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Abstract

We report the findings of a laboratory experiment studying behavior in
all-pay Tullock (1980) contests with network-based externalities. We test
the predictions of a model in which the prize generates payoff externalities
for losing contestants connected to the winner, by systematically varying the
network structure and introducing either positive or negative externalities.
The data provide robust support for the comparative static predictions of
the model, although we also observe considerable over-investment relative
to equilibrium predictions. Closer inspection of the observed patterns of
over-investment suggests that behavior may be driven by heterogeneous joy
of winning and social efficiency concerns.
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1 Introduction

Economic environments in which individuals expend resources in an attempt to

win a valuable prize are extremely common. As such, economists have devoted

considerable attention to understanding behavior in these environments, which are

most often modeled as contests. A standard assumption in the contest literature is

that any individual who does not win the contest is indifferent about the identity

of the winner. However, in many circumstances, individuals may have more gen-

eral preferences over the allocation of the prize. This observation is related to a

robust body of research examining the impact of identity-dependent externalities

(IDEs) in various competitive environments (Jehiel, Moldovanu and Stacchetti,

1996; Jehiel and Moldovanu, 1996; Linster, 1993; Esteban and Ray, 1999; Konrad

and Schlesinger, 1997; Klose and Kovenock, 2015).

In many cases, these IDEs may arise from some underlying connections between

agents, which can be described by a network. For example, consider a network

describing the degree of rivalry between competing firms in a consumer product

space. In general, we may think of this network as capturing several factors that

influence the level of competition, such as regional proximity and the degree of

substitutability between firms’ products. Beyond this product market competi-

tion, firms may also compete in related business ventures (e.g., R&D, patent races,

lobbying for licenses), the outcomes of which indirectly affect profits. The level of

investment by a firm in these associated competitions is likely influenced by the

number of competitors they face in the product market and the degree of rivalry

with each. In these instances, it is natural to think of the network as describ-

ing negative externalities that may intensify competition between firms in these

related business ventures.

Another example emphasizes the potential impacts of positive externalities.

Suppose a collection of community councils lobby a city planner tasked with lo-

cating a new public facility somewhere among the communities. The ideal outcome

for each community is to have the facility located in its own neighborhood, but ac-

cessibility and proximity to the selected location may generate positive spillovers

for adjacent communities. If the positive externalities are sufficiently strong, or

the communities are sufficiently well-connected, the competing communities face

free-riding incentives that will tend to reduce the amount of lobbying activity rela-

tive to the case where no externalities are present. In each of these examples, there

2



is an underlying network structure that governs the flow of externalities, such that

the setting can be modeled as a game with network-based payoff externalities.

Recent advancements in the theory of network games have explored the rela-

tionship between individual behavior and the structure of the network connecting

interacting agents (see, e.g., Bramoullé and Kranton, 2007; Bramoullé, Kranton

and D’Amours, 2014; Jackson and Zenou, 2015). We build upon this literature by

examining a version of the network contest game (Boosey and Brown, 2022), which

was introduced to study the effects of network-based identity-dependent external-

ities in all-pay Tullock (1980) contest environments. The primary departure of

this model from existing contest models is the introduction of a network through

which (potentially heterogeneous) externalities flow from the winning agent to

their neighbors in the network. This modification accommodates agents having

more general preferences over the possible allocations of the prize, which depend

on the structure of the network and their position within it.

In this paper, we empirically test the theoretical predictions of the model of net-

work contest games in a controlled laboratory experiment. Analysis of interaction

in networks using naturally occurring data is, generally, extremely challenging.

As such, laboratory experiments can be especially useful for testing theoretical

predictions and identifying additional factors that influence behavior. In our ex-

periment, subjects are placed into groups of six and assigned positions in one of

four network configurations—the Complete network, a Circle network, a Star

network, and a core-periphery network with two core players, referred to as CP2.

We focus on a tractable version of the general model, in which all network links

are homogenous, meaning that all of the externalities are of the same sign and

size.1 For each of the four network structures, we implement three different con-

ditions that vary the externality: a strong negative externality, a strong positive

externality (of the same magnitude as in the negative condition), and a baseline

control in which the network structure is retained but externalities are set equal

to zero.

The predictions generated by the model in Boosey and Brown (2022) feature

several intuitive properties. These are especially stark in the homogenous-links

case examined by our experiment because the externality flows can be described

using just a single parameter, α P r0, 1q, in conjunction with a binary network

1The theoretical model in Boosey and Brown (2022) allows for arbitrary heterogeneity but
derives particularly stark closed-form characterizations and comparative static results for the
homogenous-links case.
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where gij P t0, ḡu for all pairs of agents, i, j. The value of α represents the strength

of the externality flows, while ḡ P t´1, 1u dictates whether the externalities are

negative or positive, respectively. In regular networks—such as the Complete

and Circle networks—there always exists a symmetric Nash equilibrium. More-

over, the symmetric equilibrium investment is strictly (and linearly) decreasing as

the value of the externality, αḡ, increases over the range p´1, 1q. This captures a

natural feature of the motivating examples described earlier. When externalities

are negative, the intensity of competition increases, leading to higher equilibrium

investments; but when they are positive, externalities introduce free-riding incen-

tives for the agents in the contest.

In addition, the rate at which equilibrium investment falls with αḡ is faster

for larger values of the degree of the regular network. In other words, in more

dense networks, a given externality flow has a larger impact on the symmetric

equilibrium investment. Both the heightened intensity of competition (for negative

externalities) and the strength of free-riding incentives (for positive externalities)

are amplified when contestants are more densely connected, as when comparing

the Complete network with the Circle network. Furthermore, for sufficiently

strong positive externalities, the symmetric equilibrium need not be unique. In

particular, for the Circle network, when αḡ ą 0 is sufficiently large, there can

be asymmetric specialized equilibria, which are equilibrium investment profiles

for which the set of active agents forms a maximal independent set.2 In these

specialized equilibria, competition is concentrated among disconnected agents,

allowing their linked neighbors to sit out of the competition and free-ride on the

positive externality flows from their active neighbors.

For another class of homogenous-link networks, with a particular core-periphery

structure, the theoretical predictions are also intuitive. When externalities are

negative, more heavily linked core players are particularly vulnerable, and so in

equilibrium, they substantially increase their investment as the size of the nega-

tive externality grows. In contrast, peripheral players who are linked only to a

single core player are less exposed, so their equilibrium investment is relatively

unresponsive to the value of α. A similar argument applies to the case where

externalities are positive. The core players, who are structurally more exposed to

externality flows, have stronger free-riding incentives as α increases. In fact, for

2We refer the reader to Boosey and Brown (2022), section 3.2 for a more detailed discussion
of results pertaining to specialized equilibria.
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sufficiently strong positive externalities, the semi-symmetric equilibrium is a spe-

cialized equilibrium, in which the core players are inactive, leaving the peripheral

players to compete against one another for the prize.

Overall, our main experimental findings provide strong support for the theoret-

ical predictions. At the aggregate level, the comparative static predictions across

treatments are well supported by the observed patterns of mean investment. The

lone exception is in the Circle network, where the effect of the positive exter-

nality is slightly weaker than predicted when using all rounds of the experiment.

However, allowing for the effects of experience (by excluding earlier rounds), we

find that even this exceptional case realigns with the predicted comparative static

results. Moreover, the Circle network (with positive externalities), is the only

condition for which there are multiple equilibria. Thus, we also examine this

condition more closely, to see whether behavior is consistent with the symmetric

equilibrium, a specialized equilibrium, or neither. We find little support for sym-

metric equilibrium play. For some groups, investment activity is more consistent

with the predicted patterns of specialized equilibrium play. However, the coordi-

nation problem that arises with multiple equilibria prevents any clear picture from

forming.

In addition, in most treatment conditions, we observe mean over-investment

relative to the Nash equilibrium prediction, along with substantial variance across

individuals. This finding coincides with the widespread documentation of over-

investment (and over-spreading) in standard contest experiments without exter-

nalities (see, e.g., Sheremeta (2013)). A prominent explanation for this type of

behavior is that individuals derive non-monetary utility from winning (commonly

referred to as ‘joy of winning’) beyond the actual monetary value of the prize. In

our baseline conditions (with no externalities), we observe over-investment levels

consistent with prior experimental literature. We then offer some support for the

‘joy of winning’ hypothesis, using an elicitation procedure pioneered by Sheremeta

(2010) to measure subjects’ preferences for winning per se, and showing that sub-

jects with a higher elicited joy of winning also tend to invest more in the main

contests.

In the two regular networks (Complete and Circle), we find that over-

investment is sensitive to the externality condition. In particular, the degree of

over-investment is much smaller for positive externalities than it is for negative

externalities. In this case, we explain the differences between treatment conditions
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by arguing that joy of winning is heightened in the presence of negative external-

ities, and (partly) suppressed when there are positive externalities. Regression

analysis provides statistical support for this argument.

In contrast, for the two core-periphery networks, the patterns of over-investment

suggest a different explanation. With negative externalities, we observe no evi-

dence of mean over-investment by the core players but substantial over-investment

by the peripheral players. Conversely, with positive externalities, peripheral play-

ers exhibit little to no over-investment, on average, while the core players display

significant over-investment relative to the equilibrium prediction. Unlike for the

regular networks, joy of winning that is sensitive to the externality cannot fully

explain these observed patterns of behavior. Instead, we show how the behavior in

core-periphery networks may depend on the presence of social efficiency concerns

among subjects.

The basic intuition stems from the fact that the equilibrium prediction for

core-periphery networks entails a particular kind of inefficiency with regard to the

aggregate flows of externalities. For instance, in the Star network, the equilib-

rium outcomes generate (i) a high probability of widespread harm with negative

externalities, and (ii) minimal aggregate flow of benefits with positive externalities.

In the former case, peripheral players with a collective concern for social efficiency

may over-invest in hopes of reducing the chance that the core player wins (thereby

harming everyone else). In the latter case, a concern for social efficiency would

explain more restrained investment by peripheral players and greater participation

by the core player, since the aggregate flow of externalities is maximized when the

prize is awarded to the core player. A closer inspection of the data at the group

level offers some support for this argument.

Our study contributes to and draws upon recent experimental research on

strategic behavior in games played on a network. For the most part, experi-

ments on network games have focused either on coordination problems and games

with strategic complementarities (see, e.g., Keser, Ehrhart and Berninghaus, 1998;

Berninghaus, Ehrhart and Keser, 2002; Cassar, 2007; Gallo and Yan, 2015) or

on public goods games where actions are strategic substitutes (Rosenkranz and

Weitzel, 2012; van Leeuwen et al., 2019). Charness et al. (2014) examine both

games of strategic complements and strategic substitutes, varying whether sub-

jects in the experiment have complete or incomplete information about the net-
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work, in order to test the predictions of Galeotti et al. (2010) for network games.3

Thus, the experimental literature has largely focused on games with a relatively

simple structure (e.g., binary actions, linear-quadratic utility, local interaction, or

core-periphery networks).4 We provide the first experimental study of a contest

game with network-based payoff externalities. As such, our work both broadens

the experimental literature on network games and provides a novel extension to

the rich body of work on contest experiments.

The rest of the paper is organized as follows. In Section 2, we provide an

overview of the relevant theoretical framework developed in Boosey and Brown

(2022). Section 3 describes the design and procedures of the experiment, before

summarizing the predictions for each treatment condition. The main results are

presented in Section 4, with further results and a discussion of over-investment

patterns presented in Section 5. We offer brief concluding remarks in Section 6.

2 Theoretical Framework

Here, we describe a tractable version of the model presented in Boosey and Brown

(2022), which informs our experimental design, in which the network is character-

ized by homogeneous link weights. That is, the weight of the link between any

pair of agents connected by the network is the same. Consider an environment

with a set of players N “ t1, . . . , nu, with n ě 2, arranged in a network, described

by the adjacency matrix G, where gij P R is the link weight between two agents

i and j. The network is assumed to be undirected, with gij “ gji “ ḡ if agents

i and j are linked; gij “ gji “ 0 otherwise. Additionally, we adopt the standard

convention that gii “ 0 for all i P N .

All individuals invest an amount xi ě 0 in the contest and face identical, linear

cost functions, cpxiq “ xi. Denoting by x´i the vector of investments by all other

individuals, the probability that player i wins the contest is given by the Tullock

3There is also a substantial amount of experimental research on cooperation in prisoners’
dilemma games played on networks, and on social learning in networks, which is summarized
nicely in the chapter by Choi, Gallo and Kariv (2016) on networks in the laboratory.

4There is also a related, though distinct literature on conflict networks (see, e.g., Goyal and
Vigier, 2014; Franke and Öztürk, 2015; Matros and Rietzke, 2018; Kovenock and Roberson, 2018;
Xu, Zenou and Zhou, 2019; Corrales and Rojo Arjona, 2022). In contrast with our setting, these
studies typically focus on environments where the network is used to describe the structure of
conflict between agents who participate in multiple battles.
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(1980) contest success function.

Pipxi,x´iq “

$

&

%

1
n
, if

řn
h“1 xh “ 0,

xi
řn

h“1 xh
, otherwise

[1]

The agent that wins the contest receives a prize with value V ą 0. The payoff

of an agent that does not win the contest depends on their position in the network,

relative to the winner. Specifically, if an agent i wins the contest, an externality

αgijV , with α P r0, 1q is imposed on each agent j. Thus, an externality αḡV is

imposed on each agent connected to the winner of the contest and no externality

is imposed on agents not connected to the winner. Then, the expected payoff of

each player i given a profile of investments pxi,x´iq can be expressed as follows.

πipxi,x´i; Gq “ Pipxi,x´iqV ´ xi ` α
n
ÿ

j“1

gijPjpxj,x´jqV [2]

As previously mentioned, we restrict attention to networks with homogeneous

link weights. Thus, the size and sign of the externality are reflected by the value of

αḡ. We examine the case where ḡ “ 1 (positive externalities) and ḡ “ ´1 (negative

externalities). Then, the assumption that α P r0, 1q implies that externalities are

proportional to the prize and strictly smaller (in magnitude). Requiring αḡ ă

1 guarantees that no individual ever prefers to lose the contest. No technical

problems arise from allowing negative externalities larger in magnitude than the

prize, but for simplicity, we rule out this possibility.

In the experiment, we restrict attention to two classes of networks that contain

many structures commonly examined in the prior literature. First, we consider

regular networks. For any network G, we let dipGq “
ř

j |gij| denote the degree of

agent j and note that, in the framework described here, an agent’s degree describes

the number of neighbors they have in the network. Then, a network G is said to

be regular of degree k if dipGq “ k for all i P N . The second class of networks we

consider is core-periphery networks. These networks are comprised of two types of

agents–highly connected core players and less connected peripheral players. In our

experiment, we restrict attention to core-periphery networks in which (i) all core

players are directly connected to one another, (ii) each core player is connected to

the same number of peripheral players, and (iii) each peripheral player is connected

to a single core player and no other peripheral players.
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2.1 Equilibria in the Network Contest Game

Proof of the existence of a pure strategy Nash equilibrium in the network con-

test game is established in Boosey and Brown (2022); however, uniqueness is not

necessarily guaranteed.5 In general, there may be multiple equilibria, and depend-

ing upon the structure of the network G, these equilibria may be quite different.

In particular, in some equilibria, not all agents will be active participants in the

contest (i.e., some agents will optimally invest zero).

Lemma 1 in Boosey and Brown (2022), which we describe below, provides

necessary and sufficient conditions for an investment profile to be an equilibrium

of the network contest game. Let A denote the set of agents who are active in

the contest (i.e., those with xi ą 0) and N ´ A denote the set of agents who are

inactive (i.e., those with xi “ 0).

Lemma (Boosey and Brown (2022), Lemma 1). An investment profile, x, is a

Nash equilibrium of the network contest game with network G if and only if the

following hold.

(i) |A| ě 2

(ii) for all i P A,

ÿ

jPA

p1´ αgijqxj ´ xi “

˜

ÿ

jPA

xj

¸2

[3]

(iii) for all i P N ´ A,

ÿ

jPA

p1´ αgijqxj ď

˜

ÿ

jPA

xj

¸2

[4]

With negative and small positive externalities, equilibria will be fully interior

and symmetric (semi-symmetric) in regular (core-periphery) networks. However,

when externalities are positive and sufficiently large it may be optimal for some

agents to invest zero in the contest. In core-periphery networks, the equilibrium

remains semi-symmetric and is characterized by inactive (active) core (peripheral)

players. Intuitively, core players are most structurally exposed to the externality,

and therefore when externalities are positive and large these individuals are better

off dropping out of the contest and free-riding off the investments of their (many)

neighbors, who remain active.

5Sufficient conditions for equilibrium uniqueness, which depend on the structure of the net-
work, are also derived in Boosey and Brown (2022).
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Despite the fact that in a regular network all agents are equally exposed to

the externality, a similar outcome, where some agents choose to not participate in

the contest, can actually occur; this yields what we refer to as a specialized equi-

librium. Specifically, a Nash equilibrium x is a specialized equilibrium if the set

of active players A forms a maximal independent set—that is, when for any two

agents i, j P A we have gij “ 0 and for every k P N ´ A we have gkj “ ḡ for some

j P A. The underlying logic is the same as in the case of core-periphery networks.

With sufficiently large positive externalities, inactive (non-specialist) agents are

content to sit out of the contest and free-ride off of their active (specialist) neigh-

bors. Furthermore, it will often be the case that multiple specialized equilibria

(with different maximal independent sets of specialists) exist simultaneously. In

our experiment, there are two specialized equilibria (in addition to the symmetric

equilibrium) for the Circle network with strong positive externalities. In every

other treatment condition, the Nash equilibrium is unique.

3 The Experiment

3.1 Design of the Experiment

The basic decision environment in our experiment is a network contest game with

groups of n “ 6 players. Each participant is given an initial endowment of 800

tokens and asked to choose an amount between 0 and 800 tokens to invest in a

project. Within each group, only one player’s project can be successful, and the

probability of success for each group member is given by the Tullock (1980) lottery

contest success function in [1].

We set the value of the prize to be V “ 500 tokens, and note that the restriction

αḡ P p´1, 1q results in an externality that is proportional to the prize. The

resulting material payoffs to player i who invests xi in the contest, accounting for

the network G, are 1300´xi if player i wins the contest, 800`500αḡ´xi if player

i does not win but is directly linked to the winner by G, and 800 ´ xi if player i

does not win and is not directly linked to the winner.

We introduce two sources of treatment variation. First, we examine the four

network structures shown in Figure 1, varied across sessions (i.e., between sub-

jects). The Complete and Circle networks are both regular networks (with

degree k “ 5 and k “ 2, respectively). The Star and CP2 networks are both

core-periphery networks. Second, we examine three values of effective externality,
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(a) Complete (b) Circle (c) Star (d) CP2

Figure 1. The set of networks

Table 1. Summary of experimental treatments.

Network Treatment Order (Blocks 2–4) Sessions Groups Subjects

Complete NPB, PNB, BNP, BPN 4 10 60
Circle NPB, PNB, BNP, BPN 4 11 66
Star NPB (2), PNB (2), BNP, BPN 6 18 108
CP2 NPB (2), PNB (2), BNP, BPN 6 16 96

αḡ, in every session (i.e., within-subjects). The first value αḡ “ 0, represents the

baseline environment with no externality. The other values capture a (strong)

negative externality (αḡ “ ´0.8) and a (strong) positive externality (αḡ “ 0.8q.6

Altogether, this generates 12 treatment conditions, distinguished by the network

and the externality parameter.

3.2 Procedures

In total, we conducted 20 sessions at the XS/FS laboratory at Florida State Uni-

versity (FSU) between October 2018 and June 2019. Subjects could only partici-

pate in one session. The experiment was implemented using z-Tree (Fischbacher,

2007), with a total of 330 subjects, randomly recruited via ORSEE (Greiner,

2015) from a sub-population of FSU students who had all pre-registered to re-

ceive announcements about participation in experiments. Table 1 summarizes the

treatment design, number of sessions, and number of independent groups.

Each session consisted of four blocks, with multiple rounds in each block. In

all sessions, Block 1 consisted of 10 rounds with αḡ “ 0 (the Baseline condition).

For the other three blocks, we implemented the Negative condition (15 rounds),

6For notational convenience, we occasionally describe the different treatment conditions by
attaching a B (for Baseline) to indicate αḡ “ 0, N (for Negative) to indicate αḡ “ ´0.8, or P
(for Positive) to indicate αḡ “ 0.8, at the end of the network name. For example, Complete-B
refers to the Complete network with αḡ “ 0, while Star-P refers to the Star network with
positive externality, αḡ “ 0.8.
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the Positive condition (15 rounds), and another Baseline condition (10 rounds),

varying the order of the three conditions across sessions. For the Complete

and Circle networks, we ran one session each of NPB (i.e., Negative in Block 2,

Positive in Block 3, Baseline in Block 4), PNB, BNP, and BPN. For the Star and

CP2 networks, we ran two sessions each of NPB and PNB, and one session each

of BNP and BPN. The additional sessions of NPB and PNB ensured that we were

able to collect enough observations for the core player in the Star network.

At the beginning of each session, subjects were randomly divided into groups

of six. Groups were fixed across all rounds and all blocks in every session. Par-

ticipants were seated randomly at private computer terminals and given a set of

written instructions. The experimenter then read the instructions aloud to facil-

itate common understanding.7 Additionally, participants completed a short set

of control questions to ensure they understood the instructions. The instructions

were framed in terms of a general externality, X. Then, before each block, the

experimenter announced the value of X “ αḡV and reminded participants of the

way payoffs are calculated. Participants were not informed about the number

of blocks or the details of any future blocks until after the previous block was

completed.

Each player in a group was randomly assigned a letter ID from A to F . The

letter ID and position in the network were fixed across the entire experiment. In

each round, players were shown the network, with their own ID and position high-

lighted in red. In addition, their direct neighbors in the network were highlighted

in yellow, while those members of the group with whom they were not connected

were shown in black. They were also reminded about the externality at the top of

the screen and prompted to enter the number of tokens they would like to invest

in their project. After all players had made their decisions, an interim summary

screen displayed a table showing all players’ investments, the total investment, and

the corresponding probability of winning. After a few moments, the same screen

was updated to also show the letter ID of the winner, whether or not the player

was affected by the externality (if they were not the winner), and the calculation

of their payoffs for the round.

Before the four blocks that constituted the main part of the experiment, we

also elicited subjects’ attitudes towards risk, ambiguity, and losses, using a list-

style procedure similar to the methods used by Holt and Laury (2002) and Sutter

7A copy of the experimental instructions (for the Circle) are provided in Appendix C.
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et al. (2013). We also included a decision task after the four blocks were com-

pleted, designed to provide a measure of each subject’s joy of winning, following an

approach introduced by Sheremeta (2010). For this task, subjects were rematched

into new groups of six subjects for a single decision round. They were given the

same endowment of 800 tokens and asked to choose a project investment, just as

in the four main blocks. In contrast with the other four blocks, there were no

network connections (and thus no network externalities) and the winner received

a prize of 0 tokens.

At the end of the experiment, subjects were paid for one randomly chosen

period from each block, for the single decision round in the joy of winning task,

and for one (randomly selected) of the risk, loss, or ambiguity aversion elicitation

tasks. Tokens were converted to US dollars according to the exchange rate 400

tokens = $1. Average earnings (including the $7 show-up fee) amounted to $17.46.

3.3 Predictions

Table 2 summarizes the equilibrium predictions for each treatment condition.8

First, for all networks, when αḡ “ 0 (Baseline), the unique equilibrium investment

is symmetric across positions and corresponds to the standard equilibrium invest-

ment for a contest with six players and a prize of V “ 500. Furthermore, in the

Complete network, the unique equilibrium is the symmetric one corresponding

to a standard contest with prize value equal to V p1´ αḡq. Accordingly, the equi-

librium investment declines sharply as the externality increases from αḡ “ ´0.8

(Negative) to αḡ “ 0 (Baseline), to αḡ “ 0.8 (Positive). This key comparative

static is highlighted in Figure 2a.

In the Circle network, there is a unique equilibrium for the Negative condition

and the Baseline condition. In the Positive externality condition, there exists both

a symmetric equilibrium with x˚ “ 47.22 and a pair of specialized equilibria, each

consisting of three players who invest xA “ 111.11 and three inactive players.9 This

poses a potential coordination problem for the players in Circle-P, since players

may hold different beliefs about whether or not they are playing the symmetric

equilibrium, the specialized equilibrium in which they are active, or the specialized

8In Appendix A, we provide general closed-form results for equilibrium investment as a func-
tion of α in the class of regular and core-to-periphery structures. See Boosey and Brown (2022)
for further details and complete proofs.

9The two specialized equilibria can be obtained by switching the sets of active players.
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Table 2. Equilibrium predictions by treatment condition.

Externality
Network (position) Negative Baseline Positive

Complete 125.00 69.44 13.89
Circle – Symmetric 91.67 69.44 47.22
Circle – Specialized

(active) – – 111.11
(inactive) – – 0.00

Star (core) 206.63 69.44 0.00
Star (peripheral) 74.39 69.44 80.00
CP2 (core) 157.89 69.44 0.00
CP2 (peripheral) 60.73 69.44 93.75
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Figure 2. Equilibrium investment in the Complete and Circle networks with n “ 6
and V “ 500. For specialized equilibria in the Circle network with αḡ ě 0.5,
players’ investments are shown by dashed (red) lines at 111.11 (active) and 0
(inactive).

equilibrium in which they are inactive.10 Compared with the Complete network,

the predicted investment in the symmetric equilibrium exhibits a much flatter

decline as the externality increases. This difference is depicted, along with the

specialized equilibrium investment, in Figure 2b.

For the Star and CP2 networks, we examine the core player(s) and periph-

eral players separately. In both networks, the equilibrium is unique for all three

10In our initial analysis of this treatment condition, we focus on the comparative static predic-
tions, which are similar whether we use the symmetric equilibrium or the specialized equilibrium.
Subsequently, we examine the possibility that players are able to coordinate over time, and inves-
tigate whether play within groups is consistent with characteristics of a specialized equilibrium.
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Figure 3. Semi-symmetric equilibria in the Star and CP2 networks.

externality conditions, is interior when αḡ “ ´0.8 and αḡ “ 0, and specialized

(with the core players inactive) when αḡ “ 0.8. Thus, the equilibrium investment

for the core player(s) is very high in the Negative condition, but equals zero in the

Positive condition, reflecting their incentive to free ride in the specialized equi-

librium. In contrast, for the peripheral players, equilibrium investment is fairly

similar across all three values of αḡ. Figure 3 illustrates the equilibrium predic-

tions for every value of αḡ P p´1, 1q when n “ 6 and V “ 500, with the precise

predictions for α P t´0.8, 0, 0.8u summarized in Table 2.

4 Results of the Experiment

The results are organized as follows. First, we report aggregate results concerning

mean investment levels across networks and externality conditions. We concen-

trate on the comparative statics predictions in order to highlight the main treat-

ment effects. In addition, we conduct a closer examination of behavior in the

Circle-P condition, where there is both a symmetric equilibrium and a pair of

specialized equilibria. In Section 5, we shift attention to the evidence regarding

over-investment relative to the point predictions, and discuss alternative behav-

ioral explanations for the differences between observed and predicted investment

patterns.

Throughout the analysis, we rely on non-parametric tests for treatment com-

parisons and on the wild cluster bootstrap method (Cameron, Gelbach and Miller,

2008) for post-estimation hypothesis tests on regression coefficients. When the rel-
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Figure 4. Mean investment levels in the Baseline condition (αḡ “ 0) from Block 1, by
network. The solid reference line indicates the NE point prediction (69.44).
Error bars indicate 95% wild cluster bootstrap confidence intervals.

evant test is not indicated, the reported p-values correspond to a Wald test (with

wild cluster bootstrap) comparing the estimated constant in a linear regression

to the NE prediction. Furthermore, in all figures, error bars indicate 95% wild

cluster bootstrap confidence intervals.

4.1 Aggregate Results

We first compare the mean investment level across networks in Block 1, where

αḡ “ 0. In this case, the network is payoff irrelevant and thus there should be no

systematic differences across networks. Figure 4 shows that mean Block 1 invest-

ment is 189.65 in Complete, 179.83 in Circle, 198.17 in Star, and 191.58 in

CP2. Consistent with the prediction, we find no significant differences between

networks (Kruskal-Wallis test, p “ 0.89; also, for all pairwise comparisons between

networks using the Wilcoxon ranksum test, p ą 0.401). However, there is sub-

stantial over-investment, on average, relative to the Nash Equilibrium prediction

(69.44) in all networks, which is consistent with the experimental literature on

standard contests.

Result 1. Mean investment in the Baseline condition (Block 1) does not differ

across networks.

Nevertheless, in all networks, mean investment is trending down towards the

Nash Equilibrium point prediction over the course of Block 1, which is consistent

with some learning by the subjects as they gain experience with the strategic envi-

16



Table 3. Summary statistics for mean investment in Blocks 2-4 by treatment condition

Externality
Negative pαḡ “ ´0.8q Baseline pαḡ “ 0q Positive pαḡ “ 0.8q

Network Observed [NE] Observed [NE] Observed [NE]

Complete 180.28 [125.00] 123.36 [69.44] 53.85 [13.89]
Circle 168.90 [91.67] 114.72 [69.44] 103.06 [47.22]

[55.55]:

Star
core 256.06 [206.63] 161.43 [69.44] 71.79 [0.00]
peripheral 179.16 [74.39] 143.15 [69.44] 126.14 [80.00]

CP2
core 213.03 [157.89] 125.33 [69.44] 102.28 [0.00]
peripheral 168.37 [60.73] 137.36 [69.44] 140.09 [93.75]

Notes: : denotes the average equilibrium investment in the specialized equilibria for Circle-P.

ronment.11 Thus, in order to account for experience, we also replicate the analysis

using only the final six rounds of the block (see Figure 4b).12 The corresponding

mean investments are 161.51 in Complete, 156.92 in Circle, 179.57 in Star,

and 171.60 in CP2, which are also not significantly different from each other

(Kruskal-Wallis test, p “ 0.772; for all pairwise comparisons using the Wilcoxon

ranksum test, p ą 0.322). Although these investment levels are lower than when

we use all 10 rounds, over-investment relative to the NE prediction persists.

Next, we compare mean investment across networks and externality conditions

using the data collected in Blocks 2–4. Table 3 reports the mean investment for

each network and each externality condition, alongside the corresponding Nash

equilibrium (NE) point predictions. As is typical in contest experiments, and

consistent with behavior in Block 1, we observe considerable over-investment (over-

dissipation) relative to the NE in all conditions. However, we postpone a more

detailed discussion of over-investment until Section 5. In the rest of this section,

we concentrate on treatment comparisons and comparative static predictions. We

begin by considering the two regular networks, Complete and Circle, before

turning our attention to the core-periphery structures, Star and CP2.

11We provide visual support for this downward trend in Figure B.1 in Appendix B.
12All of our results are qualitatively similar using only the last five rounds, or only the last

ten rounds.
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Figure 5. Mean investment levels by externality in the Regular networks. Dashed lines in-
dicate symmetric NE point predictions, while the short-dashed line for Circle-P
indicates specialized NE point prediction. Error bars indicate 95% wild cluster
bootstrap confidence intervals.

4.1.1 Regular Networks

Figure 5a illustrates the mean investment reported in Table 3 (using all rounds)

for each externality in the two regular networks, Complete and Circle. Com-

parisons within network (between externality) are generally consistent with the

comparative static predictions. In both networks, investment is highest for the

negative externality (180.28 in Complete, 168,90 in Circle) and lowest for the

positive externality (53.85 in Complete, 103.06 in Circle), as predicted by the

theory.

Using the mean investment across all rounds of a block within each indepen-

dent group as a single observation, we observe significant differences for all pairwise

comparisons between externality conditions in the Complete network (Wilcoxon

Signed-Rank tests, p “ 0.047 for N vs. B, p “ 0.005 for N vs. P, p “ 0.007 for P vs.

B). Similarly, in the Circle network, we observe significantly higher mean invest-

ment in the negative condition compared with the other two conditions (Wilcoxon

Signed-Rank tests, p “ 0.016 for N vs B, p “ 0.008 for N vs. P). However, mean

investment in the Circle network is not significantly different between the base-

line (zero externality) and positive externality conditions (Wilcoxon Signed-Rank

test, p “ 0.374), consistent with Figure 5a. We summarize our findings in the

following two results.

Result 2. For the Complete network, mean investment is strictly decreasing in

the externality level, in line with the comparative static predictions.

18



Result 3. For the Circle network, mean investment is significantly higher with

the negative externality than with either of the other externality conditions.

However, mean investment is no different with the positive externality than

with zero externality.

Discussion. The second part of the result for Circle may be driven in part by

the multiplicity of equilibria in the positive externality condition. In particular,

while the symmetric equilibrium predicts lower investments in Circle-P than in

Circle-B, the difference is quite small.13 Furthermore, the predicted difference

is even smaller if we posit that subjects play a specialized equilibrium (69.44

vs. 55.55). In addition, the likelihood of some coordination failure, especially in

the early rounds could explain why average investment remains at a similar level

when αḡ increases from 0 to 0.8. Given that it is the only condition in which there

are multiple equilibria, we investigate the Circle-P condition in more detail in

Section 4.2.

Final six rounds. We also examine investment using only the final six rounds

of each block. Figure 5b shows that for the Negative and Baseline externality

conditions, the mean investment levels using the final six rounds are no different

than those reported in Table 3 and Figure 5a (which use all rounds). For both the

Complete and Circle networks, over-investment relative to the NE prediction

remains statistically significant. However, for the Positive externality condition,

the mean investment over the final six rounds is considerably lower than it is using

all rounds.14 More importantly, when using only the final six rounds of each block,

the comparative static prediction that investment in Circle-B is higher than in

Circle-P is now supported (Wilcoxon Signed-Rank test, p “ 0.0076). Thus, if

we allow for learning (or experience) to take place in each block, we can remove

the qualified support for the comparative static predictions in the Circle network

altogether.

13Note, however, that the difference is no smaller than the difference between Circle-N and
Circle-B.

14In fact, over the final six rounds, over-investment in the Complete-P condition is only
marginally significant (p “ 0.0925). Similarly, while the difference between mean investment and
the symmetric equilibrium in Circle-P over the final six rounds is still significant (p “ 0.032),
the difference relative to the average predicted investment in a specialized equilibrium is only
marginally significant (p “ 0.0954).

19



Comparing across networks. Next, we hold fixed the externality condition

and compare investment levels between the two regular networks. As expected,

in the Baseline condition, we find no significant differences, while in the Positive

condition, investment is significantly higher in Circle than in Complete, which

is consistent with both the symmetric and specialized equilibria for Circle-P.15

However, contrary to the theoretical prediction, mean investment in the Negative

condition is not significantly different between Complete and Circle (Wilcoxon

ranksum test using group-level means, p “ 1.000 using all rounds, p “ 0.622 using

the final six rounds).

Result 4. Average investment is significantly lower in Complete-P than in

Circle-P, and is not significantly different between Complete-B and Circle-

B, consistent with the predictions. In contrast, and contrary to the theoreti-

cal prediction, average investments in Complete-N and Circle-N are not

significantly different from each other.

4.1.2 Core-Periphery Networks

For the Star and CP2 networks, we compare mean investment levels separately

for core players and peripheral players. We concentrate first on the impacts of

the externality condition in the Star network, then in the CP2 network, be-

fore turning our attention to the comparison between networks while holding the

externality fixed.

Star network. Figure 6a shows the mean investment across externality condi-

tions for the core player and peripheral players in the Star network. Core players

invest significantly more than the NE point predictions in the Baseline and Pos-

itive conditions, but not in the Negative condition. Nevertheless, comparisons

between the three conditions for core players are all in line with the comparative

static predictions. Specifically, investment in Negative is higher than in Baseline

(Wilcoxon Signed-Rank test, p “ 0.018) and Positive (p ă 0.001), and investment

in Baseline is higher than in Positive (p “ 0.004).

For peripheral players, the NE investment levels are very similar across the

three externality conditions (cf. Table 2). However, Figure 6a shows that the

15For the Wilcoxon ranksum test, using mean investment over all rounds for a single group as
one observation, we have p “ 1.000 for Baseline and p “ 0.029 for Positive. Nothing substantive
changes if we use the final six rounds, with p “ 0.994 for Baseline and p “ 0.006 for Positive.
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Figure 6. Mean investment levels by externality in the Star network. Dashed lines in-
dicate NE point predictions. Error bars indicate 95% wild cluster bootstrap
confidence intervals.

mean investment is, in fact, slightly higher in Negative than in Baseline and Pos-

itive, which do not differ from one another.16 The comparative static results for

core players are all robust to using only the final six rounds of each block (see Fig-

ure 6b). However, the differences between mean investment of peripheral players

for the different externality conditions are no longer statistically significant when

we restrict attention to the final six rounds.17 Our next result summarizes these

findings for the Star network.

Result 5. For the Star network,

(i) mean investment by the core players is strictly decreasing in the externality

level, in line with the comparative static predictions;

(ii) mean investment by the peripheral players is significantly higher with the

negative externality than with the other two externality conditions when using

all rounds, but does not differ between the three externality conditions when

using the final six rounds of each block.

One interesting feature of the data that is highlighted by Figure 6a is the

differential over-investment by peripheral players across externality conditions.

In particular, we find that the percentage over-investment by peripheral players

declines from 140.8% in Negative, to 106.11% in Baseline, to 57.7% in Positive.18

16Wilcoxon Signed-Rank tests, p “ 0.043 for N vs. B, p “ 0.003 for N vs. P, p “ 0.223 for P
vs. B.

17Wilcoxon Signed-Rank tests, p “ 0.396 for N vs. B, p “ 0.085 for N vs. P, p “ 0.122 for P
vs. B.

18Note, however, that when using only the final six rounds of each block, the over-investment
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Figure 7. Mean investment levels by externality in the CP2 network. Dashed lines indicate
NE point predictions. Error bars indicate 95% wild cluster bootstrap confidence
intervals.

CP2 network. Figure 7a shows the mean investment in the CP2 network.

As in the Star network, the core players invest significantly more than the NE

point predictions in the Baseline and Positive conditions, but not the Negative

condition. Nevertheless, the comparisons between externality conditions are all

consistent with the comparative static predictions for the core players. Mean

investment in Negative is higher than in both Baseline (Wilcoxon Signed-Rank

test, p “ 0.007) and Positive (p “ 0.006), while investment in Baseline is higher

than in Positive (p “ 0.0303). Figure 7b shows that each of these comparisons

is also robust to using only the final six rounds of each block (p ă 0.01 for each

pairwise comparison).

The pattern of behavior for peripheral players in CP2 is also very similar to

what we observe in the Star network. Mean investment is higher in Negative than

in Baseline (p “ 0.010) but only marginally higher than in Positive (p “ 0.079),

while Baseline and Positive are not significantly different (p “ 0.796). Moreover,

using only the final six rounds actually widens the difference between investment

in the Negative condition and investment in the other two externality conditions

by the peripheral players (Wilcoxon Signed-Rank tests, p ă 0.001 for N vs. B;

p “ 0.008 for N vs. P; p “ 0.234 for P vs. B).

Result 6. For the CP2 network,

(i) mean investment by the core players is strictly decreasing in the externality

level, in line with the comparative static predictions;

rates for Negative (112.5%) and Baseline (96.5%) are similar, though both are much larger than
the rate for Positive (51.6%). In fact, the difference between mean investment and the NE
prediction for peripheral players in Star-P is only marginally significant (p “ 0.051).
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(ii) mean investment by the peripheral players is significantly higher with the

negative externality than with the other two externality conditions, and does

not differ between the baseline and positive externality.

Alongside these results, we observe the same feature of behavior in CP2 as in

the Star with regards to the percentage over-investment by peripheral players.

Over-investment falls from 177.2% in Negative, to 97.8% in Baseline, to 49.4% in

Positive. Using the final six rounds only, the over-investment rates are 177.3%

in Negative, 96.5% in Baseline, and just 21.7% in Positive. Furthermore, the

difference between mean investment by peripheral players and the NE prediction

in the CP2-P condition is not statistically significant (p “ 0.234).

Comparing across networks. Finally, we compare behavior of the core players

and peripheral players in the Star and CP2 networks, holding the externality

level fixed. Core players’ mean investment is less in CP2 than in Star when

the externality is negative and in the Baseline condition, and higher in CP2

than in Star when the externality is positive, but none of the differences are

statistically significant (Wilcoxon ranksum test, p “ 0.370 for Negative, p “ 0.309

for Baseline, and p “ 0.124 for Positive). Similarly, mean investment by the

peripheral players is not different between Star and CP2 for any of the externality

conditions (Wilcoxon ranksum test, p “ 0.581 for Negative, p “ 0.605 for Baseline,

and p “ 0.448 for Positive).

4.2 Symmetric vs. Specialized Equilibrium Play in Circle-P

In this section, we provide a closer examination of the patterns of investment

behavior in the Circle-P condition. In particular, we investigate whether play

is consistent with either the symmetric or the specialized equilibria that arise for

the Circle network when αḡ “ 0.8. As a starting point, Figure 8 shows a scatter

plot of all the data in Circle-P by round. Some of the notable features of the

data are the concentration of observations at or around zero (in all rounds) and

the gradual decline (and compression) of observations across rounds.

Focusing on the final six rounds of the data (rounds 10–15), there is still a con-

siderable amount of heterogeneity, although the majority of the observations are

no greater than 200. The clustering of observations around zero and the (smaller)

clusters around 100 and 200 offer some hope for the emergence of specialized equi-

libria. However, as in most contest experiments, the spread of investment levels
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Figure 8. Scatter plot of investment by round in Circle-P with Lowess smoother (band-
width “ 0.5).

across individuals is hardly encouraging evidence of symmetric equilibrium play.

Group-level analysis. In order to explore the evidence regarding specialized

equilibrium play, we examine the data at the group level. Our analysis concerns

three key features of specialized equilibria. First, in any specialized equilibrium of

the Circle-P condition, the three active agents must form a maximal independent

set. Second, the three active agents invest just over 100 tokens into the contest

(equilibrium investment is 111.11). Third, the other three agents, who are inactive,

invest zero. Realistically, subjects face a coordination problem, due to the fact

that there are two specialized equilibria in the Circle network.

We begin by examining individual investment levels in each independent group,

in order to provide an initial test of consistency with specialized equilibrium play.

In order to allow for the possibility that players gain experience and require time

to coordinate, we focus in the main text on just the final six rounds (rounds

10–15).19 Figure 9 plots the investment choices for each player over the final six

rounds, for each independent group in the Circle-P condition. Based on this

figure, there appears to be heterogeneity across groups. For instance, in some

groups (IDs 7, 9, 10, 12, 31, 32, and 41), there are consistently two to four players

who are inactive (or invest close to nothing) and at least two players who invest

significantly more (most often 100 tokens or more). At least in terms of investment

19For each group, we also plot the individual investments by each player over all 15 rounds
(see Figure B.2 in Appendix B.

24



0

100

200

300

400

500

0

100

200

300

400

500

0

100

200

300

400

500

10 11 12 13 14 15

10 11 12 13 14 15 10 11 12 13 14 15 10 11 12 13 14 15

7 8 9 10

11 12 31 32

33 40 41

In
ve

st
m

en
t

Round

Figure 9. Scatter plot of investments in rounds 10 – 15 by group in the Circle-P condition.

levels, the pattern in these groups appears consistent with specialized equilibrium

play. In other groups (IDs 8, 11, and 40), the investments are typically more

clustered together (consistent with more symmetric play), with only an occasional

(single) high investor who separates from the other five group members.

One limitation of the plots in Figure 9 is that they contain no information

regarding the configurations of active players within the network. In order to

address this aspect of specialized equilibrium play, we next explore how often

the subjects choosing the three highest investments in a group form a maximal

independent set. In the Circle-P condition, there are 11 groups and 15 rounds.

Out of the resulting 165 observations, there are only 18 instances in which the

three highest investments are all strictly higher than the others and come from

agents who form a maximal independent set. If we allow for the possibility that

there are ties at the median (so that the third and fourth highest investments are

equal), there are 49 instances (out of 165) in which the three highest investments

come from agents who form a maximal independent set. This suggests that even

if groups are choosing investments consistent with a specialized equilibrium, they

are rarely successful in coordinating on which sets of agents are active and which
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are inactive.

Another way to examine the consistency of play with a specialized equilibrium

is to compare average investment by each maximal independent set of agents in

the Circle network. Consider the two subsets of agents, denoted by their position

labels in the experiment, MA “ tA,D,Eu and MB “ tB,C, F u.
20 For each of the

two subsets MA and MB, we compute the average investment by its constituent

members in each round. Then, in Figure 10, we plot the average investments for

MA and MB in the final six rounds, for each independent group in Circle-P.21

Consistent with the heterogeneity across groups observed in Figure 9, we observe

a mix of patterns between the two maximal independent sets. For instance, in

groups 7, 31, and 41, average investment is consistently higher for players in the

maximal independent sets MB than for those in MA, whereas in groups 9 and 32,

average investment is higher for players in MA than for those in MB. In contrast,

in groups 8, 11, 33, and 40 (all of which exhibited more clustering in Figure 9), the

mean investment levels are roughly similar across the two maximal independent

sets.

Nevertheless, even when there is a gap between average investment for the two

maximal independent sets, it may not necessarily reflect specialized equilibrium

play. To assess whether or not it does, it is useful to compare the patterns ob-

served in Figure 10 for the Circle-P condition with the average investment by

the same groups in the Circle-N and Circle-B conditions. Figure B.4 in Ap-

pendix B shows the corresponding plots for the Circle-N condition. For several

of the groups (including 9, 10, 12, 31, and 32), there are similar gaps between

average investment for the two maximal independent sets. Similarly, Figure B.5

shows that for the Circle-B condition, there are comparable gaps between av-

erage investment for MA and MB in groups 12, 31, 32, and 41. Together these

findings suggest that the gaps may be driven by factors other than the presence

of a specialized equilibrium, since no such equilibria exists for the Circle-N or

Circle-B conditions.

One possibility is that there are different types of subjects, some of whom

are inclined to over-invest in the contest (for instance, due to high non-monetary

utility–or ‘joy’–of winning), and others for whom the resulting best response is to

remain inactive. We discuss this idea alongside other possible influences as part

20These two subsets correspond to the two maximal independent sets given the labeling used
in the experiment. See, for example, Figure C.1 in Appendix C.

21Corresponding plots with all 15 rounds are presented in Figure B.3 in Appendix B.
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Figure 10. Average investment by maximal independent sets MA “ tA,D,Eu and MB “

tB,C, F u over the final six rounds in the Circle-P condition. Each cell rep-
resents one independent group.

of the analysis of over-investment, in the next section.

5 Discussion—Explaining Patterns of Over-Investment

Mean over-investment relative to the NE point prediction has been widely doc-

umented in standard lottery contest experiments without externalities (see, e.g.,

Sheremeta (2013)). Given the wealth of evidence, several alternative explana-

tions have been proposed for over-investment, and these have been well summa-

rized by Dechenaux, Kovenock and Sheremeta (2015) and tested systematically

by Sheremeta (2016). One such explanation is that individuals derive some non-

monetary utility from winning per se, commonly referred to as the ‘joy of winning’,

beyond the actual value of the prize (Goeree, Holt and Palfrey, 2002; Sheremeta,

2010; Brookins and Ryvkin, 2014; Boosey, Brookins and Ryvkin, 2017).22 In this

22Other explanations contend that individuals who care about status or relative payoffs may
invest more in a contest (see, e.g., Hehenkamp, Leininger and Possajennikov (2004); Mago,
Samak and Sheremeta (2016)), or that individuals are boundedly rational and subject to making
mistakes. A standard approach to modeling the noise associated with these mistakes is the
Quantal Response Equilibrium (QRE) framework (McKelvey and Palfrey, 1995). Supporting
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section, we consider the evidence of (mean) over-investment relative to NE pre-

dictions and discuss some alternative behavioral considerations that can help to

explain the patterns we observe. For each treatment condition, we briefly re-

view the aggregate patterns that were highlighted in the previous section, to help

organize the subsequent discussion.

5.1 Baseline Condition

Recall that in the Baseline condition (αḡ “ 0), the network structure is theoret-

ically irrelevant. In Section 4.1, it was demonstrated that average investment is

significantly above the NE point prediction in all four networks. Moreover, the

amount of over-investment does not differ significantly across networks. Neither

of these results change when using only the final six rounds of each block. Here,

we also examine the Baseline conditions implemented in Blocks 2 and 4 of the

experiment. Figure B.6 in Appendix B shows the mean investment levels for each

network, pooling together the sessions from Blocks 2 and 4.23

Overall, we find no significant differences between networks (Kruskal-Wallis

test, p “ 0.142), although pairwise comparisons using the Wilcoxon ranksum test

suggest that investments in the Star network are higher than in the Complete

(p “ 0.084) and Circle (p “ 0.053) networks. Focusing on the final six rounds

of each block, we again find no significant differences between networks overall

(Kruskal-Wallis test, p “ 0.249) and higher mean investment in the Star network

as compared to the Circle, though the difference is only marginally significant

(Wilcoxon ranksum test, p “ 0.096). We summarize these observations with the

following result.

Result 7. In the Baseline condition, over-investment levels are similar across

networks and consistent with the robust evidence of over-investment in stan-

dard contest experiments.

Another well-documented finding in the contest experiments literature is that

evidence for this approach is reported in Sheremeta (2011), Chowdhury, Sheremeta and Turocy
(2014), Lim, Matros and Turocy (2014), and Brookins and Ryvkin (2014). Yet another suggested
explanation is that individuals are subject to judgmental biases, such as non-linear probability
weighting, or the hot hand fallacy, which may lead to higher investment than the standard NE
prediction (Parco, Rapoport and Amaldoss, 2005; Amaldoss and Rapoport, 2009; Sheremeta,
2011).

23In these later Baseline blocks, the network structure is, similarly, theoretically irrelevant;
although, it is technically possible that in Block 4 individuals’ investment behavior is influenced
by previous exposure to the Negative and Positive conditions.
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Table 4. Distribution of Joy Investment (investments in the zero prize contest) and corre-
sponding Block 1 investments

Joy Investment Percent of subjects Mean Baseline Investment (Block 1)

0 77.88% 175.18
1 11.21% 206.95

2–15 3.03% 240.74
16–100 3.63% 259.14
ą 100 4.22% 346.20

mean over-investment is accompanied by considerable variance (or overspreading),

with many subjects investing less than the NE while others substantially over-

invest. Following the approach introduced by Sheremeta (2010), at the end of

the main experiment we elicited a measure of subjects’ non-monetary value of

winning (their joy of winning), by asking them to choose an investment for a

contest with a prize of zero. The data obtained from this experimental elicitation

of joy of winning reveals that about 22% of subjects submitted non-zero levels of

investment for a prize with value zero. While the majority of these were relatively

small, about 6% of investments in this part of the experiment were larger than 80

tokens (10% of their total endowment) and about 4% were larger than 200 tokens

(25% of their total endowment).

In Table 4, we report the percentage of subjects who chose different ranges of

investment in the zero prize contest, alongside the mean Baseline (Block 1) invest-

ment for the subjects in each range. The main takeaway is that the mean Baseline

investment in Block 1 is higher for subjects who choose higher “joy investments”.

In particular, subjects who invested more than 100 in the zero prize contest also

invested nearly twice as much (on average) in the Baseline condition as subjects

who invested nothing in the contest with a prize of zero.

We also estimate a mixed effects model regressing Baseline investment in Block

1 on investment in the zero prize contest (Joy Investment). Specifically, we esti-

mate the model in the following equation,

Investit “ β0 ` β1Joy Investmenti ` γp1{tq ` u0i ` u1iJoy Investment` εit, [5]

allowing for subject-level fixed effects and between-subject heterogeneity in the

effects of Joy Investment (random slope coefficients), and include a time trend

(the reciprocal of the round number) to account for learning during Block 1.24

24A likelihood ratio test confirms that including random slopes with respect to the explanatory
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Table 5. Multilevel mixed effects model with between subjects random slopes, regressing
Baseline Investment (from Block 1) on Joy Investment.

Dependent variable: Individual investment in round t

Overall Complete Circle Star CP2

Joy Invest 0.396˚˚˚ 2.676˚˚˚ 0.539˚˚˚ ´0.060 0.302˚˚

p0.138q p0.479q p0.044q p0.151q p0.145q

1/t 75.105˚˚˚ 126.198˚˚˚ 54.882 61.847˚˚˚ 71.990˚˚˚

p13.436q p32.436q p39.499q p20.533q p21.108q

Constant 161.366˚˚˚ 134.461˚˚˚ 155.277˚˚˚ 181.118˚˚˚ 159.233˚˚˚

p9.753q p31.197q p17.755q p16.375q p16.749q

pσ2
u0

(Constant) 17180.50˚˚˚ 18450.80˚˚˚ 14992.30˚˚˚ 18599.59˚˚˚ 14237.84˚˚˚

pσ2
u1

(Joy Invest) 0.125˚˚˚ 2.761˚˚˚ – – 0.067˚˚˚

pσ2
ε (Residual) 26409.22˚˚˚ 28985.74˚˚˚ 25251.39˚˚˚ 26042.89˚˚˚ 25844.08˚˚˚

Groups 55 10 11 18 16
Observations 3300 600 660 1080 960
Wald χ2p2q 40.44˚˚˚ 45.58˚˚˚ 161.53˚˚˚ 9.10˚˚ 18.19˚˚˚

Robust standard errors, adjusted for clustering at the group level, in parentheses.
˚ p ă 0.1, ˚˚ p ă 0.05, ˚˚˚ p ă 0.01

Standard errors are clustered at the group level, to account for the dependence

across individuals. The results are reported in Table 5, both overall and separately

for each network.

Overall, the relationship between a subject’s Joy Investment and her invest-

ment levels in the Baseline condition is positive and highly significant. Disaggre-

gating the data by network, we find that the effect is heterogeneous, although

significantly positive for each case except the Star network. There is signifi-

cant variance in the slope coefficients overall and for the Complete and CP2

networks, whereas the estimation results for the Circle and Star networks are

no different than from a standard random effects regression. The time trend is

also significant (except in the Circle network), consistent with the evidence that

investment in Block 1 declines (non-linearly) with experience in each block. We

summarize our findings in the following result.

Result 8. Subject-level investment in the Baseline condition (Block 1) is increas-

ing in the elicited measure of the subject’s joy of winning.

variable ‘Joy Investment’ significantly improves the fit of the model when the data are pooled
across networks. The same is true for the Complete and CP2 networks on their own, although
not for the Circle or Star networks, where the coefficient on Joy Investment does not exhibit
any subject-level variation.
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5.2 Regular Networks

Next, we consider over-investment in the regular networks, for the Negative and

Positive externality conditions. For regular networks, Table 3 provides clear evi-

dence of mean over-investment in all conditions (including the Baseline in Blocks

2 and 4), although it is only marginally significant over the final six rounds of

Complete-P and Circle-P.25 One possible explanation for the differences be-

tween conditions could be that subjects’ joy of winning is elevated in the presence

of negative externalities. We examine this possibility by estimating a multilevel

mixed effects model for investment over the final six rounds of each block.

The full specification of interest is the following model,

Investit “β0 ` β1Joy Investmenti ` β2Neg` β3Pos` γX [6]

` α1pNegˆ Joy Investmentiq ` α2pPosˆ Joy Investmentiq

` u0i ` u1iJoy Investmenti ` εit,

where Neg and Pos are dummy variables for the externality condition, X is a

vector consisting of the individual elicited measures of ambiguity aversion (AA),

risk aversion (RA), and loss aversion (LA). We allow for both random intercepts

(corresponding to Baseline investment) and random slope coefficients on Joy In-

vestment. The results are reported in Table 6. In the first column, we estimate the

model under the restrictions that α1 “ α2 “ 0 and u1i “ 0. That is, we exclude

interactions between Joy Investment and the externality condition, and exclude

random slope coefficients on Joy Investment. In the second column, we allow for

subject-level random slope coefficients on Joy Investment, and in the third col-

umn, we further include interactions between Joy Investment and the externality

condition.

In all three columns, Joy Investment has a strongly significant positive effect

on investment. The third column mirrors the result obtained for the Baseline

condition in Block 1, that Joy Investment has a significant positive effect on Base-

line investment, but for the Baseline condition implemented during the main part

of the experiment (Blocks 2 and 4). More importantly, the effect of Joy Invest-

25Wald tests (with wild cluster bootstrap): Complete-N (p “ 0.003 for all rounds, p “
0.010 for last six rounds), Circle-N (p ă 0.001 for all rounds, p ă 0.001 for last six rounds),
Complete-P (p “ 0.002 for all rounds, p “ 0.093 for last six rounds), Circle-P symmetric
(p “ 0.002 for all rounds, p “ 0.032 for last six rounds), Circle-P specialized (p “ 0.032 for all
rounds, p “ 0.095 for last six rounds).
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Table 6. Multilevel mixed effects model with between subjects random slopes, regressing
Investment (final six rounds) on Joy Investment and externality condition; Reg-
ular networks.

Dependent variable: Individual investment in round t

Regular Regular Regular

Joy Invest 0.44˚˚ 0.63˚˚˚ 0.68˚˚˚

p0.21q p0.23q p0.25q

Neg 56.76˚˚˚ 56.76˚˚˚ 55.94˚˚˚

p13.61q p13.61q p13.51q

Pos ´58.97˚˚˚ ´58.97˚˚˚ ´56.39˚˚˚

p12.26q p12.26q p12.31q

AA ´5.33˚ ´5.68˚˚ ´5.68˚˚

p2.83q p2.77q p2.77q

RA ´2.78 ´3.56˚ ´3.56˚

p1.78q p1.83q p1.83q

LA ´1.60 ´1.92 ´1.92
p1.96q p1.98q p1.98q

Joy Invest ˆ Neg – – 0.06
p0.08q

Joy Invest ˆ Pos – – ´0.20˚˚˚

p0.06q

Constant 154.81˚˚˚ 163.98˚˚˚ 163.39˚˚˚

p25.90q p27.57q p27.40q

pσu0
(Constant) 90.89˚˚˚ 88.06˚˚˚ 88.08˚˚˚

pσu1 (Joy Invest) – 0.319˚˚˚ 0.319˚˚˚

pσε (Residual) 134.42˚˚˚ 134.42˚˚˚ 134.13˚˚˚

Groups 21 21 21
Observations 2268 2268 2268
Wald χ2p6q 130.70˚˚˚ 145.71˚˚˚ 172.43˚˚˚

Robust standard errors, adjusted for clustering at the group level, in parentheses
˚ p ă 0.10, ˚˚ p ă 0.05, ˚˚˚ p ă 0.01

ment is no different when the externality is negative (since the coefficient estimate

pα1 “ 0.06 is not significantly different from zero), but is significantly weaker when

the externality is positive (pα2 “ ´0.20).26 Thus, we find support for the hypothe-

sis that joy of winning has a significantly weaker influence on investment in regular

networks when there are positive externalities than it does when there are negative

externalities or no externalities at all.

Result 9. In the regular networks, non-monetary utility of winning has a strongly

26Nevertheless, the effect of Joy Investment in the Positive condition is still significant. That
is, we reject the hypothesis that β1 ` α2 “ 0, with p “ 0.0165.
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Figure 11. Mean investment levels in the final six rounds of the Negative (α “ ´0.8q
and Positive (α “ 0.8q conditions, by network. Dashed lines indicate NE
point predictions. Error bars indicate 95% wild cluster bootstrap confidence
intervals.

significant positive effect on investment in the Baseline and Negative condi-

tions. However, the effect in the Positive condition is significantly weaker

than in the other conditions, although it remains statistically significant.

5.3 Core-Periphery Networks

We turn next to the two core-periphery networks. Figure 11 highlights three key

patterns of over-investment across externality conditions for the different types

of player in Star and CP2. First, we observe significant mean over-investment

by the core players in the Positive conditions, where they are predicted to be

inactive. Second, there is no mean over-investment by core players in the Negative

condition, for either network. Third, peripheral players exhibit considerably higher

over-investment rates in the Negative condition than in the Positive condition, for

which mean over-investment loses significance over the final six rounds.27

Result 10. In the core-periphery networks, we observe a stark reversal in the

patterns of mean over-investment for the Negative and Positive externalities.

(i) With negative externalities, peripheral players exhibit mean over-investment

while core players’ investments are in line with the NE prediction.

(ii) With positive externalities, core players exhibit significant mean over-investment,

27For completeness, refer to Figure B.7 in Appendix B, which shows mean investment levels
using all rounds.
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while peripheral players’ mean investment levels are close to the NE predic-

tion.

One might argue, as we did for the regular networks, that the patterns of

over-investment by peripheral players are consistent with non-monetary utility of

winning that is sensitive to the externality condition. That is, if joy of winning is

elevated in the presence of negative externalities and diminished in the presence of

positive externalities, it may explain, at least in part, why the peripheral players

over-invest by substantially more in the Negative condition than they do in the

Positive condition. We estimate the same model as in Equation [6], separately for

core players and peripheral players. The results are reported in Table 7.

The first two columns examine the Star network and the third and fourth

columns examine the CP2 network. For the Star network, the effect of Joy

Investment for peripheral players is only statistically significant for the Negative

externality condition.28 In contrast, for the core players, Joy Investment has a

strongly significant impact in the Baseline condition, an even stronger impact

in the Negative condition, and a weaker, statistically insignificant effect in the

Positive condition (Wald test, p “ 0.718). The results are similar for the peripheral

players in the CP2 network, where the effect is significant only in the Negative

condition (Wald test, p “ 0.028). However, for the core players, the effect is only

significant in the Baseline condition (Wald test, p “ 0.022), although it is stronger

in the Positive condition than in the Negative condition.29 We summarize these

findings as follows.

Result 11. In the core-periphery networks, non-monetary utility of winning

(i) is significantly positively correlated with peripheral players’ investment in

the Negative condition, but is not correlated with their behavior in the other

externality conditions;

(ii) is strongly and significantly positively correlated with investment by the core

players in the Baseline conditions and in Star-N but is not correlated with

core players’ investments in the other core-periphery treatment conditions.

Thus, the same argument we appeal to for regular networks (cf. Result 9)

does not receive the same support in the context of core-periphery networks. Joy

28We reject the null hypothesis that β1 ` α1 “ 0 (Wald test, p “ 0.029) for the Negative
condition. For the other two conditions, we fail to reject, with p ą 0.335.

29We fail to reject the null hypotheses that β1`α1 “ 0 (p “ 0.839) or β1`α2 “ 0 (p “ 0.245).
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Table 7. Multilevel mixed effects model with between subjects random slopes, regressing
Investment (final six rounds) on Joy Investment and externality condition; by
player type in Core-Periphery networks.

Dependent variable: Individual investment in round t

Star CP2

Peripheral Core Peripheral Core

Joy Invest 0.15 4.17˚˚˚ 0.40 0.71˚˚

p0.21q p0.95q p0.26q p0.31q

Neg 19.56 48.15˚˚ 32.34˚˚˚ 116.10˚˚˚

p19.19q p22.77q p10.95q p39.70q

Pos ´15.98 ´88.21˚˚˚ ´13.16 ´29.01˚˚

p17.63q p20.13q p10.72q p14.08q

Joy Invest ˆ Neg 0.10 2.34˚˚˚ 0.15 ´0.64˚˚˚

p0.15q p0.38q p0.16q p0.09q

Joy Invest ˆ Pos 0.04 ´3.83˚˚˚ ´0.05 ´0.31˚˚˚

p0.05q p0.61q p0.12q p0.05q

AA 3.63˚ 4.05 1.21 ´6.53
p2.20q p3.17q p2.93q p4.09q

RA 0.98 13.34˚˚˚ ´2.36 ´6.53˚˚

p2.84q p3.75q p4.11q p2.62q

LA ´2.53 ´7.69˚˚˚ 0.83 ´2.33
p2.13q p2.31q p2.45q p1.81q

Constant 152.04˚˚˚ 95.99˚˚˚ 127.07˚˚˚ 175.93˚˚˚

p27.58q p35.25q p41.45q p34.48q

pσu0
(Constant) 96.62˚˚˚ 53.43˚˚˚ 74.98˚˚˚ 68.45˚˚˚

pσu1 (Joy Invest) 0.19˚˚˚ – 0.46˚˚˚ 0.47˚˚˚

pσε (Residual) 144.31˚˚˚ 124.52˚˚˚ 144.22˚˚˚ 147.69˚˚˚

Groups 18 18 16 16
Observations 1620 324 1152 576
Wald χ2p8q 72.34˚˚˚ 3057.92˚˚˚ 140.67˚˚˚ 483.51˚˚˚

Robust standard errors, adjusted for clustering at the group level, in parentheses
˚ p ă 0.10, ˚˚ p ă 0.05, ˚˚˚ p ă 0.01

of winning does not appear to explain the differential patterns of over-investment

by the peripheral players in the different externality conditions. Furthermore, the

argument clearly does not explain the observed investment patterns of the core

players. Instead, we argue that subjects take into consideration the impact of the

allocative externalities on social efficiency.

Social efficiency concerns. Consider the following line of reasoning. In the

core-periphery networks, a greater number of neighbors are impacted when the
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prize is allocated to a core player. As a result, the sum of payoffs can be al-

tered (perhaps quite significantly) by the allocation.30 For instance, consider the

Star network, in which there is just one core player. In the Negative externality

condition, the unique equilibrium involves the core player winning with higher

probability than an individual peripheral player.31 However, when the core player

wins, every other player is impacted severely. If, instead, a peripheral player were

to win the contest, the only player who suffers is the core player.

Thus, from a social efficiency standpoint, the total harm is minimized if the

prize is allocated to a peripheral player. If subjects share some concern for social

efficiency, we might expect to see the peripheral players collectively over-invest,

so as to reduce the chances of the widespread harm that will arise in the event

that the core player wins the contest. This can be interpreted as an alternative

explanation to the joy of winning hypothesis, or as a foundation for the elevated

joy of winning on the part of the peripheral players in Star-N. A similar concern

with social efficiency may mitigate the joy of winning for the core players in the

Star-N condition, leading them to reduce their investment levels in consideration

of others. However, even those core players who are unconcerned with the harm

they may inflict upon others may rationally reduce their investment, as a best

response to the over-investment by peripheral players.

An analogous argument can be made to explain the opposite patterns of over-

investment observed in the presence of positive externalities. In this case, the total

externality flows are maximized when the core player wins the contest. However,

in equilibrium, the probability that the core player wins is zero, since the equi-

librium investment profile involves the core player choosing to be inactive. Thus,

equilibrium and efficiency are in direct conflict with each other. If the core and

peripheral players care about social efficiency, they may be able to coordinate on

an investment profile in which the peripheral players remain inactive, allowing

the core player to win the contest and provide externality benefits to all. Indeed,

we find some evidence in support of these patterns for some of the groups in the

Star-P condition.

30In contrast, in the regular networks, the structure of the network is such that the flow of
externalities, while identity-dependent, has no effect on the sum of payoffs (holding fixed the
effort investments), since regardless of which agent is allocated the prize, the number of neighbors
(who are impacted by the externality) is the same. As such, social efficiency concerns should
not come into play.

31The core player’s equilibrium probability of winning is about 0.357, while each peripheral
player wins with approximately 0.129 probability.
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Figure 12 displays average investment levels among peripheral players over

time for the Positive externality condition, depending on the median investment

level (across all rounds) of the core player(s). In the case of the Star network, we

calculate the median investment level of the lone core player across all 15 rounds

in Star-P.32 We find that 13 of 18 core players have a median investment level

of one or less and we classify these individuals as inactive; the remaining five

core players all have median investment levels of 100 tokens or more, and so are

classified as active. In the case of the CP2 network, we first calculate the sum of

the core players’ investments in each round and then calculate the median of the

aggregate investment by core players, collectively, across the 15 rounds. We find

that four out of 16 cores have a median aggregate investment of five or less and

classify these cores as inactive; the remaining 12 cores all have median aggregate

investment levels of 120 or more and are classified as active.

In Star-P, we see a clear disparity between the average investment levels

among peripheral players when the core player is active versus inactive. Specifi-

cally, peripheral players invest, on average, at a much lower level when the core

player in their group is active in the contest than when the core player is in-

active.33 This is consistent with a preference among the peripheral players for

a more socially efficient outcome in which the core player wins the contest and

all peripheral players benefit from the positive externality flows. When the core

player is inactive, peripheral players’ investments are, on average, well above the

NE prediction across all rounds, consistent with the impact that joy of winning

appears to have in the Baseline condition.

In CP2-P, average investments by peripheral players in groups with active

cores appear to be converging to a slightly lower level in later rounds compared

to those groups with inactive cores. However, the disparity is not nearly as stark

as in the Star network. This is not especially surprising, since there remains

some conflict between the two sides of the CP2 network. Specifically, unlike in

the Star network, the peripheral players are not guaranteed to benefit when an

active core player wins the contest. Only when the prize is allocated to the core

player to whom the peripheral player is linked does the player enjoy the positive

externality.

32Figure B.8 in Appendix B provides boxplots for each individual core player in the Star-P
and CP2-P conditions, using all rounds.

33Furthermore, their mean investment is also below the NE prediction for most of the final 10
rounds.
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Figure 12. Average investment level among peripheral players in Star-P and CP2-P,
separated by whether the core player(s) are active or inactive.

Examining the data at the group-level provides some additional clarity regard-

ing the patterns of behavior that influence the observed levels of over-investment.

Figure 13 plots the average investments of individuals by type in the final six

rounds of the Star-N condition, for each independent group. For half of the

groups, the core player consistently invests more than the average of the periph-

eral players’ investments (see group IDs 14, 16, 21, 22, 23, 29, 30, and 38), in

line with the equilibrium profile. However, there are also groups in which the

core player is inactive, while the peripheral players average significantly positive

investments (e.g., see group IDs 13, 24, and 39, and to a lesser degree, group IDs

15, 17, and 18, where the core player invests less than both the NE prediction and

the average of the peripheral players).

Similarly, in the CP2 network (see Figure 14), there are several groups in

which the core players invest (on average) more than the peripheral players (for

example, group IDs 43, 44, 46, 53, and 59). Yet, in most other groups, mean

investment by the peripheral players is comparable to, or even slightly above, the

mean investment by the core players. Indeed, for six of the groups, the average

core player investment is below the NE prediction over the final six rounds.

Altogether, the heterogeneity among groups in the Star and CP2 networks

serves to illustrate that the different patterns of mean over-investment for core

and peripheral players in the Negative externality condition may be driven by the

differential impact of social efficiency concerns in several groups.

Figure 15 plots the average investments of individuals by type in the final six

rounds of the Star-P condition, for each independent group. First, we observe
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Figure 13. Average investment by player type over the final six rounds in the Star-N
condition. Each cell represents one independent group.
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Figure 14. Average investment by player type over the final six rounds in the CP2-N
condition. Each cell represents one independent group.

that the most common pattern is a core player investing at or near zero in every

round, accompanied by positive average investment levels among the peripheral

players. We see this type of behavior, which most resembles the equilibrium

predictions in 12 of the 18 groups (those with group IDs 13, 16, 17, 18, 19, 20, 23,
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Figure 15. Average investment by player type over the final six rounds in the Star-P
condition. Each cell represents one independent group.

24, 28, 29, 30, and 39). However, another pattern that emerges is the one in which

the core player is active (investing strictly positive amounts) while the peripheral

players average at or near zero investment. This type of pattern, which is more

consistent with coordination on a more socially efficient outcome, can be clearly

seen in groups 21 and 22, and to a lesser degree, in group 37.

Similarly, Figure 16 plots the average investments of individuals by type in

the final six rounds of the CP2-P condition, for each independent group. As

in the Star network, one of the prominent patterns is, consistent with the NE

prediction, for the core players to invest nothing while the peripheral players

compete against each other. These groups are characterized by zero (or near-zero)

core investments and positive peripheral players’ investments (for instance, see

groups with IDs 47, 50, 53, 55, 58, and 59). Another pattern involves relatively

higher (average) investment by the core players, and lower investment by the

peripheral players, as in groups 43 and 51. However, several other groups display

a mixture of behavior, with both core and peripheral players competing actively

even over the final six rounds. As discussed above, this is not especially surprising,

since it may correspond to groups in which the peripheral players on one side of

the CP2 network and the core player on the other side of the CP2 network compete

against each other.
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Figure 16. Average investment by player type over the final six rounds in the CP2-P
condition. Each cell represents one independent group.

The following result summarizes our findings regarding the impact of social

efficiency concerns on over-investment patterns in the core-periphery networks.

Result 12. In the core-periphery networks, the aggregate patterns of mean over-

investment are driven by a mixture of group-level patterns: some groups

converge to investment profiles consistent with NE predictions, while others

exhibit behavior consistent with a concern for social efficiency. For negative

(positive) externalities, this heterogeneity combines to decrease (increase) the

mean investment of core players and increase (decrease) the mean investment

of peripheral players.

6 Conclusion

In this paper, we report the results of a controlled laboratory experiment designed

to examine the impact of identity-dependent externalities on investment behavior

in an all-pay contest environment. We test the theoretical predictions of a simple

version of the model introduced in Boosey and Brown (2022), by systematically

varying both the network structure and externalities. Our experimental findings

lend considerable support to the comparative static predictions. For instance, in

regular network structures like the Complete network or the Circle network,

mean investment is substantially higher in the presence of negative externalities,
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where the stakes of losing are heightened, and substantially lower with positive

externalities, which introduce free-riding incentives. Moreover, the comparison

between the Circle network and the Complete network confirms that the im-

pacts of the externalities increase with the density of the network. The effects are

similar in our two core-periphery networks, where the well-connected core play-

ers respond more strongly to both negative and positive externalities than the

peripheral players.

Despite broad confirmation of the comparative statics predictions, we also

observe mean over-investment in most treatment conditions, consistent with the

existing experimental literature on contests. However, the particular patterns of

over-investment depend on the network, the externality condition, and, in the

core-periphery structures, the player’s position within the network. We provide

supporting evidence for the influence of two behavioral phenomena—joy of win-

ning and social efficiency concerns—that appear to play an important role in the

resulting network contest games. One important takeaway from the experimental

data is that, in the core-periphery networks, where the equilibrium outcomes are

especially inefficient, some groups behave in ways that are consistent with efforts

to improve the efficiency of the contest outcome. For instance, when externalities

are negative, we observe much stronger over-investment by peripheral players who

have a collective incentive to mitigate the chances of widespread harm that occurs

if the core players win. When externalities are positive, some core players remain

active (even when the equilibrium prescribes that they should free-ride on others’

investments) while the peripheral players are more restrained in their investment

activity, recognizing that there may be widespread efficiency improvements if the

prize is allocated to a core player.

Although our experiment was not designed to test for these social efficiency

concerns, our results ought to motivate additional work aimed at better under-

standing the importance of social efficiency and joy of winning for competitive

behavior in the presence of externalities. It would also be interesting and im-

portant to explore the impact of such externalities in other, potentially larger,

network structures than those considered here. Additionally, in the current study,

we restrict attention to the case of homogeneous link weights, which is appealing

for its tractability and stark comparative statics. However, there may be many in-

teresting patterns of behavior to explore in contests with heterogeneous weighted

links, including structures that involve a mixture of positive and negative exter-
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nalities. Finally, given the expanding interest in games played on endogenous net-

works, future research could also direct attention to the emergence or evolution of

network-based externalities over time, particularly in settings where competitors

interact repeatedly.
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A Equilibrium Results for Homogenous Link Weights

This appendix reproduces the closed-form results of Boosey and Brown (2022) for

equilibrium investment in regular networks—covering the Complete and Circle

networks—and a subclass of core-periphery networks—covering the Star and CP-

2 networks.

The first result concerns the existence of a symmetric equilibrium in any regular

network with homogenous links.

Proposition (Boosey and Brown (2022), Proposition 3.). Consider the network

contest game in which the network G has homogenous links, such that gij P t0, ḡu

where either ḡ “ 1 or ḡ “ ´1.

Suppose G is regular of degree d P t0, . . . , n´1u. Then for any α P r0, 1q, there

exists a symmetric, pure strategy Nash equilibrium, x˚ “ px˚, . . . , x˚q, where

x˚ “
n´ 1´ αḡd

n2
. [7]

The next result characterizes the semi-symmetric equilibrium in core-to-periphery

networks, which consist of a set of core players and a set of peripheral players that

satisfy the following conditions: (i) each peripheral player is connected to exactly

one core player (and no other peripheral players), (ii) each core player is connected

to m peripheral players, and (iii) each core player is connected to every other core

player.

Proposition (Boosey and Brown (2022), Proposition 4.). Consider the game de-

fined by α P r0, 1q and the network G, for which links are homogenous, such that

gij P t0, ḡu (where ḡ is either 1 or ´1).

Suppose G is a core-to-periphery network with nc core players, each connected

to m peripheral players. Then there exists a semi-symmetric, pure strategy Nash

equilibrium in which every core player chooses the same investment x˚c , and every

peripheral player chooses the same investment x˚p, where

(i) if αḡ ă 1
m

, then x˚c “ r1´ αḡms∆ and x˚p “ r1` αḡpnc ´ 2qs∆ , where

∆ “
ncr1`m` αḡmpnc ´ 3qs ´ r1` αḡpnc ´ 1´ αḡmqs

n2
cr1`m` αḡmpnc ´ 3qs2

ě 0.

(ii) if αḡ ě 1
m

, then x˚c “ 0 and x˚p “
ncm´1
pncmq2

.
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B Additional figures
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Figure B.1. Mean investment levels in the Baseline condition (αḡ “ 0) from Block 1, by
network and across rounds. The solid reference line indicates the NE point
prediction (69.44).
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Figure B.2. Scatter plot of investments in all rounds by group in the Circle-P condition.
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Figure B.3. Average investment by maximal independent sets MA “ tA,D,Eu and MB “

tB,C, F u over all 15 rounds in the Circle-P condition. Each cell represents
one independent group.
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Figure B.4. Average investment by maximal independent sets MA “ tA,D,Eu and MB “

tB,C, F u over the last rounds in the Circle-N condition. Each cell represents
one independent group.
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Figure B.5. Average investment by maximal independent sets MA “ tA,D,Eu and MB “

tB,C, F u over the last rounds in the Circle-B condition. Each cell represents
one independent group.
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Figure B.6. Mean investment levels in the Baseline condition (α “ 0) from Blocks 2 and
4, by network. The solid reference line indicates the NE point prediction
(69.44). Error bars indicate 95% wild cluster bootstrap confidence intervals.
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prediction.
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C Experimental instructions

Thank you for participating in today’s experiment. I will read through the script

so that everyone receives the same information. Please remain quiet and do not

communicate with other participants during the experiment. Raise your hand

if you have any questions and an experimenter will come to you to answer the

question privately.

For your participation in today’s experiment, you will receive the show-up fee of

$7. In addition, during the experiment, you will have the opportunity to earn

more money. Your additional earnings will depend on the decisions you make and

on the decisions made by other participants. At the end of the experiment, you

will be paid anonymously by check. No other participant will be informed about

your payment.

The experiment consists of multiple parts. The instructions for subsequent parts

will be given only after each previous part is completed. Below you will find the

instructions for Part 1.

Part 1 Instructions

In this part, you will be asked to make three decisions. One of these three decisions

will be randomly chosen at the end of the experiment and that decision will be

used to calculate your actual earnings for Part 1.

The basic setups for the three decisions are similar. In each case, you will see a list

of 20 choices between lotteries and sure amounts of money. Lotteries will always

be on the left, and sure amounts of money on the right. The lists will be ordered

such that you will prefer the lottery to the sure amount of money in the choice

at the top of the list. As you go down the list, you will tend to like the lotteries

less and less as compared to the sure amounts. At some point, you will be willing

to switch from preferring a lottery to preferring the corresponding sure amount of

money. At the point where you are willing to switch, please click on the SWITCH

HERE button.

When you click on a SWITCH HERE button, lotteries will be your choice every-

where above that line, and sure amounts of money will be your choice everywhere

below that line. All of the 20 choices that you generate will be highlighted. If you

want to change your decision, simply click on another SWITCH HERE button.

When you are ready to finalize your decision, click SUBMIT.
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After you have made your decision, one of the 20 choices will be selected randomly.

If your decision for that choice is a sure amount of money, you will earn that

amount of money. If your decision for that choice is the lottery, then the outcome

of the lottery will be determined according to the listed probabilities and your

earnings will be equal to that outcome.

You will not be informed about your earnings from this part of the experiment

until the very end of the session today, after you have completed all parts of the

experiment.

Are there any questions before you begin making your decisions?

Part 2 Instructions

All amounts in this part of the experiment are expressed in tokens. The exchange

rate is 400 tokens “ $1.

This part of the experiment consists of a sequence of 10 decision rounds. At the

beginning of round 1, you will be randomly assigned to a group consisting of 6

participants, including you. You will remain in this group for the duration of this

part. That is, you will interact with the same 5 other participants in all 10 rounds.

Your group

Before round 1, you and the 5 other participants in your group will be randomly

assigned to positions in the network graph shown in Figure ?? below. One person

will be assigned to each position. Each position is labeled with a letter ID, from

A to F . Positions, and therefore also the letter IDs, will remain fixed for the

duration of this part. In the network graph, a straight line between two positions

indicates that players at those positions are “connected”.

During the decision rounds, the network graph will be shown on the screen. Your

own position will be highlighted in red. The players you are connected to will be

highlighted in yellow, while those you are not connected to (if there are any) will

be shown in black.

For example, Figure C.1 shows the network graph from player A’s perspective.

Thus, player A’s position will be displayed in red, while the positions for player

B and player C will be displayed in yellow. All of the other players’ positions will

be displayed in black, since only player B and player C are connected by an edge

to player A in this network graph.
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Figure C.1. The network graph - as viewed by player A

Your decision

In each round, you will be given an endowment of 800 tokens. You may use

these tokens to make decisions in the round. Specifically, during the round, you

can invest any integer number of tokens, from 0 to 800, into a project. Other

participants in your group will face the same decision, with the same endowment

of 800 tokens. After everyone has chosen a project investment, one participant in

the group will be declared the winner, based on the following procedure. The

probability that you are the winner is given by:

Number of tokens you invested in your project
Sum of the tokens invested in projects by all participants in your group

The computer program will determine the winner according to the probabilities

calculated in this way.

Consider the following two examples.

Example 1: Suppose you invested 100 tokens in your project, while the other

five participants in your group invested 150 tokens, 80 tokens, 100 tokens, 120

tokens, and 250 tokens, respectively. Then, the sum of the tokens invested in

projects by all participants in your group will be p100`150`80`100`120`250q “

800 tokens. The probability you are the winner is then

100

800
“

1

8
“ 0.125 “ 12.50%

Example 2: For this example, suppose you invested 300 tokens in your project,

while the other five participants in your group invested 20 tokens, 30 tokens, 0
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If you are the winner:

`800 (endowment)
`500 (prize)
´ (tokens you invested)
1300´ (tokens you invested)

If you are not the winner:
but are connected to the winner: and are not connected to the win-

ner:

`800 (endowment) `800 (endowment)
`0 (no prize) `0 (no prize)
`X (change in earnings) `0 (no change in earnings)
´ (tokens you invested) ´ (tokens you invested)
800`X ´ (tokens you invested) 800´ (tokens you invested)

tokens, 200 tokens, and 50 tokens, respectively. Then, the sum of the tokens

invested in projects by all participants in your group will be p300` 20` 30` 0`

200` 50q “ 600 tokens. The probability you are the winner is then

300

600
“

1

2
“ 0.5 “ 50.00%

Your earnings

In each decision round, the winner will receive a prize of 500 tokens. All partic-

ipants (including the winner) must pay their project investments.

In addition, the earnings for each participant who is connected to the winner

will be changed by X tokens. In general, X can be positive, negative, or zero.

Thus, your earnings in a given round are determined as follows:

Example 3: Suppose you are the winner and your project investment was 100

tokens. Then your earnings for the round will be 1300´ 100 “ 1200 tokens.

Alternatively, suppose you are not the winner, and you ARE NOT connected to

the winner. If your project investment was 100 tokens, then your earnings for the

round will be 800´ 100 “ 700 tokens.

Finally, suppose you are not the winner, but that you ARE connected to the

winner. Moreover, suppose X “ `200. That is, the earnings of each player

connected to the winner are increased by 200 tokens. If your project investment

was 100 tokens, then your earnings for the round will be 800 ` 200 ´ 100 “ 900

tokens.
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If, instead, X “ ´200, the earnings of each player connected to the winner are

decreased by 200 tokens. Thus, if your project investment was 100 tokens, your

earnings for the round will be 800´ 200´ 100 “ 500 tokens.

Control Questions

In a moment, you will be asked to complete some control questions shown on

the screen. These questions are only to help you understand the instructions -

they will not affect your earnings. After several minutes, we will walk through

the answers together, then move on to the next set of questions. After these are

completed, we will continue with the instructions.

Feedback

After all participants have made their decisions, you will be shown the individual

project investments for each participant in your group, the sum of all tokens

invested in projects by participants in your group, and your probability of winning.

Then, after the program determines the winner, the screen will display the position

of the winner, whether or not you are connected to the winner, and a calculation

of your earnings for the round.

Summary

Part 2 will consist of 10 decision rounds. In each round, you and the other partic-

ipants in your group will choose project investments. The probability that your

project wins depends on the share of your own project investment out of the total

number of tokens invested by all participants in your group. Only one participant

can be the winner in a given round. All participants must pay their project in-

vestments out of the endowment (800 tokens). The winner will receive a prize of

500 tokens. For any participant who does not win, but is connected to the winner,

earnings will be changed by X tokens.

As a reminder, in the network graph shown on the screen, your position will be

shown in red. The positions of the players with whom you are connected will be

shown in yellow (in addition to being linked with your position by an edge). The

positions of players who you are not connected to (if there are any) will be shown

in black.

In Part 2, X “ 0 for all 10 decision rounds. That is, the earnings for a
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participant who does not win, but is connected to the winner will not

be adjusted.

To make this clear, your earnings in any decision round will be given by:

1300´ (tokens you invested) if you are the winner,
800´ (tokens you invested) if you are not the winner, but are connected to the

winner
800´ (tokens you invested) if you are not the winner, and are not connected to

the winner

At the end of the experiment, you will be paid for one randomly chosen decision

round from Part 2. Each of the 10 decision rounds in this part is equally likely to

be selected.

Part 3 Instructions

The instructions for Part 3 are almost identical to the instructions for Part 2.

However, Part 3 will consist of a sequence of 15 decision rounds. Your group, the

network graph, and your position will be the same as in Part 2.

In Part 3, X “ ´400 for all 15 decision rounds. That is, the earnings for

a participant who does not win, but is connected to the winner will be

decreased by 400 tokens.

To make this clear, your earnings in any decision round will be given by:

1300´ (tokens you invested) if you are the winner,
400´ (tokens you invested) if you are not the winner, but are connected to the

winner
800´ (tokens you invested) if you are not the winner, and are not connected to

the winner

At the end of the experiment, you will be paid for one randomly chosen decision

round from Part 3. Each of the 15 decision rounds in this part is equally likely to

be selected.

Part 4 Instructions

The instructions for Part 4 are almost identical to the instructions for Part 3. Part

4 will also consist of a sequence of 15 decision rounds. Your group, the network

graph, and your position will be the same as in Parts 2 and 3.
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In Part 4, X “ `400 for all 15 decision rounds. That is, the earnings for

a participant who does not win, but is connected to the winner will be

increased by 400 tokens.

To make this clear, your earnings in any decision round will be given by:

1300´ (tokens you invested) if you are the winner,
1200´ (tokens you invested) if you are not the winner, but are connected to the

winner
800´ (tokens you invested) if you are not the winner, and are not connected to

the winner

At the end of the experiment, you will be paid for one randomly chosen decision

round from Part 4. Each of the 15 decision rounds in this part is equally likely to

be selected.

Part 5 Instructions

The instructions for Part 5 are exactly identical to the instructions for Part 2.

Thus, it will consist of a sequence of 10 decision rounds. Your group, the network

graph, and your position will be the same as in Parts 2, 3, and 4.

In Part 5, as in Part 2, X “ 0 for all 10 decision rounds. That is, the

earnings for a participant who does not win, but is connected to the

winner will not be adjusted.

To make this clear, your earnings in any decision round will be given by:

1300´ (tokens you invested) if you are the winner,
800´ (tokens you invested) if you are not the winner, but are connected to the

winner
800´ (tokens you invested) if you are not the winner, and are not connected to

the winner

At the end of the experiment, you will be paid for one randomly chosen decision

round from Part 5. Each of the 10 decision rounds in this part is equally likely to

be selected.

Part 6 Instructions

This part of the experiment consists of a single decision round. The basic setup

is similar to the setup for Parts 2, 3, 4, and 5.

Before the round begins, you will be randomly rematched into a new

group of 6 participants. In addition, there is no network graph connecting the
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participants for this part. However, you will still be randomly assigned a letter ID

from A to F.

You and the other participants in your group will be given an endowment of

800 tokens each and asked to choose project investments. As in previous parts,

the probability that your project wins depends on the share of your own project

investment out of the total number of tokens invested by all participants in your

group. All participants must pay their project investments out of the endowment.

There are two main differences from previous parts. The first is that in this part,

the winner will receive a prize of 0 tokens. The second is that, since there

is no network graph connecting participants, there is no adjustment X to be

made to the earnings of participants who are connected to the winner.

To make this clear, your earnings for this part (1 decision round only) will be

given by:

800´ (tokens you invested) if you are the winner,
800´ (tokens you invested) if you are not the winner

After all participants have made their decisions, you will be shown the individual

project investments for each participant in your group, the sum of all tokens

invested in projects by participants in your group, and your probability of winning.

Then, after the program determines the winner, the screen will display the letter

ID of the winner, whether or not that is you, and a calculation of your earnings.
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