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Abstract
The	biogeochemical	cycling	of	zinc	(Zn)	is	intimately	coupled	with	organic	carbon	in	
the	ocean.	Based	on	an	extensive	new	sedimentary	Zn	isotope	record	across	Earth’s	
history,	we	provide	evidence	for	a	fundamental	shift	in	the	marine	Zn	cycle	~800	mil-
lion	years	ago.	We	discuss	a	wide	range	of	potential	drivers	for	this	transition	and	
propose	that,	within	available	constraints,	a	 restructuring	of	marine	ecosystems	 is	
the	most	parsimonious	explanation	for	this	shift.	Using	a	global	isotope	mass	balance	
approach,	we	show	that	a	change	in	the	organic	Zn/C	ratio	is	required	to	account	for	
observed	Zn	isotope	trends	through	time.	Given	the	higher	affinity	of	eukaryotes	for	
Zn	 relative	 to	 prokaryotes,	we	 suggest	 that	 a	 shift	 toward	 a	more	 eukaryote-	rich	
ecosystem	could	have	provided	a	means	of	more	efficiently	sequestering	organic-	
derived	Zn.	Despite	 the	much	earlier	 appearance	of	 eukaryotes	 in	 the	microfossil	
record	(~1700	to	1600	million	years	ago),	our	data	suggest	a	delayed	rise	to	ecological	
prominence	 during	 the	 Neoproterozoic,	 consistent	 with	 the	 currently	 accepted	
	organic	biomarker	records.
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1  | INTRODUC TION

While	eukaryotic	microalgae	are	responsible	for	a	substantial	portion	
of	 marine	 export	 production	 today	 (Falkowski	 et	al.,	 2004),	 primary	
production	and	microbial	communities	in	the	Archean	and	Proterozoic	
oceans	are	traditionally	viewed	to	have	been	dominated	by	unicellular	
prokaryotes	(Brocks	et	al.,	2017;	Butterfield,	2015;	Knoll,	2014).	This	
long-	term	shift	toward	a	more	eukaryote-	rich	Earth	system	has	been	
mechanistically	 linked	 to	 numerous	 major	 events	 in	 Earth’s	 history,	
in	 particular	 the	 onset	 of	 low-	latitude	 “Snowball	 Earth”	 glaciations,	
major	carbon	cycle	perturbations,	and	ocean-	atmosphere	oxygenation	
during	Neoproterozoic	time	(e.g.,	Feulner,	Hallmann,	&	Kienert,	2015;	
Tziperman,	Halevy,	Johnston,	Knoll,	&	Schrag,	2011;	Zhu	et	al.,	2016).	
However,	although	it	has	been	commonly	proposed	that	there	was	a	
major	ecosystem	shift	during	the	Neoproterozoic,	there	are	relatively	
few	constraints	on	either	the	extent	of	marine	productivity	or	the	com-
position	of	plankton	communities	through	most	of	Earth’s	history.

Thus	 far,	 two	main	approaches	have	been	applied	 to	 track	 the	
early	 evolution	 of	 primary	 producers.	 The	 microfossil	 record	 has	
been	used	both	to	delineate	the	appearance	of	the	earliest	defini-
tive	eukaryotes	at	~1700–1600	Ma	(Butterfield,	2015;	Knoll,	Javaux,	
Hewitt,	&	Cohen,	 2006)	 and	 to	 track	 the	onset	 of	 extensive	 algal	
primary	productivity	by	~800	Ma	(Brocks	et	al.,	2017;	Feulner	et	al.,	
2015;	Knoll,	2014).	Molecular	fossils	(organic	biomarkers)	have	also	
been	used	to	track	the	evolution	of	phototrophs	and	the	balance	of	
bacterial	versus	algal	productivity.	For	example,	the	ratio	of	hopane	
(e.g.,	bacterial)	to	sterane	(e.g.,	eukaryotic)	biomarkers	can	potentially	
provide	a	first-	order	view	of	the	relative	balance	between	bacterial	
and	 eukaryotic	 inputs	 in	 aquatic	 depositional	 settings	 (Figure	1).	
While	 there	 have	 been	 numerous	 reports	 of	 abundant	 eukaryotic	
biomarkers	 in	Mesoproterozoic	 rocks	 (e.g.,	 Zhang	 et	al.,	 2016),	 re-
cent	lipid	biomarker	evidence,	using	clean	analytical	methodologies	
to	minimize	contamination,	suggests	that	the	earliest	detectable	and	
robust	eukaryotic	 (24-	alkylated)	 sterane	biomarkers	 appear	 some-
time	within	 the	Neoproterozoic	Era	 (<1000	Ma)	 (e.g.,	Brocks	et	al.,	
2015,	2017;	French	et	al.,	2015;	Love	et	al.,	2009)	(see	Appendix	S1).	
Earlier	 reports	 of	 abundant	 steranes,	 as	 old	 as	 2700	Ma,	 are	 now	

attributable	 to	 contamination	 artifacts	 (French	 et	al.,	 2015).	Here,	
we	propose	a	novel	tracer	for	shifts	in	marine	ecosystem	structure—
that	is,	a	coupled	record	of	the	phase-	specific	sedimentary	enrich-
ment	and	stable	isotope	composition	of	zinc	(Zn).

2  | THE BIOLOGIC AL USE OF ZINC

Stable	isotopes	of	Zn	have	the	potential	to	track	the	rise	and	ecological	
expansion	of	eukaryotes	in	the	global	ocean.	While	all	organisms	uti-
lize	Zn,	modern	eukaryotic	phytoplankton	appear	to	have	elevated	Zn	
demands	and	elevated	Zn/C	ratios	relative	to	cyanobacteria	(Nuester,	
Vogt,	Newville,	Kustka,	&	Twining,	2012;	Quigg,	Irwin,	&	Finkel,	2011;	
Twining,	Baines,	&	Fisher,	2004;	Twining	et	al.,	2003,	2011).	 In	addi-
tion,	cultures	show	that	Zn	can	be	colimiting	for	eukaryotic	algae	(e.g.,	
Zn-	C	 and	 Zn-	P	 colimitation)	 (Brand,	 Sunda,	 &	 Guillard,	 1983;	 John,	
Geis,	 Saito,	 &	 Boyle,	 2007;	 Morel	 et	al.,	 1994;	 Schulz	 et	al.,	 2004;	
Shaked,	Xu,	Leblanc,	&	Morel,	2006;	Sunda	&	Huntsman,	1992,	1995).	
Specifically,	reduced	growth	rates	have	been	shown	in	multiple	(>25)	
eukaryotic	phytoplankton	species	at	free	Zn2+	concentrations	below	
10−11.5	M	while	other	more	tolerant	species	only	exhibit	a	decline	start-
ing	at	10−13	M	(Anderson,	Morel,	&	Guillard,	1978;	Brand	et	al.,	1983;	
Ellwood	&	Hunter,	2000;	John	et	al.,	2007;	Morel	et	al.,	1994;	Schulz	
et	al.,	2004;	Shaked	et	al.,	2006;	Sunda	&	Huntsman,	1992,	1995,	1998,	
2005;	Tortell	&	Price,	1996).	In	more	detailed	studies,	low	inorganic	Zn	
concentrations	have	been	demonstrated	to	reduce	the	activities	of	key	
specific	Zn	metalloenzymes	dramatically,	such	as	carbonic	anhydrase,	
which	facilitates	the	acquisition	of	bicarbonate	(Morel	et	al.,	1994),	and	
alkaline	 phosphatase,	 which	 allows	 phytoplankton	 to	 acquire	 phos-
phorous	from	organic	phosphorus	compounds	(Shaked	et	al.,	2006).	In	
some	regions	of	the	ocean	(e.g.,	areas	of	high	nutrient	and	low	chloro-
phyll)	Zn	addition	can	result	in	increased	growth	rates	(Chappell	et	al.,	
2016;	 Coale,	 1991;	 Franck,	 Bruland,	 Hutchins,	 &	 Brzezinski,	 2003;	
Jakuba,	Saito,	Moffett,	&	Xu,	2012).	 In	addition,	 in	some	cases,	sub-
tle	changes	in	phytoplankton	composition	(ecosystem	structure)	have	
been	observed	with	the	addition	of	Zn	(Crawford	et	al.,	2003;	Leblanc	
et	al.,	2005;	Lohan,	Crawford,	Purdie,	&	Statham,	2005).

F IGURE  1 Organic	biomarker	record	depicting	the	presence/absence	of	eukaryotic	steranes	in	Proterozoic	organic-	rich	shales	[Colour	
figure	can	be	viewed	at	wileyonlinelibrary.com]	
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In	 contrast,	 culture	 studies	 of	 cyanobacteria	 conducted	 thus	 far	
have	not	found	Zn	demands	similar	to	that	observed	in	eukaryotes.	In	
culture	studies	the	common	marine	cyanobacteria	Prochlorococcus and 
Synechococcus	appear	not	have	resolvable	Zn	requirements,	demon-
strating	invariant	growth	rates	when	Zn	is	depleted	(Brand	et	al.,	1983;	
Saito,	 Moffett,	 Chisholm,	 &	Waterbury,	 2002;	 Sunda	 &	 Huntsman,	
1995).	However,	it	has	been	discovered	that	extant	cyanobacteria	are	
not	entirely	devoid	of	Zn.	For	instance	Zn-	carbonic	anhydrase	metallo-
enzymes	have	been	found	to	be	expressed	in	cyanobacteria	(Blindauer,	
2008;	 So	 et	al.,	 2004).	 Further,	more	 recent	 culture	work	 has	 high-
lighted	the	possible	use	of	Zn	in	proteins	involved	in	PO4

3−	acquisition	
when	 subject	 to	phosphorous	deficiency	 (Cox	&	Saito,	 2013)—likely	
linked	to	the	expression	of	extracellular	phosphatase	in	cyanobacteria	
(Bar-	Yosef,	Sukenik,	Hadas,	Viner-	Mozzini,	&	Kaplan,	2010;	Whitton,	
Grainger,	Hawley,	&	Simon,	1991).	It	is	important	to	note	that	with	in-
creasingly	elevated	ambient	Zn	 levels,	more	Zn	can	be	 incorporated	
into	cyanobacteria	(Ohnemus	et	al.,	2017).	However,	this	high	uptake	
may	be	inadvertent	and	it	is	unlikely	that	there	had	ever	been	markedly	
elevated	Zn	concentrations	in	surface	waters	due	to	Zn	sorption,	up-
take,	and	scavenging.	Cyanobacteria	also	have	a	higher	cellular	surface	
area	to	volume	ratio	(relative	to	eukaryotic	cells)	that	facilitates	higher	
degrees	 of	 adsorption	 over	 assimilation,	 such	 that	 a	 cyanobacteria-	
dominated	ecosystem	is	in	theory	capable	of	forcing	the	same	degree	
of	Zn	drawdown	in	surface	waters	with	a	much	lower	degree	of	organ-
ically	 incorporated	Zn.	During	this	time,	 iron	oxide	scavenging	could	
have	also	significantly	influenced	water	column	Zn	profiles.	Therefore,	
although	more	work	 is	 required,	 field	studies	and	culture	work	both	
strongly	support	the	observation	that	substantially	less	Zn	will	be	in-
corporated	 into	 biomass	 when	 cyanobacteria	 instead	 of	 eukaryotic	
phytoplankton	are	the	dominant	primary	producers.

Genomic	surveys	of	genes	encoding	for	metal	binding	proteins	pro-
vide	an	additional	means	to	probe	Zn	requirements	and	the	evolution-
ary	history	of	Zn	utilization.	Based	on	predicted	Zn	binding	proteins	
from	whole	genome	sequences,	high	Zn	requirements	are	observed	

for	 all	 major	 eukaryotic	 clades	 (Dupont,	 Butcher,	 Valas,	 Bourne,	 &	
Caetano-	Anollés,	2010;	Dupont,	Yang,	Palenik,	&	Bourne,	2006).	 In	
fact,	our	analysis	with	updated	genomic	databases	(Figure	2)	suggests	
that	Zn	 is	often	the	most	abundant	 inorganic	cofactor	 in	eukaryotic	
enzymes	across	all	lineages.	Further,	eukaryotic	genomes	have	signifi-
cantly	more	Zn	binding	proteins	than	prokaryotes	as	a	percentage	of	
the	total	predicted	proteome	(Figure	2a–b;	see	Appendix	S1).	We	find	
that	high	numbers	of	genes	for	Zn	binding	proteins	are	not	only	found	
in	later	evolving	clades	that	dominate	modern	oceans,	but	also	in	some	
of	 the	 earliest	 evolving	 groups	 of	 eukaryotic	 algae,	 such	 as	 rhodo-
phytes	 (Figure	2c).	Diverse	use	of	Zn	 in	eukaryotes	 is	clearly	a	con-
served	and	basal	trait	 (Figure	2c).	Although	genomic	data	cannot	be	
directly	translated	into	Zn	quotas,	this	work	supports	the	premise	that	
there	is	a	fundamental	difference	between	eukaryotic	and	prokaryotic	
Zn	utilization	and	that	this	difference	would	have	been	present	in	early	
evolving	eukaryotes.	Contrasts	in	Zn	usage	can	be	linked	to	an	abun-
dance	of	nucleus-	localized	proteins	in	eukaryotes	(e.g.,	Zn	fingers	and	
RING	domains)	responsible	for	DNA–RNA	transcription	and	protein–
protein	interactions	(Berg	&	Shi,	1996;	Dupont	et	al.,	2010;	Rhodes	&	
Klug,	1993;	Twining	et	al.,	2004).	This	relationship	is	consistent	with	
observations	from	marine	plankton	that	reveal	Zn	localization	within	
the	nuclei,	a	hallmark	feature	of	eukaryotes	(Twining	&	Baines,	2013;	
Twining,	 Baines,	Vogt,	 Jonge,	&	Martin,	 2008;	 Twining	 et	al.,	 2003,	
2004).	In	sum,	whole-	cell	Zn	measurements	and	genome-	based	analy-
ses	support	the	assertion	that	eukaryotic	phytoplankton	have	signifi-
cantly	elevated	Zn	utilization	relative	to	prokaryotic	phytoplankton.

3  | GLOBAL ZINC ISOTOPE MA SS 
BAL ANCE: ORGANIC BIOMA SS,  A L ARGE 
AND ISOTOPIC ALLY LIGHT SINK FOR ZINC

The	 global	 mean	 δ66Zn	 value	 of	 modern	 seawater	 is	 ~0.5‰,	
while	 sources	of	Zn	 to	 the	oceans,	 including	 riverine,	 aerosol,	 and	

F IGURE  2 Genome	encoded	metal	utilization:	The	percentage	of	iron	(red)	and	zinc	(blue)	binding	domains	compared	with	the	total	
number	of	protein	domains	in	discrete	genomes	of	(a)	cyanobacteria	(n = 123)	and	(b)	eukaryotes	(n = 437).	(c)	Percentage	of	zinc-	binding	
domains	in	eukaryotic	and	prokaryotic	phytoplankton,	relative	to	the	total	number	of	protein	domains	encoded	by	each	genome	[Colour	
figure	can	be	viewed	at	wileyonlinelibrary.com]
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hydrothermal	inputs,	are	close	to	the	average	crustal	value	of	~0.3‰	
(Little,	Vance,	Walker-	Brown,	&	Landing,	2014).	Iron	and	manganese	
oxides	scavenge	isotopically	heavy	Zn	(Δ66Zn	~0.3	to	0.5‰)	(Bryan,	
Dong,	Wilkes,	&	Wasylenki,	2015;	Little,	Sherman,	Vance,	&	Hein,	
2014;	Maréchal,	 Nicolas,	 Douchet,	 &	 Albarède,	 2000;	 Pokrovsky,	
Viers,	 &	 Freydier,	 2005).	 Carbonates	 appear	 to	 be	 unfraction-
ated	 from	 seawater;	 however,	 isotopically	 heavy	 carbonates	 have	
been	 observed	 within	 the	 geologic	 record	 (e.g.,	 Pichat,	 Douchet,	
&	 Albarède,	 2003).	While	 we	 do	 not	 yet	 understand	 the	 specific	
controls	on	Zn	incorporation	into	carbonates	(Van	Dijk,	De	Nooijer,	
Wolthers,	&	Reichart,	2017),	ab	initio	work	suggests	that	the	isotopic	
signature	of	Zn	associated	with	carbonate	species	ought	to	vary	with	
ambient	pH	levels	(Fujii,	Moynier,	Blichert-	Toft,	&	Albarède,	2014).	In	
the	most	recent	summary	of	the	global	isotope	mass	balance	of	Zn,	
the	isotopically	light	sink	was	not	fully	resolved	(Little,	Vance,	et	al.,	
2014),	although	organic-	rich	continental	margins	have	been	shown	
to	bury	light	Zn	(Little,	Vance,	Mcmanus,	&	Severmann,	2016).	Here,	
we	build	from	previous	work	on	the	Zn	mass	balance	and	new	data	

that	 constrain	 the	 isotopic	 composition	 of	 previously	 unidentified	
organic	and	sulfide	marine	export	fluxes	(Figure	3).	We	discuss	each	
of	the	major	Zn	burial	terms	and	propose	a	balanced	modern	Zn	iso-
tope	budget	(Figures	3	and	4).

Culture	 experiments	 reveal	 that	 eukaryotic	 phytoplankton	
preferentially	 incorporate	 the	 lighter	 isotopes	of	Zn	with	an	 iso-
topic	fractionation	(Δ66Znorg-sw)	between	−0.8‰	to	−0.2‰	(John	
&	Conway,	2014;	 John	et	al.,	2007).	The	way	 in	which	biological	
fractionations	manifest	in	the	oceans	may	depend	on	a	variety	of	
processes	including	the	ambient	Zn	concentrations,	the	extent	of	
water	column	consumption,	and	the	δ66Zn	of	waters	supplied	to	the	
euphotic	zone.	However,	we	have	found	that	kerogen	(the	insolu-
ble	organic	fraction)	and	bitumen	(the	soluble	organic	fraction)	ex-
tracted	from	core-	top	sites	across	the	Cariaco	Basin	(see	methods	
for	full	extraction	details)	are	all	characterized	by	δ66Zn	values	that	
are	more	depleted	than	ambient	waters,	providing	clear	evidence	
that	 biological	 export	 sequesters	 isotopically	 depleted	 (light)	 Zn	
within	the	sediments	(Figure	4).	The	export	of	light	organic	Zn	has	

F IGURE  3 Modern	global	isotopic	
mass	balance	of	Zn.	(Top)	fluxes.	
(Bottom)	Isotopic	range.	The	dashed	line	
represents	mean	δ66Zn	values	(0.5‰)	of	
deep	seawater,	and	the	asterisks	in	bars	
highlight	the	mean	δ66Zn	values	for	these	
sources	and	sinks.	Flux	estimates	in	round	
brackets	are	×108 mol year−1	of	Zn.	See	
Table	S1	for	full	list	of	references	[Colour	
figure	can	be	viewed	at	wileyonlinelibrary.
com]
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also	been	suggested	in	other	modern	marine	settings	based	on	Zn	
isotope	analyses	in	bulk	sediments	(Little	et	al.,	2016).In	a	critical	
manner,	we	also	provide	evidence	for	preferential	burial	of	isoto-
pically	 light	 organic	 Zn	 in	 ancient	 sedimentary	 rocks	 (i.e.,	 δ66Zn	
values	less	than	seawater	input	sources	of	approximately	+0.33‰	
(Little,	Vance,	et	al.,	2014);	Figure	5b).	Although	the	isotopic	com-
position	of	organic	Zn	in	ancient	shales	of	low	thermal	maturity	is	
variable,	these	δ66Znorg	values	are	on	average	significantly	lighter	
than	the	assumed	input	terms.	Thus,	the	δ66Znorg	record	provides	
clear	evidence	that	the	organic	Zn	flux	 leads	to	burial	of	 isotopi-
cally	light	Zn.

Profiles	for	δ66Zn	in	modern	marine	water	columns	do	not	typi-
cally	increase	toward	the	surface	despite	the	export	of	light	organic	
Zn	 from	 seawater	 (Conway	&	 John,	 2014;	 John	&	 Conway,	 2014;	
Zhao,	Vance,	Abouchami,	&	De	Baar,	 2014).	 This	 apparent	 lack	of	
an	 expressed	 biological	 fractionation	 in	 near-	surface	 waters	 may	
reflect	 a	 role	 for	Zn	 adsorption	 in	 controlling	water	 column	δ66Zn	
(John	&	Conway,	2014;	Köbberich	&	Vance,	2017)	(Figure	S1).	Zinc	
is	 predominantly	 complexed	 by	 organic	 ligands,	 many	 with	 un-
known	structures,	or	sorbed	to	biological	or	mineralogical	surfaces	
(Bruland,	1989;	 Jakuba	et	al.,	 2012;	 John	&	Conway,	2014;	 Lohan,	
Statham,	 &	 Crawford,	 2002).	 Ligands	 preferentially	 complex	 the	
heavy	isotope	(Jouvin,	Louvat,	Juillot,	Maréchal,	&	Benedetti,	2009;	
Köbberich	&	Vance,	2017;	Marković	et	al.,	2016),	leaving	the	residual	

dissolved	Zn2+	pool	isotopically	light	(John	&	Conway,	2014).	It	has	
been	proposed	 that	natural	 phytoplankton	 communities	 also	have	
the	ability	to	regulate	ambient	Zn	concentrations	in	surface	waters	
via	rapid	ligand	production	to	reduce	Zn	toxicity,	particularly	where	
Zn	concentrations	are	high	 (Lohan	et	al.,	2005).	The	abundance	of	
organic	 ligands	 has	 been	observed	 to	 be	 closely	 linked	with	 rates	
of	surface	productivity	 (John	&	Conway,	2014;	Kozelka	&	Bruland,	
1998;	Lohan	et	al.,	2005;	Wells,	Kozelka,	&	Bruland,	1998).	The	size	
of	this	organic	ligand	pool	can	be	extremely	dynamic,	with	genera-
tion	and	remineralization	occurring	on	the	time	scale	of	days.	Rapid	
oxidation	 of	 organic	 ligands	 in	 both	 surface	 waters	 and	 at	 depth	
releases	 the	 ligand-	bound	 Zn	 back	 into	 solution	 (John	&	Conway,	
2014;	Lohan	et	al.,	2005).	The	likelihood	of	any	geologically	mean-
ingful	ligand-	bound	Zn	burial	flux	is	therefore	low.	This	assumption	
is	consistent	with	our	dataset,	which	indicates	isotopically	depleted	
δ66Znorg	 relative	 to	 sulfide	bound	Zn	 (δ

66Znsulf)	 across	 the	breadth	
of	the	geological	record	(see	below;	Figure	2).	In	sum,	multiple	pro-
cesses	govern	the	expression	of	Zn	isotopes	in	surface	waters,	each	
associated	with	potentially	large	intrinsic	fractionations.	Water	col-
umn	 isotopic	 profiles	 therefore	 express	 intricate	 spatial	 and	 tem-
poral	variability	that	cannot	be	accounted	for	by	any	single	process	
(e.g.,	 uptake,	 sorption,	 remineralization),	 and	 future	 work	 will	 no	
doubt	 continue	 to	move	 forward	 our	 understanding	 of	 Zn	 cycling	
in	 the	upper	oceans.	However,	what	 is	 critical	 for	our	purposes	 is	

F IGURE  4 Zn	isotope	data	of	the	
sulfide,	bitumen	(TLE),	and	kerogen	(HyPy)	
fractions	of	euxinic	core-	top	muds	from	
nine	sites	across	the	Cariaco	Basin.	The	
mean	value	of	δ66Znsulf	(+0.50	±	0.07‰	
2SD,	n = 9)	accurately	captures	the	
global	deep	ocean	water	δ66Zn	signature	
(+0.50	±	0.14‰	2SD,	n = 223).	Vertical	
error	bars	denote	external	reproducibility.	
δ66Znorg	values	are	consistently	more	
negative	than	those	of	deep	seawater	
[Colour	figure	can	be	viewed	at	
wileyonlinelibrary.com]
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that	the	isotopic	composition	of	the	burial	fluxes	ultimately	controls	
the	mean	values	for	global	and	deep-	water	dissolved	δ66Zn	and	that	
modern	 and	 ancient	 sedimentary	organic	matter	 (Figures	4	 and	5)	
are	isotopically	depleted.

Sulfide	 capture	 is	 particularly	 important	 to	 our	 discus-
sion	 because	 of	 our	 emphasis	 on	 shale-	hosted	 isotopic	 data.	 At	
depths	 >100–300	m	 in	 the	 modern	 oceans,	 the	 isotopic	 compo-
sition	 and	 concentration	 of	 dissolved	 Zn	 are	 largely	 homogenous	
(+0.50	±	0.14‰	2SD,	n = 223;	Bruland,	1980;	Conway	&	John,	2014;	

Conway	&	John,	2015;	Jakuba	et	al.,	2012;	 John	&	Conway,	2014;	
John,	Helgoe,	&	Townsend,	2017;	Zhao	et	al.,	2014).	Hence,	tempo-
ral	variations	in	the	isotopic	signature	of	the	deep-	sea	reservoir	can	
therefore	shed	light	on	changes	in	the	global	biogeochemical	cycling	
of	Zn.	Here,	we	provide	new	data	indicating	that	capture	of	Zn	in	eu-
xinic	sediments	can	serve	as	a	seawater	archive	based	on	analysis	of	
sediments	from	the	Cariaco	Basin.	The	Cariaco	Basin	is	permanently	
(rather	than	seasonally)	euxinic	(anoxic	and	sulfidic)	and	Zn	precipi-
tates	out	of	solution	either	as	authigenic	Zn	sulfides	or	by	scavenging	

F IGURE  5 Sedimentary	Zn	isotope	record	spanning	3.5	billion	years	of	Earth’s	history.	(a–b)	New	data	from	the	sulfide	(blue	circles),	
bitumen	(red	circles)	and	kerogen	(black	squares)	fractions	of	sulphidic	black	shales	(n = 502).	Horizontal	gray	fields	denote	the	crustal	Zn	
isotopic	range	(32).	Vertical	error	bars	denote	external	reproducibility.	We	identify	three	stages	within	the	sulfide	record.	Stage	1	(pre-	
800	Ga):	sulfides	express	restricted	values	within	the	crustal	range.	Stage	2	(late	Neoproterozoic):	transition	interval	during	which	δ66Znsulf 
values	distinctively	lighter	and	heavier	than	the	crustal	range	are	expressed,	likely	reflecting	both	the	ecological	rise	of	eukaryotes	and	 
re-	organization	of	the	global	biogeochemical	Zn	cycle.	Stage	3	(Phanerozoic):	isotopically	light	δ66Znsulf	values	are	absent,	and	mean	values	
are	distinctively	more	positive	than	those	of	the	crustal	average.	(c)	Frequency	distributions	of	bootstrap	resampled	means	of	sulfide	(blue)	
and	organic	(bitumen	and	kerogen)	(red)	Zn	isotope	data	pre-		and	post-	800	Ma	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]

2.0 1.01.5 0.5 03.0 2.5

Age (Gyr Ago)

3.5

0.2

0

0.4

0.6

0.8

1.0

–0.2

S
ul

fid
e 
δ66

Z
n 

(‰
) 

–0.3 –0.2 –0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

0

50

100

150

Post-800 Ma

Pre-800 Ma 

(a)

0

50

100

f
f

150

(b)

0.8

0.4

0

–0.4

–0.8

O
rg

an
ic

δ66
Z

n 
(‰

) 

δ66Zn (‰) 

(c)

Age (Gyr Ago)

0.5 01.01.5

Stage 1 Stage 2 Stage 3

www.wileyonlinelibrary.com


     |  347ISSON et al.

during	iron	sulfide	precipitation	(Morse	&	Luther,	1999).	Sulfides	can	
also	 capture	 organic-	delivered	 Zn	 released	 during	 biomass	 decay	
within	sedimentary	porewaters,	a	process	that	would	drive	the	sig-
nature	 toward	 lighter	 δ66Zn	 values	 typical	 of	 organic	matter.	 Zinc	
sulfide	 formation	 can	 also	 be	 associated	 with	 a	 negative	 isotope	
fractionation	 (Vance	 et	al.,	 2016).	 However,	 near-	quantitative	 Zn	
drawdown,	due	to	much	lower	Zn	concentration	relative	to	that	of	
H2S,	as	is	typical	in	sulfide-	rich	water	columns	and	porewaters	(e.g.,	
Tankéré	et	al.,	2001),	 is	 likely	to	mute	 isotope	fractionation	tied	to	
aqueous	 Zn	 speciation	 or	 kinetic	 effects	 during	 sulfide	 precipita-
tion	(John,	Kunzmann,	Townsend,	&	Rosenberg,	2017;	Vance	et	al.,	
2016).	Consistent	with	muted	 fractionations	during	 sulfide	 forma-
tion,	we	find	that	δ66Zn	values	for	authigenic	sulfide	from	core-	top	
sites	across	 the	Cariaco	Basin	 (+0.50	±	0.07‰;	Figure	4)	are	 indis-
tinguishable	 from	 the	 globally	 homogenous	 δ66Zn	 in	 the	 modern	
deep	ocean	 (+0.50	±	0.14‰,	n = 223).	As	Atlantic	deep	waters	are	
the	main	 source	 of	 Zn	 into	 the	Cariaco	Basin,	 these	 observations	
support	that	there	is	limited	net	isotopic	offset	from	seawater	during	
Zn	sulfide	burial.	Building	on	 these	observations,	we	propose	 that	
sulfides	will	not	be	a	major	 lever	 in	driving	changes	 in	the	 isotopic	
composition	of	seawater.	In	sum,	sulfides	in	black	shales	deposited	
in	ancient	anoxic	settings	can	provide	a	robust	record	of	dissolved	
δ66Zn	values	for	seawater	as	it	has	evolved	over	geologic	time.

Within	this	global	Zn	isotope	mass	balance	framework,	the	burial	
of	isotopically	light	Zn	tied	to	biological	uptake	is	the	central	process	
that	can	drive	the	global	seawater	δ66Zn	to	values	that	are	more	posi-
tive	than	the	inputs	(Figure	3).	This	framework	builds	from	the	mech-
anisms	controlling	Zn	burial	and	all	available	sedimentary	Zn	isotope	
data	(see	below).	Assuming	that	there	is	no	temporal	variation	in	the	
δ66Zn	of	 inputs,	 positive	 shifts	 in	mean	 seawater	δ66Zn	values	 can	
thus	be	caused	by	(i)	an	increase	in	the	amount	of	isotopically	light	or-
ganic	burial	and/or	(ii)	a	larger	net	isotopic	fractionation	for	biological	
Zn	uptake	driven	by	greater	Zn	bioavailability.	We	find	that	the	frac-
tionation	factor	associated	with	organic	Zn	burial	 (Δ66Znorg-diss)	can	
be	estimated	to	rule	out	option	(2),	making	it	possible	to	use	Zn	iso-
topes	to	quantitatively	track	the	evolution	of	eukaryotic	organic	car-
bon	export	as	a	result	of	their	significantly	elevated	Zn	requirements.

4  | ZINC ISOTOPE SYSTEMATIC S 
THROUGH TIME

We	present	an	extensive	new	Zn	isotope	record	(n = 502)	from	a	large	
sample	set	of	organic-	rich	black	shales	spanning	from	the	Archean	to	
the	present	(Figure	5),	with	the	aim	of	using	the	δ66Znsulf	record	to	
track	seawater	evolution	and	organic-	bound	Zn	to	estimate	the	iso-
topic	offset	between	organic	matter	and	coeval	seawater	(Δ66Znorg-

sulf)	 through	 time.	 In	 a	 specific	 manner,	 these	 data	 encompass	 a	
comprehensive	record	of	leached	sulfide	phases	(δ66Znsulf)	from	pre-
viously	 examined	black	 shales	 from	65	 formations	 (Figure	5a).	We	
focused	on	sulfidic	shales,	which	have	a	high	potential	for	capturing	
globally	homogenous	deep	seawater	values	(see	above).	Prior	to	the	
mid-	Neoproterozoic	(~800	Ma),	the	sulfide	fraction	in	the	examined	

black	shales	shows	δ66Zn	values	indistinguishable	from	those	of	the	
presumed	 input	 sources	 (mean	 +0.33‰,	 range	 +0.17	 to	 +0.58‰;	
Figures	5,	S4–S5).	The	first	data	well	above	assumed	input	values	are	
found	in	the	~800	Ma	Wynniatt	Formation	of	the	Shaler	Supergroup	
in	Arctic	Canada	(δ66Znsulf	>	0.9‰)	(Thomson,	Rainbird,	Planavsky,	
Lyons,	&	Bekker,	2015)	 (Figure	5,	S5).	These	positive	δ66Znsulf val-
ues	 remain	prevalent	 throughout	 the	 late	Neoproterozoic	 and	 the	
Phanerozoic.	Variability	in	δ66Znsulf	values	after	~800	Ma	can	be	tied	
to	shifts	in	either	global	deep	water,	local	seawater,	or	varying	pore-
water	signals	that	overprint	the	global	signal.	Nonetheless,	the	onset	
of	positive	δ66Znsulf	values	records	a	fundamental	shift	in	the	global	
Zn	cycle.	We	propose	that	this	shift	 in	global	Zn	isotope	cycling	at	
~800	Ma	marks	an	increase	in	the	burial	of	organic-	derived	Zn,	prin-
cipally	 as	 eukaryotic	biomass,	 rather	 than	 changes	 in	 global	 redox	
conditions	or	Zn	bioavailability	(see	Supplementary	Information	and	
below	for	discussion).

Oxygenation	through	the	Neoproterozoic	was	 likely	progressive	
(e.g.,	Pogge	von	Strandmann	et	al.,	2015),	and	this	oxygenation	would	
have	reshaped	the	Zn	cycle.	Specifically,	the	burial	of	Zn	associated	
with	 oxides	 is	 an	 important	 component	 of	 the	modern	 Zn	 isotope	
budget,	and	this	flux	would	have	increased	with	ocean	oxygenation.	
Oxide	bound	Zn	burial	was	likely	reduced	in	largely	anoxic	oceans.	As	
oxide	burial	is	associated	with	a	positive	Zn	isotope	effect,	Zn-	metal	
oxide	burial	ought	to	decrease	rather	than	increase	dissolved	seawa-
ter	δ66Zn	values	and	therefore	cannot	explain	the	observed	shift	at	
~800	Ma.	In	contrast,	more	oxic	conditions	would	have	led	to	a	cor-
responding	decrease	in	sulfide	burial	once	sulfate	burial	in	an	increas-
ingly	well-	oxygenated	ocean	became	prevalent.	Further,	although	the	
ratio	of	water	column	to	porewater	sulfide	burial	may	have	decreased	
with	ocean	oxygenation,	Zn	capture	within	both	porewaters	and	eu-
xinic	water	columns	is	likely	to	be	near	quantitative	and	thus	any	pos-
sible	(intrinsic)	Zn	isotope	fractionation	during	sulfide	formation	(e.g.,	
Vance	et	al.,	2016)	is	unlikely	to	be	expressed.

Variations	in	aqueous	Zn	speciation	may	also	be	expected	with	a	
shift	 in	ocean	redox	chemistry.	Foremost,	marine	sulfate	 levels	have	
increased	dramatically	throughout	Earth’s	history	tracking	increasing	
oxygenation	and	ought	to	have	increased	at	least	transiently	at	around	
800	Ma	 (Turner	&	Bekker,	2016).	However,	 a	 rise	 in	 sulfate	 levels	 is	
unlikely	to	explain	the	observed	isotopic	trends	given	that	Zn-	sulfate	
complexes	 are	 weak	 and	make-	up	 a	 negligible	 component	 (<6%)	 of	
marine	Zn	species	today	(Black,	Kavner,	&	Schauble,	2011;	Fujii	et	al.,	
2014),	despite	marine	sulfate	levels	that	are	currently	at	their	highest	
point	in	Earth’s	history	(Canfield	&	Farquhar,	2009).	In	addition	even	
if	present,	ab	 initio	calculations	predict	 limited	 isotopic	fractionation	
associated	with	the	formation	of	Zn-	sulfate	complexes	(Fujii,	Moynier,	
Pons,	&	Albarède,	2011).	Thus,	ocean	oxygenation	is	likely	to	have	had	
a	significant	effect	on	the	global	Zn	cycle,	but	this	process	is	unlikely	to	
have	directly	driven	the	observed	shift	to	more	positive	δ66Znsulf	values	
in	the	Neoproterozoic	through	oxide-	or	sulfide	burial-	related	controls.

The	bioavailability	of	Zn	 in	seawater	has	the	potential	 to	 influ-
ence	the	Zn	isotope	fractionation	associated	with	biological	uptake.	
Low	levels	of	Zn	bioavailability	in	Proterozoic	oceans	were	previously	
proposed	based	on	thermodynamic	considerations	(Saito,	Sigman,	&	
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Morel,	2003),	and	low	Zn	bioavailability	could	in	principle	have	re-
sulted	in	muted	Δ66Znorg-sw	values	prior	to	~800	Ma.	However,	this	
model	has	recently	been	challenged	based	on	records	of	apprecia-
ble	sedimentary	Zn	enrichment	during	this	interval	(Figure	S3)	and	
thus	 ample	 supplies	 in	 seawater	 (Robbins	 et	al.,	 2013;	 Scott	 et	al.,	
2012).	Our	Zn	isotope	dataset	supports	the	latter	view.	Specifically,	
we	observe	near	constant	Δ66Znorg-sulf	values	of	about	−0.36‰	prior	
to	~800	Ma	(Figure	5),	 indicating	that	burial	of	isotopically	light	Zn	
with	organic	matter	occurred	prior	to	the	mid-	Neoproterozoic	rise	
in δ66Znsulf	values.	Therefore,	 the	 light	Zn	 isotope	values	recorded	
in	the	organic	fraction	of	shales	indicate	that	the	observed	shift	in	
δ66Znsulf	(i.e.,	our	proxy	for	coeval	bottom	waters)	is	also	unlikely	to	
be	linked	to	a	shift	 in	Zn	isotope	fractionation	during	organic	mat-
ter	 uptake	 and	 burial.	 We	 observe	 a	 subtle	 shift	 toward	 smaller	
mean Δ66Znorg-sulf	values	after	~800	Ma	from	−0.36‰	to	−0.26‰	
(Figure	5c),	which	would,	if	anything,	mute	the	observed	increase	in	
δ66Znsulf.

The	observed	trend	in	organic	Zn	data	is	unlikely	to	reflect	a	pat-
tern	of	alteration,	because	only	strata	of	low	thermal	maturity	with	
no	discernible	contamination	were	selected	for	δ66Znorg	analysis	(oil	
window	maturity	 or	 lower	 based	 on	 Rock-	Eval	 pyrolysis	 and	 lipid	
biomarker	data;	see	Supplementary	Information).	Therefore	we	con-
clude	that	light	organic	Zn	was	being	delivered	to	the	sediment	pile	
through	the	Proterozoic,	but	the	extent	of	organic-	derived	Zn	burial	
was	likely	too	low	to	drive	seawater	to	significantly	heavy	δ66Zn	val-
ues	prior	to	800	Ma.	This	model	is	consistent	with	an	observed	jump	
in	organic	Zn	concentrations	in	the	mid-	Neoproterozoic	(by	over	an	
order	of	magnitude	 in	 terms	of	bootstrap	 resampled	mean	values;	
Figure	6).

We	find	that	the	most	parsimonious	explanation	for	the	observed	
mid-	Neoproterozoic-	Phanerozoic	rise	in	marine	δ66Zn	is	an	increase	
in	organic-	derived	Zn	burial,	given	evidence	for	the	nearly	constant	
Δ66Znorg-sulf	values,	an	expected	decrease	in	deep	ocean	δ

66Zn	with	
ocean	 oxygenation	 via	 removal	 of	 66Zn	 onto	 metal	 oxides,	 and	 a	
smaller	sulfide	sink	for	Zn.	We	propose	that	this	transition	was	most	
likely	caused	by	both	a	higher	Zn	demand	following	the	rise	of	eu-
karyotes	to	ecological	dominance	in	phase	with	an	overall	increase	in	
total	global	productivity.	We	find	in	our	Zn	isotope	mass	balance	that	
an	increase	in	organic	carbon	burial	alone	is	insufficient	to	account	for	

the	positive	Zn	 isotope	values	observed	 in	post-	800	Ma	sediments	
if	buried	with	the	Zn/C	ratio	we	observe	for	pre-	800	Ma	sedimen-
tary	organic	matter	(Figure	7).	Rather,	we	find	that	increases	in	ma-
rine	organic	Zn/C	are	essential	to	drive	the	observed	rise	in	seawater	

F IGURE  6 Frequency	distributions	of	
bootstrap	resampled	means	of	organic	
(bitumen	and	kerogen)	Zn	abundance	data,	
as	presented	in	Figure	5,	pre-		(black)	and	
post	(gray)-	800	Ma	[Colour	figure	can	be	
viewed	at	wileyonlinelibrary.com]
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F IGURE  7 Global	Zn	isotope	mass	balance	for	a	pre-		and	
post-	800	Ma	ocean,	illustrating	deviations	in	the	Zn	isotopic	
composition	of	seawater	away	from	mean	source	input	values	
(vertical	axis),	with	given	changes	in	(1)	organic	carbon	burial	
(horizontal	axis)	and	(2)	the	Zn/C	ratio	of	organic	biomass	being	
exported	(dashed	and	solid	lines).	Black	lines	represent	modern	oxic	
removal	flux	(1.7	×	108 mol yr−1),	and	red	represents	calculations	
for	a	pervasively	reducing	ocean	in	which	there	is	negligible	oxic	
burial.	We	adopt	a	biological	isotope	fractionation	from	seawater	
(Δ66Znorg-sw)	of	−0.5‰,	and	a	riverine	input	flux	of	13	×	10

8	moles	
yr−1.	Our	modeling	suggests	that	that	the	Zn	isotope	composition	of	
seawater	is	largely	insensitive	to	a	system	largely	characterized	by	
prokaryotic	cells	(Zn/C	ratio	of	~10).	This	model	suggests	that	much	
larger	Zn/C	ratios	of	~100,	typical	of	eukaryotic	phytoplankton,	
are	required	for	any	ocean	system	to	achieve	δ66Zn	values	that	are	
0.5–0.7‰	greater	than	the	source	mean,	a	feature	of	post-	800	Ma	
seawater.	An	increase	in	organic-	derived	Zn	burial	across	the	mid-	
Neoproterozoic	suggests	a	fundamental	restructuring	of	global	
marine	ecosystem	structures,	toward	a	more	eukaryote-	rich	system	
in	which	there	is	more	extensive	biological	Zn	utilization	(Figure	S2)	
[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]
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δ66Zn	(Figure	7).	This	framework	is	consistent	with	the	observed	late	
Neoproterozoic	 to	 Phanerozoic	 increase	 in	 organic	 Zn	 concentra-
tions	 (Figure	6).	We	propose	 that	 the	observed	 rise	 in	 sedimentary	
organic	Zn/C	is	likely	linked	to	a	larger	eukaryotic	contribution	(with	
an	elevated	Zn/C	ratio)	to	exported	marine	biomass.	Moreover,	our	
first	markedly	positive	Zn	isotope	values	appear	around	800	Ma,	but	
additional	work	in	the	Neoproterozoic	and	Phanerozoic	is	needed	to	
determine	if	the	Neoproterozoic	Zn	cycle	oscillated	between	typical	
mid-	Proterozoic	and	late	Neoproterozoic/Phanerozoic	states	as	op-
posed	to	a	single	state	change.

5  | CONCLUSION

Given	 fossil	 evidence	 for	 eukaryote	 emergence	 at	 >	 ~1700	Ma	
(Butterfield,	2015;	Knoll,	2014;	Parfrey,	Lahr,	Knoll,	&	Katz,	2011),	our	
Zn	records	provide	support	for	a	long	(billon-	year)	lag	before	their	rise	
to	ecological	 prominence	 at	~800	Ma,	which	 is	 consistent	with	 the	
earliest	robust	finding	of	detectable	sterane	compounds	in	thermally	
well-	preserved	sedimentary	rocks	(Brocks	et	al.,	2017).	This	sterane	
biomarker	 signal	was	 attributed	 to	mainly	 unicellular	 heterotrophic	
protists,	as	gauged	from	the	unusual	C27	sterane	carbon	number	dom-
inance	(Brocks	et	al.,	2017),	but	substantial	contributions	from	eukar-
yotic	phytoplankton	(in	particular	from	red	algal	clades)	could	produce	
similar	sterane	patterns	(Kodner,	Pearson,	Summons,	&	Knoll,	2008)	
and	account	for	some	appreciable	sterane/hopane	ratios	(0.003–0.42	
reported	for	a	small	720–820	Ma	sample	set)	(Brocks	et	al.,	2017).	In	
addition,	the	Zn	record	provides	an	opportunity	to	evaluate	the	impact	
that	the	first	abundant	eukaryotic	export	productivity	may	have	had	
on	Neoproterozoic	 climatic	 and	 carbon	 cycle	perturbations.	 For	 in-
stance,	the	shift	in	ecosystem	structure	recorded	in	our	isotopic	data	
occurred	almost	80	million	years	before	the	onset	of	the	“Snowball	
Earth”	events	challenges	previous	suggestions	that	algal	proliferation	
was	intimately	and	directly	linked	with	the	onset	of	glaciation	(Feulner	
et	al.,	2015;	Tziperman	et	al.,	2011).	At	the	same	time,	the	increase	in	
eukaryote	contribution	to	primary	productivity	coincided	with	a	dra-
matic	shift	toward	more	dynamic	carbon	isotope	values	in	marine	car-
bonates	following	more	than	a	billion	years	of	relative	δ13C	stability,	
and	just	prior	to	the	first	appearance	of	microfossils	for	testate	amoe-
bae	(eukaryotic	heterotrophs)	(Porter	&	Knoll,	2000),	marking	the	end	
of	an	extended	biogeochemical	stasis	that	prevailed	in	the	preceding	
“boring	billion”.	While	establishing	the	cause	and	effect	relationships	
behind	these	observations	via	more	detailed	Neoproterozoic	records	
remains	important	for	future	research,	the	Zn	isotope	record	never-
theless	 suggests	 that	 the	 proliferation	 of	 eukaryotes	 in	 the	 oceans	
was	 closely	 coupled	with	 the	 onset	 of	 dynamic	 environmental	 and	
biogeochemical	evolution	during	the	mid-	Neoproterozoic.
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