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Abstract

This paper considers the impact of identity-dependent externalities on
competitive behavior in all-pay contests. We introduce a model of network
contest games, in which the prize generates externalities for players directly
linked to the winner, and establish existence and sufficient conditions for
uniqueness of Nash equilibria. Both the structure of the network and nature
of the externalities have intuitive consequences for equilibrium investment.
In general, positive externalities introduce free-riding incentives, whereas
negative externalities intensify competition, especially among highly con-
nected agents. Results from a laboratory experiment provide robust empir-
ical support for the comparative static predictions of the model.
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1 Introduction

In virtually all areas of social and economic interaction, one can find examples

of agents competing with each other in pursuit of some valuable prize. Individ-

uals and organizations frequently expend significant resources on marketing, ad-

vertising, and lobbying in order to outperform their rivals or command a greater

influence over market allocations or political outcomes. Research in industrial eco-

nomics, public choice, and political economy has explored competitive behavior in

rent-seeking environments, R&D competition, patent races, political campaigns,
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and promotion tournaments. Many of these settings are modeled as contests, in

which agents exert costly effort or make irreversible investments and the winner

takes all.

The standard assumption in contest models is that losing agents are indiffer-

ent to the identity of the winner. However, agents may have considerably more

general preferences over the possible allocations of the prize. In particular, agents

who do not win the contest may care a great deal about who does, especially if

the allocation of the prize affects the nature of subsequent interactions between

the contestants. In the related context of winner-pay auctions, Jehiel, Moldovanu

and Stacchetti (1996) introduced the notion of identity-dependent externalities (or

IDEs) as a way of capturing the consequences of the allocation for bidders in post-

auction interactions. Such externalities may arise in relation to the assignment

of exclusive licensing agreements (Brocas, 2003), the sale of a nuclear weapon or

location of environmentally hazardous enterprises (Jehiel, Moldovanu and Stac-

chetti, 1996), competition for access to a cost-reducing process innovation, or the

allocation of talent across teams (Das Varma, 2002).

There are relatively few studies that consider the implications of IDEs for all-

pay contests (see, e.g., Linster, 1993; Esteban and Ray, 1999; Konrad, 2006; Klose

and Kovenock, 2015); and yet, there remain many interesting questions to explore.

For instance, in many settings the structure of IDEs is governed by an underlying

network of connections. As such, there are naturally arising questions regarding

the impact of network structure on competitive behavior which, to date, have not

been addressed by the existing literature on IDEs in auctions and contests.

In this paper, we study the effects of network-based identity-dependent exter-

nalities on competitive behavior in all-pay contest environments. To do so, we

develop and analyze a theoretical model of a network contest game. Our frame-

work builds on recent developments to the understanding of strategic behavior in

games played on networks (Bramoullé, Kranton and D’Amours, 2014). We concen-

trate on Tullock (1980) contests—one of the most commonly studied formulations

of imperfectly-discriminating all-pay contests—wherein each player’s probability

of winning the contest is increasing in her own effort investment, relative to the

investments of others. The primary innovation of our model is the introduction

of a network that governs the flow of externalities from the winning player to her

neighbors.

As a motivating example, consider a collection of community councils lobby-

ing a city planning committee in charge of selecting the location for a new public

facility. Each community’s ideal outcome would be to have the facility located
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within their own neighborhood. However, if the facility generates positive exter-

nalities or is more easily accessible to neighborhoods that are sufficiently close to

the eventual location, it is natural to expect that lobbying activity will depend

on the geographical network connecting the communities. If the externalities are

sufficiently strong, or the communities sufficiently well-connected, they may en-

gage in less lobbying activity than if it is more difficult to access a facility located

outside their own neighborhood.

Along similar lines, the investment decisions made by firms competing for an

exclusive licensing agreement will typically depend on the rivalry structure in

the firms’ product market space. Firms who operate in close proximity to the

winning firm may be significantly worse off than other unsuccessful firms.1 How

might the structure of product market rivalries affect rent-seeking behavior in this

setting? The natural intuition in this case suggests that the negative externalities

associated with the exclusive license will intensify competition among firms who

are engaged in markets with more heated rivalry.

Our main contributions in this paper are theoretical. We start by establishing

the existence of a Nash equilibrium for general network structures and externali-

ties (Theorem 1). The main challenge to existence is the fact that payoff functions

in the network contest game are (like the standard contest environment) discon-

tinuous at zero. We rely on results from Reny (1999) and Bagh and Jofre (2006) to

prove existence. In addition, we provide closed-form characterizations of equilib-

ria for two broad classes of network structures: regular networks and (a subclass

of) core-periphery networks, to highlight key characteristics of the relationship

between externalities, network properties, and equilibrium behavior.

For regular networks, there exists a symmetric equilibrium in any network

contest game. Moreover, comparative statics with respect to the size of the exter-

nality and the density of the network are consistent with the intuition highlighted

by the motivating examples given above. For instance, positive externalities in-

troduce incentives for players to free ride on their neighbors’ investments, leading

1Another similar example can be made in the context of professional sporting organizations
competing for the services of a talented free-agent athlete. For instance, in Major League
Baseball, the Boston Red Sox (part of the American League East Division) might be much
happier to see a top free agent player sign a deal with the San Diego Padres (who are in the
National League West Division) than with the New York Yankees, who play in the same League
and Division as Boston. There are, of course, several other considerations that influence the
negotiations between sporting teams and free agent athletes, including salary demands, team
budgets, contract length, synergies with existing team members, and the athlete’s locational
preferences. Nevertheless, the point is that competition in these kinds of settings, which may
include both winner-pay and all-pay components, is likely influenced by the anticipated interest
and activity of rival teams.
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to lower equilibrium investment. Conversely, negative externalities drive up the

effective value of winning the contest, intensifying competition and increasing equi-

librium investment. Each of these effects is amplified as the network becomes more

densely connected, as captured by an increase in the common degree for regular

networks. Nevertheless, the symmetric equilibrium in regular networks is typically

not unique. For instance, when externalities are positive and sufficiently strong,

there may also exist a specialized equilibrium, in which some subset of the players

choose to be inactive (invest nothing) in the contest.

Similarly, semi-symmetric equilibria in a subclass of core-periphery networks

also take the form of a specialized equilibrium for sufficiently strong, positive ex-

ternalities. In particular, highly connected core players, facing stronger free-riding

incentives than peripheral players, invest nothing in equilibrium. In contrast, when

the prize allocation generates strong negative externalities, the core players—who

are more exposed by the structure of the network—increase their equilibrium in-

vestment substantially compared to the peripheral players.

We then provide sufficient conditions for there to be a unique Nash equilib-

rium (Theorem 2). Our characterization closely follows the seminal approach

developed by Bramoullé, Kranton and D’Amours (2014) for network games with

linear best replies. However, adapting their results to the network contest game

is a non-trivial exercise. In particular, because best replies are non-linear in the

network contest game (just as they are for standard Tullock (1980) contests), the

main results derived by Bramoullé, Kranton and D’Amours (2014) cannot be di-

rectly applied.2 Nevertheless, we demonstrate that the key insights provided by

Bramoullé, Kranton and D’Amours (2014) can be suitably adapted to the network

contest game.

One key condition of our uniqueness theorem relates the size of the external-

ities in the network contest game to the lowest eigenvalue of the network, which

also plays a crucial role in Bramoullé, Kranton and D’Amours (2014).3 While

Bramoullé, Kranton and D’Amours (2014) exploit the theory of potential games

(Monderer and Shapley, 1996) to derive their results, our formulation does not

admit an exact potential function. Instead, we establish that the network con-

test game is a best-response potential game (Voorneveld, 2000), which allows us

2Moreover, approaches based on variational inequalities (VI) that have been applied to net-
work games without linear best replies (see, e.g., Melo, 2018; Parise and Ozdaglar, 2019; Zenou
and Zhou, 2020) also do not apply.

3As discussed by Bramoullé, Kranton and D’Amours (2014), the lowest eigenvalue captures
the “two-sidedness” or “bipartiteness” of the graph. When the lowest eigenvalue (which is
negative) is sufficiently large in magnitude, the amplification of agents’ interactions increases
the chances of multiple equilibria.
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to take an analogous approach. Altogether, our theoretical framework establishes

new results extending both the well-developed literature on contest theory and

the growing body of work studying strategic behavior in network games.

Finally, we test the main predictions of the model in a controlled laboratory

experiment. In our experiment, subjects are placed into groups of six and assigned

to positions in one of four network configurations—the complete network, a circle

network, a star network, and a core-periphery network with two core players. We

implement three different conditions that vary the size and sign of the externality:

a strong negative externality, a strong positive externality (of the same magni-

tude as in the negative condition), and a baseline control in which the network

structure is retained, but the externalities are set equal to zero. Overall, our main

experimental findings provide strong support for the theoretical predictions; at

the aggregate level, the comparative static predictions across treatments are well

supported by the observed patterns of mean investment.

The remainder of the paper is organized as follows. In Section 2, we introduce

the theoretical model of a network contest game. Section 3 presents the equi-

librium analysis, including our main results on existence and uniqueness of Nash

equilibria in the network contest game. Specific results for the class of regular

networks and a class of core-to-periphery structures are also provided, with sev-

eral examples, in this section of the paper. Section 4 describes the design of our

experiment and presents the main experimental findings. We discuss related prior

literature in Section 5 and provide brief concluding remarks in Section 6.

2 The Network Contest Game

Consider an environment with a set of individuals N “ t1, . . . , nu arranged in a

network, described by the adjacency matrix G, where gij “ gji “ 1 if distinct

agents i and j are linked, and gij “ gji “ 0 otherwise. We follow the convention

that gii “ 0 for all i P N . Each individual competes in a contest by choosing a

level of investment (or effort) xi ě 0. All players have the same linear cost of

effort function, cpxiq “ xi. Let x´i denote the vector of investments chosen by

all individuals other than i and suppose the probability of player i winning the

contest is given by the Tullock (1980) lottery contest success function. That is,

Pipxi,x´iq “

$

&

%

1
n
, if

řn
h“1 xh “ 0,

xi
řn

h“1 xh
, otherwise.

[1]

5



The winner of the contest receives a prize V ą 0. We assume, without loss of

generality, that the value of the prize is normalized to V “ 1. In the standard

contest setting, player i’s payoff from winning is V “ 1, while the payoff from

losing is zero, regardless of who among the other players wins the contest. In such

a setting, it is a well-known result (see, e.g., Szidarovszky and Okuguchi, 1997)

that the unique equilibrium is symmetric, given by xi “ x̄ for all i “ 1, . . . , n,

where

x̄ “
n´ 1

n2
[2]

The main innovation in our model is that there are identity-dependent externalities

generated by the prize that, together with the network, lead to different possible

payoffs for player i when she does not win the contest.

In particular, if a player does not win the contest, her payoff depends on

whether or not she is linked to the winner. The allocation of the prize to a player

i imposes an externality αV , with α P r´1, 1q, on each agent who is connected to

i; i.e., each agent j with gij “ 1. If gij “ 0, no externality is imposed on player

j.4 Thus, the expected payoff to player i from a profile of investments pxi,x´iq is

given by

πipxi,x´i; Gq “ Pipxi,x´iq ´ xi ` α
n
ÿ

j“1

gijPjpxj,x´jq. [3]

Throughout the paper, we refer to the game as a network contest game, represented

in normal form as Γ “ pXi, πiq
n
i“1 where Xi “ R` represents the strategy set for

player i, and πip¨q is the payoff function defined in [3].

3 Equilibrium Analysis

We start our analysis by noting that any strategy profile with only one active

agent cannot be a Nash equilibrium. Indeed, for a strategy profile x with xj ą 0

and x´j “ 0, player j’s best response function is empty. Similarly, given α ă 1,

it is also straightforward to show that x “ 0 is not an equilibrium. Thus, we can

restrict attention to strategy profiles with at least two active agents.

Consider player i and fix a profile x´i with at least one strictly positive invest-

4Notice that the model incorporates a few stylized assumptions about the externality. In
particular, the externality generated by allocating the prize to player i is the same for all of
player i’s neighbors, and does not spillover beyond the winner’s immediate neighbors. We view
these as natural starting points from which the model might be generalized. We also assume
that the externality parameter does not depend on the winner’s identity. As such, all of the
heterogeneity that arises in the model is captured by an agent’s position within the network.
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ment. The expected payoff for player i in equation (3) can be rewritten as

πipxi,x´i; Gq “
xi

řn
h“1 xh

´ xi ` α
n
ÿ

j“1

gij
xj

řn
h“1 xh

for all xi ě 0 and all x´i ‰ 0. Note that B2πi{Bx
2
i ă 0 so that the payoff functions

are strictly concave. Thus, player i’s best response to x´i is a well-defined, single-

valued function given by

fipx´i;α,Gq “ max

$

&

%

0,

«

ÿ

h‰i

xhp1´ αgihq

ff0.5

´
ÿ

h‰i

xh

,

.

-

. [4]

As in the standard contest game, the best response functions are non-linear. As

such, the main analysis of uniqueness and stability for network games developed

in Bramoullé, Kranton and D’Amours (2014) cannot be directly applied. More-

over, the payoff functions do not satisfy the assumptions on the objective function

required to apply the variational inequalities approach followed by Parise and

Ozdaglar (2019) and Melo (2018) for network games with non-linear best replies.5

When α “ 0, the best response functions are, as expected, the same as those

for the standard contest game, for which existence and uniqueness are well es-

tablished. For α ‰ 0, the issue is not quite as straightforward. We investigate

the issue of uniqueness in section 3.3. To prove existence of a pure strategy Nash

equilibrium, we rely on results from Reny (1999) and Bagh and Jofre (2006), to

deal with the fact that payoff functions are discontinuous at x “ 0.

Theorem 1 (Existence). The network contest game possesses a pure strategy Nash

equilibrium.

Here, we highlight the main idea behind the proof of Theorem 1, which is

detailed along with all of the other proofs in Appendix A. In particular, existence

follows from Theorem 3.1 in Reny (1999). In order to apply Reny’s theorem, we

establish that the network contest game is compact, quasi-concave, and better-

reply secure. For the last property, we show that the game is payoff secure and

weakly reciprocal upper semicontinuous (wrusc), which is a condition introduced

by Bagh and Jofre (2006) who prove that payoff security and wrusc imply better-

reply security.

5They each consider games in which the objective function depends on xi and a neighborhood
aggregate,

ř

h gihxh, but does not depend otherwise on xj if gij “ 0. In our setting, the payoff
of an agent i depends on each xj through the CSF, even if gij “ 0.
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Next, we provide a characterization of equilibrium profiles. For a given profile

x, we denote the set of active agents (those for whom xi ą 0) by A and the set

of inactive agents by N ´ A. The following lemma provides a straightforward

characterization of the set of Nash equilibria for the network contest game with

externality α and network G.

Lemma 1. An investment profile x with active agents A is a Nash equilibrium if

and only if |A| ě 2 and

(i) for all i P A,

ÿ

jPA

p1´ αgijqxj ´ xi “

˜

ÿ

jPA

xj

¸2

[5]

(ii) for all i P N ´ A,

ÿ

jPA

p1´ αgijqxj ď

˜

ÿ

jPA

xj

¸2

[6]

Consider first the special case of a complete network, in which each agent is

linked to every other agent.

Proposition 1. Consider the game in which G is the complete network, Kn. For

any α P r´1, 1q, there exists a unique Nash equilibrium, in which all players are

active and choose the symmetric investment

x̄αK “
pn´ 1qp1´ αq

n2
.

Since the proof is straightforward, we instead highlight the underlying intu-

ition. In the complete network, every non-winning agent is always impacted (sym-

metrically) by the winning agent, rendering the externalities identity-independent.6

As a result, the game can be reformulated as a standard contest without exter-

nalities but with a modified prize value equal to the difference between the payoff

from winning and the payoff from losing, which is V ´ αV “ V p1´ αq.7

Although there is a unique equilibrium (which is symmetric) when the network

is complete or when α “ 0 (a standard contest), there need not be a unique

equilibrium for incomplete networks with non-zero externalities. In particular, for

many networks, when α is positive and sufficiently large, there may exist both

6Note that this characterization relies on the modeling assumption that the size of the exter-
nality is homogenous across winning agents and their neighbors.

7Redefining pV “ V p1´αq (and setting V “ 1) the result follows from the fact that the unique

equilibrium in a standard contest with prize pV is pn´ 1qpV {n2.
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a symmetric equilibrium (in which all agents actively invest) and a specialized

equilibrium, defined next, in which some agents are inactive.

Definition 1. A specialized equilibrium is a Nash equilibrium x˚ in which the set

of active players A forms a maximal independent set. That is, for any two players

i, j P A, gij “ 0, while for every k P N ´ A,
ř

jPA gkj ě 1.

For a given network G and a set of active agents A, let diA “
ř

jPA gij de-

note the number of active agents linked to agent i P N . Then, define dN´A,A “

miniPN´A d
i
A. Finally, let nA “ |A| denote the number of active agents in A.

Proposition 2. Consider the game with network G and externality α P r´1, 1q.

(i) There exists a specialized equilibrium, x˚, with active agents A and inactive

agents N ´ A, if and only if α ě 1
dN´A,A

.

(ii) In every specialized equilibrium, x˚i “ x̄A for all i P A, where x̄A “
nA´1
n2
A

.

Proposition 2 establishes that, in fact, in any specialized equilibrium, each

inactive player must be linked to at least two active players.8 Moreover, a special-

ized equilibrium is symmetric for players in A. That is, each active player chooses

the same investment, corresponding to the equilibrium investment in a standard

contest (without externalities) among only the nA active agents.

Corollary 1. Specialized equilibria do not exist for negative externalities (α ă 0).

When α is sufficiently large, inactive players are content to exit the competition

for the prize because they can free ride off their active neighbors and enjoy the

positive externality that accrues if one of their neighbors wins. The greater the

number of active neighbors, the lower the externality can be for the inactive player

to opt out of the competition, but α must always be positive for a specialized

equilibrium to exist.

3.1 Equilibria in Regular Networks

For the network graph G, we let di “
ř

j gij denote player i’s degree. Then G is

a regular network (or regular graph) of degree k if di “ k for all i P N . The next

result establishes existence of a symmetric equilibrium in any regular network G

for any α P r´1, 1q.

8Bramoullé and Kranton (2007) describe a maximal independent set of order r as a maximal
independent set, A, with each node j P N ´A connected to at least r nodes in A. As they note,
while a maximal independent set exists for any graph, maximal independent sets of order r with
r ą 1 need not exist.
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Proposition 3. Consider the game with network G and externality α P r´1, 1q. If

G is a regular network of degree k P t0, . . . , n´ 1u, then there exists a symmetric,

pure strategy Nash equilibrium, x˚ “ px˚, . . . , x˚q, where

x˚ “
n´ 1´ αk

n2
. [7]

Note that, as should be expected, when α “ 0 or k “ 0 (which is the case when

G is the empty network), we obtain x˚ “ x̄, which corresponds to the standard

contest with no externalities. Furthermore, when k “ n ´ 1, G is the complete

network Kn, and we obtain x˚ “ x̄αK .

More importantly, comparative statics with respect to α and k have natural

and intuitive interpretations. For positive externalities (α ą 0), free-riding incen-

tives reduce the equilibrium investment compared to a standard contest without

externalities. For negative externalities (α ă 0), the effective value of winning the

contest increases so that competition intensifies, pushing equilibrium investment

higher than in the standard contest. For both positive and negative externali-

ties, these effects are amplified as k increases, which corresponds to an increase in

network density.

Combining Proposition 2 with Proposition 3, it follows that for regular net-

works, there may exist multiple equilibria. Whenever the graph has a maximal

independent set A with α ě 1{dN´A,A, there is both a specialized equilibrium and

the symmetric equilibrium with full participation.9 In addition, in many cases,

there may exist multiple specialized equilibria corresponding to different maximal

independent sets of agents. To illustrate this multiplicity, we present two exam-

ples of regular networks and highlight the ranges of α for which there exist both

specialized equilibria and a symmetric equilibrium with A “ N .

Example 1 (A circle network). In the circle network, the players are arranged

around a circle and linked to the two agents on either side. Thus, the circle network

is regular of degree k “ 2. Hence, there exists a symmetric equilibrium for any

α P r´1, 1q, in which all agents are active and each invests x˚ “ 5´2α
36

; see panel

(a) in Figure 1. Moreover, for n “ 6, there are two maximal independent sets, as

shown in Figure 1, panel (b). For each of these, nA “ 3, so that each active agent

invests x̄A “ 2{9. Furthermore, since every inactive player is linked to two active

9Note that in some cases, such a maximal independent set may not exist. For instance,
consider the circle network with n “ 5 agents. In this network, every maximal independent set
is of order at most one, meaning that there is always at least one inactive agent who is connected
to only one active agent, i.e., dN´A,A “ 1. In this case, a specialized equilibrium does not exist
for any α ă 1.
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x˚ “ 5´2α
36

x˚

x˚

x˚
x˚

x˚

(a) Symmetric equilibria, α P r´1.1q

0

0 0

2
9

2
9

2
9

2
9

2
9

2
9

0

0

0

(b) Specialized equilibria, α ě 0.5

Figure 1. Equilibria in the circle network with n “ 6 agents. Panel (a): A symmetric
equilibrium with all agents active exists for any α P r´1, 1q. Panel (b): When
α ě 0.5, there are two specialized equilibria, each characterized by a maximal
independent set of three agents, with each active agent investing x̄A “ 2{9.

x˚ x
˚ “ 5´3α

36 x˚

x˚ x˚ x˚

(a) Symmetric equilibria, α P r´1, 1q

2{9 2{9 2{9

0 0 0

0 0 0

2{9 2{9 2{9

(b) Specialized equilibria, α ě 1{3

Figure 2. Equilibria in the complete bipartite network with n “ 6 agents. Panel (a): A
symmetric equilibrium with all agents active exists for any α P r´1, 1q. Panel
(b): When α ě 1{3, there are two specialized equilibria, each characterized by
a maximal independent set of three agents, with each active agent investing
x̄A “ 2{9.

players, dN´A,A “ 2. Thus, the specialized equilibria exist if and only if α ě 0.5.

Example 2 (A bipartite network). G is a bipartite graph if the nodes (agents)

can be partitioned into two disjoint sets A and B, with gij “ 0 for all i, j P A and

gkl “ 0 for all k, l P B. Figure 2 illustrates a complete bipartite graph with n “ 6

agents. This network is regular of degree k “ 3. Hence, there exists a symmetric

equilibrium for any α P r´1, 1q, in which all agents are active and each invests

x˚ “ 5´3α
36

; see panel (a) in Figure 2. Moreover, the three agents on the top and

the three agents on the bottom represent the two maximal independent sets (as

well as the two elements of the partition); see panel (b) in Figure 2. Given nA “ 3 ,

each active agent invests x̄A “ 2{9. Since the graph is a complete bipartite graph,

each inactive agent in a specialized profile is linked to all of the active agents,

so that dN´A,A “ 3. Thus, the specialized equilibria shown exist if and only if
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2{9 0 2{9 0 2{9

Figure 3. A specialized equilibrium for the line network with n “ 5 agents exists if and
only if α ě 0.5. The center agent and the agents at the endpoints of the line
form a maximal independent set. Each active agent invests x̄A “ 2{9.

α ě 1{3.

Although the prior examples illustrate specialized equilibria in the context of

regular networks, specialized equilibria may arise in other classes of networks. To

underscore this point, consider the example of a line network with n “ 5 agents,

which is not regular.10

Example 3 (A line network). In the line network, whenever n is odd, there is a

specialized equilibrium associated with the maximal independent set consisting of

the endpoints of the line and every second node in between (see Figure 3). Every

inactive agent is connected to two active agents, so that dN´A,A “ 2. Thus, the

specialized equilibrium exists if and only if α ě 0.5.

Further examples of specialized equilibria arise in the context of another com-

monly studied class of networks; those that exhibit a core-periphery structure.

3.2 Equilibria in a Subclass of Core-Periphery Networks

The class of core-periphery networks is comprised of networks consisting of two

types of agents—a set of highly connected core players, and a set of less connected

periphery players. While this class of networks is very broadly defined, we restrict

attention to a subset of the class that includes many of the most commonly studied

core-periphery structures.

In particular, we define a subclass of core-periphery structures referred to as

core-to-periphery networks. In a core-to-periphery network, there are nc ě 1 core

players. All of the core players are connected to each other, creating a dense, or

completely connected core. In addition, each core player is connected to m ě 1

periphery players. We further assume that each periphery player is connected to a

single core player and no other periphery players. Thus, there are n “ ncp1`mq

total players, comprised of ncm periphery players, all with degree 1, and nc core

players, each with degree k “ pnc ´ 1q `m.

10Note that, for a line network with an even number of agents (n even), if the set of active
agents form a maximal independent set, there is always at least one inactive agent who is linked
to just one active agent. Thus, by Proposition 2, there does not exist a specialized equilibrium
for the line if n is even.
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The conditions laid out in the previous paragraph are satisfied by, for in-

stance, the star network, which has a single core player (nc “ 1) connected to

m periphery players. For all such core-to-periphery networks, we characterize the

semi-symmetric equilibrium in which all players of the same type choose identical

levels of investment. We denote the investment levels by xc and xp for core and

periphery players, respectively.

Proposition 4. Consider the game with network G and externality α P r´1, 1q.

Suppose G is a core-to-periphery network with nc core players, each connected

to m peripheral players. Then there exists a semi-symmetric, pure strategy Nash

equilibrium in which every core player chooses the same investment x˚c , and every

peripheral player chooses the same investment x˚p, where

(i) if α ă 1
m

, then x˚c “ r1´ αms∆ and x˚p “ r1` αpnc ´ 2qs∆ , where

∆ “
ncr1`m` αmpnc ´ 3qs ´ r1` αpnc ´ 1´ αmqs

n2
cr1`m` αmpnc ´ 3qs2

ě 0.

(ii) if α ě 1
m

, then x˚c “ 0 and x˚p “
ncm´1
pncmq2

.

Note that when α “ 0, the equilibrium investments reduce to the standard

contest equilibrium,

x˚c “ x˚p “
ncp1`mq ´ 1

n2
cp1`mq

2
“
n´ 1

n2
.

For negative externalities and sufficiently small, positive externalities (α ă 1{m),

the semi-symmetric equilibrium is interior; that is, both sets of agents are ac-

tive. In addition, the semi-symmetric equilibrium investment for core players is

decreasing in the externality (and strictly decreasing until they become inactive).

In contrast, for periphery players, equilibrium investment is non-monotonic in α.

Moreover, for α ă 0, we have x˚c ą x˚p . Intuitively, the core players are

structurally more exposed to the negative externality than are the less connected

periphery players (who are linked only to a single core agent, by assumption).

Accordingly, for α ą 0, free-riding incentives are also stronger for core players

than for periphery players, so that x˚c ă x˚p in the semi-symmetric equilibrium

with positive externalities.

When the positive externality becomes sufficiently large (α ě 1{m), the semi-

symmetric equilibrium is a specialized equilibrium. Free-riding incentives for the

core players are sufficiently strong that they choose to be inactive in the contest.
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Figure 4. Semi-symmetric equilibria in the star network.

When this is the case, only the periphery players are active, and since they are

not connected to each other, they form a maximal independent set and their equi-

librium investment coincides with the equilibrium for a standard contest between

ncm players (i.e., the total number of periphery players). Thus, for the subclass of

core-to-periphery network structures, strong positive externalities lead to polar-

ization of competition in the semi-symmetric equilibrium. The following examples

serve to illustrate the semi-symmetric equilibria in two common core-to-periphery

network structures.

Example 4 (A star network). In a star network, there is a single core-player,

such that nc “ 1, and m peripheral players connected to the core (see Figure

4a where the core player is distinguished by the hollow node). For m “ 5, the

semi-symmetric equilibrium involves full participation when α ă 1
5
, with

x˚c “
5p1´ 5αqp1´ αq2

4p3´ 5αq2
and x˚p “

5p1´ αq3

4p3´ 5αq2
.

When α ě 1
5
, the semi-symmetric equilibrium is a specialized equilibrium with A

equal to the set of peripheral players, with x˚c “ 0 and x˚p “
4
25

. Figure 4 shows

the two cases on the network graph in panel (a) and in a graph that plots the

equilibrium investment against α for both player types.

Example 5 (A core-periphery network with nc “ 2). In the CP2 network (see

Figure 5a), there are nc “ 2 core players (distinguished by hollow nodes), each

connected to 2 peripheral players. Thus, the semi-symmetric equilibrium involves
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Figure 5. Semi-symmetric equilibria in the CP2 network.

full participation when α ă 1
2
, with

x˚c “
p1´ 2αqp5p1´ αq ` 2α2q

4p3´ 2αq2
and x˚p “

5p1´ αq ` 2α2

4p3´ 2αq2
,

and is the specialized equilibrium with x˚c “ 0 and x˚p “
3
16

whenever α ě 1
2
.

These equilibria are again illustrated on the network graph and plotted against α

in panels (a) and (b) of Figure 5.

3.3 Uniqueness of Equilibria

In this section, we provide a more general treatment of uniqueness in the network

contest game. Since the game does not admit linear best replies, we cannot directly

apply the results from Bramoullé, Kranton and D’Amours (2014) to characterize a

sufficient condition for uniqueness. However, using a similar approach, combined

with direct argument, we are able to provide a related characterization of sufficient

conditions under which the network contest game possesses a unique equilibrium.

To facilitate the exposition, we provide a general description of our approach.

First, we show that while the contest game with network externalities is not an

exact potential game, it is a best-response (or best-reply) potential game (Voorn-

eveld, 2000). That is, there exists a function P (called a BR-potential) with the

same best replies as the network contest game. Thus, the set of Nash equilibria

in the game coincide with those strategy profiles that maximize the BR-potential,

P.

Second, we partition the domain X of the BR-potential P into two subsets:

XH , consisting of strategy profiles x such that
ř

h xh ě 0.5, and XL, consisting

of strategy profiles x such that
ř

h xh ă 0.5. For XH , the BR-potential P is
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strictly concave in x as long as rI ` αGs is positive definite, which is true if and

only if α ă 1{|λminpGq|, where λminpGq is the lowest eigenvalue of G. This is

the familiar sufficient condition provided by Bramoullé, Kranton and D’Amours

(2014) for uniqueness in network games with linear best replies.

For XL, the BR-potential P need not be strictly concave in x, even if α ă

1{|λminpGq|. That is, the condition that rI ` αGs is positive definite does not

assure that P is strictly concave over XL. Nevertheless, we show directly that if

there exists a Nash equilibrium in XL, we must have either α ą 0.5 (if the Nash

equilibrium involves at least one inactive agent) or α ą 0.5pn ´ 2q{∆pGq, where

∆pGq ” maxi di is the maximum degree in the graph (if the Nash equilibrium

involves all agents being active).

Before stating the result, we first introduce the definition of a best-response

potential game (Voorneveld, 2000) and the BR-potential function, P.

Definition 2. A game Γ “ pXi, πiq
n
i“1 with strategy space X “ X1 ˆ . . . ˆ Xn

and payoff functions πi : X Ñ R for players i P N “ t1, . . . , nu is called a Best-

Response potential game (BR-potential game) if there exists a function P : X Ñ R
such that

arg max
xiPXi

Ppxi,x´iq “ arg max
xiPXi

πipxi,x´iq [8]

for any i P N and any x´i P X´i. The function P is called a BR-potential for Γ.

Next, we construct a BR-potential for the network contest game. Note that,

for any x P X, we let |Apxq| denote the number of nonzero entries in the vector x

(i.e., the number of active agents under profile x). In addition, let Xtot “
ř

h xh

be the sum of investments for the profile x.

Lemma 2. The following function, P, is a BR-potential for the network contest

game.

Ppx1, . . . , xnq “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

ř

jăk

p1´ αgjkqxjxk ´
1
3
pXtotq

3 if |Apxq| ě 2,

´1
3
xj

„

max
i‰j
p1´ αgijq

2

if |Apxq| “ 1 and xj ą 0,

´1
3
n´1
n

if |Apxq| “ 0.

[9]

The proof involves showing that the best responses coincide with those of the

game, and closely follows the approach used by Ewerhart (2017) for the standard
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contest game without externalities.11 Then, by Proposition 2.2 of Voorneveld

(2000), a strategy profile x is a Nash equilibrium of the game if and only if it

maximizes the BR-potential, P. Therefore, if there exists a unique maximizer for

P, it is also the unique Nash equilibrium of the network contest game. We can

now state our uniqueness result.

Theorem 2 (Uniqueness). Consider the game with network G and externality

α P r´1, 1q. The following three conditions are, when jointly satisfied, sufficient

for there to exist a unique Nash equilibrium;

(i) α ď 0.5;

(ii) α ď 0.5pn´2q
∆pGq

; and

(iii) α ă 1
|λminpGq|

.

Furthermore, whenever these conditions are satisfied, the unique equilibrium in-

volves total investment
ř

h xh ě 0.5.

It is worth noting that, depending on the network, one of the conditions in

Theorem 2 will always imply the other two. For instance, if ∆pGq ” maxi di ă

n´ 1 (i.e., if no player is directly linked to every other player), then condition (i)

implies condition (ii). Otherwise, condition (ii) implies condition (i). Similarly,

if in addition to ∆pGq ă n ´ 1 we have |λminpGq| ě 2, then condition (iii) is

sufficient on its own. In particular then, for many networks, the condition derived

by Bramoullé, Kranton and D’Amours (2014) for network games with linear best

replies (our condition (iii)) is also sufficient for the network contest game.12

4 Experimental Evidence

In this section, we describe the design, procedures, and results of the laboratory

experiment we conducted to test the predictions of our theoretical framework.

Additional details regarding the experimental design are provided in the Online

Appendix.

Design.—The basic decision environment in our experiment is a network con-

test game with n “ 6 players. Each individual is given a fixed endowment, ω “ 800

tokens, and asked to choose how much to invest in a project. Within each group,

11Moreover, setting α “ 0 yields the same BR-potential he constructs.
12It is also straightforward to see that these conditions are in general sufficient, but not

necessary for uniqueness. Consider the complete network with α P p0.5, 1q. The lowest eigenvalue
is ´1, so that condition (iii) is always satisfied. However, conditions (i) and (ii) are (clearly)
not satisfied. Nevertheless, as shown in Proposition 1, there exists a unique equilibrium for all
values of α P r´1, 1q.
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only one player’s project can be successful, and the probability that player i’s

project is successful is given by the Tullock (1980) lottery contest success function

in equation (1). We set the value of the prize to be V “ 500 tokens and assume

that the value of the externality, αV , is proportional to the prize. The resulting

material payoffs to player i, accounting for the network structure G and the ex-

ternality parameter α are 1300 ´ xi if player i wins the contest, 800 ` 500α ´ xi

if player i does not win, but is directly linked to the winner by G, and 800 ´ xi

if player i does not win and is not directly linked to the winner, where xi is i’s

investment.

We introduce two sources of treatment variation. First, we examine the four

network structures shown in Figure 6, varied across sessions (i.e., between sub-

jects). The Complete and Circle networks are both regular networks (with

degree k “ 5 and k “ 2, respectively). The Star and CP2 networks are both

core-to-periphery networks. Second, we examine three values of the externality

parameter, α, in every session (i.e., within subjects). The first value, α “ 0, rep-

resents the baseline environment with no externality. The other two values cap-

ture a (strong) negative externality (α “ ´0.8) and a (strong) positive externality

(α “ 0.8).13 Altogether, this generates 12 treatment conditions, distinguished by

the network and the externality parameter.

Procedures.—Each session consisted of four blocks, with multiple rounds in

each block. In all sessions, Block 1 consisted of 10 rounds with α “ 0 (the Baseline

condition). For the other three blocks, we implemented the Negative condition

(15 rounds), the Positive condition (15 rounds), and another Baseline condition

(10 rounds), varying the order of the three conditions across sessions. Table 1

summarizes the treatment design, number of sessions, and number of independent

groups.

In total, we conducted 20 sessions at the XS/FS laboratory at Florida State

University (FSU). Subjects could only participate in one session. The experiment

was implemented using z-Tree (Fischbacher, 2007), with a total of 330 subjects,

randomly recruited via ORSEE (Greiner, 2015) from a sub-population of FSU

students who had all pre-registered to receive announcements about participation

in experiments.

At the beginning of each session, subjects were randomly divided into groups

13For notational convenience, we occasionally describe the different treatment conditions by
attaching a B (for Baseline) to indicate α “ 0, N (for Negative) to indicate α “ ´0.8, or P
(for Positive) to indicate α “ 0.8, at the end of the network name. For example, Complete-B
refers to the Complete network with baseline α “ 0, while Star-P refers to the Star network
with positive externality, α “ 0.8.
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Table 1. Summary of experimental treatments.

Network Treatment Order (Blocks 2–4) Sessions Groups Subjects

Complete NPB, PNB, BNP, BPN 4 10 60
Circle NPB, PNB, BNP, BPN 4 11 66
Star NPB (2), PNB (2), BNP, BPN 6 18 108
CP2 NPB (2), PNB (2), BNP, BPN 6 16 96

(a) Complete (b) Circle (c) Star (d) CP2

Figure 6. The set of networks

of six. Groups were fixed across all rounds and all blocks in every session. Par-

ticipants were seated randomly at private computer terminals and given a set

of written instructions. The experimenter then read the instructions aloud to

facilitate common understanding.14 Participants completed a short set of con-

trol questions to ensure they understood the instructions. The instructions were

framed in terms of a general externality, X. Then, before each block, the experi-

menter announced the value of X (“ αV ) and reminded participants of the way

payoffs are calculated. Participants were not informed about the number of blocks

or the details of any future blocks until after the previous block was completed.

Before the four blocks that constituted the main part of the experiment, we

also elicited subjects’ attitudes towards risk, ambiguity, and losses, using a list-

style procedure similar to the methods used by Holt and Laury (2002) and Sutter

et al. (2013). We also included a decision task after the four blocks were com-

pleted, designed to provide a measure of each subject’s joy of winning, following

an approach introduced by Sheremeta (2010).15 At the end of the experiment,

subjects were paid for one randomly chosen period from each block, for the sin-

gle decision round in the joy of winning elicitation task, and for one (randomly

selected) of the risk, loss, or ambiguity aversion elicitation tasks. Tokens were

14A copy of the experimental instructions (for the Circle network) are provided in the Online
Appendix.

15We do not address joy of winning or over-investment in the current paper, although it plays
an important role in the experimental analysis in our companion paper Boosey and Brown
(2021).
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Table 2. Equilibrium predictions by treatment condition.

Externality parameter
Network (position) Negative Baseline Positive

Complete 125.00 69.44 13.89
Circle – Symmetric 91.67 69.44 47.22
Circle – Specialized

(active) – – 111.11
(inactive) – – 0.00

Star (core) 206.63 69.44 0.00
Star (peripheral) 74.39 69.44 80.00
CP2 (core) 157.89 69.44 0.00
CP2 (peripheral) 60.73 69.44 93.75

converted to US dollars according to the exchange rate 400 tokens “ $1. Average

earnings (including $7 show-up fee) amounted to $17.46.

Predictions.—Table 2 summarizes the equilibrium predictions for each treat-

ment condition. First, for all networks, when α “ 0 (Baseline), the unique equi-

librium investment is symmetric across positions and corresponds to the standard

equilibrium investment for a contest with 6 players and a prize of V “ 500.

Furthermore, in the Complete network, in light of Proposition 1, the unique

equilibrium is the symmetric one corresponding to a standard contest with prize

value equal to V p1´αq. Accordingly, the equilibrium investment declines sharply

as the externality increases from α “ ´0.8 (Negative), to α “ 0 (Baseline), to

α “ 0.8 (Positive).

In the Circle network, there is a unique equilibrium for the Negative condition

and the Baseline condition. However, for the Positive externality condition, there

exists both a symmetric equilibrium with x˚ “ 47.22 and a pair of specialized

equilibria, each consisting of three active players who invest x̄A “ 111.11 and three

inactive players.16 This poses a potential coordination problem for the players in

Circle-P, since players may hold different beliefs about whether or not they are

playing the symmetric equilibrium, the specialized equilibrium in which they are

active, or the specialized equilibrium in which they are inactive.17 Compared with

16The two specialized equilibria can be obtained by switching the sets of active and inactive
players, since both are maximal independent sets.

17In the present paper, we focus on the comparative static predictions, which are similar
whether we use the symmetric equilibrium or the specialized equilibrium. In our separate com-
panion paper (Boosey and Brown, 2021), we examine the possibility that players are able to
coordinate over time, and investigate whether play within groups is consistent with the maximal
independent set characteristic of a specialized equilibrium.
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the Complete network, the predicted investment in the symmetric equilibrium

exhibits a much flatter decline as the externality increases. Thus, in line with the

comparative static results discussed in Section 3.1, the effects of the externality

(positive or negative) are increasing in the degree k for regular networks.18

For the Star and CP2 networks, we examine the core player(s) and peripheral

players separately. In both networks, the equilibrium is unique for all three exter-

nality conditions, is interior when α “ ´0.8 and α “ 0, and specialized (with the

core players inactive) when α “ 0.8. Thus, the equilibrium investment for the core

player(s) is very high in the Negative condition, but equals zero in the Positive

condition, reflecting their incentive to free ride in the specialized equilibrium. In

contrast, for the peripheral players, equilibrium investment is fairly similar across

all three values of α.

4.1 Main Results of the Experiment

In this section, we present the main results of the experiment as they relate to

the predictions of our theoretical framework. To that end, we concentrate solely

on the aggregate results concerning mean investment levels across networks and

externality conditions. We focus on the comparative static predictions in order

to highlight the main treatment effects. Throughout the analysis, we rely on

non-parametric tests for treatment comparisons and on the wild cluster bootstrap

method (Cameron, Gelbach and Miller, 2008) for post-estimation hypothesis tests

on regression coefficients. When the relevant test is not indicated, the reported

p-values correspond to a Wald test (with wild cluster bootstrap) comparing the

estimated constant in a linear regression to the NE prediction. Furthermore, in

all figures, error bars indicate 95% wild cluster bootstrap confidence intervals.

Baseline investment.—We first compare the mean investment level across

networks in Block 1, where α “ 0. In this case, the network is payoff irrelevant and

thus there should be no systematic differences across networks. Figure 7 shows

that the mean Block 1 investment is 189.65 in Complete, 179.83 in Circle,

198.17 in Star, and 191.58 in CP2. Consistent with the prediction, we find

no significant differences between networks (Kruskal-Wallis test, p “ 0.89; also,

for all pairwise comparisons between networks using the Wilcoxon ranksum test,

p ą 0.401). However, there is substantial over-investment, on average, relative to

the Nash Equilibrium prediction (69.44) in all networks, which is consistent with

the experimental literature on standard contests.

18If subjects perfectly implement one of the specialized equilibria in Circle-P, the predicted
average equilibrium investment is 55.55, which is higher than in the symmetric equilibrium.
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Figure 7. Mean investment levels in the Baseline condition (α “ 0) from Block 1, by
network. The solid reference line indicates the NE point prediction (69.44).
Error bars indicate 95% wild cluster bootstrap confidence intervals.

Result 1. Mean investment in the Baseline condition (Block 1) does not differ

across networks.

Nevertheless, in all networks, mean investment is trending down towards the

Nash Equilibrium point prediction over the course of Block 1, which is consistent

with some learning by the subjects as they gain experience with the strategic envi-

ronment.19 Thus, in order to account for experience, we also replicate the analysis

using only the final six rounds of the block (see Figure 7b).20 The corresponding

mean investments are 161.51 in Complete, 156.92 in Circle, 179.57 in Star,

and 171.60 in CP2, which are also not significantly different from each other

(Kruskal-Wallis test, p “ 0.772; for all pairwise comparisons using the Wilcoxon

ranksum test, p ą 0.322). Although these investment levels are lower than when

we use all 10 rounds, over-investment relative to the NE prediction persists.

4.1.1 Treatment comparisons

Next, we compare mean investment across networks and externality conditions

using the data collected in Blocks 2–4. Table 3 reports the mean investment for

each network and each externality condition, alongside the corresponding Nash

equilibrium (NE) point predictions. As is typical in contest experiments, and

consistent with behavior in Block 1, we observe considerable over-investment (over-

dissipation) relative to the NE in all conditions. However, we focus in this paper

on the treatment comparisons as they relate to the comparative static predictions

of the model. We begin by considering the two regular networks, Complete and

Circle, before turning our attention to the core-periphery structures, Star and

19We provide visual support for this downward trend in the Online Appendix.
20All of our results are qualitatively similar using only the last five rounds, or only the last

ten rounds.
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Table 3. Summary statistics for mean investment in Blocks 2-4 by treatment condition

Externality
Negative pα “ ´0.8q Baseline pα “ 0q Positive pα “ 0.8q

Network Observed [NE] Observed [NE] Observed [NE]

Complete 180.28 [125.00] 123.36 [69.44] 53.85 [13.89]
Circle 168.90 [91.67] 114.72 [69.44] 103.06 [47.22]

[55.55]:

Star
core 256.06 [206.63] 161.43 [69.44] 71.79 [0.00]
peripheral 179.16 [74.39] 143.15 [69.44] 126.14 [80.00]

CP2
core 213.03 [157.89] 125.33 [69.44] 102.28 [0.00]
peripheral 168.37 [60.73] 137.36 [69.44] 140.09 [93.75]

Notes: : denotes the average equilibrium investment in the specialized equilibria for Circle-P.

CP2.

Regular networks.—Figure 8a illustrates the mean investment reported

in Table 3 (using all rounds) for each externality condition in the two regu-

lar networks, Complete and Circle. Comparisons within network (between-

externality) are generally consistent with the comparative static predictions. In

both networks, investment is highest for the negative externality (180.28 in Com-

plete, 168.90 in Circle) and lowest for the positive externality (53.85 in Com-

plete, 103.06 in Circle), as predicted by the theory. Using the mean investment

across all rounds of a block within each independent group as a single observation,

we observe significant differences for all pairwise comparisons between externality

conditions in the Complete network (Wilcoxon Signed-Rank tests, p “ 0.047 for

N vs. B, p “ 0.005 for N vs. P, p “ 0.007 for P vs. B).

Similarly, in the Circle network, we observe significantly higher mean invest-

ment in the negative condition compared with the other two conditions (Wilcoxon

Signed-Rank tests, p “ 0.016 for N vs. B, p “ 0.008 for N vs. P). However, mean

investment in the Circle network is not significantly different between the base-

line (zero externality) and positive externality conditions (Wilcoxon Signed-Rank

test, p “ 0.374), consistent with Figure 8a. We summarize our findings in the

following two results.

Result 2. For the Complete network, mean investment is strictly decreasing in

the externality level, in line with the comparative static predictions.

Result 3. For the Circle network, mean investment is significantly higher with
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Figure 8. Mean investment levels by externality in the Regular networks. Dashed lines in-
dicate symmetric NE point predictions, while the short-dashed line for Circle-P
indicates specialized NE point prediction. Error bars indicate 95% wild cluster
bootstrap confidence intervals.

the negative externality than with either of the other externality conditions.

However, mean investment is no different with the positive externality than

with zero externality.

The second part of the result for Circle may be driven in part by the multi-

plicity of equilibria in the positive externality condition. In particular, while the

symmetric equilibrium predicts lower investment in Circle-P than in Circle-

B, the difference is quite small.21 Furthermore, the predicted difference is even

smaller if we posit that subjects play a specialized equilibrium (69.44 vs. 55.55).

In addition, the likelihood of some coordination failure, especially in the early

rounds, could explain why average investment remains at a similar level when α

increases from 0 to 0.8.

We also examine investment using only the final six rounds of each block. Fig-

ure 8b shows that for the Negative and Baseline externality conditions, the mean

investment levels using the final six rounds are no different than those reported in

Table 3 and Figure 8a (which use all rounds). For both the Complete and Cir-

cle networks, over-investment relative to the NE prediction remains statistically

significant. However, for the Positive externality condition, the mean investment

over the final six rounds is considerably lower than it is using all rounds.22 More

importantly, when using only the final six rounds of each block, the comparative

21Note, however, that the difference is no smaller than the difference between Circle-N and
Circle-B.

22In fact, over the final six rounds, over-investment in the Complete-P condition is only
marginally significant (p “ 0.0925). Similarly, while the difference between mean investment and
the symmetric equilibrium in Circle-P over the final six rounds is still significant (p “ 0.032),
the difference relative to the average predicted investment in a specialized equilibrium is only
marginally significant (p “ 0.0954).

24



static prediction that investment in Circle-B is higher than in Circle-P is now

supported (Wilcoxon Signed-Rank test, p “ 0.0076). Thus, if we allow for learning

(or experience) to take place in each block, we can remove the qualified support

for the comparative static predictions in the Circle network altogether.

Next, we hold fixed the externality condition and compare investment levels be-

tween the two regular networks. As expected, in the Baseline condition, we find no

significant differences, while in the Positive condition, investment is significantly

higher in Circle than in Complete, which is consistent with both the symmet-

ric and specialized equilibria for Circle-P.23 However, contrary to the theoretical

prediction, mean investment in the Negative condition is not significantly differ-

ent between Complete and Circle (Wilcoxon Ranksum test using group-level

means, p “ 1.000 using all rounds, p “ 0.622 using the final six rounds).

Result 4. Average investment is significantly lower in Complete-P than in

Circle-P, and is not significantly different between Complete-B and Circle-

B, consistent with the predictions. In contrast, and contrary to the theoreti-

cal prediction, average investments in Complete-N and Circle-N are not

significantly different from each other.

Core-Periphery networks.—Figure 9a shows the mean investment across

externality conditions for the core player and the peripheral players in the Star

network. Core players invest significantly more than the NE point predictions in

the Baseline and Positive conditions, but not in the Negative condition. Never-

theless, the comparisons between Negative, Baseline, and Positive for core players

are all in line with the comparative static predictions. Specifically, investment

in Negative is higher than in Baseline (Wilcoxon Signed-Rank test, p “ 0.018)

and Positive (p ă 0.001), and investment in Baseline is higher than in Positive

(p “ 0.004).

For peripheral players, the NE investment levels are very similar across the

three externality conditions (cf. Table 2). However, Figure 9a shows that the

mean investment is, in fact, slightly higher in Negative than in Baseline and Pos-

itive, which do not differ from one another.24 The comparative static results for

core players are all robust to using only the final six rounds of each block (see Fig-

ure 9b). However, the differences between mean investment of peripheral players

for the different externality conditions are no longer statistically significant when

23For the Wilcoxon Ranksum test, using mean investment over all rounds for a single group as
one observation, we have p “ 1.000 for Baseline and p “ 0.029 for Positive. Nothing substantive
changes if we use the final six rounds, with p “ 0.994 for Baseline and p “ 0.006 for Positive.

24Wilcoxon Signed-Rank tests, p “ 0.043 for N vs. B, p “ 0.003 for N vs. P, p “ 0.223 for P
vs. B.
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Figure 9. Mean investment levels by externality in the Star network. Dashed lines in-
dicate NE point predictions. Error bars indicate 95% wild cluster bootstrap
confidence intervals.

we restrict attention to the final six rounds.25 Our next result summarizes these

findings for the Star network.

Result 5. For the Star network,

(i) mean investment by the core players is strictly decreasing in the externality

level, in line with the comparative static predictions;

(ii) mean investment by the peripheral players is significantly higher with the

negative externality than with the other two externality conditions when using

all rounds, but does not differ between the three externality conditions when

using the final six rounds of each block.

Figure 10a shows the mean investment in the CP2 network. As in the Star

network, the core players invest significantly more than the NE point predictions

in the Baseline and Positive conditions, but not the Negative condition. Never-

theless, the comparisons between externality conditions are all consistent with the

comparative static predictions for the core players. Mean investment in Negative is

higher than in both Baseline (Wilcoxon Signed-Rank test, p “ 0.007) and Positive

(p “ 0.006), while investment in Baseline is higher than in Positive (p “ 0.030).

Figure 10b shows that each of these comparisons is also robust to using only the

final six rounds of each block (p ă 0.01 for each pairwise comparison).

The pattern of behavior for peripheral players in CP2 is also very similar to

what we observe in the Star network. Mean investment is higher in Negative than

in Baseline (p “ 0.010) but only marginally higher than in Positive (p “ 0.079),

while Baseline and Positive are not significantly different (p “ 0.796). Moreover,

using only the final six rounds actually widens the difference between investment

25Wilcoxon Signed-Rank tests, p “ 0.396 for N vs. B, p “ 0.085 for N vs. P, p “ 0.122 for P
vs. B.
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Figure 10. Mean investment levels by externality in the CP2 network. Dashed lines in-
dicate NE point predictions. Error bars indicate 95% wild cluster bootstrap
confidence intervals.

in the Negative condition and investment in the other two externality conditions

by the peripheral players (Wilcoxon Signed-Rank tests, p ă 0.001 for N vs. B;

p “ 0.008 for N vs. P; p “ 0.234 for P vs. B).

Result 6. For the CP2 network,

(i) mean investment by the core players is strictly decreasing in the externality

level, in line with the comparative static predictions;

(ii) mean investment by the peripheral players is significantly higher with the

negative externality than with the other two externality conditions, and does

not differ between the baseline and positive externality.

Finally, we compare behavior of the core players and peripheral players in the

Star and CP2 networks, holding the externality level fixed. Core players’ mean

investment is less in CP2 than in Star when the externality is negative and in

the baseline condition, and higher in CP2 than in Star when the externality is

positive, but none of the differences is statistically significant (Wilcoxon Ranksum

test, p “ 0.370 for Negative, p “ 0.309 for Baseline, and p “ 0.124 for Positive).

Similarly, mean investment by the peripheral players is not different between Star

and CP2 for any of the externality conditions (Wilcoxon Ranksum test, p “ 0.581

for Negative, p “ 0.605 for Baseline, and p “ 0.448 for Positive).

Altogether, the aggregate findings from our experiment provide strong support

for the comparative static predictions of the model. Since our focus in the present

paper is on the theoretical framework, we omit a more extensive analysis of the ex-

perimental data. Nevertheless, we examine the experimental data in considerably

greater detail in a companion paper (Boosey and Brown, 2021).
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5 Relation to Prior Literature

Prior literature on IDEs, following Jehiel, Moldovanu and Stacchetti (1996) has

mostly considered optimal selling procedures in the presence of identity-dependent

externalities.26 Other related work has focused on strategic non-participation in

auctions, especially with negative externalities (see, e.g., Jehiel and Moldovanu,

1996; Brocas, 2003) and explored the notion of type-dependent externalities (Bro-

cas, 2013a, 2014), according to which the externality flows are correlated with

the players’ private valuations and not just their identities. In all-pay contest

environments, there are a handful of related studies, including Konrad (2006) and

Klose and Kovenock (2015), both of which characterize equilibria in the context

of (perfectly-discriminating) all-pay auctions. There are, however, relatively few

studies that consider externalities in the context of imperfectly-discriminating all-

pay contests.

One exception is Linster (1993), who analyzes the equilibrium of a generalized

Tullock contest in which the players care about who wins the prize if they do

not. Another exception is Esteban and Ray (1999), who explore the relationship

between equilibrium conflict and the distribution of preferences over outcomes in a

lottery contest between interest groups.27 While both of these studies incorporate

the notion of identity-dependent externalities into a Tullock-style contest, neither

draws a formal connection between these externalities and the underlying network

structure that governs them. In contrast, a key contribution of our study is to

bring together the literature on identity-dependent externalities and the relatively

more recent developments in the theory of network games.

Typically, the network games literature examines games with linear best replies

(see, e.g., the linear-quadratic utility functions in Ballester, Calvó-Armengol and

Zenou, 2006; Bramoullé and Kranton, 2007; Bramoullé, Kranton and D’Amours,

2014). Among those that consider games with non-linear best replies, Allouch

(2015) studies the private provision of local (network-based) public goods, and

Melo (2018), Parise and Ozdaglar (2019), and Zenou and Zhou (2020) apply tech-

26For instance, Jehiel, Moldovanu and Stacchetti (1996, 1999) characterize the revenue-
maximizing auctions for alternative information structures (including the case where externality
flows are private information), Jehiel and Moldovanu (2000) study efficient auction design with
externalities, while Das Varma (2002) characterizes the revenue and efficiency rankings of the
standard sealed-bid and open ascending bid auction formats. See Jehiel and Moldovanu (2006)
for a summary of the literature on standard, winner-pay auctions with identity-dependent exter-
nalities. In addition, Lu (2006) and Brocas (2013b) extend the analysis of the optimal auction
to include the possibility of externalities between the seller and the bidders, whereas Aseff and
Chade (2008) derive the optimal mechanism for a seller with multiple identical units.

27A crucial aspect of their model is the introduction of a “metric” over the different groups,
which allows for spatial preferences over the preferred outcomes of other interest groups.
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niques based on variational inequalities (VI) to establish existence and unique-

ness.28 To the best of our knowledge, the only other study to forge the connection

between network games and externalities in a lottery contest game is König et al.

(2017). They develop a stylized model of conflict to capture the impact of in-

formal networks of alliances and enmities on conflict expenditures and outcomes,

then apply their model to study empirically the Second Congo War.29 In their

model, agents (or groups) compete for a divisible prize in which any group’s share

of the prize depends on the group’s relative operational performance, which takes

the form of a generalized Tullock CSF. However, in contrast with our model, there

are no allocation-based spillovers in their setting.30

Finally, experimental research on network games has, for the most part, focused

either on coordination problems and games with strategic complementarities (see,

e.g., Keser, Ehrhart and Berninghaus, 1998; Berninghaus, Ehrhart and Keser,

2002; Cassar, 2007; Gallo and Yan, 2015) or on public goods games where ac-

tions are strategic substitutes (Rosenkranz and Weitzel, 2012; van Leeuwen et al.,

2019). Charness et al. (2014) examine both games of strategic complements and

strategic substitutes, varying whether subjects in the experiment have complete

or incomplete information about the network, in order to test the predictions of

Galeotti et al. (2010) for network games. We provide the first experimental study

of a contest game played on a network. As such, our findings both expand the

experimental literature on network games and provide a novel extension on the

rich body of work on contest experiments.

6 Conclusion

In this paper, we introduce and analyze a model of contests with identity-dependent

externalities that are governed by a network. Our theoretical results simultane-

ously broaden the scope of traditional contest theory and extend the network

games literature to a setting in which players have non-linear best replies. The

28Our model also entails non-linear best replies. However, as noted above, the VI approaches
adopted by Melo (2018) and Parise and Ozdaglar (2019) rely on an assumption that the objective
function for each agent depends only on own action and a neighborhood aggregate, which is not
satisfied in our contest game due to the dependence of the contest success function on all players’
actions.

29There is also a related, though distinct literature on conflict networks (see, e.g., Goyal and
Vigier, 2014; Franke and Öztürk, 2015; Matros and Rietzke, 2018; Kovenock and Roberson, 2018;
Xu, Zenou and Zhou, 2019) and the formation of conflict networks (Hiller, 2017; Jackson and
Nei, 2015). In contrast with both our model and the model in König et al. (2017), these studies
typically focus on environments where the network is used to describe the structure of conflict
between agents who participate in multiple battles.

30Instead, the effort investments of other groups in König et al. (2017) feed directly into each
group’s operational performance through the underlying network of alliances and enmities.
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model allows for positive and negative externalities, stemming from the allocation

of the prize, that impact the payoffs of all players directly connected to the win-

ner of the contest. We establish the existence of Nash equilibria and characterize

sufficient conditions—related to the structure of the network—for uniqueness. For

two broad classes of networks (regular and core-to-periphery), we provide closed-

form results and show that the comparative statics align with the intuition from

our motivating examples. Our framework can serve as a basis for studying a wide

range of competitive situations, whether between firms or other organizations,

individuals connected in a social network, or lobbyists with preferences over a

multi-dimensional policy space.

In order to test the main predictions of the model, we also conducted a lab-

oratory experiment in which we systematically varied both the network and the

externalities. The experimental findings lend considerable support to the compar-

ative static predictions of the model.

There are, of course, several directions in which our research may be extended.

Our theoretical framework is relatively stylized—for instance, we limit attention

to contests in which the externality flows are all of the same size and sign and the

identity-dependence is driven entirely by the structure of the network. In future

work, it may be interesting to generalize the model to allow for both positive and

negative externalities within the same network, or to allow for link-specific exter-

nality flows. A related extension might be to allow for externalities that travel

beyond the winner’s immediate neighborhood, but with diluted impact propor-

tional to the distance traveled.

From an empirical perspective, there is considerably more that can be done to

understand behavior in network contest games. For instance, in our experiment we

observe mean over-investment in most treatment conditions, consistent with the

existing experimental literature on contests. Nevertheless, the particular patterns

of over-investment appear to depend on the network, the externality condition

and, in the core-periphery structures, the player’s position within the network.

In a companion paper (Boosey and Brown, 2021), we examine these interactions

more carefully and provide supporting evidence for the influence of two behavioral

phenomena—joy of winning, and social efficiency concerns—that appear to play

an important role in the network contest game. Beyond our current experiment,

it would also be useful to explore the impact of externalities in other, potentially

larger, network structures, and to generalize the experimental setting alongside

the extensions to our theoretical framework.
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A Proofs

Proof of Theorem 1. We prove existence by applying Theorem 3.1 in Reny (1999).

For completeness, we restate the theorem using our own notation.

Theorem (Theorem 3.1, Reny (1999)). If Γ “ pXi, πiq
n
i“1 is compact, quasicon-

cave, and better-reply secure, then it possesses a pure strategy Nash equilibrium.

Let Γ “ pXi, πiq
n
i“1 denote the normal-form of the network contest game. Note

that while Xi “ R` for each i P N , we can, without loss of generality, restrict the

agents’ strategies to compact subsets of R`. To see why, note that since α ě ´1,

Pi ď 1, and di “
ř

h gih ď n ´ 1, all strategies xi ą 1 ` pn ´ 1q “ n are strictly

dominated by xi “ 0. Thus, we can restrict the strategy sets to pXi “ r0, ns, which

is compact. Next, we note that each agent i’s payoff function is concave, and thus

also quasiconcave, in xi. It remains to show that Γ is better reply secure. To do

so, we first introduce some relevant definitions and another result by Bagh and

Jofre (2006) that extends on Reny (1999).

Definition 3. In the game Γ “ pXi, πiq
n
i“1, player i can secure a payoff of α P R

at x P X if there exists yi P Xi such that πipyi, x
1
´iq ě α for all x1´i in some open

neighborhood of x´i.

Definition 4. A game Γ “ pXi, πiq
n
i“1 is payoff secure if for every x P X and

every ε ą 0, each player i can secure a payoff of πipxq ´ ε at x.

Let Λ “ tpx, πq P X ˆ Rn | πipxq “ πi, @ iu denote the graph of the vector of

payoff functions for the game and let Λ denote the closure of Λ in XˆRn. Finally,

define the frontier of Λ to be the set of points in Λ but not in Λ, denoted by

FrΛ “ Λ zΛ. The following definition is from Bagh and Jofre (2006).

Definition 5. A game Γ “ pXi, πiq
n
i“1 is weakly reciprocally upper semicontinu-

ous (wrusc) if, for any px, πq P FrΛ, there is a player i and pxi P Xi such that

πippxi, x´iq ą πi.
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Having defined payoff security and wrusc, we then appeal to the following

result from Bagh and Jofre (2006).

Proposition 5 (Proposition 1, Bagh and Jofre (2006)). If the game Γ “ pXi, πiq
n
i“1

is payoff secure and wrusc, then it is better reply secure.

To prove that Γ is payoff secure and wrusc, we follow a similar approach to

Bagh and Jofre (2006) in their Example 3, which considers (a generalized form of)

the standard contest game with Tullock (1980) contest success function.

(i) First, we show that the game is payoff secure. Note that payoffs are con-

tinuous except at x “ 0, where they are given by

πip0q “
1` αdi
n

where di is player i’s degree in the network. Then note that for x̃i ą 0, we have

πipx̃i,0q “ 1 ´ x̃i, which is higher than πip0q if x̃i ă pn ´ 1 ´ αdiq{n. Since

di ď n´ 1 and α ă 1, the right hand side is strictly positive, so that such a x̃i ą 0

can be found. Then, since πip¨q is continuous at px̃i,0q, there is a neighborhood

V of x´i “ 0 such that πipx̃i,x
1
´iq ą πip0,0q for all x1´i P V . Thus, the game is

payoff secure at the point x “ 0. Payoff security at all other x is straightforward.

(ii) Second, we show that the game is wrusc. In this game (as in the standard

contest game), the only points in FrΛ must be points of the form p0, πq where

πi “ lim
xkÑ0

πipx
kq for all i. Note that

n
ÿ

i“1

πipx
k
q “

n
ÿ

i“1

Pipx
k
q ´

n
ÿ

i“1

xi ` α
n
ÿ

i“1

n
ÿ

j“1

gijPjpx
k
q

“ 1´
n
ÿ

i“1

xi ` α
n
ÿ

i“1

diPipx
k
q

ď 1´
n
ÿ

i“1

xi ` αpn´ 1q

where the inequality follows from the fact that di ď n´1 for all i and
řn
i“1 Pipx

kq “

1. As such, lim
xkÑ0

řn
i“1 πipx

kq ď 1`αpn´1q and thus, there exists some i for whom

πi ď
1` αpn´ 1q

n
.

Notice that lim
xiÑ0

πipxi,0q “ 1. Thus, there exists pxi ą 0 such that πippxi,0q ą πi,

because α ă 1 ensures that p1 ` αpn ´ 1qq{n ă 1. It follows that the game is
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wrusc.

Together, payoff security and wrusc imply better reply security, and applying

Theorem 3.1 from Reny (1999), there exists a pure strategy Nash equilibrium.

Proof of Proposition 2. Both parts of the proposition follow directly. From

condition (i) in Lemma 1, it follows from the fact that gij “ 0 for all i, j P A

in a specialized equilibrium, that xi “
ř

jPA xj ´ p
ř

jPA xjq
2 for all i P A, which

implies that all active players must be choosing the same investment x̄A “
nA´1
n2
A

.

Therefore, total investment is given by XA “
ř

jPA xj “ pnA ´ 1q{nA. Then, for

the second condition in Proposition 1 to be satisfied, it must be the case that for

all i P N ´ A,

nA ´ 1

n2
A

pnA ´ αd
i
Aq ď

pnA ´ 1q2

n2
A

ðñ α ě
1

diA

Taking dN´A,A to be the minimum of diA over all i P N ´ A ensures that the

inequality is satisfied for all inactive players.

Proof of Proposition 3. Suppose that A “ N (that is, all agents are active).

From Lemma 1, only condition (i) needs to be satisfied. Summing equation [5] for

all n active players and rearranging gives

pn´ 1q
n
ÿ

i“1

xi ´ α
n
ÿ

i“1

n
ÿ

j“1

gijxj “ n

˜

n
ÿ

i“1

xi

¸2

and positing xi “ x for all i yields

pn´ 1qnx´ αnkx “ npnxq2

pn´ 1q ´ αk “ n2x

from which x˚ follows.

Proof of Proposition 4. Suppose both types are active and consider condition

(i) from Proposition 1. For each peripheral player, equation [5] reduces to

pnc ´ αqxc ` pncm´ 1qxp “ pncxc ` ncmxpq
2

while for each core player, it simplifies to

pnc ´ 1qp1´ αqxc ` pncm´ αmqxp “ pncxc ` ncmxpq
2.
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From this, we obtain xcp1` αpnc ´ 2qq “ p1´ αmqxp.

Substituting into the condition for the core players and solving yields the so-

lution xc “ p1´ αmq∆ and xp “ p1` αpnc ´ 2qq∆, where

∆ “
nc r1`m` αmpnc ´ 3qs ´ r1` αpnc ´ 1´ αmqs

n2
c r1`m` αmpnc ´ 3qs2

ě 0.

For xc to be strictly positive, we must have α ă 1
m

. Thus, a semi-symmetric

equilibrium with full participation exists only when α is not too large. Once

α ě 1
m

, there is a semi-symmetric equilibrium which is also a specialized equilibrium

in which the core players are all inactive, while the peripheral players, who form a

maximal independent set, invest the standard equilibrium investment for a contest

between ncm individuals.

Proof of Lemma 2. We proceed by cases. Fix a player i.

Case 1. Suppose x´i has at least two strictly positive components. Then, for any

xi, Apxi,x´iq ě 2. It follows from [9] that

BP

Bxi
“

ÿ

h‰i

p1´ αgihqxh ´X
2
tot

B2P

Bx2
i

“ ´2Xtot ă 0.

It follows that xi P arg max Ppxi,x´iq if and only if

xi
`

ÿ

h‰i

p1´ αgihqxh ´X
2
tot

˘

“ 0

which implies

xi “ max

"

0,

d

ÿ

h‰i

p1´ αgihqxh ´
ÿ

h‰i

xh

*

,

which is exactly the best response function fipx´i, α,Gq derived in [4].

Case 2. Next, suppose xj ą 0 is the only positive component of x´i. From [9],

xi ą 0 ñ Ppxi,x´iq “ xixjp1´ αgijq ´
1

3
pxi ` xjq

3

whereas

xi “ 0 ñ Ppxi,x´iq “ ´
1

3
xj
“

max
h‰j

p1´ αghjq
‰2
.

Taking the limit as xi approaches zero from above, we have limxiÑ0 Ppxi,x´iq “
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´1
3
x3
j , which is strictly greater than Pp0,x´iq if and only if

xj ă max
`

1´ αgij
˘

.

Multiplying through by xj, player i’s best response is interior at some xi ą 0 if

and only if

x2
j ă max

`

1´ αgij
˘

xj,

and is xi “ 0 otherwise, which again coincides with the best response function in

[4].

Case 3. Finally, suppose x´i “ 0. If xi ą 0, then

Ppxi,0q “ ´
1

3
xi
“

max
h‰i
p1´ αgihq

‰2
,

which approaches zero (from below) as xi approaches zero from above. In contrast,

xi “ 0 implies Pp0q “ ´1
3
pn´1q
n

ă 0. As such, a maximizer does not exist for P,

just as the best response function for πi is empty when x´i “ 0.

By means of the three cases, we have verified that for an arbitrary player i, the

set of maximizers for P given any x´i coincide with the best responses according

to the payoff functions πi. Thus, P is a BR-potential for Γ.

Proof of Theorem 2. The network contest game is a best-response potential

game (Voorneveld, 2000). Lemma 2 provides a BR-potential for the game, P.

Then, by Proposition 2.2 of Voorneveld (2000), the profile x is a Nash equilibrium

of the network contest game if and only if it maximizes the BR-potential, P.

The remainder of the proof establishes conditions under which there is a unique

maximizer for P.

Recall that P is strictly concave if ∇2P is negative definite. Before deriving the

Hessian for P, note that we can restrict the search for maxima to investment

profiles x with |Apxq| ě 2, since we have already established that there are no

Nash equilibria in which fewer than 2 players are active. Thus, for any such x,

the diagonal elements of the Hessian ∇2P are given by

B2P

Bx2
i

“ ´2
n
ÿ

h“1

xh

while the cross-partial terms are symmetric and given by

B2P

BxiBxj
“

B2P

BxjBxi
“ p1´ αgijq ´ 2

n
ÿ

h“1

xh.
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Rewriting in matrix form and using Xtot “
ř

h xh gives

∇2P “
`

1´ 2Xtot

˘

J´ rI` αGs,

where J denotes the n ˆ n matrix of ones. Note that even if I ` αG is positive

definite, if Xtot ă 0.5 and is small enough, the Hessian need not be negative

definite. Our approach to get around this problem is to partition the domain into

two subsets, XH and XL.

(i) If we restrict the domain of P to the set XH of vectors x such thatXtot ě 0.5,

it is readily verified that P is strictly concave on the restricted domain if I` αG

is positive definite, which is equivalent to the condition that α ă 1{|λminpGq|.

(ii) Nevertheless, this condition is not sufficient to establish strict concavity

on the subdomain XL, which is composed of strategy profiles x with Xtot ă 0.5.

Instead, we proceed by direct argument. Suppose that x is a Nash equilibrium

with Xtot ă 0.5.

(a) Then, if there is any inactive player, k, we must have

Xtot ´ α
n
ÿ

h“1

gkhxh ď
`

Xtot

˘2
.

Rearranging, we obtain

α ě
Xtot

`

1´Xtot

˘

řn
h“1 gihxh

,

and since gih ď 1 for all i, h, it follows that α ě 1 ´Xtot ą 0.5. Thus, if there is

an equilibrium with an inactive player, such that Xtot “
ř

h xh ă 0.5, it must be

the case that α ą 0.5.

(b) Then, suppose there is no inactive player for x with Xtot ă 0.5. Then, for

all n players, we must have

xi ` α
n
ÿ

h“1

gihxh “ Xtotp1´Xtotq.

39



Summing over all i, obtain

α
n
ÿ

i“1

n
ÿ

h“1

gihxh “ Xtotpnp1´Xtotq ´ 1q

ñ α
n
ÿ

h“1

xh

n
ÿ

i“1

gih ą Xtot

ˆ

n´ 2

2

˙

ñ α
n
ÿ

h“1

dhxh ą Xtot

ˆ

n´ 2

2

˙

ñ α∆pGqXtot ą Xtot

ˆ

n´ 2

2

˙

ñ α ą
n´ 2

2∆pGq
,

where the second line follows from 1 ´ Xtot ą 0.5, and the fourth line from the

fact that ∆pGq is the maximum degree of G.

It follows that if α ď 0.5 and α ď 0.5pn ´ 2q{∆pGq, there cannot be a Nash

equilibrium in XL. By existence of an equilibrium, there must exist at least one

equilibrium in XH . If we also have that α ă 1{|λminpGq|, then rI`αGs is positive

definite, P is strictly concave on XH , and there exists a unique Nash equilibrium,

x P XH , such that Xtot ě 0.5.
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Figure B.1. Mean investment levels in the Baseline condition (α “ 0) from Block 1, by
network and across rounds. The solid reference line indicates the NE point
prediction (69.44).

C Additional Details of the Experimental Design

Main task procedures. Each player in a group was randomly assigned a letter

ID from A to F . The letter ID and the position in the network were fixed across

the entire experiment. In each round, players were shown the network, with

their own ID and position highlighted. In addition, their direct neighbors in the

network were highlighted in yellow, while those members of the group with whom

they were not connected were shown in black. They were also reminded about

the externality at the top of the screen, and prompted to enter the number of

tokens they would like to invest in their project. After all players had made

their decisions, an interim summary screen displayed a table showing all players’

investments, the total investment, and the corresponding probability of winning.31

After a few moments, the same screen was updated to also show the player the

letter ID of the winner, whether or not they were affected by the externality (if

they were not the winner), and the calculation of their payoffs for the round.

Joy of winning elicitation task. After the four blocks were completed, sub-

jects were rematched into new groups of 6 subjects for a single decision round.

They were given the same endowment of 800 tokens and asked to choose a project

31In the experiment, winning was not explicitly mentioned. Rather, we referred to the player’s
own project being the successful one.
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investment, just as in the four main blocks. In contrast with the other four blocks,

there were no network connections (and thus no externalities) and the winner re-

ceived a prize of 0 tokens. This part of the experiment was designed to provide

a measure of each subject’s joy of winning, following the approach introduced by

Sheremeta (2010).

D Experimental Instructions

Thank you for participating in today’s experiment. I will read through the script

so that everyone receives the same information. Please remain quiet and do not

communicate with other participants during the experiment. Raise your hand

if you have any questions and an experimenter will come to you to answer the

question privately.

For your participation in today’s experiment, you will receive the show-up fee of

$7. In addition, during the experiment, you will have the opportunity to earn

more money. Your additional earnings will depend on the decisions you make and

on the decisions made by other participants. At the end of the experiment, you

will be paid anonymously by check. No other participant will be informed about

your payment.

The experiment consists of multiple parts. The instructions for subsequent parts

will be given only after each previous part is completed. Below you will find the

instructions for Part 1.

Part 1 Instructions

In this part, you will be asked to make three decisions. One of these three decisions

will be randomly chosen at the end of the experiment and that decision will be

used to calculate your actual earnings for Part 1.

The basic setups for the three decisions are similar. In each case, you will see a list

of 20 choices between lotteries and sure amounts of money. Lotteries will always

be on the left, and sure amounts of money on the right. The lists will be ordered

such that you will prefer the lottery to the sure amount of money in the choice

at the top of the list. As you go down the list, you will tend to like the lotteries

less and less as compared to the sure amounts. At some point, you will be willing

to switch from preferring a lottery to preferring the corresponding sure amount of

money. At the point where you are willing to switch, please click on the SWITCH

HERE button.

When you click on a SWITCH HERE button, lotteries will be your choice every-

where above that line, and sure amounts of money will be your choice everywhere

below that line. All of the 20 choices that you generate will be highlighted. If you
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want to change your decision, simply click on another SWITCH HERE button.

When you are ready to finalize your decision, click SUBMIT.

After you have made your decision, one of the 20 choices will be selected randomly.

If your decision for that choice is a sure amount of money, you will earn that

amount of money. If your decision for that choice is the lottery, then the outcome

of the lottery will be determined according to the listed probabilities and your

earnings will be equal to that outcome.

You will not be informed about your earnings from this part of the experiment

until the very end of the session today, after you have completed all parts of the

experiment.

Are there any questions before you begin making your decisions?

Part 2 Instructions

All amounts in this part of the experiment are expressed in tokens. The exchange

rate is 400 tokens “ $1.

This part of the experiment consists of a sequence of 10 decision rounds. At the

beginning of round 1, you will be randomly assigned to a group consisting of 6

participants, including you. You will remain in this group for the duration of this

part. That is, you will interact with the same 5 other participants in all 10 rounds.

Your group

Before round 1, you and the 5 other participants in your group will be randomly

assigned to positions in the network graph shown in Figure D.2 below. One person

will be assigned to each position. Each position is labeled with a letter ID, from

A to F . Positions, and therefore also the letter IDs, will remain fixed for the

duration of this part. In the network graph, a straight line between two positions

indicates that players at those positions are “connected”.

During the decision rounds, the network graph will be shown on the screen. Your

own position will be highlighted in red. The players you are connected to will be

highlighted in yellow, while those you are not connected to (if there are any) will

be shown in black.

For example, Figure D.2 shows the network graph from player A’s perspective.

Thus, player A’s position will be displayed in red, while the positions for player

B and player C will be displayed in yellow. All of the other players’ positions will

be displayed in black, since only player B and player C are connected by an edge

to player A in this network graph.
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Figure D.2. The network graph - as viewed by player A

Your decision

In each round, you will be given an endowment of 800 tokens. You may use

these tokens to make decisions in the round. Specifically, during the round, you

can invest any integer number of tokens, from 0 to 800, into a project. Other

participants in your group will face the same decision, with the same endowment

of 800 tokens. After everyone has chosen a project investment, one participant in

the group will be declared the winner, based on the following procedure. The

probability that you are the winner is given by:

Number of tokens you invested in your project
Sum of the tokens invested in projects by all participants in your group

The computer program will determine the winner according to the probabilities

calculated in this way.

Consider the following two examples.

Example 1: Suppose you invested 100 tokens in your project, while the other

five participants in your group invested 150 tokens, 80 tokens, 100 tokens, 120

tokens, and 250 tokens, respectively. Then, the sum of the tokens invested in

projects by all participants in your group will be p100`150`80`100`120`250q “

800 tokens. The probability you are the winner is then

100

800
“

1

8
“ 0.125 “ 12.50%
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Example 2: For this example, suppose you invested 300 tokens in your project,

while the other five participants in your group invested 20 tokens, 30 tokens, 0

tokens, 200 tokens, and 50 tokens, respectively. Then, the sum of the tokens

invested in projects by all participants in your group will be p300` 20` 30` 0`

200` 50q “ 600 tokens. The probability you are the winner is then

300

600
“

1

2
“ 0.5 “ 50.00%

Your earnings

In each decision round, the winner will receive a prize of 500 tokens. All partic-

ipants (including the winner) must pay their project investments.

In addition, the earnings for each participant who is connected to the winner

will be changed by X tokens. In general, X can be positive, negative, or zero.

Thus, your earnings in a given round are determined as follows:

If you are the winner:

`800 (endowment)

`500 (prize)

´ (tokens you invested)

1300´ (tokens you invested)

If you are not the winner:

but are connected to the winner: and are not connected to the win-

ner:

`800 (endowment) `800 (endowment)

`0 (no prize) `0 (no prize)

`X (change in earnings) `0 (no change in earnings)

´ (tokens you invested) ´ (tokens you invested)

800 ` X ´ (tokens you in-

vested)

800´ (tokens you invested)

Example 3: Suppose you are the winner and your project investment was 100

tokens. Then your earnings for the round will be 1300´ 100 “ 1200 tokens.

Alternatively, suppose you are not the winner, and you ARE NOT connected to

the winner. If your project investment was 100 tokens, then your earnings for the

round will be 800´ 100 “ 700 tokens.

Finally, suppose you are not the winner, but that you ARE connected to the

winner. Moreover, suppose X “ `200. That is, the earnings of each player
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connected to the winner are increased by 200 tokens. If your project investment

was 100 tokens, then your earnings for the round will be 800 ` 200 ´ 100 “ 900

tokens.

If, instead, X “ ´200, the earnings of each player connected to the winner are

decreased by 200 tokens. Thus, if your project investment was 100 tokens, your

earnings for the round will be 800´ 200´ 100 “ 500 tokens.

Control Questions

In a moment, you will be asked to complete some control questions shown on

the screen. These questions are only to help you understand the instructions -

they will not affect your earnings. After several minutes, we will walk through

the answers together, then move on to the next set of questions. After these are

completed, we will continue with the instructions.

Feedback

After all participants have made their decisions, you will be shown the individual

project investments for each participant in your group, the sum of all tokens

invested in projects by participants in your group, and your probability of winning.

Then, after the program determines the winner, the screen will display the position

of the winner, whether or not you are connected to the winner, and a calculation

of your earnings for the round.

Summary

Part 2 will consist of 10 decision rounds. In each round, you and the other partic-

ipants in your group will choose project investments. The probability that your

project wins depends on the share of your own project investment out of the total

number of tokens invested by all participants in your group. Only one participant

can be the winner in a given round. All participants must pay their project in-

vestments out of the endowment (800 tokens). The winner will receive a prize of

500 tokens. For any participant who does not win, but is connected to the winner,

earnings will be changed by X tokens.

As a reminder, in the network graph shown on the screen, your position will be

shown in red. The positions of the players with whom you are connected will be

shown in yellow (in addition to being linked with your position by an edge). The

positions of players who you are not connected to (if there are any) will be shown

in black.

In Part 2, X “ 0 for all 10 decision rounds. That is, the earnings for a

participant who does not win, but is connected to the winner will not

46



be adjusted.

To make this clear, your earnings in any decision round will be given by:

1300´ (tokens you invested) if you are the winner,
800´ (tokens you invested) if you are not the winner, but are connected to the

winner
800´ (tokens you invested) if you are not the winner, and are not connected to

the winner

At the end of the experiment, you will be paid for one randomly chosen decision

round from Part 2. Each of the 10 decision rounds in this part is equally likely to

be selected.

Part 3 Instructions

The instructions for Part 3 are almost identical to the instructions for Part 2.

However, Part 3 will consist of a sequence of 15 decision rounds. Your group, the

network graph, and your position will be the same as in Part 2.

In Part 3, X “ ´400 for all 15 decision rounds. That is, the earnings for

a participant who does not win, but is connected to the winner will be

decreased by 400 tokens.

To make this clear, your earnings in any decision round will be given by:

1300´ (tokens you invested) if you are the winner,
400´ (tokens you invested) if you are not the winner, but are connected to the

winner
800´ (tokens you invested) if you are not the winner, and are not connected to

the winner

At the end of the experiment, you will be paid for one randomly chosen decision

round from Part 3. Each of the 15 decision rounds in this part is equally likely to

be selected.

Part 4 Instructions

The instructions for Part 4 are almost identical to the instructions for Part 3. Part

4 will also consist of a sequence of 15 decision rounds. Your group, the network

graph, and your position will be the same as in Parts 2 and 3.

In Part 4, X “ `400 for all 15 decision rounds. That is, the earnings for

a participant who does not win, but is connected to the winner will be

increased by 400 tokens.

To make this clear, your earnings in any decision round will be given by:
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1300´ (tokens you invested) if you are the winner,
1200´ (tokens you invested) if you are not the winner, but are connected to the

winner
800´ (tokens you invested) if you are not the winner, and are not connected to

the winner

At the end of the experiment, you will be paid for one randomly chosen decision

round from Part 4. Each of the 15 decision rounds in this part is equally likely to

be selected.

Part 5 Instructions

The instructions for Part 5 are exactly identical to the instructions for Part 2.

Thus, it will consist of a sequence of 10 decision rounds. Your group, the network

graph, and your position will be the same as in Parts 2, 3, and 4.

In Part 5, as in Part 2, X “ 0 for all 10 decision rounds. That is, the

earnings for a participant who does not win, but is connected to the

winner will not be adjusted.

To make this clear, your earnings in any decision round will be given by:

1300´ (tokens you invested) if you are the winner,
800´ (tokens you invested) if you are not the winner, but are connected to the

winner
800´ (tokens you invested) if you are not the winner, and are not connected to

the winner

At the end of the experiment, you will be paid for one randomly chosen decision

round from Part 5. Each of the 10 decision rounds in this part is equally likely to

be selected.

Part 6 Instructions

This part of the experiment consists of a single decision round. The basic setup

is similar to the setup for Parts 2, 3, 4, and 5.

Before the round begins, you will be randomly rematched into a new

group of 6 participants. In addition, there is no network graph connecting the

participants for this part. However, you will still be randomly assigned a letter ID

from A to F.

You and the other participants in your group will be given an endowment of

800 tokens each and asked to choose project investments. As in previous parts,

the probability that your project wins depends on the share of your own project

investment out of the total number of tokens invested by all participants in your

group. All participants must pay their project investments out of the endowment.
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There are two main differences from previous parts. The first is that in this part,

the winner will receive a prize of 0 tokens. The second is that, since there

is no network graph connecting participants, there is no adjustment X to be

made to the earnings of participants who are connected to the winner.

To make this clear, your earnings for this part (1 decision round only) will be

given by:

800´ (tokens you invested) if you are the winner,
800´ (tokens you invested) if you are not the winner

After all participants have made their decisions, you will be shown the individual

project investments for each participant in your group, the sum of all tokens

invested in projects by participants in your group, and your probability of winning.

Then, after the program determines the winner, the screen will display the letter

ID of the winner, whether or not that is you, and a calculation of your earnings.
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