.17 18.10 35.74 6.63

Interpreting the Results for Smets and Wouters (2007) Model

Introducing the test for Smets and Wouters (2007) model suggests two sets of

results. First, when we construct the data in a way that makes monetary policy

irrelevant, Bayesian estimation indicates that monetary policy still has strong

effects. Thus, the model cannot reject the null that monetary policy does not

affect the economy. Therefore, it generates false positives and type I error.

Second, monetary policy shocks play a minor role in both the simulated and

actual data. This finding partly suggests that the real effect of monetary policy

might be small. Why? Because if the model assumes strong monetary policy

effects regardless of whether it is true in the data, then the estimation should

generate small shocks for monetary policy if the latter is not essential. In the

exercise above, we show both facts. First, the model enforces monetary policy

to be influential on the data. Second, monetary policy shocks’ role is smaller in

the actual data than in the simulated data.

To be precise, we do not prove that monetary policy is not essential. Instead,

we show that the Smets and Wouters (2007) model rather assumes than proves

that monetary policy has strong effects. Since the microfounded model’s primary
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goal is to help the policy analysis, we have found our result to provide a severe

limitation for conclusions from Smets and Wouters (2007).

Conclusion

We propose a universal and straightforward test for validating assumptions in

the structural models. Since the data in economics are limited, persistent, and

are often impossible to replicate, there is a risk that structural models can be

misspecified despite being consistent with the data. Structural models impose

a causal structure on economic variables, take the actual data as an input, and

then produce the parameters that make the model consistent with the data. We

simulate the data under an alternative causal relationship, feed these simulated

data to the model, and then see whether the model can produce different con-

clusions from the simulated data.

We apply the test to the recursive structural VAR estimation of monetary pol-

icy by Stock and Watson (2001). We simulate the data under the assumption

that monetary policy is irrelevant and run the simulated data’s estimation pro-

cedure. We find that the model can successfully differentiate between simulated

and actual data.

We then apply the test to the estimation and data by Smets and Wouters

(2007), which is estimated via full-information Bayesian method. As before,

we simulate the data assuming that monetary policy is irrelevant and then feed

these simulated data to the model. To our surprise, the model concluded that

monetary policy has a strong effect in the simulations contrary to the data gener-

ating process assumptions. Thus, we have concluded that the Smets and Wouters

(2007) is not suitable for policy analysis.

In terms of direct implications, our results suggest the surprising strength

of indirect inference methods, such as matching up impulse responses between
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the model and the data ala Christiano et al. (2005) relative to full-information

estimation. Nevertheless, we have tested our methodology on only two models,

and further research is required to establish whether a particular estimation

method has an advantage.

Our results point the economic models should develop stronger mechanisms

of measuring out-of-sample performance and focus less on fitting and replicating

the data. While in data science, validating results plays a central role; many

economic models still focus on the performance in sample, which creates the

danger of overfitting misspecified models. We partly address this problem in this

project, but new research and testing of other models using our methodology are

required.
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