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1. Introduction

ABSTRACT

Region-specific norms of behavior are a widespread phenomenon. In the case of medical
practice, numerous studies have found that geographic location exerts an inordinate influ-
ence on the choice of treatments and procedures. This paper shows how the presence of
social influence on treatment decisions can help explain this phenomenon. We construct
a theoretical model in which physicians’ treatment choices depend on patients’ character-
istics and on the recent choices of nearby peers—either because there are local knowledge
spillovers or because physicians want to conform to local practice patterns. In this set-
ting, regional differences in the patient mix give rise to geographically divergent treatment
patterns—the treatment a patient receives depends on where she lives. Investigation of
Florida data reveals significant geographic variation in treatment rates consistent with the
predictions of our model. Implications for patient welfare are explored.

© 2009 Elsevier B.V. All rights reserved.

This paper develops a general theory of the emergence of region-specific norms of behavior and uses it to suggest a possible
resolution of a famous public health puzzle—the well-documented effect of geography on the choice of medical procedures.
Over the years, a number of studies have found that medical choices tend to be relatively uniform within regions and yet
quite diverse across regions. Surprisingly, the phenomenon persists today despite vast improvements in communication
technology. In this paper, we show that the observed geographic treatment patterns are likely to be a consequence of
local social interactions among physicians—interactions that result in a positive correlation between the choices of a given
physician and the choices of her local colleagues. We expect such a relationship to arise in the medical context for (at least)
two reasons: (1) physicians may learn and acquire skills from one another, and (2) there may be social pressure to conform
to local practice norms. We posit that both of these mechanisms are grounded in face-to-face encounters and therefore
should operate most strongly at the local level. A model adapted from the theory of interacting particle systems represents
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medical treatment choice in the presence of local social interactions and reproduces the stylized facts of the geographic
variations puzzle. The theoretical model, although tailored to the requirements of the puzzle at hand, is quite general. The
model predicts that, within a region, patients of all ages will tend to receive the treatment that is best suited to the patient
of modal age for that region. As a result, a given patient will be treated differently in different regions, depending on the
dominant age group in the region. We find strong support for these predictions among extensive data on coronary patients
from Florida. We also use the model to show that patient welfare need not improve under a system of practice guidelines
designed to eliminate regional treatment variations.

The extent of geographical variation in medical care in the United States is quite striking. Consider the case of two
procedures used to treat heart conditions. In a comparison of hospital referral regions across the country, rates of Coronary
Artery Bypass Grafting among Medicare enrollees varied by a factor of more than 3.5, while the rates of Coronary Angioplasty
ranged from 2.5 to 16.9 per 1000 enrollees (see Wennberg and Cooper, 1999). Such high variation has been recorded for
many procedures and treatments, spanning all areas of medicine, and often persisting over time. The systematic study of
treatment variations appears to begin with Glover’s (1938) presentation to the Royal Society of Medicine. In the United
States, Wennberg and his colleagues have documented the phenomenon comprehensively over a number of years (e.g.
Wennberg and Gittelsohn, 1973; Wennberg and Birkmeyer, 1999; O’Connor et al., 1999; Pilote et al., 1995).

The variations have proved remarkably robust to controls for incidence of illness and demographic and socioeconomic
factors (Phelps and Mooney, 1993; Wennberg and Gittelsohn, 1982). Wennberg and Gittelsohn (1982) attributed geographic
variations to geographic differences in physician “practice style,” defined as a set of beliefs about the efficacy and appropri-
ateness of alternative forms of care. However, inquiries into the role of practice style in treatment variations have yielded
mixed results concerning its importance (e.g. contrast Grytten and Sorensen, 2003 with Folland and Stano, 1989). Phelps and
Mooney (1993) present a model, based on Bayesian updating, of how regional norms might persist once they are in place,
but the model does not explain how diverse norms might arise in the first place. Unlike other papers in the literature, we
show how regional variations can emerge, starting from random initial conditions. More recently, Chandra and Staiger (2004,
2007) attribute medical treatment variations to local productivity spillovers. Although this explanation overlaps with our
own, we show that conformity effects can just as readily explain treatment variations. Furthermore, the empirical evidence
to date cannot neatly distinguish between these two sources of choice interactions.

We develop a formal model to explain how geographical variations in medical care arise, and why there may be resistance
to efforts to standardize practice. In this model, two key features drive the emergence of regional treatment norms: local
choice interactions among physicians and regional variation in patient characteristics. Concerning the former, we assume
that the choices of a physician’s nearby colleagues exert an influence on her own choices, either because of local increasing
returns or because of pure conformity effects. As an example of local increasing returns, a surgeon’s own expertise in a given
treatment or procedure may improve as her peers gain experience in the same treatment and share their insights. If so, a
given treatment will yield better outcomes, and so become increasingly favored within a group of interacting peers, the
more frequently it has been used in the past. Alternatively, choice spillovers among neighboring physicians could reflect
pure conformity effects. Conformity of behavior within a group may arise because individuals have an innate preference for
social esteem, as in Bernheim (1994), or because of incentives in the institutional environment. For example, in the United
States, malpractice claims are judged by comparing a doctor’s actions to standard practices within the local medical com-
munity, thereby discouraging deviation from such practices.! Either form of social influence contributes to the emergence
of geographical variations, but the welfare implications will be quite different between these two cases.?

The second key feature of the model is that patient characteristics differ, on average, across geographic regions and these
characteristics influence the treatment choice. Specifically, we assume that the “ideal” treatment for a given patient—the
treatment that maximizes the probability of a successful outcome independent of the local treatment history—depends on
underlying traits such as age, in addition to (unmodelled) transitory symptoms. This assumption agrees with the obser-
vation, for example, that heart bypass surgery carries greater risks among the elderly than among the young and hence is
less common among the former group.3 To see how this assumption contributes to the emergence of regional treatment
variations, consider what happens when a young patient arrives for treatment in a region with a high proportion of elderly
patients. The young patient’s physician will take the patient’s age into account, but will also be drawn towards the treatment
she observes her neighbors performing most often, which will likely be the treatment that is ideal for elderly patients. In
the long-run, the dynamic feedback between physicians’ choices and patients’ types produces a stable treatment pattern
in which the regional treatment norm represents the ideal treatment for the modal patient in the region. In this long-run
equilibrium, patients of different types in the same region will receive the same treatment, and a patient of a given type will
receive a different treatment depending on where she lives because the modal patient varies across regions.

1 This is the dominant legal standard in the U.S. In Florida, “the prevailing professional standard of care for a given health care provider shall be that level
of care, skill, and treatment which, in light of all relevant surrounding circumstances, is recognized as acceptable and appropriate by reasonably prudent
similar health care providers.” “Similar health care providers” are, inter alia, ones who practice in the same or similar medical community. (Florida Statutes
766.102).

2 It is worth noting that other forms of social influence exist. In another study, of the adoption of new technologies in medicine, a significant influence
of the choices of “star” physicians was found (Burke et al., 2007).

3 See, for example, Hannan and Burke (1994) and Alexander and Peterson (1997).
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We test the model’s predictions using a census of Florida patient discharge records, focusing on patients over 25 with
a primary diagnosis of either coronary atherosclerosis or acute myocardial infarction (AMI, or “heart attack”). The usable
sample covers over 500,000 inpatient stays during the periods 1995-2001. Consistent with our predictions, we find that
younger patients are less likely to get invasive heart treatments—either coronary angioplasty or heart bypass surgery—at
hospitals with a larger proportion of older patients, and older patients are more likely to get an angioplasty at hospitals
with a larger proportion of young patients. (In the case of all heart surgeries, the latter effect has the expected sign but is
not statistically significant.) Based on the assumption that regional treatment variations imply net welfare losses, policies
have been proposed that would seek more uniform compliance with guidelines for medical practice that are based solely on
patient characteristics and symptoms (see, for example, Congressional Budget Office, 2008). However, our model implies that
the welfare implications of treatment variations depend on the underlying motivation for the social influences on treatment
choice. In the presence of increasing returns, treatment variations have benefits, in the form of gains from specialization
that accrue to the dominant patient type in a region, as well as costs that fall on the minority-type patients in a region. If
the benefits outweigh the costs, treatment variations will dominate a system of strict treatment guidelines. On the other
hand, if conformity pressure drives the choice spillovers, patients would be better off if physicians were constrained to make
treatment decisions based solely on patient characteristics.

2. A model of medical treatment choice

We construct a formal model of treatment choice that incorporates local social influence and demographic variation.
We represent the social environment as a one-dimensional, stochastic interacting particle system, as in Liggett (1999).4
Physicians reside at fixed locations along a line. At a given location, patients arrive at random intervals, one at a time.
Patients can be one of two “types,” and the physician must choose one treatment (between two options) for each patient.?
The patient’s “type” can refer to any characteristic that is relevant to the treatment decision, but we find it useful to let type
refer to age, such that some patients are ‘old’ and some are ‘young.’ At a given treatment opportunity, the physician selects
the treatment that maximizes her payoffs. The payoff functions (which are identical for all doctors) depend on the patient’s
type and also on the recent treatment choices of the physician’s two adjacent neighbors, where the latter dependence can
represent either source of social influence described above. The line consists of two (connected) regions, each with a distinct
mix of old versus young patients. Because the neighborhoods of adjacent physicians overlap, social influence percolates
across the line of physicians and results, in equilibrium, in a single treatment being applied to all patients in a given region
regardless of age. At the same time, regional differences in the age mix mean that the dominant treatment—the one that is
“ideal” for the majority-type patient in the region—will differ across regions. Furthermore, the emergence of region-specific
norms does not require extreme differences in the age distribution across regions. If the share of old patients is greater than
fifty percent in one region and less than fifty percent in the other, the treatment norm will differ between the regions.

2.1. Theoretical model

Physicians are indexed by their location on Z, the set of integers. For each x € Z, {x — 1, x + 1} denotes the set of neighbors
of x. There are two types of patients, denoted « and S, and two treatments, A and B. We characterize the physician payoffs
to a given treatment choice in terms of a single number, U(z, h, L, R, ...), where z € {A, B} represents the chosen treatment,
h e {«, B} represents the patient’s type, and L and R represent, respectively, the last treatments chosen by the physicians to
the left and to the right of the given doctor (L and R each belong to {A, B}). To capture the case of social influence derived
from knowledge spillovers, we identify the physician’s utility with the objective quality of the treatment choice, where we
assume that this quality is fully captured by the probability that the given treatment succeeds. That is, a given treatment can
either “succeed” or “fail” and physicians choose treatments to maximize the (objective) probability of success. Symbolically,
we let 7r,(-) denote the probability function of treatment success and we assume the following identity®:

U(z, h,L,R) = m,(h,L,R).

4 Such systems have been used to study problems in evolutionary game theory. The modelling framework builds upon ideas in Ellison (1993), Morris
(2000), Young (1998), Young and Burke (2001), and Burke et al. (2006). Our main theoretical contribution is to generalize Ellison’s model to allow payoffs
(and hence choices) to depend on a factor which varies across locations, where in the medical example this factor is the patient’s type.

5 For convenience, we assume that physicians control treatment choices. In practice, treatment choice is a complicated combination of physician and
patient preferences, as well as of constraints imposed by institutions like insurance companies, hospital administrations, and governments. We show
below that our key results hold when patient preferences regarding treatment are incorporated. Institutional constraints on choice will be evaluated in our
discussion of welfare issues.

6 The fact that patient and physician interests are completely aligned does not require altruism on the part of physicians. For example, physician’s
incentives (which we do not model explicitly) could be aligned so as to make their interests coincide with patient welfare. In general, physician payoffs
may depend on a number of factors, including, for example, the money rewards to different treatment choices (which depend, in turn, on reimbursement
systems such as Medicare) and the variability of treatment outcomes. We also do not allow outcomes to depend on unobserved factors such as the quality
of complementary inputs and the physician’s skill and effort levels.
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For example, m4(«, A, B) denotes the probability that treatment A succeeds on a patient of type «, assuming the neighboring
physicians to the left and right applied treatments A and B, respectively, at their last treatment opportunities, and this
probability captures the physician’s utility of choosing treatment A in the given context. We assume that all physicians
know these conditional probabilities and hence the function 7, is identical across physicians. This formulation captures
knowledge spillovers because, as described in detail below, we assume that a treatment’s success probability increases in
the number of neighboring physicians that used it at their last treatment opportunity. To capture a preference for conformity
rather than knowledge spillovers, we can use a mathematically identical payoff structure and simply shift the interpretation
of the utility function. In this alternative interpretation, physicians care about treatment success and about conformity to
local practice patterns. Treatment success now depends only on patient characteristics, but conformity benefits depend
on the recent choices of neighbors, and physicians trade off the benefits of acting like their neighbors against the dictates
of patient characteristics. Such a model can lead to identical descriptive results but, as described below, carries different
welfare implications. In the exposition below we adhere to the knowledge spillovers interpretation except when specified
otherwise.

The essential assumptions about physicians’ payoffs are the following: (1) payoffs from using a treatment increase with
the number of neighbors who use the same treatment; (2) neither treatment dominates the other (that is, neither is better
regardless of what neighbors do); and (3) when neighbors are evenly split between the two actions, then A is optimal for type
a and Bis optimal for type 8.7 Property 3 is a stronger version of the reasonable requirement that, for any fixed neighborhood,
A yields higher payoffs when used on an « type than when used on a j type (and B yields higher payoffs when used on a 8
type than on an « type). In our two action setting, the above properties are equivalent to:

Property P. Preferences satisfy the following two conditions:

(a) Treatment A is optimal for a-patients if one or more neighbors use A, but B is optimal if both neighbors use B.
(b) Treatment B is optimal for B-patients if one or more neighbors use B, but A is optimal if both neighbors use A.

This is not a strong condition. To illustrate its reasonableness we present, and graph, an example of such preferences.
Suppose, as above, that U(z, h, L, R, ...) = m;(h, L, R). Let

ma(et,B,B)=0.3,  ma(B,B,B)=0.2,
Tl A, B)=0.4,  1a(B,A,B)=0.3,
mala,A,A)=0.5, ma(B, A, A)=0.4.

Similarly, for treatment B the payoffs are

sl B,B)=0.4,  mp(B,B,B)=0.5,
nB(aa/L 8)2033 T[B(ﬁvAaB):O"la
Tp(, A, A) =02,  7p(B,A,A) =0.3.

Fig. 1 illustrates physician payoffs from using each treatment on an «-patient. Observe that the preferences satisfy property
P(a)8

Patients arrive randomly at each location, with inter-arrival times that are exponential with parameter A. Without loss
of generality we take A = 1. The concentration of patient types varies by region. We partition Z into two regions, East and
West. The negative integers constitute the West, while the non-negative integers constitute the East. The probability that
a patient who arrives at any given location in the East (West) is of type o will be given by pg (pw ). The state of the system
is a function from integers to {A, B} (w : Z — {A, B}). An ‘A’ at location x (i.e. w(x) = A) indicates that the physician at x used
treatment A on her most recent patient. A ‘B’ denotes the use of treatment B on the most recent patient. The set of states is
denoted by £2.

When a patient arrives at a specific location x € Z, the physician must make a choice between A and B. The choice depends
on the type of patient, as well as the choices made (in the recent past) by neighboring physicians. Following the norm in the
evolutionary game theory literature, we assume best-response dynamics — physicians maximize m,(h, L, R). The state of the
system can be visualized as an infinite sequence, with values at each location indicating the most recent choice made by the

7 The first two assumptions are required for the very possibility of coordination on two different standards. The third property is closely related to the
concept of risk dominance in game theory. Recall that in two-person coordination games an action is risk-dominant if it is the case that the action is optimal
whenever there is a better than 50 percent chance that the opponent also uses the same action. For its application within a local interaction system similar
to ours, see Ellison (1993). We have modified the property to allow for multiple types.

8 Conformity effects can be modeled formally using a standard formulation (as in Brock and Durlauf, 2001). Relabel the choices z € {—1, 1}, and let
U(z, h, L, R) = 7t,(h) — J(z — 2)*. 7,(-) still represents the success probability of treatment z, but this now depends only on the patient’s type. The term j(z — z)°
represents the non-conformity penalty for deviating from the (most recent) average behavior (z) in the physician’s neighborhood. Let m4(«) > mp(c) and
1g(B) > ma(p). If the neighboring choices differ from each other, the non-conformity cost is just J for either treatment choice, and treatment follows the
patient’s type—that is, A (B) is chosen if the patient is of type « (8). If both neighbors choose the same action and if J is sufficiently large, the physician will
choose the same action as her neighbors regardless of the patient’s type.
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Fig. 1. Physician payoffs for procedures A and B and an a-patient.

physician there
---AABBBABAAABA. - - .

At random dates there is a transition: the value at one location changes from A to B or vice versa. The process is a continuous
time Markov chain, X;, and we are interested in the invariant (equivalently stationary, or equilibrium) distributions of this
process.

Let A € §2 denote the state @ with w(i) = A for all i € Z. In other words:

A = .. .AAAAAAAAAAAA. - - .
Similarly, B € §2 denotes the state w with w(i) = B for all i € Z:
B = .- .BBBBBBBBBBBB- - - .

The configuration at a particular date t will be identified by wy.

Let 8, be the probability that puts all of its mass on w. Clearly, §4 and Jg are invariant measures. If we somehow reach
the configuration A (or B), the process can never escape from this state. Following Liggett (1999), we say the process coexists
if there is an invariant measure that is not a mixture of §5 and &g. Alternatively, the process coexists if for i and j, lim;_.«
Prob{w;(i) # w¢(j)} > 0. We show that the process X; defined above coexists by identifying an invariant distribution in which
both procedures are used with strictly positive probability at the same dates.

Define the set of states S c £2 as follows: w €S if there exists m e Z such that w(i) = A for all i < m and w(i) = B for all
i > m. In other words, S consists of states such as

---AAAAAABBBBBB- - - .

Sisirreducible —every state in S is reached with positive probability from any other state in S. It is closed —once in S, we can
never escape. It is recurrent —we eventually return to every state in S—but not periodic.?

We prove the existence of an invariant distribution that has S as its support. For simplicity, the distribution is characterized
by the location of the boundary point between the region in which treatment A is used and the region in which treatment B
is used. In the proposition below, p(-) specifies the probability distribution of this boundary point. Proofs are in Appendix A.

Proposition 1. Suppose preferences satisfy property P. Let pyy > 1/2 and pg < 1/2. Then the physician choice process coexists.
Specifically, there is an invariant measure p, with support 7, such that

_1 1—-pw -mo
p(m)_R< Pw > if m<o,

_1 DE mo.
p(m)_E(]_pE) if m>0.

K is a real number constant which can be chosen to ensure that p is a probability.

9 For formal definitions of these properties, see Norris (1998).
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The proposition above tells us that the location of the East-West boundary is random. The probability p(m) gives us the
likelihood that the boundary will be m. Imagine the process as follows: each state consists of an infinite string of A’s followed
by infinitely many B’s, but the boundary between the two regions can drift to the left or to the right along the line (by at
most one unit at a time), according to the probabilities governed by o(-).1° We refer to the long-run outcome p to describe
the steady state in which the states from S appear according to probability p.

Remarks. (1) In case py < 1/2 and pg > 1/2, we get a similar result, only the support now consists of a string of B’s
followed by A’s. In case pw < 1/2 and pg < 1/2, the invariant distribution is 8g. If pyy > 1/2 and pg > 1/2, it is . (2)
When py = pg = 1/2 the state always remains in S and the boundary performs a symmetric random walk, as in the one-
dimensional linear voter model (see Liggett, 1999). Despite the fact that the state always remains in S, the process does not
coexist. This is because lim;_.», Pr{w:(i) # w:(j)} = 0. (3) The proof of Proposition 1, as well as Proposition 2 below, requires
infinitely many locations (i.e. Z). In the finite case we would reach either A or B with positive probability, and then be trapped.
However, we suspect that one can recover geographical variation by adding small noise to the model (see Burke et al., 2007)
for suggestive simulation results). (4) If pr = pw = 1, then only « patients arrive at each location. This case corresponds to
the model studied in Ellison (1993), and the risk dominant equilibrium A will be played.

In our model, choices depend upon recent decisions of neighbors but not on the recent decisions of the decision-maker
herself. However, we can allow dependence on own past decisions with no alteration of results. To see this, assume that the
neighborhood of x is defined by N = {x — 1, x, x + 1}. Now suppose property P is modified so that (1) if all three players in N
choose an action, then the physician at x chooses the same action. Otherwise, (2) she chooses A (B) if the patients is of type
o (B). Now consider a state w € S. We need only consider states at the boundary, which are states where the two adjacent
neighbors make different choices. For such states, a choice of A is made for an « patient, and B is chosen for a 8 patient. This
is exactly as before, and must lead to the same conclusion as Proposition 1.

So far we have ignored the role of patient preferences in the treatment decision. In practice, patient preferences are impor-
tant and could be subject to social influences—for example, patients may request a treatment based on the recommendation
of a friend. Accordingly, we can recast our treatment choice model in the case that patients influence treatment choices,
and adopt the conformity model of social influence described in footnote 8. We can think of each location on our lattice as a
“family” within which, say, cardiovascular events arise occasionally. The two regions of the lattice differ in the age compo-
sition of families, such that patients are younger, on average, in one region. Patients are randomly matched with physicians,
who are not themselves subject to social influence. If choices in the neighborhood are diverse, then the physician-patient
pair chooses treatment A for ¢-patients and treatment B for S-patients. If both neighbors make the same choice, however,
and if social influence among patients is sufficiently strong (J is large), the physician-patient pair conforms to the neighbors’
choice regardless of the patient’s type, Property P is satisfied, and Proposition 1 holds.!! As before, regional variation in
medical practice will emerge and treatment will depend on where a patient lives.

2.2. Emergence of norms

Since the Markov process described above has several invariant distributions, we would like to identify the distribution
which is most likely to be selected in the long run from randomly chosen initial conditions. It turns out that we can show
(Proposition 2) that, starting from almost any initial state, the system eventually converges to an equilibrium that involves
regional treatment norms (as opposed to globally uniform treatment choice). That is, the uniform states A and B are, in a
well-defined sense, exceptional, and the system’s long-run behavior will typically be described by the invariant distribution
p from Proposition 1.12

Proposition 2. Suppose the initial distribution is vy, the Bernoulli product measure with density 6 € (0, 1), and let pyy > 1/2
and pg < 1/2. Let it denote the distribution of the Markov chain at time t. Then 7t converges weakly to p as t — oo.

2.3. Welfare

The fact that medical treatment depends on geographic location leads naturally to the concern that the quality of care
might also vary geographically. This concern has been examined, from various perspectives, in the medical literature and in
the health policy literature. For example, Krumholz et al. (2003) find that the treatment of myocardial infarction (MI) differs
in New England compared to other regions along several dimensions (after controlling for patient, hospital, and physician
characteristics), such as in the usage rate of beta-blockers, and that 30-day mortality rates are also lower in New England. A

10 This drift occurs because, at the given boundary location at any time, the last treatment choices on either side differ from each other. Therefore, the
next treatment decision at the boundary will be governed solely by the next patient’s (random) type. Depending on this type, the next treatment could
differ from the previous one, leading to a shift in the boundary position.

11 Since physicians in this formulation do not override patient preferences, we can expect similar results if patients seek out doctors who offer the type
of treatment they desire rather than being matched randomly with physicians.

12 The proof is patterned after Durrett (1988) and Bramson and Griffeath (1981), who investigate the so-called “biased voter model”. Our process is
not identical to the biased voter model, but the differences are inconsequential for the main arguments. One difference is that we have regions with
different “bias” or patient mix and another is the transition rate at a site where neighbors make opposing choices. While we deal with the much simpler
one-dimensional case, in light of Bramson and Griffeath our results should generalize to zZ? and higher dimensions.
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2008 report by the Congressional Budget Office (CBO 2008 “Geographic Variation in Health Care Spending”), based on a survey
of studies, describes large variations in Medicare spending across regions of the U.S. The report finds that greater spending
does not generally lead to higher-quality care and, in some cases, results in lower-quality care, where the quality of care was
based either on patient outcomes or on clinical appropriateness. The report suggests that greater standardization of care,
for example through the provision of incentives for universal compliance with accepted medical practice guidelines, could
reduce inefficiencies in health care delivery. Official guidelines are already widely disseminated (for examples of guidelines in
coronary care see Eagle et al., 1999; Gunnar et al., 1990), but enforcement is weak and potentially controversial. Consistent
with the findings of Chandra and Staiger (2007), the CBO report also acknowledges that a push toward globally uniform
practice may result in losses for some patients.

Our theoretical framework can shed light on the tradeoffs involved between a treatment pattern involving region-specific
norms and a hypothetical pattern involving global uniformity (subject to patient characteristics). In the context of the model,
we can define patient welfare in terms of the success probability of the selected treatment, and aggregate welfare as the
average probability of treatment success across all locations.!> We can then compare aggregate welfare between the long-
run distribution described above and an alternative long-run distribution that represents a policy of enforced treatment
guidelines. We represent such a policy as one that requires that patients of type « receive treatment A and patients of type
B receive treatment B.

Recall that in the model, regional treatment variations can reflect either the presence of local increasing returns (as a
result of knowledge spillovers, for example) or a preference for conformity (among physicians or patients). While the choice
between these motivating mechanisms does not affect the long-run treatment patterns, it does affect the welfare analysis.
Under increasing returns, the likelihood of success of a treatment increases with local experience in the treatment and
hence some patients benefit from local uniformity of practice. Under conformity preferences, however, no benefits from
local specialization accrue and some patients receive a suboptimal treatment. Accordingly, we find that the net benefits of a
policy that imposes uniform practice guidelines (based solely on patient characteristics) will depend on which mechanism
is driving the treatment variations. Even in the case of increasing returns, however, we can show that the desirability of
strict treatment guidelines is not clear cut.

Suppose that physician preferences are not subject to pure conformity effects and, as in Section 2.1, utility equals the
likelihood of success of the treatment used. We consider a policy which involves enforcement of treatment guidelines
requiring the use of A on a-patients and B on B-patients.'* We consider whether the policy improves the expected likelihood
of success for the patient population as a whole. Note that, from our definition of physician payoffs, the long-run average
utility of the physician at location x (in equilibrium p) is a measure of the average success rate of treatments for the patient
population. Consequently, we can use this as a measure of welfare. We prove:

Proposition 3. The long-run outcome p need not maximize the success rate of treatments for the patient population. In particular,
it may be dominated, at every location x € Z, by the policy of enforced treatment guidelines.

The proof of the proposition involves identifying a plausible technology for which the guidelines policy proves superior
to the long-run outcome p at every location. In general, guidelines are more likely to dominate the long-run outcome (a)
the more similar are the population profiles between the two regions (for example, if both pyy, and pg are close to 1/2), (b)
the greater the payoff advantage to having neighbors that choose two different treatments rather than the same treatment,
and (c) the smaller the losses from having to reverse the treatment choice at locations at which the two neighbors choose
the same treatment.!® By an analogous argument, one can also show that p may dominate the policy of enforced treatment
guidelines.

Proposition 4. A policy of enforced treatment guidelines can be dominated by the long-run outcome p.

The proof is immediate from inspection of the proof of Proposition 3, and hence omitted. To summarize, in the case
where they are driven by knowledge spillovers between physicians, regional variations in practice may not be undesirable.
Propositions 3 and 4 help to delineate some of the circumstances under which treatment guidelines may be desirable.

3. Empirical analysis

Our model holds the testable implication that the treatment a patient receives will be the one that is medically best-suited
to the dominant patient type in the region. While the model, with its stylized assumptions, predicts absolute uniformity of
treatment choice within regions, we do not expect such a stark outcome in the real world. However, the model suggests
that, other things constant, the characteristics of the local patient pool will skew treatment in a predictable direction for
all patients in a given region or at a given treatment location, such as a hospital. In the case of coronary care, given that

13 This aggregate welfare criterion is equivalent to life-years gained, a standard criterion adopted in the public health and medical literature. Unlike the
Pareto criterion, this welfare measure permits interpersonal comparisons. Unlike the Kaldor-Hicks criterion, our approach does not measure the willingness
to pay for life-years gained in order to determine whether those who are worse off could be compensated by those who are better off.

14 The policy alternative of moving patients to regions based on their characteristics is considered infeasible.

15 Note that following treatment guidelines when others do so is not a best response—the policy requires enforcement, the costs of which we do not
consider.
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Table 1
Summary statistics on the panel data set from Florida, 1995 to 2001.
Variable Mean S.D.
Dependent variables
Angioplasty rate per thousand, younger patients 450.25 109.41
Angioplasty rate per thousand, older patients 330.27 124.42
Surgery rate per thousand, younger patients 671.48 134.39
Surgery rate per thousand, older patients 555.25 150.14
Explanatory variables
Hospital volume in quarter
Total number of heart patients in quarter 395.25 227.12
Total volume of angioplasties in quarter 161.10 113.16
Total volume of surgeries in quarter 258.90 175.38
Hospital demographics
Proportion of heart patients in younger group 0.35 0.10
Proportion of heart patients in older group 0.46 0.10
Proportions of patients by patient race
Black 0.07 0.06
Hispanic 0.09 0.19
Other 0.01 0.04
Income, 1999 38615 4423
Proportion of patients with managed care plan 0.36 0.16
Pearson correlation coefficients Patient age
Angioplasty (patient receives angioplasty) -0.11222
p-Value under HO: p =0 <0.0001
Surgery (patient receives surgery) —0.11435
p-Value under HO: p=0 <0.0001

Note: There are 1488 hospital-quarter observations, based on 572,316 patient records. Younger patients are defined as the group
including youngest one-third of the sample, patients with age <63, while older patients are the oldest one-third in the sample,
patients with age >72. Proportions are calculated relative to the full sample of all patients admitted to the hospital for coronary
care.

heart surgery rates decline on average with age, we expect that the probability that a younger patient receives heart surgery
(as opposed to non-invasive treatment of the disease) will be lower at a hospital that receives a relatively high proportion
of older coronary patients. Conversely, surgery rates for older patients will be higher at hospitals with a relatively young
patient pool than at hospitals with an older patient population.16

We test these hypotheses using a census of patient discharge records from Florida, focusing on the treatment of heart
disease. Heart disease (defined below within the context of our data) is an appropriate choice for our empirical analysis
because its treatment mirrors a number of features of our theoretical model. First, the treatment options can be divided into
two discrete categories, surgery and “medical management.” The surgical options include (1) percutaneous transluminal
coronary angioplasty (PTCA or, in common parlance, coronary angioplasty), and (2) coronary artery bypass grafting surgery
(CABG, or heart bypass surgery); medical management involves the use of drugs (such as beta blockers, calcium channel
blockers, and ACE inhibitors) and other non-invasive therapies (such as diet and exercise modification).!” Consistent with the
payoff structure in our model, there is evidence that the invasive treatments are, on average, less suitable for older patients
than younger patients (see, for example, Smith et al., 2001). Our data agree with the presumption of age-dependence, in
that the raw (Pearson) correlation between patient age and the probability of receiving surgical treatment for heart disease
is negative and significant (see Table 1). In addition, the age distribution of patients admitted to hospitals for coronary care
varies considerably across hospitals (and regions) in Florida, and elderly patients (defined as 73 years of age or older) are
well-represented.

We have access to the entire sample of quarterly patient discharge records from Florida hospitals for the years 1995-2001,
from a legally mandated and audited census of inpatient stays. Each record gives the patient’s age, race, sex, principal
diagnosis and (where applicable) secondary diagnoses, treatments received, the hospital name and county location, the
length of stay, and related information.'® From this census, we extract the records of patients 25 and older who were admitted

16 While our empirical analysis is focused on age effects, there may be other characteristics that lead to treatment variations in a similar manner. Nichols
(2006) reports differences in the treatment and outcome patterns of African-American patients with AMI admitted to hospitals with disproportionately
black patient populations. Consistent with the predictions of our model, he finds that providers with greater numbers of black patients adopt treatment
practices that are particularly effective in treating conditions common among African-Americans.

17 While the surgical options differ from each other, the distinction between invasive (i.e., surgical) and non-invasive treatments is standard in the
literature (see, for example, Smith et al., 2001), suggesting a bright line between these treatment modes.

18 Each observation is a single hospital stay rather than a longitudinal patient record. Identifiers for individual patients are masked, such that repeat
hospitalizations are censored. Long-term outcomes, such as 30-day survival, are not available.
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with a diagnosis of coronary artery disease, in the form of either atherosclerosis or acute myocardial infarction (AMI).1°
Among patients with these diagnoses, we keep those that received either (a) angioplasty (PTCA), (b) bypass surgery (CABG),
or (c) neither PTCA nor CABG, where this last classification intends to capture those who received only drug treatments and/or
other non-invasive therapies.2? We include records from only those hospitals that held the legal authority (“certificate of
need” license) to perform heart surgery and that maintained the required surgical facilities, and for which the hospital’s
records span at least 5 quarters. The final sample contains 572,316 patient records, spanning 62 hospitals and 25 quarters.
The sample accounts for a high proportion of all hospital-based coronary treatment events in the state during the period of
observation, and represent all 11 of the state’s “Administrative Health Care Districts.” Summary statistics are presented in
Table 1.

3.1. Hospital-level panel regression model

We choose the hospital as the geographic unit of analysis, for several reasons. First, doctors working at the same hospital
are likely to interact with at least some subset of their colleagues and observe each others’ treatment choices. Second, we can
control for (fixed) unobserved heterogeneity at the hospital level that could create the appearance of local treatment norms
for reasons other than local social influence. Third, we can also control for time-varying hospital factors, such as total volume
in cardiac surgeries, that (if omitted) could also yield spurious results. Therefore, the identification exploits within-hospital
variation over time in the age distribution of the treated patients that is orthogonal to other observed changes in hospital
characteristics. We also include time dummies to control for statewide changes in treatment tendencies over time.

From the usable patient records, we aggregate the variables of interest to the hospital-quarter level to obtain a panel
of 1448 observations. To test the model, we consider whether hospitals with a greater proportion of young (old) patients
will be more likely (less likely) to apply invasive treatments to their old (young) patients. We define “young” and “old”
based on the bottom and top terciles, respectively, of the age distribution of heart patients in the sample. As a result, young
patients are those 62 or younger and old patients are those 73 or older. The dependent variables refer to rates of invasive
treatment (at the hospital-quarter level) among either old patients or young patients. When the dependent variable refers
to a treatment rate for old patients, the main explanatory variable of interest is the share of young patients treated at the
same hospital in the same quarter, and vice versa when the dependent variable refers to young patients. We construct two
different measures of the rate of invasive treatment to ensure robustness of results. In the first case we use the angioplasty
rate, and in the second case we use the rate of surgery in general, including either angioplasty (PTCA) or bypass (CABG).2!
In the case of the treatment of old patients, the model is as follows:

treatment(73),, = ap + ¢t + YAZe(62)y: + BXne + 0V + €pye- (1)

The model in (1) is estimated using ordinary least squares. The dependent variable is the rate (per thousand patients) of
angioplasty (alternatively, either of the two surgical options) performed in the hospital for coronary patients aged 73 or
older in the given quarter. This treatment rate depends on the fixed tendencies of the hospital, o, the current calendar date
c¢: (a specific quarter), the average income, racial composition, and insurance status, respectively, of the hospital’s current
patients, Xy, the hospital’s overall volume of angioplasty (surgery) procedures in the quarter, Vj;, and the proportion of
young patients treated at the hospital in the quarter, Age(62);,. We predict that the coefficient y is positive—old patients
are more likely to get invasive procedures, all else equal, the greater the proportion of young patients treated at the same
hospital in the same period.
For the treatment of young patients, the model is analogous, as follows:

treatment(62),, = oy, + ¢t + Y Age(73)pe + BXpe + Ve + €pe- (2)

In the above, the dependent variable, treatment(62);,, measures the treatment rate of young patients and the explanatory
variable, Age(73)y,, is the proportion of old patients at the same hospital in the same quarter. We predict that y takes a
negative sign.

3.2. Results

Table 2 reports the results of our panel regressions. Recall that the unit of observation is the hospital-by-quarter. The top
panel shows the results pertaining to the treatment of “old” patients (73 and older). The first (left-most) column of numbers
consists of the regression coefficients when the dependent variable is the angioplasty rate, and in the second column the

19 The CCS Diagnosis Categories were used to identify the 56 ICD-9CM categories relevant to these patients and to identify broad categories of comorbidities.

20 The third group includes some patients who received coronary angiography, a somewhat invasive diagnostic procedure, but only if this diagnostic was
not followed by either PTCA or CABG. Most patients (greater than 60 percent) in the sample who received angiography subsequently received surgery and
hence will be counted as receiving invasive treatment. Also, we exclude patients who receive heart transplants, heart valve surgery, implanted defibrillator
devices, and pacemakers.

21 We might predict, for example, that results will be weaker when using the rate of a single type of surgery (such as PTCA), since some hospitals, including
those with many young patients, may specialize in just one type of surgery, such as CABG.
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g:;ten?ent rates by patient age and the effect of hospital demographics; panel regressions.
Angioplasty Surgery
Coef. S.E. p-Value Coef. S.E. p-Value
Dependent variables: treatment rates, older patients
Hospital volume, number of angioplasties 0.775 " 0.036 0.000 07217 0.038 0.000

Hospital demographics
Proportion of all patients aged 62 or younger 179.587 " 69.469 0.010 61.318 59.429 0.302
Proportion of all patients aged 73 or older

Proportion patient race

Black -226.590 " 111.540 0.042 -530.797 120.448 0.000
Hispanic -88.335 " 48.548 0.069 -95.639 ° 56.477 0.090
Other 31.918 64.534 0.621 25.764 64.371 0.689
Income, 1999 0.005 0.002 0.035 0.005 " 0.003 0.052
Proportion patients with HMO or PPO insurance 48.223 30.871 0.118 38.588 32.512 0.235
Intercept 85.983 99.763 0.389 345,795 " 104.882 0.001

Dependent variables: treatment rates, younger patients
Hospital volume, number of surgeries 0.829 " 0.037 0.000 0.584 0.038 0.000

Hospital demographics
Proportion of all patients aged 62 or younger

Proportion of all patients aged 73 or older -170.349 ™ 51.927 0.001 -216.112° 55.422 0.000
Proportion patient race
Black -302.083 86.240 0.000 -500.674 97.595 0.000
Hispanic -105.609 ™ 52.578 0.045 28.369 53.322 0.595
Other 45.419 38.978 0.244 47.005 36.091 0.193
Income, 1999 0.003 " 0.002 0.097 0.003 0.002 0.219
Proportion patients with HMO or PPO insurance 22.634 26.155 0.387 -3.901 28.838 0.892
Intercept 311.441°7 84.136 0.000 565.340 90.046 0.000

Note: Standard errors are robust. Dependent variables are expressed as treatment rates per thousand patients. The model includes fixed effects for hospitals
and time, not reported here.

" Significant at o = 0.10.

™ Significant at o = 0.05 level.

dependent variable is just the surgery rate (either angioplasty or bypass). Standard errors are in parentheses below each
estimate and significance is indicated with asterisks as noted in the Table. The bottom panel shows the analogous results
for the treatment of “young” patients (62 and under). In three out of four cases, we observe the predicted effects of local
demographics on treatment patterns: old patients are more likely to receive angioplasty the greater is the share of young
patients treated at the same hospital in the same period, and young patients are less likely to receive angioplasty, and less
likely to receive surgery in general, the greater the share of old patients at the hospital. While the share of young patients
does not have a significant impact on the combined surgery rate for older patients, the coefficient takes the predicted sign.22

The results can be interpreted quantitatively as follows: a one standard deviation change in the proportion of younger
heart patients (from 0.35 to 0.45) would raise the expected number of angioplasties given to older patients by about 18
(from 330 per thousand to 348 per thousand.) For surgeries, a one standard deviation increase in the proportion of young
patients is predicted to add 6 surgeries for older patients. Similarly, at the mean number of angioplasties for young patients
(450 per thousand), a one standard deviation change in the proportion of older heart patients at the hospital (from 0.46 to
0.56) would reduce the expected number of angioplasties performed on younger patients by about 17 (from 450 to 433 per
thousand.) For the surgery treatments given younger patients, a one standard deviation increase in the proportion of older
patients decreases by 21 the expected number of surgeries for younger patients.

We also observe (Table 2) that the angioplasty rate (total surgery rate) increases, for either young or old patients,
with the hospital’s total volume of angioplasties (volume of surgeries) during the quarter. This result most likely reflects
specialization—for example, it has been observed that hospitals that perform relatively few invasive procedures have lower
success rates for them.23 To the extent that this volume variable captures (time-varying) specialization at the hospital level,
including this control helps to ensure that the effects of patient age composition are not merely proxying for the effects of

22 Together with the significant result for angioplasty alone, this result suggests that old patients are not significantly more likely to receive bypass surgery
when there is a large share of young patients in the region.
23 See, e.g. Birkmeyer (2000).
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Table 3
p-Value adjustments for multiple comparisons.

Unadjusted (p-value)

Bonferroni (p-value)

Holm (p-value)

Dependent variable: angioplasty
Treatment rates, older patients
Hospital volume, number of angioplasties

Hospital demographics
Proportion of all patients aged 62 or younger
Proportion of all patients aged 73 or older

Proportion patient race
Black
Hispanic
Other
Income, 1999

Proportion patients with HMO or PPO insurance

Intercept

Treatment rates, younger patients
Hospital volume, number of surgeries

Hospital demographics
Proportion of all patients aged 62 or younger
Proportion of all patients aged 73 or older

Proportion patient race
Black
Hispanic
Other
Income, 1999

Proportion patients with HMO or PPO insurance

Intercept

Dependent variable: surgery
Treatment rates, older patients
Hospital volume, number of angioplasties

Hospital demographics

Proportion of all patients aged 62 or younger
Proportion of all patients aged 73 or older
Proportion patient race

Black

Hispanic

Other

Income, 1999

Proportion patients with HMO or PPO insurance
Intercept

Treatment rates, younger patients
Hospital volume, number of surgeries

Hospital demographics
Proportion of all patients aged 62 or younger
Proportion of all patients aged 73 or older

Proportion patient race
Black
Hispanic
Other
Income, 1999

Proportion patients with HMO or PPO insurance

Intercept

0.000*

0.010*

0.042*
0.069*
0.621
0.035*

0.118
0.389

0.000*

0.001**

0.000*
0.045*
0.244
0.097*

0.387
0.000*

0.000*

0.302

0.000*
0.090*
0.689
0.052*

0.235
0.001*

0.000*

0.000**

0.000*
0.595
0.193
0.219

0.892
0.000*

0.000*

0.020*

0.084*
0.138
1.242
0.070*

0.236
0.778

0.000*

0.002**

0.000*
0.090*
0.488
0.194

0.774
0.000*

0.000*

0.604

0.000*
0.180
1.378
0.104

0.470
0.002*

0.000*

0.000**

0.000*
1.190
0.386
0.438

1.784
0.000*

0.000*

0.020*

0.042*
0.138
1.242
0.070*

0.236
0.389

0.000*

0.001**

0.000*
0.090*
0.386
0.194

0.774
0.000*

0.000*

0.302

0.000*
0.138
1.242
0.070*

0.236
0.002*

0.000*

0.000**

0.000*
0.595
0.386
0.219

0.892
0.000*

*Significant at a=0.10; **Significant at a=0.05.
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specialization.24 We find that the racial composition of the patient base also affects treatment systematically: surgery (or
angioplasty alone) is less likely to be selected, for either old or young patients, the greater the proportion of black patients
treated at the hospital. Similar effects are observed for the share of hispanic patients, but the significance is weaker on
average. Hospitals with higher patient income (as of 1999) have a higher angioplasty rate for old patients, but income effects
are otherwise only weakly significant. The share of insured patients exerts no significant effects on treatment tendencies.

We test multiple hypotheses using overlapping data, and therefore run an elevated risk of spuriously producing statis-
tically significant results. Several options exist for adjusting p-values to obtain robust inference under these conditions.?>
In Table 3, we consider two different corrections. First, the Bonferroni adjustment multiplies the regression p-values by the
number of tests used. This correction is a conservative measure which may overcompensate for the multiple comparisons
problem (Legendre and Legendre, 1998). The second adjustment, a more powerful test attributed to Holm, involves a mod-
ified correction to the p-values (Holm, 1979).26 Under either method, the corrected p-values are compared to the chosen «
significance level. Table 3 shows the three different p-values associated with each coefficient estimate for each model: the
unadjusted value, the Bonferroni-corrected value, and the Holm-corrected value. While some control variables lose signif-
icance under the corrected p-values, the significance levels of the key variables of interest—for example, the proportion of
young patients at the hospital—are robust to either correction method.

4. Conclusion

This paper addresses the puzzle of robust geographic variations in medical treatment. We provide a theoretical expla-
nation for the puzzle using a model that involves local social influence among doctors and regional variation in patient
characteristics. Starting from almost any initial condition, simple adaptive behavior leads to region-specific treatment norms.
In equilibrium, the variation in treatment rates far exceeds the underlying variation in patient characteristics, consistent
with previous empirical findings. The theory makes sharp predictions about the relationship between local patient charac-
teristics and treatment use, predictions largely confirmed in our data. In particular, we find that old (young) patients tend to
be treated more invasively (less invasively) for heart disease the greater the share of young (old) patients treated at the same
hospital in the same period. In each case, treatment choices for all patients are skewed toward the choice that is medically
optimal for the dominant demographic group in the area.

Our model makes significant contributions to the theoretical understanding of treatment variations. First, we provide
an explanation for how regional norms emerge rather than just why norms might persist once in place. Second, the model
shows that either productivity spillovers or conformity pressure can result in the emergence of treatment variations and
demonstrates an important difference in welfare implications between the two mechanisms. In addition, the model implies
that regional norms are grounded in relatively stable underlying fundamentals (in our case, patient characteristics), a result
that contrasts with the multiple equilibria that often arise in settings involving conformity effects and other spillovers.
Although there are multiple equilibria in our model, the emergent stable equilibrium admits regional variations. This makes
it feasible to do systematic empirical work.

For simplicity, we assumed that patients do not respond to the emergence of treatment norms by choosing hospitals that
best match their preferences and characteristics. In practice, patients (and their health care providers) exert some choice over
the hospitals in which they are treated, and may even select residential locations based in part on proximity to a particular
hospital. While such sorting would mitigate the welfare losses experienced by minority-type patients in a region, there are
likely to be considerable constraints on optimal hospital-patient matching and hence our results should be largely robust.

Our welfare analysis holds important policy implications. Under conformity pressure, a tendency to over-utilize invasive
treatments may arise in some regions (and to under-utilize them in other places), contributing to inefficient care and
elevated costs. On the other hand, we show that legislating strict treatment guidelines may be harmful in the presence of
knowledge spillovers, because some patients will be deprived of gains from specialization. Regional treatment variations are
not necessarily welfare-reducing, but further research along these lines is clearly warranted before policy recommendations
can be made.
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Appendix A.

A.1. Proof of Proposition 1

Proof. Since the process restricted to S is irreducible and aperiodic, it has a unique invariant distribution. Each state can be
specified in terms of m, the location of the first zero. First we define the probabilities b(m) and d(m) of transition m — m + 1
and m — m — 1 respectively. Recalling that the rate of arrival of patients is one, these are given by

_ ) pw ifm<0,
b(m) = {pE otherwise.

In other words, m moves to the right if an a-patient arrives at m, which happens with probability py in the West and pg in
the East:

_J1-pw ifm=<0,
d(m) = { 1-pe otherwise.

In other words, m moves to the left if a S-patient arrives at m — 1, which happens with probability 1 — py, in the West
and 1 — pg in the East. The process is reversible, so that invariant distributions can be obtained from the detailed balance
conditions:

b(m —1)p(m — 1) = d(m)p(m).

We can confirm that these are satisfied. The conditions pyy > 1/2 and pg < 1/2 ensure that K is finite in the definition of p,
and the balance equations are satisfied for non-zero p(-). In case m < 0, we can substitute for p and confirm that

bm—1) _ _pw__ _p(m)
d(m) 1-pw p(m-1)
When m > 0:
b(m—-1)  pe p(m)

dm) — 1-pg  p(m-1)

So p(-) is an invariant distribution. It is not a mixture of §g and §;, hence the process coexists. [

A.2. Proof of Proposition 2

Proof. Let & denote the process at time t when the initial configuration has A at site x, and B elsewhere. In this case the
A-region will always constitute an interval, unless ¥ has no A’s at all. Let Ly = min,{i|§}(i) = A} and Ry = max;{i|§}(i) = A}, so
that [L, R¢] denotes the A-region (initially, Ly = Ry = x). We first show that for x ¢ West, and conditioning on the event:

2 =Rt > L; forall t> 0},

¥, grows linearly in time until R; reaches the East/West boundary (specifically, until Ry = —1). Thereafter, only L; extends
westwards. Given py > 1/2,pg < 1/2,and if 0 > R; > L, Ry and L; perform independent random walks according to

R > {Rt+1 atrate A, (3)

R —1 atrate 1,

Lt—>{Lt_1 atrate A, (4)

L+ 1 atrate 1,
where A = py/(1 — pw) > 1. Then, following Durrett (p. 38), and conditioning on £2:

Rt—X Lt—X
t

- (A—=1) and - —(A—=1) a.s.
Once R; = —1, conditional on §2, R; evolves like the boundary in Proposition 1. An analogous statement holds for the evolution
of Bregions in the East.

Next we consider an arbitrary configuration & and index the A and B regions as follows. Let A? denote the easternmost
A-region that still occupies sites in the West: i.e. A? is a set of contiguous sites with (1)x € A% = &(x) = A, (2)A% N (West U
{0}) # @ and (3)[i > maxA°® & i < 0] = &(i) = B. Similarly B® denotes the set of contiguous sites with (1)x € B® = £(x) = B,
(2)B® NEast + @ and (3)[i < minB? & i > 0] = &£(i) = A. If £ is chosen according to vy then, with probability one, both A°
and B will exist, and share a common boundary (defined as in Proposition 1, as the location of the first B in BY). Label
the A-region immediately to the west of A? by A~1 and the nearest eastern region by A*1, and so on. We do the same for
B-regions, with Eastern regions having positive indices and western regions having negative ones. Now A regions grow in
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the West, B-regions grow in the East, and the A?/B° boundary evolves like the boundary of states in the sub-chain on S in
Proposition 1, unless one of A? or B® becomes extinct (the right boundary becomes smaller than its left boundary). In case
AD or BY becomes extinct, we relabel indices according to the scheme above and get a new A® /B9 boundary.

Since, with probability one, there are initially infinitely many A and B regions, there are always A and B regions available
to be relabeled. As t — oo, JA%| — oo and |B°| — oo and their extinction probability becomes zero. B-regions in the West and
A-regions in the East tend to become extinct. As t — oo the probability, for some location x ¢ West, that &:(x) = B approaches
the probability that the A°/B° boundary is at y < x, which converges to p(x):

Prob{&i(x) =B} = > _p(i).

i<x

So, observing that £2 = {A, B}~ carries the product topology, all the finite dimensional distributions converge as well, implying
weak convergence of 7t to p. [

A.3. Proof of Proposition 3

Proof. Since a physician’s expected utility at a location has been defined as the likelihood of success for the population
profile at that location, we can speak of patient welfare in terms of these same payoffs. First we describe the expected utility
at location x in the long-run co-existent outcome p. Suppose x < 0 (x is in the West). Expected utility at x is a weighted sum
of three terms:

Ui = pwma(a, A, A)+ (1 — pw)ma(B, A, A),
U, = pwme(a, B, B) + (1 — pw)mg(B, B, B),
Us = pwma(a, A, B) + (1 — pw)mp(B, A, B)

with corresponding weights (1) the probability that x is in the interior of a region of A’s, (2) the probability that x is in the
interior of a region of B’s, and (3) the probability that x is at a boundary. These probabilities can be explicitly computed from
Proposition 1. The expected utility for a location in the East can be obtained in a similar manner. With enforced treatment
guidelines the expected utility at x < —1 (interior West) is a weighted sum of

Vi =pwmala, A, A)+ (1 — pw)me(B, A, A),
Vy = pwma(a, B, B) + (1 — pw)mp(B, B, B),
V3 = pwma(a, A, B)+ (1 — pw)ms(B, A, B)

with weights (1 )pav, (2)1 - pW)z, and (3)2pw(1 — pw ) respectively. In the interior East the weights are pﬁ, (1- pE)z. and
2pe(1 — pg) respectively. At x € {—1, 0}, one neighbor is in the East and one is in the West so that the weights are pgpw,
(1 —pe)(1 —pw), and pe(1 — pw) + pw(1 — pg) respectively. In the interior West, from the returns to scale assumption, U; >
Vi, Uy > V5, and Us = V3. Treatment guidelines can do better if U; — V; and U, — V5, are small, U3 = V3 is larger than both
Uy and U, and has much greater weight under treatment guidelines than at the long-run outcome. These conditions can be
satisfied by non-pathological technologies, e.g.

ma(a, B, B)=0.1, ma(B,B,B) =0,
JTA(()[,A, B)=O.4, ﬂA(ﬂ,A,B)ZO.L
ma(e,A,A)=0.5,  ma(B,A,A)=0.11,

and similarly, for B:
mg(a, B,B) =0.11, mg(B, B, B) = 0.5,

ng(a,A,B)=0.1,  mp(B,A, B)=0.4,
mp(a,A,A)=0,  mp(B,A,A)=0.1

when pg and pyy are close to 1/2.27 For expected utility at the long-run outcome, the weight of the term Uz becomes small as
pe and py become close to 1/2 (specifically, p(m) — 0 as pg, pw — 1/2). For treatment guidelines the weight of V3 becomes
close to 1/2, and so guidelines do better. This argument applies to the interior East with appropriate change of notation. For
the case of x € {—1, 0}, assuming py and pg are both close to 1/2, expected utility under the guidelines is approximately equal
to the expected utility in either the interior East or the interior West under guidelines. Therefore the long-run outcome p is
dominated by the policy of treatment guidelines. O
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