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Abstract

We use a laboratory experiment to study the effects of disclosing the number of active par-
ticipants in contests with endogenous entry. At the first stage potential participants decide
whether to enter competition, and at the second stage entrants choose their investments. In
a 2×2 design, we manipulate the size of the outside option, ω, and whether or not the number
of entrants is disclosed between the stages. Theory predicts more entry for lower ω, and the
levels of entry and aggregate investment to be independent of disclosure in all cases. We find
empirical entry frequencies decreasing with ω. For aggregate investment, we find no effect
of disclosure when ω is low, but a strong positive effect of disclosure when ω is high. The
difference is driven by substantial overinvestment in contests with a small, publicly known
number of players, contrasted by more restrained investment in contests where the number
of players is uncertain and may be small. The behavior under disclosure is explained by a
combination of joy of winning and entry regret.
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1 Introduction

We study experimentally how interim disclosure of information affects behavior in contests with

endogenous entry. Such contests are modeled as a two-stage game where at the first stage

participants decide whether to incur a fixed cost and enter the contest, or to stay out, and

at the second stage entrants invest in competition for a valuable prize. Our main focus is on

the effects of disclosing the number of entrants at the start of the second stage. While there

exists a substantial theoretical literature on the consequences and optimality of such disclosure

in various contest settings, this paper provides the first empirical test.

Endogenous entry is a natural feature of many, if not most, contest environments, from R&D

firms deciding whether or not to enter an innovation race to job candidates deciding whether

or not to apply for a position, to athletes deciding whether to enter a particular tournament.

These entry decisions can be costly, either in the form of explicit upfront costs and entry or

application fees, or in the form of opportunity costs. Importantly, the exact number of entrants

may or may not be known to participants at the time of investment. For example, athletes

in a sports tournament or R&D firms in a particular industry are typically well aware of their

competitors, but often the same cannot be said about job applicants or lobbyists.

The prevalence of endogenous entry in contests in the field and the ensuing design questions

regarding disclosure provide the first and most straightforward motivation for our study. Our

second motivation is the fact that endogenous entry without disclosure leads to group size uncer-

tainty at the investment stage. Previous work has found that the presence of such uncertainty

may have substantial effects on behavior. Specifically, while the existing experimental litera-

ture on contests with fixed group size overwhelmingly documents overbidding, i.e., investments

exceeding the risk-neutral Nash equilibrium predictions, or even investments from a strictly

dominated region (Sheremeta, 2013), recent evidence suggests that the overbidding is reduced

significantly when group size is unknown and there is a nontrivial probability for a player to be

alone in the contest (Boosey, Brookins and Ryvkin, 2017). Therefore, even in settings where,

theoretically, disclosing the number of entrants has no effect on aggregate equilibrium investment

(Lim and Matros, 2009; Fu, Jiao and Lu, 2011, 2015), empirically, it may have a substantial effect

on investment, by way of removing group size uncertainty. If that is the case, our findings should

be of interest to contest organizers in various settings where it is the designer’s choice whether

or not to disclose the number of entrants. For example, policy makers can withhold, or make

publicly available, information about the participants of a procurement auction or candidates

for a state university president position.1

Our experiment follows a 2×2 between-subject design where we manipulate the outside

option (or, equivalently, entry fee) and whether or not the number of entrants is disclosed. We

use a canonical winner-take-all symmetric setting where, under suitable parameterizations, the

1We assume that the contest designer can commit to a disclosure rule in advance. This holds in many settings;
for example, various forms of sunshine laws require governments to provide information about job applicants or
bidders in procurement auctions. Otherwise, the designer may follow a disclosure strategy that is contingent on
the realized number of entrants.
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symmetric equilibrium involves players mixing between entering and not entering the contest

with some probability q∗, and both q∗ and aggregate equilibrium investment are independent of

disclosure. By changing the outside option, ω, we generate treatments with relatively high and

low values of q∗, thereby exploring scenarios where, in equilibrium, the probability for a player

to be alone in the contest is low or high.

Consistent with theory, we find entry frequencies decreasing in ω. Moreover, while we

observe entry below the equilibrium level when ω is low (q∗ is high), and above equilibrium

when ω is high (q∗ is low), the point estimates for entry frequency are explained quite well by

the Quantal Response Equilibrium (McKelvey and Palfrey, 1995). For aggregate investment,

consistent with the behavioral predictions described above, we find that disclosure has a strong

positive effect when ω is high, but not when ω is low. The effect of disclosure for high ω

is rather striking considering that when a player is the only entrant, and this information is

disclosed, she wins the contest with certainty with zero investment. However, the disclosure-

induced overbidding in cases when the number of entrants is greater than one is so high that it

more than compensates for these instances of zero investment.

Second, we observe an intriguing difference in subjects’ investment behavior across realized

group sizes between the low and high outside option settings under disclosure. Consistent with

the prior literature, relative overbidding rates are not decreasing in group size when the outside

option is low (i.e., when the frequency of entry is high). However, we find a rapid decrease in

relative overbidding with group size when the outside option is high and the frequency of entry

is low. We show that these differences can be explained well with a behavioral model combining

joy of winning and sensitivity to “entry regret,” i.e., regret experienced by subjects who forgo

the outside option and then lose the contest.

Our results show that institutional commitment to disclosing the number of entrants in

all-pay contest environments can have significant welfare implications. Population uncertainty

generated by nondisclosure dampens excessive investment. In situations where investment is

productive, such as R&D competition with spillovers or productive effort in organizations in

competition for promotion, the contest organizer can benefit from disclosure, especially when

the expected number of participants is small. In settings where contest investment is viewed

as wasteful spending, such as lobbying or duplicative R&D, nondisclosure can be beneficial.

Concealing the number of entrants may also benefit organizations where competitive incentives

tend to generate adverse, counterproductive behaviors, such as sabotage (e.g., Harbring and

Irlenbusch, 2011).

Of course, the implications of our results for optimal contest design should be taken with

some caution given the stylized nature of our endogenous entry setting and the limited action

space – focusing exclusively on disclosure and outside option – we provide for the designer.

One important feature of the model we use is that the contest is held, i.e., effectively the

prize is handed out for free, even if there is only one participant. This may be unrealistic in

some settings, such as a government procurement auction or a sports tournament, which may
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be canceled if there is not enough competition.2 However, it is admissible in some contests,

where efforts are subject to a minimum quality restriction that can be normalized to zero in

our setting. For example, crowdsourcing innovation platforms such as TopCoder or XPRIZE,

accept solutions from a single entrant; a qualified candidate would still be hired or promoted

when there is a single applicant; and an otherwise indifferent politician can be swayed by a

single lobbyist. Another aspect of our model is that we do not allow the designer to restrict the

number of participants from above, for example, by means of shortlisting based on preliminary

bidding (see, e.g., Fullerton and McAfee, 1999), or by setting a reserve quality (e.g., Liu et al.,

2014). While there are certainly other features of the contest that designers may sometimes be

able to control, our goal in the present paper is to first understand the implications of disclosure

policy for two relatively simple and salient environments – one in which expected entry is high,

and one in which expected entry is low.

The rest of the paper is organized as follows. In Section 2, we review the relevant theoretical

and experimental literature. The theoretical model underlying our experiment is presented in

Section 3. Section 4 describes the experimental design and procedures. Results are presented in

Section 5, and Section 6 concludes.

2 Related literature

We start with a brief overview of the theoretical literature on contests with entry and information

disclosure, and then summarize the relevant experimental studies. Contests with entry have been

modeled in several ways that broadly fall into one of the following categories: (i) exogenous

stochastic entry, where the number of entrants follows a given distribution (Münster, 2006;

Myerson and Wärneryd, 2006; Lim and Matros, 2009; Fu, Jiao and Lu, 2011; Kahana and

Klunover, 2015, 2016; Drugov and Ryvkin, 2017; Boosey, Brookins and Ryvkin, 2019); (ii)

endogenous entry into a single contest (Higgins, Shughart and Tollison, 1985; Gradstein, 1995;

Fu and Lu, 2010; Kaplan and Sela, 2010; Fu, Jiao and Lu, 2015); and (iii) endogenous entry

into one of several contests (Azmat and Möller, 2009; DiPalantino and Vojnovic, 2009; Konrad

and Kovenock, 2012; Morgan, Sisak and Várdy, 2018; Azmat and Möller, 2018).3

The contest settings we consider in this paper fall into category (ii), augmented by a variation

regarding the disclosure of the number of entrants.4 For Tullock (1980) contests with exogenous

2See, e.g., https://www.transit.dot.gov/funding/procurement/third-party-procurement/single-bid.
3There is a parallel theoretical literature on auctions with entry that can be categorized similarly: (i) auctions

with exogenous stochastic entry (e.g., McAfee and McMillan, 1987; Harstad, Kagel and Levin, 1990; Levin and
Ozdenoren, 2004); (ii) endogenous entry into a single auction (e.g., Levin and Smith, 1994; Pevnitskaya, 2004);
and (iii) endogenous entry into one of several competing auctions (e.g., Wolinsky, 1988; McAfee, 1993; Peters and
Severinov, 1997). Experimental studies on auctions with entry include Dyer, Kagel and Levin (1989), Ivanova-
Stenzel and Salmon (2004), Isaac, Pevnitskaya and Schnier (2012), Palfrey and Pevnitskaya (2008) and Aycinena
and Rentschler (2018).

4Many studies of disclosure focus on information about contestants’ types (e.g., ability or valuation) (Hurley
and Shogren, 1998a,b; Denter, Morgan and Sisak, 2014; Epstein and Mealem, 2013; Kovenock, Morath and
Münster, 2015; Serena, 2015; Zhang and Zhou, 2016; Lu, Ma and Wang, 2017; Heijnen and Schoonbeek, 2017),
but this dimension of information disclosure is irrelevant in our setting with symmetric players. There is also
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stochastic entry and the number of entrants following a binomial distribution, Lim and Matros

(2009) demonstrate that expected aggregate investment is independent of disclosure. The same

result holds in the case of endogenous entry (Fu, Jiao and Lu, 2015). Fu, Jiao and Lu (2011),

Feng and Lu (2016) and Drugov and Ryvkin (2017) generalize the results of Lim and Matros

(2009) to lottery contests with arbitrary impact functions and contest size distributions, and

show that either full or no disclosure can be optimal depending on the properties of the impact

function. For rank-order tournaments (Lazear and Rosen, 1981), Drugov and Ryvkin (2017)

show that optimal disclosure depends on the curvature of the players’ marginal cost of effort.

For group contests with a stochastic number of players in each group, Boosey, Brookins and

Ryvkin (2019) show that aggregate investment (weakly) increases when the number of players

in each group is disclosed.

For a setting with exogenous stochastic entry, Boosey, Brookins and Ryvkin (2017) experi-

mentally test the predictions of Lim and Matros (2009) for contests where the number of entrants

follows a binomial distribution with parameters (n, q). Using a 2×2 design, they vary the max-

imum number of entrants, n, and entry probability, q, and find considerable support for the

comparative statics as well as point predictions of the theory, with the exception of substantial

overbidding in the treatment where both n and q are high.

Within the vast experimental literature on contests (for a review, see Dechenaux, Kovenock

and Sheremeta, 2015), we are only aware of a handful of studies exploring endogenous entry

behavior by contestants into a single contest. In one of the earlier such studies, Anderson

and Stafford (2003) test the predictions of Gradstein (1995) by manipulating the degree of

contestants’ heterogeneity, total number of potential contestants, and size of the entry fee. The

game proceeds in two stages. In the first stage, participants choose between entering the contest

and paying an entry fee, or staying out at no cost. In the second stage, entry decisions are

fully disclosed and participants simultaneously and privately compete in a Tullock contest. As

predicted, entry is discouraged by higher entry fees. Furthermore, consistent with most of the

literature (Sheremeta, 2013), substantial overbidding is observed in all treatments.

Other such studies examine the behavior of subjects who must choose between noncompet-

itive and competitive incentive schemes. For example, Eriksson, Teyssier and Villeval (2009)

compare investment behavior across tournaments with either self-selecting or exogenously as-

signed contestants. In the self-selection treatment, participants must choose between competing

in a Lazear-Rosen style tournament or a piece-rate pay scheme. Their data show a selection

effect, whereby less risk-averse subjects tend to enter the tournament, resulting in higher overall

effort and a decrease in the variance of effort relative to behavior by individuals who were exoge-

nously assigned to the tournament. Similarly, Cason, Masters and Sheremeta (2010) let subjects

choose between a noncompetitive piece-rate pay scheme and a competitive setting, which is ei-

a growing theoretical literature on the effects of information disclosure across stages in dynamic contests (e.g.,
Aoyagi, 2010; Ederer, 2010; Rieck, 2010; Halac, Kartik and Liu, 2017; Klein and Schmutzler, 2017b), and some
recent experimental tests of these predictions (e.g., Ludwig and Lünser, 2012; Deck and Kimbrough, 2017; Klein
and Schmutzler, 2017a).
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ther a proportional-prize (PP) or a winner-take-all (WTA) Tullock contest. They find that both

entry and total performance are higher for the PP contest than for the WTA one. Importantly,

endogenous entry does not generate any form of population uncertainty in these studies, since

the size of the tournament is always disclosed before investment decisions is made.

Morgan, Orzen and Sefton (2012) and Morgan et al. (2016) study contest entry decisions

that are made sequentially in continuous time. In both studies, the number of prior entrants is

publicly observable. In the former, the authors manipulate the size of the contest prize and find,

consistent with theory, that entry and investment both increase in the prize. However, entry

and investment levels are both above (respectively, below) the theoretical predictions when the

prize is low (respectively, high). In the latter, Morgan et al. (2016) explore the choice between

various outside options and competitive entrepreneurial settings, while varying the degrees of

strategic risk and natural risk. In the presence of natural risk, they observe excessive entry

and investments, and these findings are further enhanced when the outside option is a gamble.

However, as for the studies discussed in the previous paragraph, the number of active competitors

is always known to the participants at the time of investment.

In contrast, Hammond et al. (2018) study behavior when bids must be made without know-

ing the number of entrants. They explore the effect of a prize-augmenting entry fee in all-pay

auctions with two potential entrants and private valuations. The principal seeks to maximize

expected revenue (equal to the sum of players’ investments), with the entry fees collected from

the entrants used to augment the value of the prize. While their setup introduces some popula-

tion uncertainty (there may be one entrant or two entrants), the model and experiment are not

designed to study the impact of disclosure on behavior.

Finally, there is also some evidence on behavior in contests with endogenous entry using

field data. Liu et al. (2014) compare behavior across a variety of contest settings using data

collected by the online crowdsourcing platform Taskcn. The primary goal of their study is to

explore how participation and submission quality depend on (i) the size of the winner’s prize

and (ii) whether or not a high-quality “seed” submission was present during the time of making

a contest submission, and if so, whether or not the contestant who submitted the seed solution

had a winning history. While increasing the reward increased submission quality, providing a

high-quality seed submission decreased entry rates by high-quality contestants, and hence, the

overall quality of submissions decreased. While certain elements of disclosure are a natural part

of this field environment, the experiment was not designed to systematically vary disclosure

policy and study its effects.

As far as we know, the present paper provides the first experimental test of the effects of

information disclosure in a contest with endogenous entry. A study conceptually closest to ours

is by Aycinena and Rentschler (2018) who study this type of information disclosure in first-price

sealed-bid auctions and English ascending clock auctions. They find that concealing the number

of entrants yields higher revenue in first-price auctions, but disclosing the number of entrants is

optimal in English clock auctions. Both effects are due to differences in bidding and not in entry

frequencies. Our results are somewhat similar, as we find that entry frequencies are affected by
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the entry fee and that aggregate investment is affected by disclosure in some, but not all cases;

however, we do report a positive effect of disclosure on the frequency of entry when the outside

option is relatively small.

3 The model and predictions

There are n ≥ 2 identical risk-neutral players indexed by i ∈ N = {1, . . . , n}. The game consists

of two stages. In stage 1, the players simultaneously and independently decide whether or not to

enter the contest. Players who choose to enter move on to stage 2, while all other players receive

outside option payment ω ≥ 0. Let M ⊆ N denote the subset of entrants. In stage 2, each

entrant i ∈ M simultaneously and independently chooses investment xi ≥ 0. The probability

that entrant i ∈M wins prize V > 0 is given by the lottery contest success function of Tullock

(1980),

pi =


xi∑

j∈M xj
, if maxj∈M xj > 0

1
|M | , otherwise

(1)

In this paper, we focus on how the availability of information at the beginning of stage 2

affects entry and investment decisions. Specifically, we consider two information conditions –

Disclosure and No Disclosure. Under Disclosure, the number of entrants is disclosed prior to

the investment decisions in stage 2, whereas under No Disclosure the number of entrants is not

disclosed.

The solution concept we use is subgame-perfect Nash equilibrium (SPNE). We also impose

a symmetry assumption, i.e., we consider equilibria in which all (active) players use identical

strategies at each stage.5 Let q ∈ [0, 1] denote a symmetric entry probability in stage 1. As shown

by Lim and Matros (2009),6 under No Disclosure the unique symmetric equilibrium investment

in the second stage is given by the equation

x∗(q) = V

n−1∑
k=0

(
n− 1

k

)
qk(1− q)n−1−k k

(1 + k)2
. (2)

As seen from (2), the equilibrium investment is given by the weighted average of equilibrium

investments in the contest where the number of players, (k + 1), is common knowledge, x∗k+1 =
V k

(k+1)2
. The weights are equal to the probabilities of different realizations of the number of

other entrants, k, from an entrant’s perspective. Thus, under Disclosure the entrants’ expected

equilibrium investment is also equal to x∗(q). The expected equilibrium payoff of an entrant is,

therefore, independent of disclosure and given by the weighted average of payoffs in the contest

5In addition to symmetric mixed strategy equilibria we consider here, this game may have asymmetric equilib-
ria; for example, such that some number of players enter for sure while others stay out. Our experimental data do
not support any systematic asymmetric equilibrium play, at least with standard money-maximizing preferences.
For details, see Appendix C.

6For more general results on disclosure, see also Fu, Jiao and Lu (2011).
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of (k + 1) players, π∗k+1 = V
(k+1)2

:

π∗(q) = V
n−1∑
k=0

(
n− 1

k

)
qk(1− q)n−1−k 1

(k + 1)2
. (3)

Under Disclosure, the symmetric mixed strategy SPNE with equilibrium entry probability q∗ ∈
(0, 1) in stage 1 and investment x∗k+1 in stage 2 is determined by the indifference condition

π∗(q∗) = ω. It can be shown that π∗(q) is monotonically decreasing,7 and hence a unique q∗ ∈
(0, 1) exists provided π∗(1) = V

n2 < ω and π∗(0) = V > ω. Under No Disclosure, the existence of

the symmetric equilibrium with the same entry probability q∗ in stage 1 and investment x∗(q∗)

in stage 2 is established in a more general setting by Fu, Jiao and Lu (2015).

Thus, the basic equilibrium analysis of our setting provides a prediction that disclosure

has no effect on aggregate behavior. However, it is well-known that behavior in contest experi-

ments can deviate substantially from the predictions of standard money-maximizing equilibrium

models. One of the robust findings in the literature on contests with deterministic group size is

overbidding relative to the risk-neutral Nash equilibrium (see, e.g., a survey by Sheremeta, 2013).

At the same time, recent experimental results for contests with exogenous group size uncertainty

(Boosey, Brookins and Ryvkin, 2017) suggest that overbidding is substantially mitigated when

the number of players is stochastic and undisclosed, and when there is a nontrivial probability

for a player to be the only entrant. In our setting, the probability of entry is endogenous but

can be manipulated via the outside option ω. In the experiment, we vary ω between a high

value corresponding to a low probability of entry, and hence a high probability for an entrant to

be alone, and a low value that leads to a relatively high entry probability. We expect disclosure

to have different effects in these settings due to the differential effect of group size uncertainty

on overbidding. Specifically, we expect disclosure to have no effect on aggregate investment

behavior when ω is relatively low, but to lead to higher investment when ω is relatively high.

4 Experimental design

Each session of our experiment consisted of two parts. In Part 1, identical across all sessions, we

measured subjects’ attitudes towards risk, ambiguity, and losses. Each of these attitudes was

elicited using a “list-style” environment similar to the methods used by Holt and Laury (2002)

and Sutter et al. (2013).8 Lists for the three measures were presented in a random order. One of

7Following the standard argument for games with endogenous entry (Levin and Smith, 1994), π∗q =
1

q(1−q)
Cov(π∗k+1, k) < 0 because π∗k+1 is decreasing in k.

8In each case, subjects were presented with a list of 20 choices between a sure amount of money and a gamble
with two outcomes. The sure amounts of money changed gradually from the top to the bottom of the list. Subjects
were asked to select a row where they were willing to switch from preferring a gamble to preferring a sure amount.
In the risk list, the gamble was a lottery (0, $2; 0.5, 0.5) and sure amounts changed between $0.10 and $2; in the
ambiguity list, the same sure amounts were used but the gamble was a lottery (0, $2; p, 1 − p), with a uniform
random p drawn from [0, 1] and not disclosed to subjects; in the loss list, the gamble was a lottery (0,−$2; 0.5, 0.5)
and sure amounts changed between −$2 and −$0.10. Our measures for risk aversion (RA) and loss aversion (LA)
were constructed using the row numbers where subjects switched. The measure for ambiguity aversion (AA) was
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Treatment Disclosure ω Sessions Subjects Groups

D6 Yes 6 3 54 9
D48 Yes 48 3 54 9
ND6 No 6 3 54 9
ND48 No 48 3 54 9

Total 12 216 36

Table 1: Summary of experimental treatments.

the lists, and one of the rows in that list, were selected randomly for actual payments.9 Subjects

were not informed about their payoffs from Part 1 until the very end of the experiment.

Part 2, the main portion of the experiment, consisted of a sequence of contest games with

endogenous entry. We implemented a 2×2 between-subject design. In the first dimension, we

varied whether or not the number of entrants was disclosed to subjects who entered the contest.

In the second dimension, we varied the outside option, ω, paid to a subject who chose not to

enter the contest, between a low value, ω = 6, and a high value, ω = 48. The resulting four

treatments are referred to as D6, D48, ND6, and ND48, where D stands for Disclosure and

ND for No Disclosure. Table 1 summarizes the parameters as well as the number of sessions,

subjects and independent groups for each treatment.

For the main part of the experiment (Part 2), the subjects participated in 41 rounds of a

two-stage contest game. Before the first round, they were randomly placed into groups consisting

of six subjects each. These groups were fixed for the duration of the experiment, and interactions

between subjects were confined to be within groups. At the beginning of each round, all subjects

were given an endowment of 120 points.

In the first stage of the game, subjects were asked to choose whether to Enter the second

stage contest, or Not Enter and receive the outside option payment, ω. Thus, subjects who chose

Not Enter received 120 + ω points for the round. Only subjects who chose Enter participated

in the second stage. We refer to these subjects as active subjects or active group members. The

number of active group members in a given round could be any integer from zero (0) to six (6).

In the second stage, active subjects (if present) were asked to choose how many points (out

of their endowment) they wanted to invest into a project. In the Disclosure (D) treatments,

subjects who chose Enter were shown the total number of active group members before they

made their investment decisions. In contrast, in the No Disclosure (ND) treatments, subjects

who chose Enter were required to make their investment decisions without knowing the number

of active group members in Stage 2. Moreover, the number of active group members in the ND

treatments was never revealed to the subjects, even after investment decisions were made.

An active subject’s project could either succeed or fail, with success determined randomly

constructed as the difference between the row numbers where the subject switched in the ambiguous and risky
lists.

9If a subject’s choice in that row were the sure amount of money, that amount was paid; if the choice were a
lottery, the outcome was randomly realized.
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according to the contest success function (1). Within each group, only one subject’s project

could be successful. If the project was successful (respectively, failed) the subject received 120

(respectively, 0) points in revenue for the round. Therefore, including their endowment for the

round, a subject who invested x received 240−x points for the round if her project was successful,

or 120− x points for the round if her project failed. After all investment decisions were made,

active subjects were shown only their own investment, the outcome of their project, and their

own payoff. In particular, regardless of the treatment, active subjects were not informed about

the decisions or payoffs of any other active group members. Similarly, subjects who chose Not

Enter in Stage 1 were only shown their own payoff at the end of the round.

At the beginning of round 41 (the last round), we also elicited subjects’ beliefs. First, we

asked them to guess the number of other subjects who will choose Enter in round 41. Second,

we asked them to guess the average investment made by other subjects who choose Enter in

round 41. Subjects were paid $1 if their guess about the number of others who choose Enter was

correct, and paid $1 if their guess about the average investment of others who choose Enter was

within 10 points of the actual average investment of others.10 After these beliefs were elicited,

subjects participated in the same two-stage game as in all previous 40 rounds. At the end of

Part 2, the payoffs from five randomly selected rounds were counted towards final earnings, at

the exchange rate of $1 = 60 points. Total earnings were calculated by adding together Part 1

earnings, Part 2 earnings (including any payments from the belief elicitation), and the show-up

payment.

We conducted a total of 12 sessions (eight sessions in November 2017 and four sessions

in March 2019) at the XS/FS laboratory at Florida State University. A subject could only

participate in one session, and, therefore, only in one treatment. The experimental interface

was implemented using z-Tree (Fischbacher, 2007), with subjects making decisions at visually

separated computer terminals. A total of 216 subjects (65.28% of them female) were randomly

recruited via ORSEE (Greiner, 2015) from a sub-population of FSU students who pre-registered

to receive announcements about participation in upcoming experiments. Paper instructions

were distributed and read aloud prior to the start of each part. The instructions for Part 2 of

the experiment are provided in Appendix D.11 A session lasted approximately 80 minutes, with

subjects earning $20.02, on average, including a $7.00 show-up payment.

10We find that beliefs about investment are fairly accurate in all treatments; however, beliefs about entry are
not, even in treatments with disclosure, where we expected average beliefs to be consistent with the feedback
provided to entrants across the previous rounds. We provide summary statistics and a brief description of beliefs
in Appendix B, but do not use them in our analysis.

11Part 1 instructions are straightforward and available from the authors upon request.
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5 Results

5.1 Aggregate results

We begin by analyzing average entry frequency and average investment conditional on entry

(referred to simply as “investment”), and then also explore two alternative measures of contest

investment – total investment and total revenue – that take entry into account and can be

of interest from the designer’s perspective. Table 2 reports summary statistics for entry and

investment across treatments. We compute the average entry and investment using all rounds

(1-40) as well as using only the last 15 rounds (26-40).12 We restrict attention to rounds 26-40

because we would like to focus on long-run, converged behavior of experienced subjects, and

there is a significant time trend observed for entry decisions using all rounds (cf. Table 3), and

even using the last 20 rounds, but the time trend is absent in the last 15 rounds.

For the purposes of comparison, we also report the equilibrium prediction for each treatment

in Table 2. For entry, this is the equilibrium probability of entering the contest. For investment,

we report the expected equilibrium investment for D6 and D48, given the equilibrium distribution

of group sizes. As discussed in Section 3, these are equal to the equilibrium investment levels

for the corresponding ND6 and ND48 treatments.

Given the relatively small number of independent clusters in our data, inference based on

asymptotic clustered standard errors may be unreliable. Therefore, throughout the analysis, we

rely on nonparametric tests for simple comparisons and on the wild cluster bootstrap method

(Cameron, Gelbach and Miller, 2008) for regression analysis. In particular, we report 95%

wild cluster bootstrap confidence intervals (instead of standard errors) for summary statistics

and all estimates of regression coefficients. Significance levels in regression tables, as well as

post-estimation hypothesis tests, are also based on the p-values computed using wild cluster

bootstrap.13

Entry. The left panel in Figure 1 shows the frequency of entry across treatments using data

from rounds 26-40. Comparing the empirical entry frequencies to equilibrium point predictions

(cf. also Table 2), we observe significant under-entry when ω is low (D6 and ND6), and signif-

icant over-entry when ω is high (D48 and ND48).14 However, many of the comparative static

predictions across treatments are consistent with theory as summarized below.

In order to measure the aggregate treatment effects, we estimate a Probit regression model

for the entry decision, with treatment dummies and a time trend included as explanatory vari-

12We exclude round 41 from the main analysis because subjects’ beliefs about entry and investment of others
were elicited at the beginning of that round, which could influence behavior.

13We adopt the following implementation of wild cluster bootstrap based on the recommendations in Cameron
and Miller (2015) and Roodman et al. (2019): For regressions with fewer than 10 clusters, which are those run
on data from a single treatment, we use the six-point distribution Webb weights. For regressions that use the
data from two treatments (18 clusters) or all four main treatments (36 clusters), we use the default, two-point
distribution Rademacher weights. In both cases, we set the number of replications to be 9999.

14We use a Wald test comparing the estimated constant in a linear regression to the SPNE prediction. For all
treatments, p < 0.01.

11



Entry Investment

Treatment Rd. 1-40 Rd. 26-40 Predicted Rd. 1-40 Rd. 26-40 Predicted

D6 0.600 0.572 0.771 37.41 35.43 19.94
[0.531 0.672] [0.502 0.643] [29.03 45.92] [25.74 45.07]

D48 0.425 0.374 0.232 44.41 45.66 20.50
[0.379 0.476] [0.314 0.438] [36.11 53.79] [35.75 56.65]

ND6 0.526 0.477 0.771 42.93 44.56 19.94
[0.484 0.566] [0.417 0.531] [37.65 48.90] [38.02 52.89]

ND48 0.401 0.359 0.232 31.56 28.94 20.50
[0.347 0.451] [0.304 0.415] [25.66 37.39] [22.36 35.19]

Table 2: Average entry frequency and average investment by treatment, with 95% wild cluster
bootstrap confidence intervals in brackets.
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Figure 1: Frequency of entry (left panel) and average investment by treatment (right panel), us-
ing data from rounds 26-40. Error bars indicate 95% wild cluster bootstrap confidence intervals.
Solid reference lines indicate equilibrium point predictions.

ables. The estimated Probit marginal effects are reported in column (1) (using all rounds) and

column (2) (using the last 15 rounds) of Table 3. As illustrated by Figure 1, using the last 15

rounds, we find a significant negative effect on the probability of entry when ω increases from

6 to 48, for both the D and ND treatments.15 Consistent with theory, we find no significant

difference between D48 and ND48 (p = 0.708); however, contrary to theory, we find a signif-

icantly lower entry frequency in ND6 compared to D6 (p = 0.026).16 These results are also

15p < 0.005 for both D6 vs. D48 and ND6 vs. ND48, using the Wald test comparing regression coefficients.
16Significance results are the same if we use all rounds, with p = 0.056 and p = 0.475 for ω = 6 and ω = 48
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supported by nonparametric Mann-Whitney-Wilcoxon (rank-sum) tests. Using average entry

at the group level as the unit of observation, we again find a significant negative effect of entry

as ω increases from 6 to 48 for both D (Round 1-40: p = 0.0001, Round 26-40: p = 0.001)

and ND (Round 1-40: p = 0.0001, Round 26-40: p = 0.009) treatments, and we find no effect

of disclosure for ω = 48 (Round 1-40: p = 0.452, Round 26-40: p = 0.723) and a significantly

lower entry frequency in ND compared to D when ω = 6 (Round 1-40: p = 0.077, Round 26-40:

p = 0.046). Finally, we also note that, although there is a significant, negative time trend when

we use all rounds, the coefficient on Period is not statistically different from zero in the last 15

rounds.

Result 1 (i) When ω is low (high), we observe significant under-entry (over-entry), relative to

the SPNE prediction, regardless of the disclosure rule.

(ii) Consistent with comparative static predictions, the frequency of entry is significantly

lower when ω is high than when it is low, both with and without disclosure.

(iii) Disclosure has no significant effect on entry when ω is high; however, disclosure has a

significant and positive effect on the frequency of entry when ω is low.

These findings are unchanged if we include controls for gender and our elicited measures of

risk aversion (RA), ambiguity aversion (AA), and loss aversion (LA).17 Furthermore, we find no

significant differences in entry based on gender, AA, or LA, although subjects who are more risk

averse are, on average, significantly less likely to enter (p = 0.020). In Section 5.2, we explore the

effects of risk aversion on entry in more detail and show that they are different across treatments.

Investment. The right panel in Figure 1 shows average investment levels using data from

rounds 26-40 (cf. also Table 2). In all four treatments, average investment is significantly

higher than the SPNE prediction, whether we use all rounds or just the last 15 rounds.18 For

comparisons across treatments, columns (3) and (4) in Table 3 report the coefficient estimates

for an OLS regression model with treatment dummies and a time trend. By comparing the

regression coefficients, we find that average investment is significantly higher in ND6 than in

ND48 (p < 0.001) and significantly higher in D48 than in ND48 (p = 0.003), over the last 15

rounds. However, none of the other pairwise comparisons indicate significant differences. In

particular, when the number of entrants is disclosed, we observe higher average investment for

ω = 48 than for ω = 6, but the difference is not statistically significant (p = 0.112). Similarly,

average investment when ω = 6 is higher without disclosure, but the difference is not statistically

significant (p = 0.109).19 Furthermore, treatment comparisons remain similar when conducting

nonparametric Wilcoxon-Mann-Whitney (rank-sum) tests, as average investment in ND6 and

treatments, respectively.
17Regression results with these controls are not reported, but available upon request.
18Wald tests using the last 15 rounds: p = 0.005 for D6, p = 0.001 for D48, p = 0.001 for ND6, and p = 0.016

for ND48.
19Results regarding investment levels do not change when considering all rounds: ND6 vs. ND48 (p = 0.004),

D48 vs. ND48 (p = 0.007), D6 vs. ND6 (p = 0.227), and D48 vs. D6 (p = 0.202).
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Entry Investment

(1) (2) (3) (4)
1 ≤ t ≤ 40 26 ≤ t ≤ 40 1 ≤ t ≤ 40 26 ≤ t ≤ 40

ND6 -0.076∗ -0.093∗∗ 5.502 9.186
[-0.151 0.002] [-0.178 -0.013] [-3.81 14.93] [-2.08 20.74]

D48 -0.174∗∗∗ -0.191∗∗∗ 6.986 10.03
[-0.254 -0.094] [-0.283 -0.112] [-3.90 18.41] [-2.48 23.23]

ND48 -0.198∗∗∗ -0.205∗∗∗ -5.877 -6.489
[-0.283 -0.118] [-0.296 -0.130] [-15.46 3.58] [-17.32 4.30]

Period -0.004∗∗∗ -0.001 -0.0455 0.405∗

[-0.0047 -0.0028] [-0.0047 0.0027] [-0.151 0.084] [-0.075 0.897]

Constant − − 38.31∗∗∗ 22.11∗∗

[30.25 46.34] [2.85 41.60]

Clusters 36 36 36 36
N 8640 3240 4219 1443

Table 3: Columns (1) and (2) report Probit marginal effects, while columns (3) and (4) re-
port OLS coefficient estimates. 95% wild cluster bootstrap confidence intervals in brackets.
Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.

D48 are both significantly higher than in ND48 whether considering the last 15 rounds (p = 0.002

and p = 0.005, respectively) or all rounds (p = 0.009 and p = 0.019, respectively), while p-

values from rank-sum tests for D6 vs. ND6 and D6 vs. D48 comparisons satisfy p > 0.10 when

considering all or only the last 15 rounds. We summarize our findings with respect to investment

as follows.

Result 2 (i) The average investment of entrants is significantly higher than the SPNE predic-

tion in all treatments.

(ii) An increase in ω leads to significantly lower average investment under No Disclosure,

but has no effect when there is Disclosure.

(iii) Disclosure has a significant positive effect on average investment when ω is high, but

no effect when ω is low.

The findings reported in Result 2 are all robust to the inclusion of individual controls for

gender, RA, AA, and LA, and none of these controls have a significant effect on investment.

Thus, while risk aversion tends to generate selection into the contest (see Section 5.2 below), it

does not explain any of the variation in investment decisions by those who enter.

Total investment. Although the preceding analysis has focused on the average investment of

entrants only, it can also be useful to compare average total investment generated by different

combinations of outside option and disclosure rule. This comparison may be of particular interest
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to contest designers who seek to maximize (or minimize) expected total investment when faced

with a pool of potential entrants.

Figure 2 shows the average total investment over the last 15 rounds for each treatment.

Specifically, we calculate the average per-subject investment without excluding non-entrants.

That is, non-entrants are treated as having invested nothing. For comparison, we add equilibrium

point predictions for expected total investment per subject, q∗x∗(q∗), equal to 15.37 for ω = 6

and 4.76 for ω = 48 (independent of disclosure). In all four treatments, average total investment

is significantly higher than the SPNE levels.20 In ω = 48 treatments, this difference is achieved

jointly through overbidding by entrants and over-entry. In ω = 6 treatments, overbidding by

entrants is offset by under-entry, but these opposing forces combine in such a way that average

total investment is still significantly higher than predicted.

We also regress investment (without excluding non-entrants) on treatment dummies and a

time trend, in order to test for differences across treatments. Consistent with Figure 2, average

total investment is significantly lower in ND48 than in ND6 (p < 0.001) and significantly lower in

ND48 than in D48 (p = 0.006). Although it is somewhat lower in D48 than in D6, the difference

is not significant (p = 0.313). Likewise, we find no significant difference between D6 and ND6

(p = 0.748). Thus, treatment effects for average total investment are the same as for investment

conditional on entry summarized in Result 2. Specifically, an increase in the outside option only

significantly reduces average total investment under No Disclosure. Similarly, disclosure only

significantly increases average total investment when the outside option is high.

Overall, Figure 2 suggests that, if the contest designer has the ability to set both an entry

fee and the disclosure rule, total investment is higher with a low entry fee, and insensitive to the

disclosure rule in that range of ω. Thus, even in settings where the contest designer is unable

to observe the number of entrants (making disclosure impossible), a sufficiently low entry fee

can be used to increase total investment. Conversely, in cases where the contest designer has

limited control over the size of the participants’ outside option, and the outside option is high,

committing to disclose the number of entrants raises the average total investment.

Total revenue. In our experiment, subjects entering the contest have to forgo the outside

option payoff ω. These foregone payments can also be alternatively interpreted as entry fees

that the designer collects as part of her revenue (see, e.g., Hammond et al., 2018). Figure 3

shows average total revenue per subject defined this way, by treatment. The solid lines represent

equilibrium point predictions, q∗(x∗(q) + ω), equal to 20.00 for ω = 6 and 15.90 for ω = 48.

In all four treatments, when using data from all rounds, average total revenue is significantly

higher than predicted (Wald tests: p = 0.017 for D6 and p < 0.01 for ND6, D48 and ND48).

The same holds with data restricted to the last 15 rounds with the exception of D6 where the

difference is not significant (Wald test: p = 0.167). Following a regression of total revenue on

treatment dummies ND6, D48 and ND48, and a time trend, we find that average total revenue is

20Wald tests considering data from all or only the last 15 rounds: p < 0.01 for all treatments except D6 using
the last 15 rounds, where p = 0.063.
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Figure 2: Average total investment by treatment, using rounds 26-40. Error bars indicate
95% wild cluster bootstrap confidence intervals. Solid reference lines indicate equilibrium point
predictions.

significantly higher in D48 compared to all other treatments, but no other pairwise comparison

across treatments is significant.21 Thus, disclosure continues to have a large and positive effect

on average total revenue defined in this way when ω = 48, but we do not find that increasing

the outside option changes average total revenue when the number of players is not disclosed.

These results suggest that the designer’s revenue is maximized by a combination of restricted

entry and disclosure. In contrast, the increase in collected entry fees without disclosure is likely

going to be offset by a reduction in entry and entrants’ investment.

Payoffs. Finally, we also consider the comparison between payoffs for entrants and non-

entrants in each treatment. In equilibrium, these payoffs are equalized. However, given that

both the observed entry frequencies and average investment levels are different from the SPNE,

it seems more plausible that entrants are earning lower payoffs (on average) than non-entrants,

especially when ω = 48. Figure 4 compares the average payoff of entrants to the fixed payoff

from not entering, for each treatment.22

When the outside option is low (D6 and ND6), the average payoff of entrants is only slightly

lower than the payoff of a non-entrant, and the difference is only significant in ND6 (Wald tests:

p = 0.170 for D6, p = 0.011 for ND6). While this is somewhat consistent with the equilibrium

condition that payoffs are equalized, it reflects the opposing influences of under-entry (relative to

SPNE) and overbidding on entrants’ payoffs. In contrast, when the outside option is high (D48

and ND48), we observe both over-entry and overbidding, such that entrants earn, on average,

21Wald tests: p < 0.005 for D6 vs. D48 and ND6 vs. D48, p = 0.038 for ND48 vs. D48.
22Note that both payoff calculations include the endowment (120 points) given to players in each round.
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Figure 3: Average total revenue by treatment, using rounds 26-40. Error bars indicate 95% wild
cluster bootstrap confidence intervals. Solid reference lines indicate equilibrium point predic-
tions.
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Figure 4: Average payoff for entrants, by treatment, using rounds 26-40. Solid reference lines
indicate the (fixed) payoff for non-entrants. Error bars indicate 95% wild cluster bootstrap
confidence intervals.

significantly less than the payoff of a non-entrant (Wald tests: p < 0.001 for D48, p = 0.007 for

ND48). In this case, the dual departures from equilibrium in entry and investment decisions

reinforce one another to lower average payoffs of entrants.
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ω = 6 ω = 48

Entert (1) (2)

NDω 0.152 0.056
[-0.064 0.358] [-0.288 0.322]

RA -0.002 -0.018∗∗

[-0.017 0.015] [-0.030 -0.004]

RA×NDω -0.028∗∗ -0.004
[-0.052 -0.002] [-0.032 0.029]

Period -0.005∗ 0.003
[-0.0100 0.0004] [-0.002 0.008]

Constant 0.748∗∗∗ 0.454∗∗∗

[0.490 1.009] [0.200 0.726]

Clusters 18 18
N 1620 1620

Table 4: Linear probability model regression results of entry on risk aversion, using rounds 26-40.
Column (1) compares D6 and ND6 (with D6 the omitted dummy), while Column (2) compares
D48 and ND48 (with D48 the omitted dummy). 95% wild cluster bootstrap confidence intervals
in brackets. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.

5.2 Risk aversion and entry

Over the next few sections, we explore entry and investment decisions in greater detail. First,

we examine the more nuanced effects of risk aversion on entry in the different treatments. In

order to do so, we compare treatments in pairs. Table 4 reports the coefficient estimates for the

linear probability model restricted to the two most relevant pairs of treatments. In each case,

we include as regressors a treatment dummy for No Disclosure (NDω), the elicited risk-aversion

measure (RA), the interaction of the two (RA×NDω), and a time trend. Thus, the estimated

effect of risk aversion on entry is captured by the coefficient estimate on RA for Dω, and by

the sum of coefficient estimates on RA and RA×NDω for NDω. Column (1) compares D6 and

ND6. In this case, we observe no effect of risk aversion in D6 (Wald test: p = 0.787), but a

significantly negative effect of risk aversion on entry in ND6 (Wald test: p = 0.030). Thus, when

the outside option is low (ω = 6), risk aversion is only a factor when the number of entrants is

not disclosed. In contrast, as shown in column (2), we find that when the outside option is high

(ω = 48), risk aversion reduces entry in D48 but not in ND48 (Wald tests: p = 0.019 for D48,

p = 0.156 for ND48).

Result 3 (i) When ω = 6, more risk averse individuals are less likely to enter, but only when

the number of entrants is not disclosed.

(ii) When ω = 48, more risk averse individuals are less likely to enter, but only when the

number of entrants is disclosed.
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These findings show that risk aversion affects entry in different ways, depending on the out-

side option and disclosure rule. We argue that the following intuition provides a straightforward

explanation. When entry requires giving up only a small payment, as is the case when ω = 6,

the strategic uncertainty introduced when group size is not disclosed is a more prominent source

of risk than the uncertainty about whether or not the entrant may win (enough to justify entry).

In contrast, when entry requires the subject to give up a large outside option payment, as when

ω = 48, the risk of not winning the contest (and thereby recovering at least the forgone outside

option) dominates the additional strategic uncertainty related to the disclosure of group size.23

5.3 Investment and the number of entrants

In this section, we explore the relationship between investment and the number of entrants in

the contest. In the disclosure treatments (D6 and D48), subjects can condition their invest-

ment decisions on the number of entrants. Thus, we expect variation in the average investment

across different group sizes, in accordance with the comparative statics implied by the subgame

equilibrium predictions in contests with different, known group sizes. In contrast, in the treat-

ments without disclosure (ND6 and ND48), subjects cannot condition their investment on the

number of entrants, and thus, average investment should be level across different realized (but

undisclosed) group sizes.

Figure 5 shows the average investment, broken down by the number of entrants, m, in the

contest, for each of the four treatments. First, we examine the ND treatments, shown in the

bottom two panels of Figure 5. As expected, there is no evidence that average investment declines

in the realized number of entrants in ND6 and ND48 (estimated slope of -0.38, p = 0.913, and

+2.64, p = 0.241, respectively). The bars at m = 1 in ND6 and at m = 5 in ND48 may seem like

significant outliers, but they are based on too few observations (less than 3% in both cases) to

contribute statistically. In the latter case, the bar is based on observations from one group only,

and hence the confidence interval cannot be evaluated. However, average investment in ND48 is

lower than in ND6 for each realized number of entrants (p < 0.05 in all cases except m = 5 where

observations in ND48 are based on one group). This difference is consistent with our motivation

for studying the effects of the group size uncertainty induced by endogenous entry. In ND6,

there is a negligible chance (in equilibrium) that an entrant is alone in the contest. As such,

consistent with previous findings, we observe overbidding levels comparable to those observed in

contests with known group size. In contrast, in ND48, the equilibrium entry probability induces

23To further explore the effects of risk preferences on behavior in the disclosure treatments, we computed equi-
librium predictions in two models with risk-averse agents: (i) with homogeneously risk-averse agents and (ii) with
heterogeneous agents whose risk preferences are their private information. In the model with homogeneous agents,
in equilibrium, both entry and expected investment are below the risk-neutral predictions; thus, homogeneous
risk-aversion cannot explain our findings. The model with private and heterogeneous risk preferences does produce
the selection effect of risk-aversion on entry, leading to a cutoff equilibrium where sufficiently risk-tolerant players
enter the contest and others stay out. This result is similar to the one identified theoretically by Pevnitskaya
(2004) and confirmed experimentally by Palfrey and Pevnitskaya (2008) for first-price auctions. However, this
model still does not explain the differential effects of risk-aversion on entry across ω. More details are available
from the authors upon request.
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Figure 5: Average investment by number of entrants by treatment, using rounds 26-40. Error
bars indicate 95% wild cluster bootstrap confidence intervals. The confidence interval is replaced
with an asterisk (∗) in the one instance where it cannot be evaluated due to too few observations.
Note that the lower bound of the confidence interval for ND48 when there are 4 entrants is
−10.74. Solid reference lines indicate equilibrium point predictions.

group size uncertainty with a non-trivial chance of being alone in the contest. Again, consistent

with previous findings, this leads to substantially less overbidding, on average, relative to the

equilibrium prediction.

Next, we consider the D treatments, shown in the top two panels of Figure 5. As predicted,

average investment in D6 and D48 indeed varies systematically with the realized number of
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entrants. First, consistent with their dominant strategy, individuals who learn that they are

the only entrant in their group almost always choose zero investment.24 Second, when there are

at least two entrants, average investment is decreasing in the number of entrants m, consistent

with the equilibrium predictions for contests with different group sizes. However, the patterns

of the decline in D6 and D48 are quite different.

In D6, the dependence of investment on m is relatively weak (estimated slope of -5.47,

p = 0.338).25 Overbidding is observed for all m ≥ 2, with the rate of overbidding around 50%

and not decreasing in the number of entrants,26 consistent with the meta-analysis of Sheremeta

(2013). In contrast, in D48 the decline in average investment with respect to the number

of entrants is strong and significant (estimated slope of -15.08, p = 0.009), and overbidding is

decreasing in m (both in absolute terms and, although not significantly, as a rate, with p = 0.029

and p = 0.108, respectively). The rate of overbidding is extremely high when the number of

entrants is small (125% for m = 2 and 75% for m = 3), and reduces to about 50% for m = 5.

What could be causing this variation in sensitivity to the number of entrants in the disclosure

treatments? In D6, entry is relatively high and there are no contests with fewer than two entrants

in the last 15 rounds. Furthermore, for each realized group size m, average investment levels

in these contests are in line with the levels observed in the same size contests without entry.

Thus, in D6 our entrants’ behavior conditional on group size is consistent with the existing

experimental contest literature.

In contrast, in D48, the forgone outside option, ω = 48, appears to loom large over entrants’

investment decisions in the contest. One possible explanation is that subjects who forgo a

large outside option in order to enter the contest are more strongly motivated by a desire to

win, as a means of justifying their entry decision. On the one hand, this would imply that

subjects compete aggressively when there are just two entrants, which explains the spike in

average investment at m = 2 for D48.27 On the other hand, when the realized number of

entrants is higher (m = 3, 4 or 5), the effect of a strong desire to win is countered by the

lower likelihood of winning. The observed decline in overbidding rates with group size in D48

is in stark contrast with the experimental literature on contests without entry, and is largely

driven by substantial overbidding behavior when the group size is relatively small (m = 2 or 3).

Interestingly, the degree of overbidding when m = 5 is statistically indistinguishable between

D6 and D48, suggesting that behavioral responses in that case are similar across treatments.

Subjects who enter the contest in D48 likely do so with the hope that realized group size

24In D48, there were 35 instances where only one player entered, and the entrant invested zero in 34 of those
instances. In D6, due to the higher frequency of entry, there are no observations where only one player entered.

25However, average investment can be fitted fairly well with function x∗m = V (m−1)

m2 , cf. Section 3. An OLS
regression of individual investment on x∗m without intercept produces slope estimate 1.48 (p < 0.001), indicating
overbidding by about 50%, on average.

26Average investment is 54.0% higher than equilibrium for m = 2, 45.8% higher for m = 3, 47.0% higher for
m = 4, and 50.8% higher for m = 5.

27It is interesting to note that average investment is almost 70, which, even if an entrant wins with probability
one, generates a maximum expected payoff of 50. If the probability of winning is 0.5, then the expected payoff
from investing 70 is negative.
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will be small (m = 1 or 2). Then, if the subject is alone, she can secure a much higher payoff

than the outside option, while if there is only one other entrant, she may still fancy her chances

of winning the contest by investing a high amount. However, if the realized group size is larger,

the lower perceived likelihood of winning (and thus of securing a payoff that justifies entry)

tends to mitigate overbidding.

Deviations from money-maximizing equilibrium behavior can broadly be attributed to two

classes of reasons: bounded rationality and behavioral phenomena. In the following two sections,

we attempt to explain the observed deviations using a representative model from each class.

We show that Quantal Response Equilibrium (QRE) captures deviations in entry frequencies

very well, but cannot explain the observed bidding behavior of entrants. We then construct

a behavioral model of bidding in treatments with disclosure based on a combination of joy of

winning and entry regret.

5.4 Explaining behavior using QRE

A subject making completely random entry decisions would enter the contest with probability

0.5 regardless of parameters. Consider entry behavior in the disclosure treatments D6 and D48.

While the SPNE entry frequency is relatively high (0.771) for ω = 6 and low (0.232) for ω = 48,

the observed frequencies (0.571 and 0.374, respectively) are shifted towards 0.5 in each case.

Such deviations are consistent with boundedly rational subjects making random errors when

choosing an optimal strategy. We explore this explanation in more detail by deriving QRE

predictions for our two-stage games.

We compute the symmetric subgame-perfect logit QRE for the two-stage contest under

each information condition for a given ω. In a normal-form QRE, players choose each available

strategy s ∈ S with some probability p(s) that is increasing in the expected payoff π(s) of using

that strategy averaged over the behavior of all other players. In the logit QRE, this probability

takes the form

p(s) =
exp[µπ(s)]∑

s′∈S exp[µπ(s′)]
, (4)

where µ ∈ [0,∞) represents the inverse of the level of “noise,” or errors in players’ decision

making. As µ → 0, behavior becomes completely random, with p(s) → 1
|S| , whereas in the

opposite limit, µ→∞, QRE converges to the Nash equilibrium of the original game.

QRE predictions have successfully rationalized off-equilibrium investment behavior (e.g.,

overbidding and overspreading) for a variety of one-stage auction and contest experiments (see,

e.g., Goeree, Holt and Palfrey, 2002; Sheremeta, 2010; Lim, Matros and Turocy, 2014; Brookins

and Ryvkin, 2014). Morgan, Orzen and Sefton (2012) and Morgan et al. (2016) compute the

symmetric subgame-perfect QRE entry probabilities for their sequential endogenous entry con-

test game. However, they do not compute the full two-stage equilibrium; instead, for expected

second-stage payoffs they use the empirical average payoffs conditional on the number of en-

trants. In contrast, we assume that players are boundedly rational at both stages of the game,

22



Entry Investment

Treatment SPNE Observed QRE SPNE Observed QRE

D6 0.771 0.571 0.534 19.94 35.43 29.64

D48 0.232 0.374 0.356 20.50 45.66 51.36

ND6 0.771 0.477 0.536 19.94 44.56 29.52

ND48 0.232 0.360 0.356 20.50 28.94 51.48

Table 5: Entry and investment SPNE predictions, observed averages for rounds 26-40, and QRE
predictions for µ̂ = 0.6, by treatment.

and hence, obtain QRE predictions for both entry and subsequent investment behavior.28

We relegate the full technical details of our approach to Appendix A. However, two key

features are worth emphasizing. First, as already mentioned, for the Disclosure setting we

use a full two-stage formulation of QRE, where at stage 2 the entrants’ strategy spaces are

available investment levels, and at stage 1 it is the binary entry decision. For each realized

number of entrants, we compute QRE probabilities for investments in stage 2; then, using those

probabilities and resulting stage 2 payoffs, we calculate QRE entry probability in stage 1. In the

No Disclosure setting, the two stages are effectively collapsed into one because the distribution

of investment is independent of the number of entrants.

Second, since our objective is to explain both entry and investment behavior across all four

treatments, we search for a value of the noise parameter µ that provides the best fit for the

resulting eight averages (cf. Table 2). This task is complicated by the fact that, for any µ, the

equilibrium payoffs scale with ω, such that the sensitivity to µ varies substantially with the size

of the outside option. For our set of treatments, the values of ω are very different, making it

impossible to find a single value of µ that reasonably fits all of the data. Our solution is to

renormalize payoffs by ω, in a way that keeps the sensitivity to the noise parameter constant

across treatments, and define µ̂ = µω as the single noise parameter to be fitted across treatments

with different values of ω. Using the renormalized model, we select the noise parameter that

minimizes a sum of squared errors (SSE ) criterion evaluated over the eight data points. The

best fit is provided by a value of µ̂ = 0.6.

Table 5 reports, for each treatment, the predicted entry and investment according to QRE

with µ̂ = 0.6, alongside the SPNE prediction and the observed average entry and investment

in rounds 26-40. As seen from the table, QRE fits the data well for entry frequency in all

treatments. In particular, the QRE entry probabilities match the observations that subjects

over-enter when ω = 48, but under-enter when ω = 6. However, Table 5 also shows that QRE

28For a similar approach, see Ryvkin and Semykina (2017) who use QRE to explain behavior in a two-stage
game where at the first stage players vote on a redistributive tax and at the second stage play a modified linear
public good game with the median tax rate implemented.
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cannot explain the patterns of investment. While QRE does capture the overbidding observed

in all treatments, and the observation that investment in D48 is significantly higher than in D6,

it does not explain why we observe higher investment levels in ND6 compared to ND48, which

contradicts the SPNE comparative static. As discussed earlier, this difference is due to the effect

of the probability of being alone in the contest on overbidding.

5.5 Explaining investment behavior in D6 and D48

As discussed in section 5.3, the patterns of entrants’ investment in D6 are generally consistent

with the prior experimental literature on contests, as we observe stable overbidding and a rela-

tively weak decline in investment with contest size m. In contrast, in D48, investment behavior

is quite different across realized contest sizes, as we observe very substantial overbidding for

m = 2, but a strong decline as the number of entrants increases, eventually converging to ap-

proximately the same overbidding rate as in D6 when m = 5. These differences in post-entry

investment between D6 and D48 are rather striking considering that conditional on the number

of entrants investment should be exactly the same in the two treatments. In what follows, we

propose a simple behavioral model which explains these findings surprisingly well.

The model is based on a combination of three ideas and, as we show, ends up being iso-

morphic to a standard model of regret. First is the idea of “rationalizing the past” or “taste for

consistency” (Eyster, 2002). In a two-period model, Eyster (2002) shows that if in period 1 the

decision maker (DM) chose an action, then in period 2 the DM will tend to choose an action

that is consistent with the period 1 choice being optimal ex post, even if in reality it is not. In

application to our setting, if a player enters the contest and then realizes she made a mistake

(i.e., there are too many entrants, and there is no way to earn more than the forgone outside

option), the player will choose an investment that is in some way consistent with entry being

optimal. This is modeled using a regret function where the best alternative – in our case, ω –

is treated as a reference point. Second is the assumption that individuals tend to be loss-averse

(Kahneman and Tversky, 1979): the marginal disutility from a loss is higher than or equal to

the marginal utility from a gain near a reference point.29 Lastly, in order to account for the

overbidding we observe across treatments, we augment the monetary value of winning V with a

“joy of winning” parameter, w ≥ 0, so that the total value of winning becomes Ṽ = V (1 + w).

Following Boosey, Brookins and Ryvkin (2017), we assume individuals exhibit “constant winning

aspirations” (CWA); that is, w depends on the contest size m in such a way that the expected

equilibrium nonmonetary utility gained from winning, w
m , is held constant across contest sizes,

i.e., w
m = W > 0, where W is a parameter.

We write player i’s utility in the form

ui = Ṽ pi − xi + η[pi(Ṽ − xi − ω) + λ(1− pi)(−xi − ω)]. (5)

29Behavior in Tullock contests with loss aversion has been studied by Cornes and Hartley (2012) and Kong
(2008); however, both assume a reference point of zero.
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Figure 6: Average investment by number of entrants in D6 (left panel) and D48 (right panel),
using data from rounds 26-40. Error bars indicate 95% wild cluster bootstrap confidence in-
tervals. Horizontal reference lines indicate SPNE point predictions, and solid squares indicate
behavioral predictions x∗m(η̃,W ) with parameters W = 0.96, η̃ = 4.92.

Here, pi is the probability of player i winning the contest of m players given by (1). The first part

is the standard payoff function, except Ṽ includes joy of winning. Parameter η ≥ 0 determines

the weight of the behavioral component. The first part in brackets represents a gain in utility

in the case of winning, and the second part represents a loss in the case of losing, relative to ω.

The loss aversion parameter is λ ≥ 1.

Via an affine transformation ũi = ui+ηω
1+η , utility (5) can be cast in the form

ũi = Ṽ pi − xi + η̃(1− pi)(−xi − ω). (6)

Here, η̃ = η(λ−1)
1+η is the renormalized loss parameter. Model (6) is similar to standard models

of regret where the player experiences disutility if her choice leads to a payoff below the best

alternative option.30 Specifically, a player experiences “entry regret” in the event she enters the

contest and loses, because her best alternative payoff, ω, exceeds the payoff from losing, −xi,
and could have been obtained with certainty had she chosen not to enter.

Differentiating with respect to xi, setting the derivative equal to zero, and solving for the

symmetric equilibrium investment xi = x∗ for all i, obtain

x∗m(W, η̃) =
m− 1

m2

V (1 +mW ) + η̃ω

1 + η̃(m−1)2
m2

. (7)

30See, e.g., Loomes and Sugden (1982); Filiz-Ozbay and Ozbay (2007). Morgan et al. (2016) use a similar model
to explain behavior in their sequential entry contest game.
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D6, D48 D6, D16, D48

Parameters (1) (2) (3)

W 0.963∗∗ 1.001∗∗ 0.963∗∗∗

(0.289) (0.328) (0.284)

η̃ 4.918∗∗ 4.523∗∗ 4.918∗∗

(1.892) (1.923) (1.850)

W1 0.864
(1.473)

η̃1 2.738
(7.414)

R2 0.992 0.986 0.993
N 8 12 12

Table 6: Nonlinear least squares regression results for Eq. (7) as a function of ω and m ≥ 2,
using average investment data from rounds 26-40. Column (1) fits Eq. (7) with two parameters,
η̃ and W , using data from D6 and D48. Column (2) does the same using data from D6, D16
and D48. Column (3) fits the model using data from D6, D16 and D48 and allowing for W and
η̃ to be different in D16. Standard errors in parentheses. Significance levels: *** p < 0.01, **
p < 0.05, * p < 0.1.

It is straightforward to see that when η̃ = 0 (i.e., when η = 0 or λ = 1) and W = 0, we have

x∗m(0, 0) = x∗m = (m−1)V
m2 as in the standard contest model. For W, η̃ > 0, relative overbid-

ding x∗m(W,η̃)
x∗m

may be increasing, decreasing, or nonmonotone in m, but the slope of relative

overbidding as a function of m is unambiguously decreasing in ω.

Figure 6 shows average investment across realized contest size for D6 (left panel) and D48

(right panel), equilibrium predictions from the standard model (horizontal solid lines), and

predictions x∗m(η̃,W ) (connected solid squares). Parameter values η̃ = 4.92 (SE = 1.89) and

W = 0.96 (SE = 0.29) have been obtained by fitting Eq. (7) with nonlinear least squares to the

empirical average investment in D6 and D48 as a function of ω and m, for m ≥ 2. The regression

results are shown in column (1) of Table 6. As seen from Figure 6, the behavioral predictions

fit our data quite well, capturing the difference between D6 and D48 in overall investment levels

and slopes with respect to m.

Model (6) combines two behavioral components – joy of winning and entry regret. It is easy

to see that each of these components plays a critical role in explaining investment behavior in

D6 and D48; in other words, the model is rather parsimonious, and a model with any one of the

two components would completely miss an important feature of the dependence of investment

on m in the two treatments. Joy of winning alone can explain overbidding, but it would generate

the same levels of overbidding in D6 and D48, and the same slope of investment with respect to

m. Entry regret alone can explain the difference in slopes, but it would not explain overbidding.
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Figure 7: Average investment by number of entrants in D16, using data from rounds 26-40. Error
bars indicate 95% wild cluster bootstrap confidence intervals. Horizontal reference lines show
SPNE point predictions, and solid squares show out-of-sample behavioral predictions x∗(W, η̃)
with parameters W = 0.96, η̃ = 4.92 calibrated on D6 and D48 data.

5.6 Out-of-sample validation of the behavioral model

Parameter estimates from the behavioral model presented in the previous section were obtained

using data from D6 and D48 treatments, and thus the fit we observe in Figure 6 shows that the

model explains data quite well. It is not clear, however, to what extent the model can predict

behavior out-of-sample. In order to assess that, we collected data in a new disclosure treatment

where we used a new outside option of ω = 16.31 In this new treatment, referred to as D16,

theory predicts an entry frequency of q∗ = 0.497 and expected investment x∗(q∗) = 23.60. We

chose ω = 16 as it was the closest integer generating an entry frequency close to 50%, which is

approximately the midpoint prediction between D6 (q∗ = 0.771) and D48 (q∗ = 0.232).

Next, we check how the behavioral model with parameters obtained using data from treat-

ments D6 and D48 predicts behavior in D16. Figure 7 shows average investment by group size

for D16, along with the behavioral predictions. While a bit worse than in Figure 6, the fit is still

pretty good. Most importantly, the out-of-sample prediction captures the main features of the

D16 data as compared to the other two treatments: The level of overbidding as well as the slope

with respect to the number of entrants are in between D6 and D48. The average investment for

m = 5 may seem like an outlier, but that bar is only based on observations from two groups (and

4% of the total number of observations), and its standard error cannot be estimated reliably.

For comparison, column (2) in Table 6 shows the results of the same nonlinear least squares

31We ran three sessions of this treatment in March 2019, each consisting of 18 subjects, 57.4% of them fe-
male, producing 9 independent groups. Average earnings including the $7 show-up payment were $18.85. The
experimental design and procedures were otherwise identical to the ones described in Section 4.

27



regression as in column (1), but using data from all three treatments (D6, D16 and D48). The

addition of D16 data does not lead to any substantial changes in the coefficient estimates.

A more rigorous statistical test for how well the model with parameter values calibrated on

the data from D6 and D48 fits the behavior in D16 is presented in column (3) of Table 6. Here,

we show parameter estimates from a nonlinear least squares regression of x∗m(W, η̃) on ω and

m ≥ 2 using data from all three treatments (D6, D16 and D48), and allowing parameters W and

η̃ to be different in D16. That is, we replace W with W +W1 ·D16 and η̃ with η̃+ η̃1 ·D16, where

W1 and η̃1 are new parameters and D16 is a dummy equal 1 in D16 and zero otherwise. As seen

from the regression, the new parameters are not statistically significant (the Wald test for their

joint significance produces p = 0.196), which implies there is no evidence that the parameter

values are different in D16.32 It is worth noting that the estimates of W1 and η̃1, although far

from being statistically significant, are quite large. Thus, the fit is not ideal; however, given

that we are fitting behavior in a between-subject treatment out-of-sample, we conclude that, on

balance, the model performs very well.

6 Conclusions

In contests where participants do not immediately observe the number of entrants, a disclosure

policy can be a powerful tool in the organizer’s hands. Given the co-existence of different modes

of disclosure in the field, it is important, both from a positive and normative perspective, to

understand the effects of disclosure on contest outcomes – entry and investment.

Our results inform on possible consequences of disclosing the number of players, which is the

only form of interim disclosure available in a symmetric setting.33 We find that disclosure has

no effect on aggregate contest investment when the expected number of participants is relatively

high, but a strong positive effect when the expected number of entrants is low.

The implications of our results for policy and contest design are straightforward and appeal-

ing. For a principal willing to maximize contest investment, which may be beneficial in cases

such as R&D or productive competition in organizations, it makes sense to commit to disclos-

ing the number of entrants even when there is a risk of having only one entrant. In contrast,

when contest investment can be viewed as counterproductive, such as in the case of lobbying or

socially wasteful rent-seeking, the regulator may want to restrict information. Nevertheless, as

the size of potential competition grows, the effects of disclosure are diminished.

32Of course, the choice of D16 for out-of-sample fitting is arbitrary. We performed a similar exercise using D16
and D48 for the baseline data and fitting D6 out-of-sample. The results are even more convincing, with p = 0.991
for the joint significance of the interaction terms. However, when we use D6 and D16 for the baseline data and
try to fit D48 out-of-sample, the fit is worse: While p = 0.207 for the joint significance of the interactions, the
estimates of W and η̃ are not individually significant as well (they are, however, significant jointly at p = 0.025).
This is not very surprising because D6 and D16 are relatively close in terms of ω, while D48 is rather far from
them both. Predicting D48 behavior with calibration from D6 and D16 would be challenging for any model.

33In settings with heterogeneous players, not just the number but also the abilities (or identities) of competitors
may be disclosed or concealed. Such settings, with more complex, multi-dimensional disclosure policies are an
interesting extension for future research.
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While we maintain that our results are quite informative regarding optimal contest design,

there is still scope for a richer analysis. In our experiment, we focus on a stylized setting for

which the disclosure policy and the outside option (or entry fee) are the principal design features

that may be varied. Yet, there are contest environments in which the contest designers have

at their disposal a number of additional tools with which to encourage or limit the entry and

investment decisions of potential participants. Such additional features provide a rich set of

opportunities for extending our study to further understand the optimal design of contests with

endogenous entry.

Finally, given that many of our results are driven by differential out-of-equilibrium over-

bidding, a key question for external validity is to what extent excessive spending is a feature

of contests in the field, as opposed to just a laboratory phenomenon. While direct evidence is

difficult to come by, there is plenty of indirect evidence that people spend too much on com-

petition in various domains. Possibly the most well-studied settings are excessive entry and

investment by entrepreneurs (Dunne, Roberts and Samuelson, 1989; Shane and Venkataraman,

2000) and by investors in the financial sector (Malmendier and Tate, 2005). Other examples,

backed mostly by anecdotal evidence at this point, are the so-called law school bubble34 and the

prevalence of unrealistic expectations regarding career success in athletics or the arts.35 Given

how widespread, and well-documented, overbidding is in laboratory contests, and our results

on the moderating effects of uncertainty on overbidding, a more systematic exploration of these

phenomena in the field is highly pertinent.

References

Anderson, Lisa R., and Sarah L. Stafford. 2003. “An experimental analysis of rent seeking

under varying competitive conditions.” Public Choice, 115(1-2): 199–216.

Aoyagi, Masaki. 2010. “Information feedback in a dynamic tournament.” Games and Eco-

nomic Behavior, 70(2): 242–260.

Aycinena, Diego, and Lucas Rentschler. 2018. “Auctions with endogenous participa-

tion and an uncertain number of bidders: experimental evidence.” Experimental Economics,

21(4): 924–949.
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A Details of our QRE approach

Let B denote the discretized set of available investment levels for entrants at the second stage.

No disclosure. Without disclosure, entrants must choose their investments without knowing

the number of other entrants. Let Qnd denote the symmetric QRE entry probability and pnd(b)

denote the symmetric QRE probability of investing b ∈ B for entrants. Then the expected payoff

from investing b by an entrant is

πnd(b) = V
n−1∑
k=0

(
n− 1

k

)
Qknd(1−Qnd)n−1−k

∑
b1,...,bk∈Bk

pnd(b1) . . . pnd(bk)
b

b+
∑k

l=1 bl
− b. (A.1)

The unconditional expected payoff of an entrant is πnd =
∑

b∈B pnd(b)πnd(b). Here,

pnd(b) =
exp[µπnd(b)]∑

b′∈B exp[µπnd(b′)]
, Qnd =

exp(µπnd)

exp(µπnd) + exp(µω)
. (A.2)

Disclosure. In this case, entrants observe the number of other entrants before they decide

on investments. Let Qd denote the symmetric QRE entry probability and pd(b; k) denote the

symmetric QRE probability of investing b given the number of other entrants k ∈ {0, . . . , n−1}.
The expected payoff of an entrant observing k and investing b is

πd(b; k) = V
∑

b1,...,bk∈Bk

pd(b1; k) . . . pd(bk; k)
b

b+
∑k

l=1 bl
− b, (A.3)

where

pd(b; k) =
exp[µπd(b; k)]∑

b′∈B exp[µπd(b′; k)]
. (A.4)

The unconditional payoff of an entrant (before k is observed) is

πd =
n−1∑
k=0

(
n− 1

k

)
Qkd(1−Qd)n−1−k

∑
b∈B

pd(b; k)πd(b; k), (A.5)

and the entry probability is

Qd =
exp(µπd)

exp(µπd) + exp(µω)
. (A.6)

Renormalization. For parameters corresponding to an interior mixed strategy NE at the

entry stage, the unconditional payoffs πnd and πd defined above approach the NE value of ω

as µ → ∞. For a finite µ, the payoffs also scale with ω. Therefore, for values of ω varying

substantially across treatments, it is impossible to find a single value of µ fitting all the data.

Indeed, suppose some value of µ fits the empirical entry probability Qnd for ω = 6. That same

µ cannot possibly fit Qnd for ω = 48 because both πnd and ω are much larger in that treatment

and hence the QRE entry probability has a much higher sensitivity to µ. We, therefore, argue
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that in order to fit the data from all treatments with a single QRE parameter, payoffs need to

be renormalized to keep the sensitivity constant across treatments.

Define renormalized payoffs as π̂nd(b) = πnd(b)
ω , and similarly for all other payoffs in this

section. Further, define the renormalized QRE parameter µ̂ = µω. With such renormalization,

the equations for the equilibrium distributions of investments do not change except hats are

added to all payoffs and µ. The equations for the equilibrium entry probabilities become

Qnd =
exp(µ̂π̂nd)

exp(µ̂π̂nd) + exp(µ̂)
, Qd =

exp(µ̂π̂d)

exp(µ̂π̂d) + exp(µ̂)
. (A.7)

Within any given treatment (or a set of treatments) with the same ω, the renormalized

model is not distinguishable from the original QRE model except µ is rescaled. The goal of

the renormalization is to be able to fit data from treatments with different values of ω with a

single parameter µ̂. A behavioral interpretation of this renormalization is consistent with the

well-documented heuristic of relative, as opposed to absolute, concerns about changes in costs

and prices (see, e.g., Garland and Newport, 1991; Krishna et al., 2002). In our setting, this

corresponds to the assumption that subjects view the outside option ω as a reference payoff and

interpret changes in their payoffs from entry as a proportion of ω.

Numerical method. For each calculation, we use renormalized payoffs defined above, a nor-

malized prize value of V = 1, and discretized investment space B = {0.00, 0.05, . . . , 1.00}. For

no disclosure, the QRE is the set of entry and investment densities,

{Qnd}
⋃
{pnd(0.00), pnd(0.05), . . . , pnd(1.00)},

which we obtain by iteratively and simultaneously solving the system of equations (A.2) until

convergence.36 QRE for disclosure is obtained similarly, i.e., iteratively and simultaneously

solving equations (A.4), for k = 1, . . . , n− 1, and (A.6), and are given by entry and investment

densities set

{Qd}
⋃
×n−1k=1{pd(0.00; k), pd(0.05; k), . . . , pd(1.00; k)}.

For a given outside option ω, let

bQREnd (ω) =
∑
b′∈B

b′pnd(b
′), bQREd =

n−1∑
k=1

(QQREd )k(1−QQREd )n−1−k
∑
b′∈B

b′pd(b
′; k)

denote average QRE investments and QQREnd (ω) and QQREd (ω) the associated QRE entry prob-

abilities. Under our renormalization, we seek to find the µ̂ that best fits observed entry and

investment behavior. We therefore compute the QRE over a grid of µ̂ points and select the value

36Fixed-point algorithms are programmed in C++ and are available from the authors upon request.
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which minimizes the sum of squared errors (SSE) given by

SSE =
∑

ω∈{6,48}

[[
Qnd(ω)−QQREnd (ω)

]2
+
[
Qd(ω)−QQREd (ω)

]2
(A.8)

+
[
bnd(ω)− bQREnd (ω)

]2
+
[
bd(ω)− bQREd (ω)

]2]
.
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Entry Investment

Beliefs Observed Predicted Beliefs Observed Predicted

D6 3.48 2.86 3.86 42.56 36.89 19.94
[2.85 4.04] [2.51 3.21] [37.96 47.21] [28.56 45.26]

D48 3.19 1.87 1.16 46.20 44.60 20.50
[2.84 3.53] [1.57 2.19] [37.85 54.62] [33.27 55.36]

ND6 3.22 2.38 3.86 43.59 45.06 19.94
[2.81 3.64] [2.09 2.66] [32.39 54.27] [37.32 54.11]

ND48 2.87 1.80 1.16 33.07 28.23 20.50
[2.67 3.06] [1.52 2.07] [25.34 40.91] [22.99 33.26]

Table B.1: Average beliefs by treatment, compared with observed averages (rounds 26-40) and
predicted levels for entry and investment. 95% wild cluster bootstrap confidence intervals in
brackets.

B Beliefs

Table B.1 reports the average beliefs regarding entry and investment, elicited at the beginning

of round 41. First, consider beliefs regarding entry. Formally, we elicited subjects’ beliefs about

the number of other entrants in round 41, i.e., not including themselves if they planned to enter.

For the purpose of comparison, we also report the average observed number of other entrants

using rounds 26-40, and the predicted number of other entrants using the equilibrium probability

of entry. While both the predicted and observed levels are lower when ω = 48, we find that

beliefs about entry are similar across treatments with the exception that beliefs in ND48 are

lower than D6, D48 and ND6 (Wald tests: p = 0.048, p = 0.084 and p = 0.095, respectively).

While average beliefs are between the observed and predicted levels for D6 and ND6, they are

far above the observed level (and even further above the predicted level) in D48 and ND48.

Furthermore, even in the treatments with disclosure, where we expected the feedback received

by entrants to guide beliefs towards the empirical average, subjects’ beliefs are not particularly

accurate.

Second, consider beliefs regarding investment. In this case, we elicited subjects’ beliefs about

the average investment of other entrants in round 41. Again, we report the average investment

of other entrants computed using rounds 26-40, and the predicted average investment for each

treatment. Overall, beliefs regarding others’ investment are fairly accurate (although beliefs

are above the empirical averages in all except the ND6 treatment, there are no statistically

significant differences). This may be driven by subjects attributing their own behavior to others

and using their own investment as the response to the belief elicitation. Overall, beliefs exhibit

limited consistency and provide no additional explanatory power for our analysis.
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Number of entrants
Group id (ND6) 0 1 2 3 4 5 6

601 0 1 4 5 2 3 0
602 0 2 3 7 3 0 0
603 0 0 1 13 1 0 0
801 0 0 2 7 5 1 0
802 0 0 3 4 7 1 0
803 0 1 6 6 2 0 0
901 0 5 7 2 1 0 0
902 0 1 4 6 2 2 0
903 0 1 5 8 1 0 0

Table C.1: The distribution of the number of entrants by group (rounds 26-40).

C Do subjects play asymmetric equilibria?

The theoretical predictions in Section 3 focus on the unique symmetric SPNE, in which in stage

1 all players enter the contest with the same probability q∗, and in stage 2 all entrants either

invest x∗(q∗), Eq. (2), or invest x∗m = V (m−1)
m2 , depending on disclosure. While the symmetric

equilibrium is the most “natural” one to consider for symmetric players, this game also admits

asymmetric equilibria in pure and mixed strategies. For example, let m̂ denote the largest

integer such that V
m̂2 ≥ ω; then there is a pure strategy equilibrium where m̂ players enter the

contest with probability one, and the rest stay out. This equilibrium exists provided 2 ≤ m̂ ≤ n
regardless of disclosure. For our parameters, m̂ = 4 when ω = 6 and m̂ = 1 when ω = 48; thus,

there is a pure strategy equilibrium with 4 players entering in D6 and ND6. There may also

be equilibria involving mixed strategies or a combination of pure and mixed strategies where

players mix between entry and staying out with different probabilities.

Let us examine the possibility that subjects in our experiment play any of the asymmetric

equilibria. In the D treatments, the equilibrium in the second-stage subgame is unique and

symmetric, regardless of what players do in the first stage. The data clearly shows entrants’

investment levels above the second-stage NE for every realized number of entrants in D6 and D48,

cf. Figure 5 and Table 2. Thus, the data in the D treatments cannot support any asymmetric

equilibrium with standard preferences.

In the ND treatments, in any equilibrium entrants should earn at least as much as non-

entrants. This is clearly not the case in ND48, cf. Figure 4. The only remaining candidate for

asymmetric equilibrium play is ND6 where the payoffs of entrants and non-entrants are roughly

equalized. Table C.1 shows the distribution of the number of entrants (between 0 and 6) in the

last 15 rounds of data for each group in ND6. In any group consistently playing an asymmetric

equilibrium the number of entrants should be relatively stable. Let us focus on two groups:

Group 603, where m = 3 with 13 observation is the clearly dominant number of entrants; and

Group 903, where the realized number of entrants almost always takes two values, m = 2 and

m = 3. The average investment in these two groups is 39.13 and 40.05, respectively, which is
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well above the NE investment for m = 2 (30) or m = 3 (26.67). Thus, there is no asymmetric

equilibrium, pure or mixed, supporting this combination of entry and investment behavior.

It appears that due to the significant overbidding by entrants we can at least exclude asym-

metric equilibria with standard incentives. However, we cannot exclude equilibria involving a

combination of asymmetric entry with behavioral components, such as joy of winning, especially

if we allow for different asymmetric equilibria to be played in different rounds. Identifying such

equilibria in the data, due to their multiplicity, is impossible.
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D Experimental instructions

We reproduce instructions for treatment D6 below. Footnotes, which were not part of the

original instructions, highlight differences between the D and ND treatments.

Instructions

All amounts in this part of the experiment are expressed in points. The exchange rate is 60

points = $1.

This part of the experiment consists of a sequence of 41 decision rounds.

Groups and matching

At the beginning of round 1, you will be randomly assigned to a group consisting of 6 participants,

including you. You will remain in this group for the duration of this part of the experiment.

That is, you will interact with the same 5 other participants in all 41 rounds.

Endowment

In each round, you will be given an endowment of 120 points. You may use any number of these

points to make decisions in a given round.

Structure of a round

Each round consists of two stages: Stage 1 and Stage 2.

Stage 1

In this stage, you will need to decide whether you want to

• ENTER Stage 2, or

• NOT ENTER Stage 2 and collect a fixed payment of 6 points.

If you choose NOT ENTER, you will not proceed to Stage 2 and your payoff for the round will

be the sum of your endowment (120 points) and the fixed payment (6 points), which is equal to

126 points.

If you choose ENTER, you will proceed to Stage 2.

Stage 2

Active group members

The total number of active members from your group in this stage will depend on the choices
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made by all members of your group in Stage 1. Only those group members who chose ENTER

will be active in Stage 2; all others will be inactive. Thus, the total number of active group

members, including you, can be 0, 1, 2, 3, 4, 5 or 6. Only active group members will make a

decision in this stage. If you are active in Stage 2, the total number of active group members in

the round (including you) will be shown at the top of the decision screen.37

Investment decisions

In this stage, if you are an active group member, you can invest any integer number of points

from 0 to 120 into a project. The project can either succeed or fail. If your project succeeds,

you will receive 120 points of revenue for the round. If your project fails, you will not receive

any revenue for the round.

What is the likelihood that your project succeeds?

After you have made your investment decision, the outcome of your project will be determined.

Only one of the active group members in your group can have a successful project. The prob-

ability that your project succeeds is given by:

Number of points you invested in your project
Sum of the points invested in projects by all active members of your group

For example, suppose you and one other member from your group are active. If you invested 10

points and the other active member invested 20 points, then the probability that your project

succeeds is
10

10 + 20
=

10

30
=

1

3
= 33.33%.

For another example, suppose you and two other members from your group are active. If you

invested 10 points and the other members invested 5 points and 25 points, then the probability

that your project succeeds is

10

10 + 5 + 25
=

10

40
=

1

4
= 25.00%.

Lastly, if you are the only active group member in your group, then your project always suc-

ceeds (the probability is 100%), regardless of how much you invested.

Payoff calculation if you are ACTIVE in Stage 2

After determining the probability that your project succeeds, the software program will ran-

domly determine whether your project succeeds or not, according to the calculated probability.

Then, if you are an active group member, your individual payoff for the round is determined

as follows:

37The following sentence replaced the last sentence in this paragraph in ND6: “However, the number of active
group members will not be revealed to you at any point during or after the stage.”
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If your project succeeds: If your project fails:
+120 (endowment) +120 (endowment)
+120 (revenue) +0 (no revenue)
− (points you invested) − (points you invested)
240− (points you invested) 120− (points you invested)

Payoff calculation if you are NOT ACTIVE in Stage 2

If you are not active in Stage 2, your individual payoff for the round is determined as follows:

+120 (endowment)
+ (fixed payment of 6 points)
126

Feedback at the end of each round

At the end of each round, you will be informed about the decision you made in Stage 1 (ENTER

or NOT ENTER), and your investment and project outcome if you were active in Stage 2. You

will also be informed about your individual payoff for the round.

How are your earnings from this part determined?

You will participate in a series of 41 decision rounds. At the end of the series, five of these

rounds will be chosen randomly (with all rounds being equally likely to be chosen). At the end

of the experiment, you will be informed about which five rounds were chosen and your payoff

from each of those five rounds. Then your earnings from this part will be the sum of your payoffs

from the five randomly selected rounds.

Practice module

Before the actual decision rounds begin, you will participate in an unpaid practice module de-

signed to help you better understand the Stage 2 environment. The module consists of three

practice Stage 2 investment decisions. In this module, you will not interact with anyone else,

and no decisions you make will be shown to anyone else. You will not earn anything from this

practice module – it is only intended to help you better understand the rules of this part of the

experiment.

In each Stage 2 practice decision, it is assumed that you chose ENTER at Stage 1, and therefore,

you will be active in Stage 2. As in the actual decision rounds, you can choose how many points

to invest into your project. In addition, for these practice decisions only, you can choose the

project investments for the other active members of your group. In the actual decision rounds,

the project investments for the other active members of your group will be the investments that

44



were actually chosen by the other participants.38

Also for these practice decisions only, the computer will calculate the probability that your

project succeeds for each of the three practice Stage 2 decisions. This allows you to see what

would happen in each case, given the decisions you entered for yourself and the decisions you

entered for others.

Stage 2 Practice #1

Suppose you and 4 other members from your group chose ENTER in Stage 1, and therefore,

there are a total of 5 active group members. On the screen, please make your investment deci-

sion (between 0 and 120 points) and investment decisions for the 4 other active group members.

Click SUBMIT when you are done.

You should now see a table on the screen displaying the investments you chose for yourself and

the other active members of your group. Below the table, the probability your project succeeds

is calculated and labeled “Probability”. In this case, when there are a total of 5 active members

of your group (including you), the probability that your project succeeds is given by dividing

your investment by the sum of the investments from all active group members (which includes

your investment).

Are there any questions?

Stage 2 Practice #2

Now suppose you and 2 other members from your group chose ENTER in Stage 1, and therefore,

there are a total of 3 active group members. On the screen, please make your investment deci-

sion (between 0 and 120 points) and investment decisions for the 2 other active group members.

Click SUBMIT when you are done.

You should now see a table on the screen displaying the investments you chose for yourself and

the other active members of your group. Below the table, the probability your project succeeds

is calculated and labeled “Probability”. In this case, when there are a total of 3 active members

of your group (including you), the probability that your project succeeds is given by dividing

your investment by the sum of the investments from all active group members (which includes

your investment).

38Added to this paragraph in ND6: “Also, for these practice decisions only, the total number of active
group members, including you, will be revealed to you. In the actual decision rounds, the total number of active
members of your group will not be revealed to you and the project investments for the other active members of
your group will be the investments that were actually chosen by the other participants.”
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Are there any questions?

Stage 2 Practice #3

Finally, suppose that you are the only member of your group that chose ENTER in Stage 1, and

therefore, there is a total of 1 active group member (only you). Since you are the only active

member of your group, your project will be successful regardless of the investment you choose.

Thus, choosing an investment of 0 allows you to make the largest amount of money when you

are the only active member of your group. On the screen, please make your investment decision

(between 0 and 120 points). Click SUBMIT when you are done.

You should now see a table on the screen displaying the investment you chose for yourself. Below

the table, the probability your project succeeds is calculated and labeled “Probability”. In this

case, when there is a total of 1 active member of your group (only you), the probability that

your project succeeds is always 100%.

Are there any questions?

Remember, in the actual experiment, provided you are active in Stage 2, you will only make

your own investment decision. Investment decisions for other active group members, if any, will

be made by other participants.39

Recap of this part

In each decision round, you will receive an endowment of 120 points. There are two stages.

In Stage 1, you must choose whether you prefer to enter Stage 2, or not enter Stage 2 and receive

a fixed payment of 6 points. If you choose ENTER, you will proceed to Stage 2. If you choose

NOT ENTER, you will earn the fixed payment of 6 points (in addition to your endowment of

120 points) as your payoff for the round, and will not proceed to Stage 2.

In Stage 2, if you are active, you will decide the size of your project investment (integer number

between 0 and 120 points). The total number of active group members (including you) will be

shown at the top of the investment decision screen.40 After the investment decisions are made

by active group members, the program will determine the probability your project succeeds,

39Slightly modified in ND6: “Remember, in the actual experiment, the total number of active group members
will not be revealed to you at any point. Also, provided you are active in Stage 2, you will only make your
own investment decision. Investment decisions for other active group members, if any, will be made by other
participants.”

40ND6: “You will not know the total number of other active group members.”
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based on the investments made by you and the other active members of you group (if any). If

your project succeeds, you earn 120 points in revenue, but if it fails, you earn 0 revenue. Your

payoff for the round will be your endowment of 120 points, minus your investment, plus the

revenue you earn (120 points if your project succeeds, 0 if it fails).

There will be 41 decision rounds, and at the end of the experiment, you will be paid your earn-

ings from 5 randomly selected rounds.

In a moment, you will start on the actual decision rounds for this part. Please do not communi-

cate with other participants or look at anyone else’s monitor. If you have a question or problem,

from this point on, please simply raise your hand so that one of us can assist you in private.

Please remember to click CONTINUE to proceed.
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