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Abstract

We study information disclosure policies for contests among groups. Each player
endogenously decides whether or not to participate in competition as a member
of their group. Within-group aggregation of effort is best-shot, i.e., each group’s
performance is determined by the highest investment among its members. We
consider a generalized all-pay auction setting, in which the group with the highest
performance wins the contest with certainty. Players’ values for winning are private
information at the entry stage, but may be disclosed at the competition stage. We
compare three disclosure policies: (i) no disclosure, when the number of entrants
remains unknown and their values private; (ii) within-group disclosure, when this
information is disclosed within each group but not across groups; and (iii) full
disclosure, when the information about entrants is disclosed across groups. For
the benchmark case of contests between individuals, information disclosure always
reduces expected aggregate investment. However, this is no longer true in group
contests: Within-group disclosure unambiguously raises aggregate investment, while
the effect of full disclosure is ambiguous.
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1 Introduction

Across a wide range of economic, political, and social environments, competition takes

place between groups of individuals who align themselves in pursuit of some common

goals. For example, many interest groups engaged in lobbying activities consist of diverse

collections of individuals with broadly aligned objectives. Within organizations, managers

may solicit project submissions from multiple divisions or teams of employees and reward

the team with the best proposal. Crowdsourcing R&D platforms such as the XPRIZE

Foundation invite groups to compete for prizes solving complex innovation problems.

Such competitive settings can be broadly categorized as group contests. In each group,

individuals invest effort or other resources to increase their group’s performance, which

in turn improves the group’s chances of winning a valuable prize.

In this paper, we study competition between groups in which the decision to enter

competition as a member of a particular group is endogenous. In our setting, there are

a fixed number of competing groups, each with a pool of potential participants. In an

initial entry stage, each player decides whether or not to participate in competition as a

member of their group. Participants must forgo some outside option or, equivalently, face

a cost of entry. Then, in a second stage, participants make investment or effort decisions

that determine the group’s performance level. We analyze and compare three disclosure

policies that dictate the information available to participants at the time they make their

investments.

We consider activities in which group performance is determined solely by the best-

shot, i.e., the maximum investment chosen by a group member (Baik and Shogren, 1998;

Chowdhury, Lee and Sheremeta, 2013).1 Such a setting may arise, for example, in lobbying

environments where the official who is lobbied considers only the individual agents on each

side of an issue who made the most compelling case; or within an organization where a

team of employees pitches only the most promising project idea to the management. One

can think also of a market setting where a client, such as a real-estate developer, solicits

projects from multiple firms, and each firm conducts an internal selection process and

presents its best proposal.

We model group competition as a generalized all-pay auction (Baye, Kovenock and

De Vries, 1996; Siegel, 2009) in which the group with the highest performance (the highest

1Other popular approaches are to model the group performance level using perfect substitutes ag-
gregation technology (Katz, Nitzan and Rosenberg, 1990; Baik, 1993, 2008; Baik, Kim and Na, 2001;
Münster, 2009) or weak-link (perfect complements) technology (Lee, 2012). Kolmar and Rommeswinkel
(2013) and Brookins, Lightle and Ryvkin (2015) consider varying degrees of complementarity with a CES
technology.
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best-shot) wins the contest with certainty.2 Moreover, we assume that the prize associated

with winning is a group-specific public good. Thus, the value of winning for each member

of the winning group is equal to her individual private value, regardless of the size of the

group.3 Together, these features of the environment generate incentives for individuals

within groups to free-ride on the investments made by their fellow group members. These

free-riding incentives underscore one of the key differences between contests among groups

and contests among individuals. As such, the environment we consider provides a rich and

previously unexplored interplay between endogenous entry, free riding and information

disclosure in contests.

The game proceeds in two stages. At the initial entry stage, players’ values for the

prize are private information, although it is common knowledge that they are drawn in-

dependently from the same commonly known distribution. Depending on the disclosure

policy, information about the number of participating group members and their values

may become known to participants at the beginning of the second stage, prior to their

investment decisions.4 In the second stage, participants simultaneously choose an irre-

versible, costly investment, and the outcome of the contest is determined.

We first consider, as a benchmark, the case of contests among individuals and show

that expected aggregate investment is always lower when information about others’ types

is disclosed to those who enter. In this case, equilibrium entry is independent of disclosure.

However, equilibrium aggregate investment corresponds to the (truncated) expectation of

the second highest valuation without disclosure; and to the sum of the expected bids

by the two highest valuation entrants in a complete information all-pay auction, with

disclosure. The latter entails an efficiency loss because the lower valuation player can

win, and a loss of revenue because the lower valuation player can bid zero, with a positive

probability. There is also no scope for free riding or a coordination problem disclosure

may alleviate; thus, nondisclosure leads to a larger investment.

We then turn to contests among groups and broaden our analysis to consider three dif-

ferent disclosure rules, each approximating prominent real-world information structures.

2This setting corresponds to a perfectly discriminating contest success function (CSF). Alternative
environments, in which the contest is imperfectly discriminating, include those with a lottery CSF of
Tullock (1980) and its generalizations. In these settings, the group with the highest performance has a
higher probability of winning, but does not win with certainty.

3Note that potential members of the winning group who do not participate do not receive any benefit
from the prize being awarded to the group they could have joined. This is the case, for example, for
researchers deciding whether or not to join their colleagues on a grant application, politicians joining
various caucuses or factions, or (potential) plaintiffs in group litigation.

4We assume this disclosure of information is exogenous. It may be the effect of explicit design decisions,
for example, by a contest sponsor; or it may be a result of naturally occurring dissemination of information
due to environmental factors, such as the spatial or network structure of agents’ interactions.
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In our “no disclosure” (ND) setting, all entry decisions and valuations remain private in-

formation throughout the investment stage. Thus, entrants face incomplete information

regarding the number of entrants in their own group and in other groups, as well as about

others’ valuations for the prize. This situation occurs, for example, in large organizational

settings that frequently re-assign workers to new project teams, or settings with little to

no interaction between personnel (e.g., telecommuting workers or disjoint work schedules).

In the “full disclosure” (FD) setting, entrants are informed, prior to making investment

decisions, about the number and valuations of all entrants. This condition is applicable,

for example, to online crowdsourcing competitions (e.g., TopCoder.com and Kaggle.com)

whereby “leaderboards” continuously and publicly display team information, such as the

number of team members and their skill levels, player bios and past accomplishments.5

In the third setting, which we call “within-group disclosure” (WD), entrants are informed

about the number and valuations of all entrants within their own group, but do not learn

any information about the entrants in other groups (Brookins and Ryvkin, 2016). This

information structure is found in many naturally occurring “blind” competitive settings

that only announce competitor information (e.g., background, performance, experience

and ability) at the end of the contest stage, such as competition for federal research grants.

We show that, compared to the ND setting, expected aggregate investment is un-

ambiguously higher in the WD setting, where information disclosure is restricted to be

within groups. The key intuition for this result is that entrants who learn about types

within their group are able to solve the coordination problem that arises without disclo-

sure, alleviating the impact of free riding within groups. Equilibrium entry does not differ

between the ND and WD settings. However, the reduction in free riding is sufficiently

strong so that the expected aggregate investment supplied by the highest types in each

group in the WD setting exceeds not only the same but even the sum of all entrants’

investments in the ND case.

Turning to full disclosure (FD), we show that the effect of disclosure on expected

aggregate investment in contests among individuals is often reversed in contests between

groups. While in individual contests FD unambiguously leads to a lower expected ag-

gregate investment than ND (or WD, which is equivalent to ND in this case), in group

contests aggregate investment may be higher or lower in the FD setting than under either

of the other two disclosure rules. When entrants are informed about the number and

types of entrants in all groups, the contest collapses to an individual all-pay auction of

complete information among the groups’ “leaders.” In this setting, we first prove that

5See, e.g., the following leaderboard on Kaggle.com: https://www.kaggle.com/c/

data-science-bowl-2018/leaderboard.
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there is more entry under FD than under ND and WD. However, as in a typical all-pay

auction equilibrium, at most two highest types among the group leaders actively invest

with probability one. As a consequence, it is possible for expected aggregate investment

to be lower under FD than under ND. Nevertheless, provided the distribution of types is

sufficiently elastic and the (expected) group size is large enough, the distributions of the

top two order statistics among the groups’ best entrants are shifted towards the upper

bound of the type space, which leads the two active entrants to invest more aggressively.

As a result, when the distribution of types satisfies this (sufficient) elasticity condition,

full disclosure also increases expected aggregate investment compared to the setting with

no disclosure.

The rest of the paper proceeds as follows. In Section 2, we review related literature.

Section 3 describes the model. The benchmark case of contests among individuals is

considered in Section 4, and our main results and numerical illustrations for group contests

are presented in Section 5. Section 6 concludes. All missing proofs are collected in

Appendix A.

2 Related literature

A fundamental difference between group contests and individual contests is that players

in the former typically face some incentive to free-ride on the investments made by other

group members. In general, the impacts of such free-riding incentives depend on the size

of the group, the type of within-group investment aggregation technology, and on the

information available to the participants. Moreover, informational conditions may affect

the decision to participate in the first place. Recent years have seen a revival of interest

in contests with endogenous entry and in the effect of disclosing the number of entrants.

However, virtually all of the existing research focuses on contests among individuals. As

such, one of our goals in this paper is to explore the interaction between endogenous entry

and free-riding incentives that is unique to group contests.

Our general setting is closely related to the literature on contests in which the prize

is a group-specific public good (see, e.g., Katz, Nitzan and Rosenberg, 1990; Baik, 1993;

Chowdhury, Lee and Sheremeta, 2013; Kolmar and Rommeswinkel, 2013; Barbieri and

Malueg, 2016; Eliaz and Wu, 2018; Barbieri et al., 2019).6 Only a handful of papers in this

literature consider the setup with private information (Fu, Lu and Pan, 2015; Barbieri

and Malueg, 2016; Brookins and Ryvkin, 2016; Eliaz and Wu, 2018; Barbieri et al., 2019).

6There is also a large literature on group contests where the prize is a private good that must be divided
between the members of the winning group. For example, see Nitzan (1991); Lee (1995); Skaperdas (1998);
Wärneryd (1998); Konrad and Leininger (2007); Münster (2007) and Nitzan and Ueda (2009, 2011).
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The baseline features of our group contest environment are most similar to Barbieri

and Malueg (2016). As in their model, we consider a setting where players’ values for

winning are private information, group performance is determined by the “best-shot”

of its members, and the highest performing group wins the contest. The focus of the

analysis in Barbieri and Malueg (2016) is on the comparative statics of individual, group,

and aggregate investment, and of the equilibrium probability of winning, as the size of

the groups and the number of groups are varied. In contrast, our goals in the current

paper are to understand competition when the decision to join a group is endogenous,

and to compare equilibrium behavior across different information disclosure policies. To

this end, we incorporate into the model two features that have previously been studied

only in contests and auctions among individuals. First, we allow for endogenous entry by

potential group members prior to the investment stage. Second, we vary the information

disclosure that takes place between the entry stage and the investment stage regarding

group size and participants’ types, which facilitates a comparison between the analyses

for the complete information and incomplete information environments.

While our study is, to the best of our knowledge, the first to consider endogenous

entry into competing groups, there is substantial previous work on individual contests

and auctions with endogenous entry. In all-pay contest environments, key theoretical

insights regarding entry are provided by Higgins, Shughart and Tollison (1985); Gradstein

(1995); Fu and Lu (2010); Kaplan and Sela (2010) and Fu, Jiao and Lu (2015). Similarly,

in the auction literature, endogenous entry has been modeled and analyzed by Levin

and Smith (1994) and Pevnitskaya (2004).7 In addition, much of the recent research on

contest design has focused on the impact or optimality of different information disclosure

policies. For instance, Lim and Matros (2009) and Fu, Jiao and Lu (2011) consider the

effect of disclosing the number of actual participants in contests with stochastic entry.

They show that the disclosure policy is irrelevant for expected total effort in Tullock

contests. However, Fu, Jiao and Lu (2011) further show that in contests with a more

general “ratio-form” CSF, the optimal disclosure rule depends on the shape of the CSF’s

impact function. Recent work by Ryvkin and Drugov (2020) generalizes these results

by showing that the effect of disclosure in a general tournament model depends on the

7There is also a considerable amount of work that examines exogenous, or stochastic, entry into
contests (see, e.g., Münster, 2006; Myerson and Wärneryd, 2006; Lim and Matros, 2009; Fu, Jiao and Lu,
2011; Kahana and Klunover, 2015, 2016; Ryvkin and Drugov, 2020) and into auctions (see, e.g., McAfee
and McMillan, 1987; Harstad, Kagel and Levin, 1990; Levin and Ozdenoren, 2004). For experimental
evidence related to both exogenous and endogenous entry, see Anderson and Stafford (2003); Eriksson,
Teyssier and Villeval (2009); Morgan, Orzen and Sefton (2012); Morgan et al. (2016); Hammond et al.
(2019); Boosey, Brookins and Ryvkin (2017, 2020); Aycinena and Rentschler (2019) in relation to contests,
and Dyer, Kagel and Levin (1989); Ivanova-Stenzel and Salmon (2004); Isaac, Pevnitskaya and Schnier
(2012); Palfrey and Pevnitskaya (2008); Aycinena and Rentschler (2018) in relation to auctions.
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curvature of the cost function of effort.8 For an all-pay auction environment, Chen, Jiang

and Knyazev (2017) show that compared with full concealment, disclosing the number of

actual participants in an all-pay auction with private values decreases the expected total

investment if and only if the participants’ cost functions are concave.

In all of the aforementioned studies, disclosure relates exclusively to the number of

entrants in the contest. Yet, there are also several studies that explore the impact of

disclosing participants’ (initially private) valuations on expected total investment. For the

standard single-item all-pay auction environment, Morath and Münster (2008) establish

that expected total effort is lower under complete information (i.e., with disclosure) than

under private information (i.e., without disclosure). Their result is generalized to a contest

with multiple prizes by Fu, Jiao and Lu (2014).9 Feng (2023) considers an all-pay auction

with entry, but also restricts attention to one dimension of disclosure (valuations), while

Zhang and Zhou (2016) employ a Bayesian persuasion approach to show that, in general,

contest designers may benefit by adopting a policy of partial disclosure.

To conclude, the existing literature has something to say about the effects of endoge-

nous entry and disclosure in individual contests, and the main contribution of this paper

is our extension of the analysis of these phenomena to contests among groups. The only

other study that we are aware of that considers disclosure of the number of entrants in

group contests is by Boosey, Brookins and Ryvkin (2019), who examine Tullock con-

tests among groups with stochastic group sizes and players with a common (and publicly

known) prize valuation. In this paper, we consider the effects of disclosing both the num-

ber of entrants and their private valuations. The structure of competition among groups

also allows us to examine within-group disclosure—a particular form of partial disclosure,

in which individuals learn about the number and valuations of entrants in their own group,

but not of those in other groups.

3 Model setup

There are n > 2 groups, indexed by i = 1, . . . , n, with m > 1 players in each group,

indexed by ij = i1, . . . , im. The players are risk neutral expected payoff maximizers.

Each player ij is endowed with prize valuation vij, which is initially the player’s private

information, drawn independently from a commonly known distribution with interval

support V = [v, v] ⊆ R+, absolutely continuous cdf F (·) and continuous, positive a.e. pdf

8See also Fu, Lu and Zhang (2016), who study a generalized Tullock contest with two players who are
asymmetric in terms of both their values and their stochastic entry probabilities.

9For two other studies that explore a slightly richer set of disclosure policies, see Lu, Ma and Wang
(2018) and Serena (2022).
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f(·).
The game consists of two stages. In the first stage, each player ij decides whether or

not to enter the group contest as a member of group i. The players who decide to stay out

receive an outside option payoff ω ∈ R+. The entrants proceed to the second stage. Let

Mi ⊆ {i1, . . . , im} denote the set of entrants in group i. In the second stage, depending

on a disclosure condition, some information may be revealed to entrants, after which they

choose their investment levels xij ∈ R+. Group i’s aggregate investment is determined by

the best-shot technology as Xi = maxij∈Mi
xij. The group with the highest investment

wins the contest, and all entrants in that group receive their valuations. Entrants in all

other groups receive zero. Ties are broken randomly, but occur with probability zero in

equilibrium. All entrants pay their investments.

Information disclosure We consider three information settings implementing different

modes of information disclosure at the beginning of the second stage, before entrants make

their investment decisions.

(i) No disclosure (ND): Entrant ij knows only vij (observed prior to entry).

(ii) Within-group disclosure (WD): Entrant ij observes vik for all ik ∈Mi.

(iii) Full disclosure (FD): Entrant ij observes vlk for all lk ∈ ∪nl=1Ml.

In the ND setting, no new information is revealed between the stages, and the game

effectively collapses into one stage. In the case of within-group disclosure (WD), entrants

observe others’ valuations within their own groups. Finally, in the FD setting all en-

trants’ valuations become public information. In cases (ii) and (iii) it is implied that

entrants observe also the number of other entrants in their own groups and in all groups,

respectively.

Analysis We look for a symmetric cutoff equilibrium in which there is a valuation v∗ ∈
V such that a player with valuation v enters the contest if and only if v ∈ V ∗ = [v∗, v].10

We assume that ω < v so that at least some entry occurs with positive probability. Let

q = 1−F (v∗) denote the ex ante probability of entry. Further, let F̃ (v) = F (v)−F (v∗)
q

1v>v∗

and f̃(v) = f(v)
q
1v∈V ∗ denote the updated cdf and pdf of entrants’ valuations.

Throughout our main analysis, we (implicitly) consider a principal whose objective is

to maximize the expected aggregate investment of all groups, E(
∑n

i=1Xi). This objective is

standard in the literature and is suitable for an organizational setting where the manager’s

goal is to incentivize investments from all teams. In Section 5.4, we extend our analysis

to consider two alternative objectives: expected total investment, E(
∑n

i=1

∑
ij∈Mi

xij), and

10If v∗ > v then, by continuity, the marginal player with v = v∗ is indifferent between entering and
staying out. For concreteness, and without loss, we assume that such a player enters.

8



expected highest investment, E(maxi∈{1,...,n}Xi). The former describes a setting where the

manager cares about the effort of all employees, even those whose proposals are dominated

by others within their teams. The latter, at the other end of the spectrum, is more relevant

for innovation contests where the principal only cares about the highest quality proposal

overall, which will eventually be implemented.

4 Contests among individuals (m = 1)

As an important benchmark setting, we first consider contests among individuals. Within-

group disclosure always takes place in this case, by definition, and is equivalent to no

disclosure; therefore, we only compare no disclosure and full disclosure. Observe that

the cutoff valuation, v∗, is independent of disclosure. Indeed, without disclosure the

marginal player will invest zero and can only win the contest if she is the only entrant.

In all other cases, she will lose with probability one and earn zero payoff. Under (full)

disclosure, the marginal player will also invest zero and win if she is the only entrant. If

there are several entrants, the investment stage game is an all-pay auction of complete

information, with equilibrium in mixed strategies (see, e.g., Baye, Kovenock and De Vries,

1996). However, the marginal player’s valuation will be the lowest with probability one;

therefore, in equilibrium she will earn zero in expectation.

Thus, the cutoff type, v∗, is determined by the indifference condition equating the

payoff of the marginal player when she is the only entrant to the outside option:

v∗F (v∗)n−1 = ω. (1)

Under our assumption that ω < v, Eq. (1) has a unique solution.

No disclosure Let b
(1)
ND(v) denote the symmetric monotone bidding function for entrants

(here and in what follows, subscript “ND” stands for nondisclosure; superscript “(1)”

distinguishes contests between individuals). Using the standard approach, consider an

entrant with valuation v ∈ V ∗ bidding as if her valuation is v̂ ∈ V ∗. The entrant’s payoff

is then given by Π(1)(v, v̂; v∗) = vp
(1)
ND(v̂)− bND(v̂), where the probability of winning is

p
(1)
ND(v̂) = (1− q)n−1 +

n−1∑
k=1

(
n− 1

k

)
qk(1− q)n−1−kF̃ (v̂)k. (2)

The first term represents the situation when there are no other entrants, while the second

term sums over all possible numbers of other entrants k = 1, . . . , n − 1. The first-order
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condition Π
(1)
v̂ (v, v; v∗) = 0 produces a differential equation for the unknown bidding

function b
(1)
ND(v), which, together with the initial condition b

(1)
ND(v∗) = 0, gives

b
(1)
ND(v) = (n− 1)

∫ v

v∗
tF (t)n−2dF (t). (3)

Following the standard argument, we verify that Π
(1)
v̂ (v, v̂; v∗) changes sign at v̂ = v in a

way that makes b
(1)
ND(v) given by (3) the unique symmetric equilibrium bidding function

for a given v∗. Equation (3) has exactly the same form as the equilibrium bidding func-

tion in independent private value all-pay auctions without entry (see, e.g., Krishna and

Morgan, 1997), except it is shifted down by a constant and truncated at v∗. The effect of

endogenous entry is contained entirely in v∗.

Expected aggregate investment under no disclosure, therefore, is

B
(1)
ND = nq

∫ v

v∗
b
(1)
ND(v)dF̃ (v) = n(n− 1)

∫
t1>t2>v∗

t2F (t2)
n−2dF (t1)dF (t2). (4)

Full disclosure Suppose there are k > 2 entrants,11 and let v(1) > v(2) . . . > v(k) denote

their ranked valuations (ties in valuations are probability zero events; therefore, we can

generically assume the strict inequalities). In equilibrium, the entrants with valuations

v(1) and v(2) bid according to mixed strategies with common support [0, v(2)] and cdfs

G1(x1) = x1
v(2)

and G2(x2) = 1− v(2)
v(1)

+ x2
v(1)

, respectively, while all other entrants bid zero.

The corresponding probabilities of winning are p1 = 1− v(2)
2v(1)

and p2 =
v(2)
2v(1)

. Average bids

are b1 =
v(2)
2

and b2 =
v2
(2)

2v(1)
. Finally, the expected payoffs are π1 = v(1) − v(2) and π2 = 0,

respectively (Baye, Kovenock and De Vries, 1996).

Expected aggregate investment under full disclosure, therefore, is

B
(1)
FD =

n∑
k=2

(
n

k

)
qk(1− q)n−k

∫
t1>t2>v∗

(
t2
2

+
t22
2t1

)
f̃(1,2:k)(t1, t2)dt1dt2,

where f̃(1,2:k)(t1, t2) is the joint pdf of the top two order statistics in a sample of size k

from distribution F̃ (·). This pdf is given by (David and Nagaraja, 2003)

f̃(1,2:k)(t1, t2) = k(k − 1)F̃ (t2)
k−2f̃(t1)f̃(t2)1t1>t2 ,

11States with one or zero entrants contribute nothing to aggregate investment.
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resulting in

B
(1)
FD = n(n− 1)

∫
t1>t2>v∗

(
t2
2

+
t22
2t1

)
F (t2)

n−2dF (t1)dF (t2). (5)

Comparing (4) and (5), we observe that B
(1)
FD < B

(1)
ND. This gives our first result.

Proposition 1 In contests among individuals, expected aggregate investment under (full)

disclosure is lower than under no disclosure: B
(1)
FD < B

(1)
ND.

Proposition 1 is an important benchmark result that serves as a motivation for what

follows. It shows that in contests among individuals the disclosure of types has an un-

ambiguous negative effect on aggregate investment. It holds for any cutoff valuation v∗,

which includes contests where the number of players is fixed (v∗ = v), generalizing the re-

sult of Morath and Münster (2008). It also holds when the number of players is stochastic

following an exogenous distribution.

The mechanism behind Proposition 1 is as follows. Without disclosure, the allocation

of the prize is efficient and aggregate investment is given by the expectation of the sec-

ond highest valuation, v(2)—the same as in other revenue-equivalent auctions, such as the

first-price or second-price auction. The expectation is truncated due to endogenous entry,

but since the cutoff type is independent of disclosure, this truncation is irrelevant. Under

disclosure, the efficiency is lost; and the player with valuation v(2) bids zero with proba-

bility 1− v(2)
v(1)

, and hence her contribution to aggregate investment is reduced (
v2
(2)

2v(1)
<

v(2)
2

with probability one).

5 Contests among groups (m > 1)

In this section, we consider contests among groups, starting with the no disclosure (ND)

case in Section 5.1. In Section 5.2, we then consider within-group disclosure (WD) and

compare it to ND. In Section 5.3, we characterize full disclosure (FD) and compare it to

both ND and WD. Finally, in Section 5.4 we consider the impact of disclosure policies

on two alternative objectives of the principal—expected total investment and expected

highest investment.

5.1 No disclosure

Let bND(v) denote the symmetric monotone bidding function for entrants. Again following

the standard approach, consider an entrant with valuation v ∈ V ∗ bidding according to
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a valuation v̂ ∈ V ∗. The entrant’s payoff is Π(v, v̂; v∗) = vpND(v̂) − bND(v̂), where the

probability of winning is

pND(v̂) = (1− q)nm−m +
m−1∑
k1=0

nm−m∑
k2=1

(
m− 1

k1

)(
nm−m

k2

)
qk1+k2(1− q)nm−1−k1−k2×

×
[
F̃ (v̂)k1+k2 + (1− F̃ (v̂)k1+k2)

k1
k1 + k2

]
. (6)

The first term represents the situation when there are no entrants in other groups. The

second term sums over all possible configurations of the numbers of entrants in the player’s

own group (k1) and other groups (k2). The first term in square brackets is the probability

that the player’s valuation (and hence the bid) is the highest of them all, while the second

term is the “free-riding component” where the player’s valuation is not the highest but

she nevertheless wins because someone else in her group has the highest valuation.

The first-order condition Πv̂(v, v; v∗) = 0 produces a differential equation for the

unknown bidding function bND(v), which, together with the initial condition bND(v∗) = 0,

gives

bND(v) = m(n− 1)

∫ v

v∗
tF (t)nm−2dF (t). (7)

The details of the derivation are provided in Appendix A. We again verify that Πv̂(v, v̂; v∗)

changes sign at v̂ = v in a way that makes bND(v) given by (7) the unique symmetric

equilibrium bidding function for a given v∗. Similar to individual contests, Eq. (7) has

exactly the same form as the equilibrium bidding function in a group contest with a fixed

number of players (Barbieri and Malueg, 2016), except it is shifted down by a constant

and truncated at v∗.

In order to identify v∗, suppose v∗ ∈ int(V ) and hence the cutoff type is indifferent

between entering and not entering. Her payoff from entry is Π(v∗, v∗; v∗) = v∗pND(v∗),

where

pND(v∗) = (1− q)nm−m +
m−1∑
k1=0

nm−m∑
k2=1

(
m− 1

k1

)(
nm−m

k2

)
qk1+k2(1− q)nm−1−k1−k2 k1

k1 + k2

=
m− 1

nm− 1
+
m(n− 1)

nm− 1
F (v∗)nm−1. (8)

For details, see Appendix A. It follows that v∗ = v, i.e., there is full entry, if ω 6 m−1
nm−1v.

Otherwise, the cutoff is given by the unique solution of the equation v∗pND(v∗) = ω.12

12As seen from (8), pND(v) is continuous and (weakly) increasing in V and hence vpND(v) is continuous
and strictly increasing.
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Expected aggregate investment in each group is given by the expectation of the max-

imum bid among entrants, which, together with (7), gives expected aggregate investment

in the contest:

BND = n
m∑
k=0

(
m

k

)
qk(1− q)m−k

∫ v

v∗
bND(v)dF̃ (v)k = n

∫ v

v∗
bND(v)dF (v)m

= m2n(n− 1)

∫
t1>t2>v∗

t2F (t2)
nm−2F (t1)

m−1dF (t1)dF (t2). (9)

5.2 Within-group disclosure

In this setting, valuations of entrants are revealed within each group before the group

members decide on their investments. While it is clear that only one of the entrants

within each group will be active in any (pure strategy) equilibrium, multiple such equilibria

are possible, with different entrants being active. We assume that groups coordinate so

that the leaders—the entrants with the highest valuations—are the active bidders. This

assumption is quite reasonable in the case of best-shot aggregation where the most capable

group member is the natural leader. It is also the only equilibrium that is parallel to the

one arising in the setting without disclosure where each group’s bid is by construction

determined by the highest-valuation entrant.13

We again look for a symmetric cutoff entry equilibrium with some marginal type v∗.

Let bWD(v) denote the monotone bidding function of leaders in each group (subscript

“WD” stands for within-group disclosure). Following the same steps as in Section 5.1,

consider a leader with valuation v ∈ V ∗ that is bidding as if her valuation is v̂ ∈ V ∗. The

leader’s payoff is Π(v, v̂; v∗) = vpWD(v̂)− bWD(v̂), where

pWD(v̂) = (1− q)nm−m +
nm−m∑
k2=1

(
nm−m

k2

)
qk2(1− q)nm−m−k2F̃ (v̂)k2 .

Indeed, this leader’s group wins if there are no entrants in other groups (the first term)

or her valuation exceeds that of all leaders (or, equivalently, of all entrants) in all other

groups (the second term). Solving the first-order condition Πv̂(v, v; v∗) = 0, we obtain

13As an alternative justification, suppose each group has a non-bidding manager who derives some
value from the group winning the contest and is able to select one active bidder among the entrants
in her group (subject to the entrants’ participation constraints). Then each manager would select the
entrant in her group with the highest valuation to be the active bidder. Similarly, this outcome would
emerge if all entrants could select the active bidder via a binding majority voting procedure (with the
highest valuation entrant appointed in the case of a tie when there are two entrants).
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the bidding function

bWD(v) = m(n− 1)

∫ v

v∗
tF (t)nm−m−1dF (t). (10)

The optimality of bWD(v) follows similar to Section 5.1. All entrants whose valuations are

not the highest bid zero.

Consider now the payoff of the marginal type v∗ in the case of entry. This type always

bids zero and can win if there are no entrants in other groups or the leader in her group

is the winner. Thus, the payoff of the marginal entrant is exactly the same as in the no

disclosure case, and hence the equilibrium v∗ under within-group disclosure is the same

as the v∗ under no disclosure identified in Section 5.1.

From (10), the expected aggregate investment by entrants is

BWD = n
m∑
k=0

(
m

k

)
qk(1− q)m−k

∫ v

v∗
bWD(v)dF̃ (v)k = n

∫ v

v∗
bWD(v)dF (v)m

= m2n(n− 1)

∫
t1>t2>v∗

t2F (t2)
nm−m−1F (t1)

m−1dF (t1)dF (t2). (11)

Using Eqs. (9) and (11), the difference in expected aggregate investment between the

within-group disclosure and no disclosure settings is14

BWD −BND

= m2n(n− 1)

∫
t1>t2>v∗

t2F (t2)
nm−m−1F (t1)

m−1 [1− F (t2)
m−1] dF (t1)dF (t2) > 0.

Note that the inequality above is strict whenever m > 1, i.e., when within-group disclosure

can actually reveal new information. Thus, we arrive at the following result.

Proposition 2 For group contests with m > 1, expected aggregate investment under

within-group disclosure is greater than under no disclosure, BWD > BND.

The difference stems from the fact that the leaders’ identities in the no disclosure case

are unknown; every entrant can be a leader with some probability, and there is always

some probability that an entrant’s bid will be wasted. With disclosure, the entrants are

able to solve the coordination problem within groups and bid more effectively.

14Alternatively, observe from Eqs. (7) and (10) that bWD(v) > bND(v) for each v, i.e., the two individual
bidding functions are clearly ranked pointwise. Since aggregate group investment comes from the highest
valuation group member in both cases, the comparison between BND and BWD follows immediately. We
rely on this approach when we discuss the ranking of the expected highest investment in Section 5.4, but
here we compute BND and BWD directly to facilitate the comparisons with full disclosure in Section 5.3.
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5.3 Full disclosure

In this setting, valuations of all entrants are revealed across groups. Similar to Section

5.2, we assume that within each group players coordinate so that the groups’ leader—the

highest-valuation entrant—is its (potentially) active bidder. In this case, the second stage

effectively turns into an all-pay auction of complete information among the leaders. If

there are entrants in two or more groups, the unique equilibrium (with probability one)

involves two active group leaders with the highest valuations bidding according to mixed

strategies while all other groups drop out.

We again look for a cutoff entry equilibrium with some marginal type v∗. The payoff

of the marginal type from entry is v∗pFD(v∗) (subscript “FD” stands for full disclosure),

where

pFD(v∗) = (1− q)nm−m + (n− 1)
m−1∑
k1=0

m∑
k2=1

nm−2m∑
k3=0

(
m− 1

k1

)(
m

k2

)(
nm− 2m

k3

)
×

× qk1+k2+k3(1− q)nm−1−k1−k2−k3
[∫

t1>t2>t3>v∗

(
1− t2

2t1

)
dF̃ (t1)

k1dF̃ (t2)
k2dF̃ (t3)

k3+

+

∫
t2>t1>t3>v∗

t1
2t2

dF̃ (t1)
k1dF̃ (t2)

k2dF̃ (t3)
k3

]
. (12)

As before, the first term describes the case when there are no entrants in other groups.

The triple summation goes over the possible numbers of other entrants in the marginal

entrant’s own group (k1), entrants in a second group (k2), and entrants in all other groups

(k3). There are n− 1 possible second groups in this context, hence the multiplier (n− 1).

Winning occurs with positive probability when the marginal entrant’s own group has a

leader who is among the top two leaders; hence, integration is restricted to the domain

with min{t1, t2} > t3. The equilibrium probabilities of winning (cf. Section 4) are used

for the cases with t1 > t2 and t2 > t1 in the two integrals. Integration is over the highest

order statistics in all cases.15

Simplifying (12), we obtain pFD(v∗) = pND(v∗)+A(v∗), where pND(v∗) is the marginal

type’s probability of winning in the case of nondisclosure, Eq. (6), and

A(v∗) = m(m− 1)(n− 1)

∫
t1>t2>v∗

t2
2t1

F (t1)
m−2F (t2)

nm−m−2×

× [F (t1)− F (t2)]dF (t1)dF (t2) > 0. (13)

15Note that, strictly speaking, pFD is not the probability of winning. The marginal entrant can also win
with positive probability if she is her group’s leader (i.e., the only entrant) and there is only one other
group with entrants. However, in this case the marginal entrant’s expected payoff is zero, cf. Section 4.
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For details, see Appendix A. Thus, the marginal type v∗FD such that v∗FDpFD(v∗FD) = ω is

lower than in the case of no disclosure, v∗FD 6 v∗, and the inequality is strict for m > 1

and v∗ > v. A larger mass of players enters the contest under full disclosure.

Proposition 3 Suppose m > 1, and there is less than full entry under no disclosure,

v∗ > v. Then there is more entry under full disclosure than under no disclosure: v∗FD < v∗.

Given the marginal type v∗FD, it can be shown that the expected payoff from entering

is less than ω for all types v < v∗FD, and greater than ω for all types v > v∗FD. First, for

v < v∗FD, type v either earns v or zero, and her probability of earning zero is the same

as for the marginal type. Thus, the expected payoff of type v < v∗FD from entering must

be lower than the expected payoff of the marginal type, which is, by definition, equal to

ω. Second, for v > v∗FD, we show in Appendix A that the expected payoff from entering,

Π(v, v; v∗FD), is increasing in v.

Recall our assumption that ω < v. The existence of a marginal type (i.e., an interior

solution to v∗FDpFD(v∗FD) = ω) is then guaranteed by the following sufficient condition:

ω

v
>

m− 1

nm− 1

(
1 +

m(n− 1)

2(nm− 1)(nm−m− 1)

)
. (14)

The following example illustrates the comparison of equilibrium cutoffs for the full

disclosure and no disclosure settings (Proposition 3).

Example 1 Suppose n = 2, m = 3, and that valuations are drawn from a distribution

of the form F (v) = vα, α > 0, with interval support V = [0, 1]. In Figure 1, we plot the

equilibrium cutoff valuation (type) as a function of the outside option, ω, for both the ND

and FD cases with α = 1 (uniform distribution) and α = 3.

From the left panel of Figure 1, which plots the cutoff valuations, it can be difficult

to see that v∗FD < v∗ for all (interior) values of ω. Thus, in the right panel, we also plot

the difference in cutoff valuations, v∗−v∗FD, as a function of ω, for the two different values

of α. This better illustrates that the cutoff type is higher under ND than under FD,

but also serves to illustrate that the difference is non-monotone and single-peaked. The

nonmonotonicity of the difference v∗− v∗FD is expected because the two cutoffs have to be

the same under full entry and no entry.

Expected aggregate investment under full disclosure is

BFD = n(n− 1)
m∑

k1=0

m∑
k2=0

nm−2m∑
k3=0

(
m

k1

)(
m

k2

)(
nm− 2m

k3

)
qk1+k2+k3(1− q)nm−k1−k2−k3×
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Figure 1: Cutoff valuations for ND and FD as a function of ω (left), and the difference in
cutoff valuations, v∗ − v∗FD, as a function of ω (right), in Example 1.

×
∫
t1>t2>t3>v∗FD

(
t2
2

+
t22
2t1

)
dF̃ (t1)

k1dF̃ (t2)
k2dF̃ (t3)

k3 . (15)

Simplifying, obtain

BFD = m2n(n− 1)

∫
t1>t2>v∗FD

(
t2
2

+
t22
2t1

)
F (t1)

m−1F (t2)
nm−m−1dF (t1)dF (t2). (16)

For details, see Appendix A. The following proposition (proved in Appendix A) is our

second major result.

Proposition 4 Suppose m > 1, and the elasticity of the distribution of types, ξ(t) = tf(t)
F (t)

,

satisfies ξ(t) > 1
m−1 . Then expected aggregate investment under full disclosure is greater

than under no disclosure, BFD > BND.

The proof of Proposition 4 is based on comparing BFD, Eq. (16), to BND, Eq. (9).

Recall that v∗FD 6 v∗; thus, the domain of integration for BFD is larger. The lower bound

on the elasticity of F (·) ensures that the integrand in (16) is also larger.

The next example illustrates the comparison of aggregate investment between FD and

ND when the sufficient condition on the elasticity of the distribution of types provided by

Proposition 4 is not satisfied. In particular, it demonstrates that the ranking of aggregate

investment may be (but need not be) reversed.
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Figure 2: Aggregate investment for ND and FD as a function of α, for m = 2 and m = 3
(left), and the difference, BFD − BND, as a function of α, for m = 2 and m = 3 (right),
Example 2.

Example 2 As in Example 1, suppose n = 2, V = [0, 1], and F (v) = vα. Fix ω = 0.4 and

consider two cases corresponding to m = 2 and m = 3. In Figure 2, we plot the aggregate

investment levels for values of α (the elasticity of the distribution of types) between 0.05

and 0.3.

Proposition 4 implies that, for m = 2 (respectively, m = 3), α > 1 (respectively,

α > 0.5) is sufficient for BFD > BND. Thus, the sufficient condition is not satisfied for

either m in Figure 2.

The left panel establishes that it is possible for aggregate investment to be lower under

FD than under ND. For both values of m, BFD (the dashed lines) is below BND (the solid

lines) for at least some values of α. In order to better highlight the comparison, we also

plot the difference, BFD −BND, as a function of α, in the right panel.

When m = 3, BFD < BND for very small values of α. However, as the elasticity of the

distribution of types increases, aggregate investment under FD grows much faster than

under ND such that, even though the condition of Proposition 4 is not satisfied, we still

obtain BFD > BND. Similarly, when m = 2, if α is low, aggregate investment is higher

under ND than under FD. Still, once α becomes large enough, full disclosure leads to

higher aggregate investment than no disclosure.

The intuition for this relationship between the elasticity of the distribution of types

and the effect of full disclosure is as follows. The effect of full disclosure on aggregate

18



investment depends on three competing effects, two of which lead to an increase and

one—to a decrease in aggregate investment as compared to ND. First, as is the case for

the WD setting, full disclosure allows entrants to solve the coordination problem within

their own group, which has a positive effect on expected group-level investment, as it

reduces the effect of free riding on the highest valuation entrant’s investment.

Second, full disclosure also reduces the number of active bidders among entrants to

just two (the two highest valuation leaders of their respective groups) who play according

to the standard mixed-strategy equilibrium in an all-pay auction of complete information.

In this equilibrium, the second-highest valuation player places a mass on zero investment

that reduces the expected aggregate investment. Importantly, this mass is increasing in

the difference between the highest and second-highest valuations. As the elasticity of F (·)
increases, draws from the distribution of valuations shift closer to the upper bound of the

support, such that, in expectation, the difference between the highest and second-highest

valuations becomes smaller. Thus, with an increase in the elasticity of the distribution,

the negative effect of full disclosure becomes less important, allowing for FD to increase

aggregate investment above the level in the ND setting.

Finally, due to Proposition 3 there is more entry under FD, which also increases

aggregate investment. This explains why the sufficient condition in Proposition 4 is not

very tight, cf. Example 2.

Note that a similar comparison cannot be made between BFD and BWD, Eq. (11).

While the domain of integration is larger in BFD, we observe that the integrand is always

larger in BWD. These competing effects—a larger mass of players entering but bidding

lower under full disclosure—make the comparison ambiguous. As such, there is no sys-

tematic condition, independent of the cutoff, that suffices to establish an unambiguous

ranking of aggregate investment between WD and FD. Our third example demonstrates

this ambiguity, and shows that even when the condition in Proposition 4 is satisfied, it is

possible for BFD to be higher or lower than BWD.

Example 3 Suppose n = 2, m = 3, ω = 0.4, and F (v) = vα. In Figure 3, we plot

aggregate investment under FD (dashed lines) and under WD (solid lines) for values

of α ∈ [1, 2]. Note that for m = 3, the elasticity of the distribution of types satisfies

α > 1/(m − 1), so that the condition in Proposition 4 is satisfied. Figure 3 shows that

BWD may nevertheless be higher or lower than BFD.

Yet, the above discussion implies that an unambiguous comparison between WD and

FD can be made in the important special case of full entry (or, in other words, when the

number of players in the contest is fixed). Since there is, generically, more entry under
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Figure 3: Aggregate investment for WD and FD as a function of α (left), and the differ-
ence, BFD −BWD, as a function of α (right).

FD, a necessary and sufficient condition for full entry under all three disclosure rules is

that v∗ = v, i.e., ω = 0. Recall also that, from Proposition 2, WD dominates ND for any

cutoff, including the full entry case. We, therefore, have the following result.

Corollary 1 Suppose m > 1 and there is full entry under all three disclosure rules (i.e.,

ω = 0 or the number of players in the contest is fixed). Then expected aggregate investment

under within-group disclosure is greater than under both no disclosure and full disclosure.

5.4 Alternative objectives

5.4.1 Total investment

The “best-shot” production technology within groups implies that the investments of

group members that are below the maximum bid are essentially wasted. However, from the

contest designer’s or policy perspective it may be of interest to consider total investment,

defined as the sum of all individual investments, as a relevant criterion. While the wasted

portion of total investment does not contribute directly to output (e.g., it does not improve

the quality of the resulting innovation produced by the group), it may have spillovers the

designer cares about. From (7), the expected total investment by entrants under no
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disclosure is

Btot
ND = nmq

∫ v

v∗
bND(v)dF̃ (v) = m2n(n− 1)

∫
t1>t2>v∗

t2F (t2)
nm−2dF (t1)dF (t2). (17)

Notice that under both within-group disclosure and full disclosure, expected total

investment coincides with expected aggregate investment, Eqs. (11) and (16), respectively,

because only leaders are (potentially) active in each group. Comparing (17) and (11), we

obtain

BWD −Btot
ND

= m2n(n− 1)

∫
t1>t2>v∗

t2F (t2)
nm−m−1F (t1)

m−1 [F (t1)
m−1 − F (t2)

m−1] dF (t1)dF (t2) > 0.

Thus, aggregate (equivalently, total) investment under within-group disclosure exceeds

total investment without disclosure. The inequality is strict for m > 1.16 With disclosure,

the entrants are able to solve the coordination problem within groups and bid more

effectively. The impact of within-group disclosure is so strong that the resulting expected

aggregate investment exceeds even the sum of individual investments under no disclosure.

This result also implies that the comparison of total investments between ND and FD

is ambiguous. Specifically, we have BWD > Btot
ND > BND, while both BWD and BND can

be either above or below BFD.

5.4.2 Expected highest investment

In an innovation or R&D competition setting, the principal may be interested in maximiz-

ing the expected highest investment across all participating groups. For example, if each

group submits a solution to a challenge such as the Netflix Prize17 or the XPRIZE Carbon

Removal initiative,18 only the best solution (if any) will eventually be implemented on a

large scale. In this section we compare expected highest investment across the disclosure

policies.

Under no disclosure, Eq. (7) gives the expected highest investment

Bmax
ND =

nm∑
k=1

(
nm

k

)
qk(1− q)nm−k

∫ v

v∗
bND(v)dF̃ (v)k =

∫ v

v∗
bND(v)dF (v)nm

= m2n(n− 1)

∫
t1>t2>v∗

t2F (t2)
nm−2F (t1)

nm−1dF (t1)dF (t2). (18)

16Recall that m = 1 implies WD and ND collapse to the same information environment.
17See https://www.thrillist.com/entertainment/nation/the-netflix-prize.
18See https://www.xprize.org/prizes/carbonremoval.
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Under full disclosure, suppose there are at least two active groups, and v(1) > v(2)

are the two highest valuations. In equilibrium, the two entrants will bid according to

the mixed strategies G1 and G2 described in Section 4. Expected highest investment

conditional on v(1) and v(2) then is∫
x1>x2

x1dG1(x1)dG2(x2) +

∫
x1<x2

x2dG1(x1)dG2(x2)

=

∫
x1G2(x1)dG1(x1) +

∫
x2G1(x2)dG2(x2)

=

∫ v(2)

0

x1

(
1−

v(2)
v(1)

+
x1
v(1)

)
dx1
v(2)

+

∫ v(2)

0

x22
v(2)

dx2
v(1)

=
v(2)
2

+
v2(2)
6v(1)

.

Using the joint distribution of (v(1), v(2)) from (16), we obtain the unconditional expected

highest investment:

Bmax
FD = m2n(n− 1)

∫
t1>t2>v∗FD

(
t2
2

+
t22
6t1

)
F (t2)

nm−m−1F (t1)
m−1dF (t1)dF (t2). (19)

The comparison between (18) and (19) is ambiguous in general, but we establish the

following result.

Proposition 5 Suppose there is full entry (i.e., v∗ = v∗FD = v) and v is finite. Then

Bmax
FD > Bmax

ND for n or m sufficiently large.

The reason why full disclosure dominates for sufficiently large n or m is that, as n or m

increases, bids are shaded more under no disclosure because the probability for a player’s

bid to be the winning bid for a given prize valuation declines. This effect is absent

under full disclosure where the two highest valuation players know that they are the only

potential bidders. As the number of players increases, bid shading eventually undermines

the expected highest investment in ND and, to a smaller extent, in WD, as compared

to FD. Of course, under partial entry there is additional ambiguity due to the difference

between the entry cutoffs. The assumption of bounded support is critical for the above

argument, however, because the top order statistics converge to v at different speeds under

ND and FD. As seen from (18) and (19), the speed of convergence is generally higher

under ND. This implies that if the support of F is not bounded and the distribution has

a sufficiently heavy tail, Bmax
ND can dominate Bmax

FD .

Example 4 Suppose ω = 0, i.e., there is full entry under ND and FD. To illustrate

Proposition 5, we consider Pareto distribution, F (v) = 1 − 1
(v+1)p

, with support [0,∞),

and its truncated version, Ft(v) = F (v)
F (vmax)

, supported in [0, vmax]. Figure 4 shows the
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dependence of the difference Bmax
FD − Bmax

ND on m, for n fixed, and on n, for m fixed. The

support of Ft is bounded, and Bmax
FD eventually dominates Bmax

ND for m or n large enough.

In contrast, Bmax
ND dominates Bmax

FD for n large (and m fixed) when the support is not

bounded. Note that Bmax
FD still dominates Bmax

ND for m large (and n fixed), illustrating that

the bounded support condition is sufficient but not necessary.

A clear comparison of expected highest investment can be made between ND and

WD. Indeed, as seen from Eqs. (7) and (10), the equilibrium bidding functions bND(v)

and bWD(v) are ranked pointwise such that bWD(v) > bND(v) for all v ∈ V ∗, with strict

inequality for m > 1 and v > v∗. Since the distribution of the highest valuation is the same

in both cases, the highest investment in WD exceeds the highest investment in ND in the

sense of first-order stochastic dominance. It is, therefore, immediate that expected highest

investment is higher under WD. The effect becomes stronger as m increases because

players benefit more from solving the coordination problem with increasing group size.

6 Concluding remarks

This paper is the first to study endogenous entry in contests between groups. Our focus is

on the effects of information disclosure, which can be a designer’s choice or institutionally

predetermined. In settings where winning the contest provides a group-specific public

good, group contests generate an interesting interplay of the standard contest incentives

across groups with social dilemma-type free-riding incentives within groups. Endogenous

entry and information disclosure can affect those incentives in several ways, leading to

higher or lower aggregate equilibrium investment as compared to the no disclosure bench-

mark. The direction of the effect depends on how information is disclosed, the group size,

and on the properties of the distribution of types.

Without disclosure, the competition between groups is efficient, in that the prize is

allocated to the group containing the player with the highest value. However, significant

investment within groups is wasted due to lack of coordination. Within-group disclo-

sure, under which players only find out about the number and types of other members of

their own group, helps players within groups coordinate on more socially efficient invest-

ment strategies at the group level. Competition across groups remains efficient, and the

marginal type does not change, producing a higher aggregate investment overall.

Full disclosure, under which the information about all contest participants is disclosed

across groups, helps within-group coordination as well, but produces two additional (and

possibly competing) effects. First, the payoff of the marginal type, and hence the mass

of players entering the contest, increases. This is because under no disclosure (or under
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Figure 4: The difference in expected highest investment between FD and ND, Bmax
FD −Bmax

ND ,
as a function of m for n = 2 (the left panels), and as a function of n for for m = 2 (the
right panels). The distribution of values is truncated Pareto (the top two panels) and
Pareto (the bottom two panels), with p = 1 and vmax = 30.

within-group disclosure) the marginal type can only win the contest with a positive prob-

ability if she is the only entrant or the highest value entrant in her group has the highest

value overall. In contrast, under full disclosure the marginal type can also win with a

positive probability when the highest value entrant in her group has the second highest
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value overall. This additional probability of winning is linked to the inefficiency of the

mixed equilibrium in all-pay auctions under complete information.

Second, depending on the properties of the distribution of types, bidding conditional

on type may increase or decrease under full disclosure as compared to no disclosure. We

show that full disclosure produces a higher aggregate investment when the distribution

of types is sufficiently elastic. The condition becomes weaker as the group size increases.

Intuitively, when the density of types increases at the upper bound of its support, the

top order statistics of types are sufficiently close, and hence the reduction in bidding due

to the second highest type dropping out is less severe, more so the larger the (expected)

group size.19

One clear implication of our results is that within-group disclosure is beneficial and

should be facilitated by the contest designer when possible. This is true not only in

cases where the designer’s goal is to maximize expected aggregate investment, but also

for a designer whose goal is to maximize expected total investment or expected highest

investment.

At the same time, disclosure in the public domain, such as the various “leaderboard”

practices in crowdsourcing, or sunshine laws in government practices, should be exercised

with caution, more so the smaller the group size. In particular, for individual contests, full

disclosure unambiguously leads to a lower investment and should be avoided.20 However,

full disclosure becomes optimal as the group size increases, especially if the distribution of

types is sufficiently elastic. Our results, therefore, suggest that different disclosure policies

can be optimal depending on whether a competitive task is performed by individuals, small

groups or large groups, even if other features of the environment are similar.

Our results are, of course, restricted to (ex ante) symmetric group contests with a

specific best-shot aggregation technology and an all-pay auction competition structure.

Natural extensions of this work include alternative specifications of the model, such as a

different or more flexible aggregation rule (e.g., perfect substitutes, perfect complements,

or CES), imperfectly discriminating contest rules and asymmetric agents and/or groups.
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A Missing derivations and proofs

A.1 Equation (7)

The equation Πv̂(v, v; v∗) = 0 has the form b′(v) = vp′(v), where, from (6),

p′(v) =
m−1∑
k1=0

nm−m∑
k2=1

(
m− 1

k1

)(
nm−m

k2

)
qk1+k2(1− q)nm−1−k1−k2F̃ (v)k1+k2−1f̃(v)k2

= qf̃(v)
m−1∑
k1=0

(
m− 1

k1

)
(qF̃ (v))k1(1− q)m−1−k1

nm−m∑
k2=1

(
nm−m

k2

)
k2(qF̃ (v))k2−1(1− q)nm−m−k2

= f(v)[qF̃ (v) + 1− q]m−1∂(z + 1− q)nm−m

∂z

∣∣∣∣
z=qF̃ (v)

= m(n− 1)F (v)nm−2f(v).

This produces the equation b′(v) = m(n− 1)vF (v)nm−2f(v), whose unique solution with

initial condition b(v∗) = 0 is given by (7).

A.2 Equation (8)

We write the sum in (8) as

∫ q

0

m−1∑
k1=0

nm−m∑
k2=1

(
m− 1

k1

)(
nm−m

k2

)
zk1+k2−1(1− q)nm−1−k1−k2k1dz

=

∫ q

0

m−1∑
k1=0

(
m− 1

k1

)
k1z

k1−1(1− q)m−1−k1
nm−m∑
k2=1

(
nm−m

k2

)
zk2(1− q)nm−m−k2dz

=

∫ q

0

∂(z + 1− q)m−1

∂z

[
(z + 1− q)nm−m − (1− q)nm−m

]
dz

= (m− 1)

∫ q

0

(z + 1− q)nm−2dz − (1− q)nm−m[1− (1− q)m−1]

=
m− 1

nm− 1
[1− (1− q)nm−1]− (1− q)nm−m + (1− q)nm−1

=
m− 1

nm− 1
+
m(n− 1)

nm− 1
(1− q)nm−1 − (1− q)nm−m.
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Combining with the first term in (8), obtain the result.

A.3 Expected payoff for v > v∗FD increasing in v

Fix the marginal type to be v∗FD and let q = 1− F (v∗FD). For type v > v∗FD, the expected

payoff from entering is given by

Π(v, v; v∗FD) = v(1− q)nm−m + (n− 1)
m−1∑
k1=0

m∑
k2=1

nm−2m∑
k3=0

(
m− 1

k1

)(
m

k2

)(
nm− 2m

k3

)
×

× qk1+k2+k3(1− q)nm−1−k1−k2−k3(Y1 + Y2 + Y3 + Y4),

where

Y1 = v

∫
v>t1>v

∫
t1>t2>t3>v∗FD

(
1− t2

2t1

)
dF̃ (t1)

k1dF̃ (t2)
k2dF̃ (t3)

k3

Y2 = v

∫
v>t1>v

∫
t2>t1>t3>v∗FD

t1
2t2

dF̃ (t1)
k1dF̃ (t2)

k2dF̃ (t3)
k3

Y3 =

∫
v>v>t1>t2>t3>v∗FD

(v − t2)dF̃ (t1)
k1dF̃ (t2)

k2dF̃ (t3)
k3

Y4 =

∫
v>v>t2>t1>t3>v∗FD

(v − t1)dF̃ (t1)
k1dF̃ (t2)

k2dF̃ (t3)
k3 .

This expression can be simplified considerably, first by integrating over t3 and summing

over k3, then summing over k1 and k2 and swapping the variables of integration in two of

the integral terms, which gives

Π(v, v; v∗FD) = v(1− q)nm−m +m(m− 1)(n− 1)(vZ1 + vZ2 + vZ3 − Z4 − Z5),

where

Z1 =

∫
v>t1>t2>v∗FD

F (t1)
m−2F (t2)

nm−m−1dF (t1)dF (t2)

Z2 =

v∫
t1=v

t1∫
t2=v∗FD

t2
2t1

F (t1)
m−2F (t2)

nm−m−2[F (t1)− F (t2)]dF (t1)dF (t2)

Z3 =

∫
v>t1>t2>v∗FD

F (t1)
m−1F (t2)

nm−m−2dF (t1)dF (t2)
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Z4 =

v∫
t1=v

t1∫
t2=v∗FD

t1F (t1)
m−1F (t2)

nm−m−2dF (t1)dF (t2)

Z5 =

v∫
t1=v

t1∫
t2=v∗FD

t2F (t1)
m−2F (t2)

nm−m−1dF (t1)dF (t2)

It’s straightforward to show that vZ1, vZ3 and −Z5 are all increasing in v. Taking the

derivative of vZ2 − Z4 with respect to v gives

d(vZ2 − Z4)

dv
= Z2 − v

v∫
t2=v∗FD

t2
2v
f(v)F (v)m−2F (t2)

nm−m−2[F (v)− F (t2)]dF (t2)+

+ f(v)

v∫
t2=v∗FD

vF (v)m−1F (t2)
nm−m−2dF (t2)

= Z2 − f(v)

v∫
t2=v∗FD

[(
t2
2
− v
)
F (v)m−1F (t2)

nm−m−2 − t2
2
F (v)m−2F (t2)

nm−m−1
]

dF (t2).

Since v > t2, the integrand is everywhere negative, which ensures that vZ2 − Z4 is in-

creasing in v. It follows that Π(v, v; v∗FD) is increasing in v for v > v∗FD, as desired.

A.4 Equation (13)

Start by performing integration over t3 and summation over k3 in (12). Integration over

t3 is on [v∗, t2] in the first integral and on [v∗, t1] in the second integral, producing

pFD(v∗) = (1− q)nm−m + (n− 1)
m−1∑
k1=0

m∑
k2=1

nm−2m∑
k3=0

(
m− 1

k1

)(
m

k2

)(
nm− 2m

k3

)
×

× qk1+k2+k3(1− q)nm−1−k1−k2−k3
[∫

t1>t2>v∗

(
1− t2

2t1

)
F̃ (t2)

k3dF̃ (t1)
k1dF̃ (t2)

k2+

+

∫
t2>t1>v∗

t1
2t2

F̃ (t1)
k3dF̃ (t1)

k1dF̃ (t2)
k2

]
=

= (1− q)nm−m + (n− 1)
m−1∑
k1=0

m∑
k2=1

(
m− 1

k1

)(
m

k2

)
×

× qk1+k2(1− q)2m−1−k1−k2
[∫

t1>t2>v∗

(
1− t2

2t1

)
F (t2)

nm−2mdF̃ (t1)
k1dF̃ (t2)

k2+

+

∫
t2>t1>v∗

t1
2t2

F (t1)
nm−2mdF̃ (t1)

k1dF̃ (t2)
k2

]
.
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Next, we sum over k1 and k2, and swap the variables of integration in the second integral:

pFD(v∗) = (1− q)nm−m + (n− 1)

[∫
t1>t2>v∗

(
1− t2

2t1

)
F (t2)

nm−2mdF (t1)
m−1dF (t2)

m+

+

∫
t1>t2>v∗

t2
2t1

F (t2)
nm−2mdF (t2)

m−1dF (t1)
m

]
.

Separate the first integral into two parts and combine its second part with the second

integral:

pFD(v∗) = (1− q)nm−m + (n− 1)

∫
t1>t2>v∗

F (t2)
nm−2mdF (t1)

m−1dF (t2)
m+ (20)

+m(m− 1)(n− 1)

∫
t1>t2>v∗

t2
2t1

F (t1)
m−2F (t2)

nm−m−2[F (t1)− F (t2)]dF (t1)dF (t2).

Notice that the last term is equal to A(v∗) defined in (13).

Finally, consider the first two terms:

(1− q)nm−m + (n− 1)

∫
t1>t2>v∗

F (t2)
nm−2mdF (t1)

m−1dF (t2)
m

= F (v∗)nm−m + (m− 1)

∫ v

v∗
[F (t1)

nm−m − F (v∗)nm−m]F (t1)
m−2dF (t1)

= F (v∗)nm−m + (m− 1)

[
1− F (v∗)nm−1

nm− 1
− F (v∗)nm−m − F (v∗)nm−1

m− 1

]
= F (v∗)nm−m +

m− 1

nm− 1
+
m(n− 1)

nm− 1
F (v∗)nm−1 − F (v∗)nm−m = p(v∗),

where p(v∗) is defined in (8).

A.5 Equation (16) and proof of Proposition 4

Start by summing up over k1, k2 and k3 in (15):

BFD = n(n− 1)

∫
t1>t2>t3>v∗FD

(
t2
2

+
t22
2t1

)
dF (t1)

mdF (t2)
mdF (t3)

nm−2m.

Next, perform integration over t3 on [v∗FD, t2]:

BFD = m2n(n− 1)

∫
t1>t2>v∗FD

(
t2
2

+
t22
2t1

)
F (t1)

m−1F (t2)
nm−m−1dF (t1)dF (t2).
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Subtracting aggregate investment in the case of no disclosure, Eq. (9), obtain

BFD −BND

m2n(n− 1)
=

∫
t1>t2>v∗FD

(
t2
2

+
t22
2t1

)
F (t1)

m−1F (t2)
nm−m−1dF (t1)dF (t2)

−
∫
t1>t2>v∗

t2F (t2)
nm−2dF (t1)dF (t2)

>
∫
t1>t2>v∗

t2F (t2)
nm−m−1

[(
1

2
+

t2
2t1

)
F (t1)

m−1 − F (t2)
m−1
]

dF (t1)dF (t2)

>
∫
t1>t2>v∗

t2F (t2)
nm−m−1

[
t2
t1
F (t1)

m−1 − F (t2)
m−1
]

dF (t1)dF (t2).

The first inequality follows from the fact that v∗FD 6 v∗, and the second is obtained by

replacing 1
2

with t2
2t1

6 1
2
.

Note that t1 > t2 everywhere in the domain of integration. Thus, in order to show

that the expression above is positive it suffices to show that F (t)m−1

t
is increasing in t,

which is equivalent to the assumption on the elasticity of F (·) in the proposition.

A.6 Proof of Proposition 5

By integrating over t1, Eq. (18) can be simplified as follows:

Bmax
ND = m(n− 1)

∫
t2F (t2)

nm−2[1− F (t2)
nm]dF (t2)

=
m(n− 1)

nm− 1

∫
tdF (t)nm−1 − m(n− 1)

2nm− 1

∫
tdF (t)2nm−1.

When either n → ∞ or m → ∞ (or both), each of the integrals converges to v. The

coefficients in front of the integrals converge to 1 and 1
2
, respectively, when n → ∞ for

a fixed m; and to n−1
n

and n−1
2n

, respectively, when m → ∞ for a fixed n. Thus, Bmax
ND

converges to v
2

when n→∞ for a fixed m; and to (n−1)v
2n

when m→∞ for a fixed n.

A lower bound for Bmax
FD can be obtained by replacing t1 with v in Eq. (19). Integrating

over t1 similar to the above, we obtain

Bmax
FD > mn(n− 1)

∫ (
t2
2

+
t22
6v

)
F (t2)

nm−m−1[1− F (t2)
m]dF (t2)

= n

∫ (
t

2
+
t2

6v

)
dF (t)(n−1)m − (n− 1)

∫ (
t

2
+
t2

6v

)
dF (t)nm.

When m → ∞, for n fixed, each of the integrals converges to 2v
3

, and hence the lower

bound of Bmax
FD converges to 2v

3
as well.
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Consider now the limit n → ∞, for m fixed. For brevity, let γ(t) = t
2

+ t2

6v
. We can

then write

Bmax
FD > nE(γ(Y(n−1:n−1)))− (n− 1)E(γ(Y(n:n))), (21)

where Y(r:n) are the order statistics from a sample of i.i.d. random variables distributed

according to F (·)m. Note that γ(·) is a polynomial function; therefore, we can apply the

recurrence relation for moments of order statistics (David and Nagaraja, 2003, Section

3.4):

(n− r)E(γ(Y(r:n))) + rE(γ(Y(r+1:n))) = nE(γ(Y(r:n−1))).

For r = n− 1, this gives

E(γ(Y(n−1:n))) + (n− 1)E(γ(Y(n:n))) = nE(γ(Y(n−1:n−1))),

and (21) then implies

Bmax
FD > E(γ(Y(n−1:n))),

where the right-hand side converges to 2v
3

. This establishes the claim.
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