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We develop an explanation of the emergence of local norms and the associated phenomenon of geographical
variation in behavior. Individuals are assumed to interact locally with neighbors in an environment with a
network externality. Although many patterns of behavior are possible, the dispersed interactive choices of agents
are shown to select behavior that is locally uniform but globally diverse. The range of applications of the theory
includes regional variation in the practice of medicine, technology choice, and corruption. The framework is also
useful for further developing our understanding of important phenomena like lock-in, critical thresholds, and
contagion. © 2006 Wiley Periodicals, Inc. Complexity 11: 65–83, 2006
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1. INTRODUCTION

G eographical variations in behavior are a persistent puz-
zle. People in seemingly similar situations often choose
to do different things. Their choices depend on where

they live and the people they associate with. These circum-
stances give rise to uniformity of behavior within groups,
together with global diversity across groups. Such differences
are attributed, almost axiomatically, to differences in “cul-
ture” or “norms,” as in matters of dress, speech, or driving, for
example. For our purposes the term “norm” refers to an estab-
lished behavior that is widespread, if not universal, within
a particular community. It is also self-reinforcing: once the
norm is in place it is in each individual’s interest to con-
form to it, even though ex ante an alternative norm might
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have emerged.1 In a given region, or within a given social
group, there is the appearance of a socially agreed on way of
responding to situations. Across groups, however, differences
in behavior persist even when the groups are not isolated.
The challenge is to understand how such locally uniform,
globally diverse, patterns emerge. To paraphrase Morris [2],
we want to know when and why we might expect “coexistent
conventions.”

Coexistent conventions, or local behavior norms, are
pervasive. For example, the medical treatment that a patient
receives depends, to an inordinate extent, on where he
lives. Geographical variations in medical procedure choice
were first documented by Glover [3], and subsequent stud-
ies (e.g., [4, 5]) have confirmed the presence of “small area

1In this definition a norm is the same thing as a conven-
tion, as defined in Young [1], and we will use the terms
interchangeably.
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variations.” Furthermore, choices appear relatively uniform
at the local level [6]. In sharecropping, contracts between ten-
ants and landlords often take a simple form where the tenant
keeps a fixed fraction of the produce. Studies have shown
that the specific fraction (e.g., half or two-thirds) tends to
be uniform within regions, but can vary considerably across
regions [7,8]. The competition between alternative standards
in technology [9,10] is another example. Locally uniform con-
vergence to a standard often arises, together with differences
in choices by different groups. Likewise, there is considerable
evidence of differences in norms of corruption of government
officials across regions with similar governance structures,
of courtesy and helpfulness towards strangers, and of the
industriousness and entrepreneurship of workers. Numerous
studies of organizations have indicated how the success of
work groups depends on “corporate culture” or “social cap-
ital.” Otherwise similar groups are capable of very different
levels of performance based on a shared expectation of indi-
vidual contributions to the group. Although uniform behavior
within groups has been the subject of numerous inquiries
stressing social influences on behavior, relatively little theo-
retical research in economics (we cite some examples below)
has addressed the puzzle of geographical variation: why and
when do different groups adopt different norms?2

In this article we examine a variety of regional variation
phenomena using a model that incorporates local interaction
within networks and social influence on choices. We build on
much previous work, but especially the recent literature on
evolutionary game theory (e.g., [13]). Rather than deducing
equilibrium behavior from game-theoretic solution concepts
predicated on strong rationality assumptions, these models
describe the aggregate behavioral patterns that emerge when
individuals adopt relatively simple, boundedly rational deci-
sion rules. Predictions focus on the stable, long-run behavior
of the dynamics, which depend not only on the behavioral
rules but also on the topology of the social interactions.
Within this literature we follow most closely those articles that
address the prospects for behavioral uniformity (and diver-
sity) under various social maps and payoff structures, such
as Morris [2], Goyal [14], and Sugden [15]. The most direct
influence is the Young and Burke [7] model of the evolution
of sharecropping norms. Unlike the latter article, however,
the current framework does not rely on a specific parame-
trization of payoffs and admits a broader range of interpre-
tations. In this more general setting analytical results are not
forthcoming, and we rely on a computational approach. A
computational approach to problems such as these is taken

2Although several articles (e.g., [11, 12] have pointed to the
presence of multiple equilibria to explain geographic varia-
tion, the latent existence of multiple equilibria is not sufficient
to explain the simultaneous selection of different equilibria at
different, possibly contiguous, locations.

by Axtell et al. [16], Bowles et al. [17], Epstein and Axtell [18],
and Epstein [19, 20] and Tesfatsion [21]. As in their work, our
computational results are remarkably sharp and robust.

Our model has a network of agents with a defined neigh-
borhood relation.3 A central assumption is that choices of
neighbors exert a direct social influence on an agent’s deci-
sion. A particular choice yields a greater payoff, and so
becomes more likely, if more neighbors have recently made
the same choice. Decisions are myopic (and possibly error-
prone). Agents take the current choices of neighbors as given
and, in each period, try to choose an optimal response. How-
ever, with small probability they make the wrong choice. As
this stochastic dynamic process evolves in time, we are able to
witness the emergence of the characteristic pattern of locally
uniform and globally diverse choices. As parameters of the
model are varied, we also observe the presence of critical
points that, when crossed, lead to a sudden qualitative change
in the behavior of the system. As a result, norms within a
region tend not to change gradually and, instead, respond
suddenly as important thresholds are crossed. In the absence
of errors the network could get locked into a number of possi-
ble norms. Errors, even when they are small, allow us to refine
our predictions considerably.

The local uniformity is clearly a consequence of the
local social influence (or network externality) assumption.
Although network externality models can generate behav-
ioral uniformity, they tend to do so on a global scale. We want
to get diversity without resorting to the untenable assump-
tion that groups are isolated. And so, our model admits the
presence of a boundary, where people are under pressure
from competing modes of behavior. Global diversity arises
from the assumed heterogeneity in the environment, where
heterogeneity occurs within as well as across regions. Global
diversity can arise also in models with homogeneous agents,
as in Morris [2], Sugden [15], and Goyal [14], among oth-
ers. The extension to the heterogeneous case is nontrivial,
and we are motivated by the richness of the applications that
are afforded in such settings. For example, in the Young and
Burke [7] model, regions differ in soil quality. One region may
have more fertile soil on average, although all regions have
both high- and low-quality plots. Some contracts are more
ideally suited to high-quality plots, others to low quality plots.
In the presence of local social influence, the contract chosen
for a low-quality plot is likely to depend on the average soil
quality in the region. In any region the landlord and tenant of
the low-quality plot will be drawn toward the contract others
choose, and in fertile regions this is likely to be the contract

3The nature of social interactions in this model is admittedly
simple, but nonetheless enables sharp and robust results. For
example we assume a fixed exogenous neighborhood struc-
ture. We discuss possible extensions for future research, such as
endogenous network formation, in the conclusion.
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appropriate for high-quality plots. A similar idea appears in
the Burke et al. model of medical procedure choice. The ideal
procedure for a patient depends on individual characteris-
tics, such as age, which vary within the population. Physicians
are also influenced by the choices of neighboring physicians.
Locally uniform treatment will result, where the local norm
depends on the typical patient characteristics in the region.
For instance, in regions where older people are relatively more
numerous the norm that emerges is for the use of procedures
better suited for older patients, even on younger patients. In
each case, an identical transaction (between identical land-
lords and tenants on identical plots, or identical physicians
and patients) will result in very different outcomes at dif-
ferent locations. The predicted relationship between average
regional characteristics and local norms holds up rather well
in data sets on sharecropping in Illinois [7] and cardiac care
in Florida [6].

The environment we present here extends Burke et al.’s. [6]
finding of robust geographical variation and generalizes it to
other applications. In [6], stable long-run variation requires
an infinite geography in which physicians are assumed to be
located on the integers Z, and their neighbors are the adjacent
physicians. Here we obtain regional variation for a finite num-
ber of agents (a harder problem, surprisingly) and for a larger
set of spatial arrangements. Moreover, errors in decisionmak-
ing (not considered in that article) are shown to be crucial for
producing regional variation in the finite case. When regional
variation is a stable outcome of the noiseless process the
noisy dynamic process approximates exactly this equilibrium
(leading us to believe that regional variation is stable, in the
sense of Kandori et al. [22] and Young [1]). Remarkably, even
when regional variation is not a stable long-run outcome, we
find that it arises as a robust phenomenon for considerable
lengths of time.

The rest of the article is organized as follows. We describe
the general model in section 2 and present the results from
our simulations in section 3. Finally, we draw together our
conclusions in section 4, emphasizing what we learn about
the emergence of norms and discussing the key phenomena
observed—regional variation, criticality, and lock-in.

2. MODEL
There are K agents or decision makers. Each agent x has a
set of neighbors, N (x). We consider two arrangements of
the agents (called geographies): (i) a circle and (ii) a torus.
The circle has the virtue of simplicity, while still capturing the
notion of local, overlapping interactions. Although any indi-
vidual is influenced only by the actions of two neighboring
agents, the behavior of others much farther away may exert an
indirect influence. The torus model gives each agent 4 rather
than 2 neighbors and affects the behavior at the boundaries
between regions, as described below. We find that regional
variation may arise and persist in both types of graphs, but
the differences between the cases indicate that network size

is important. In the circles, we index the K agents by the
numbers 1, 2, . . . , K and define the neighborhoods by

N (i) =




{2, K } if i = 1

{1, K − 1} if i = K

{i − 1, i + 1} if K > i > 1

In effect, agents are located along a single dimension, with
the neighbors being those at adjacent locations. However,
we define 1 and K to be neighbors. In the torus geography,
we do the same with a two-dimensional arrangement. Sup-
pose that each location is identified by two coordinates (i, j).
We assume that 1 ≤ i ≤ M and 1 ≤ j ≤ M , together with
K = M × M . Now the neighbors of (i, j) are {(i + 1, j), (i − 1, j),
(i, j +1), (i, j −1)}, with the obvious modification at the edges.

At each date, every agent observes a private signal σi ∈
{α, β} and chooses a decision di ∈ {A, B}. Payoffs depend
upon (di , σi), as well as on the decisions of neighbors.4 Let
n be the number of neighbors of agent i who chose action
A in the previous period: we denote payoffs by π(di , σi , n).
Define the payoff difference �σ (n) = π(A, σ , n) − π(B, σ , n).
Our key social influence or network externality assumption is
as follows:

Assumption 1. �σ (n) is an increasing function of n for all σ .

In other words, A becomes relatively more attractive if more
neighbors decided to play A in the previous period. The pre-
vious definitions lead to two possibilities: (i) either �σ (n) ≤ 0
for all n or �σ (n) ≥ 0 for all n, or (ii) �σ (n) changes sign
for some value of n. In the former case the choices of neigh-
bors do not affect the ranking of actions, whereas in the latter
case they do. We focus on case (ii)—for both signals the rel-
ative ranking of the actions changes with n.5 Of particular
interest is how rankings change with the signal. Let N be the
total number of neighbors (which is an even number for both
the circle and the torus). When n = N/2, the neighbors are
equally split between playing the two actions, so the effect of
the two is, in some sense, neutralized. We assume

Assumption 2. At n = N/2, the sign of �σ (n) changes with
the signal; specifically, �α(N/2) > 0 and �β(N/2) < 0.

This assumption captures the idea that A is the better choice
when signal α is observed, whereas B is the better choice if
signal β is observed (once social influences are neutralized).
Together with the assumption 1, and the focus on case (ii),
this implies that an agent should choose A if all N neighbors

4Mathematically, the structure here is an interacting particle
system. These are discussed by Liggett [23] and Schinazi [24].
Such systems were introduced fruitfully into game theory by
Blume [25].
5For case (i), our arguments imply that the emergent behavior
would be to play the action superior for all n.
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do so and B if all neighbors choose B. In other words, “lock-in”
to either action is a possibility.

We assume that decision making is prone to error, accord-
ing to

Assumption 3. Given (σ , n), with probability (1 − ε) an
agent chooses the action that maximizes payoffs, and with
probability ε chooses the inferior action.

Our final assumption relates to properties of signals. A
region is a fixed, contiguous set of locations. Signals arrive
according to a fixed probability distribution within a region,
but the probability can differ across regions. To simplify, we
allow only two possible values for the probability of receiv-
ing signal α, p, and q. For example, suppose there are two
regions, called East and West. In the circle, West is defined
to be the set {i|i ≤ K /2}; in the torus it is {(i, j)| j ≤ M/2}.
A possible distribution of signal probabilities (the East-West
distribution) is the following: The probability that a location
x ∈ East receives signal α is p, and the probability location
y ∈ West receives signal α is q. There can be more than two
regions, but in that case (given our assumption of only two
values of the signal probability) some will share a common
value of the signal probability. Formally, we have

Assumption 4. There are two types of regions, distinguished
by the probability of receiving signal α. Some regions have
probability p, others have probability q. In general, p > 1

2
and q < 1

2 .

An important feature of these regions is that they are
not isolated—there is a boundary at which agents from one
region come into contact with agents from the other region.
There are other ways to model contact between regions. One
alternative that is similar to our circle model consists of
two circles, with the property that occasionally an agent in
one circle imitates a randomly selected individual from the
other circle.6

In the next section, regions other than East-West are also
considered. We find it convenient to define regions with ref-
erence to some pattern of choices (choice distributions) or
some pattern of signal probabilities (signal probability dis-
tributions). A choice distribution and a signal probability
distribution will be said to conform if the distribution of sig-
nals assigns probability p > 1

2 at locations where the choice
is A, and probability q < 1

2 at locations where the choice
is B. Once an initial set of choices is specified, we have a fully
specified stochastic dynamic system. The state consists of an
assignment of choices (from {A, B}) to each location. In each
iteration, a signal is generated for each location and choices
are updated. This leads to a new state, and the process can be
repeated.

6We thank Rinaldo Schinazi for this observation.

We now illustrate the reach of this model with three
applications, beginning with a finite version of the medical
procedure choice problem discussed in Burke et al. [6]. The
decisionmakers are physicians who, in each period, get a new
patient with a specific condition (say, coronary atherosclero-
sis). Signals are now to be interpreted as patient character-
istics, e.g., age (α is “old” and β is “young”). After observing
patient characteristics, a physician must choose between two
procedures [drugs (A) or surgery (B)]. Physicians are influ-
enced by the choices made recently by their neighbors—
either because they talk to, and learn from, neighbors or
from a desire to conform with local practice. In the manner
of assumption 2, procedure A is better for α (old) patients,
whereas B is better for β (young) patients. Patient character-
istics (age distributions) can differ across regions (p �= q).
We want to know whether stable patterns of procedure use
evolve and whether patients in different regions are likely to
receive different treatments.

Our second example is of technology choice with a net-
work externality. The decisionmakers are problem solvers
who belong to one of two professional groups. There are two
available technologies (A and B) from which an individual
must choose. An agent’s neighbors are people he interacts
with, typically from the same profession. We index people
in such a manner that a region comprises all the people
in the same profession (the people with ties across profes-
sions are placed on the boundary). For concreteness, the East
comprises of graphic designers and the West writers. At each
date, each individual gets a task which may be intensive in
the use of images (α) or of text (β). Image-intensive tasks
are best solved using technology A, whereas technology B is
best for text-intensive tasks. There is also a network external-
ity present. You are more likely to use a technology if your
neighbors use the same technology. People in both profes-
sions get both types of tasks, but graphic designers are more
likely to get image-intensive tasks (p > q). The questions
now concern whether stable patterns of technology adoption
arise and whether technology use differs across professional
groups.

Our final example concerns corruption of government
employees, and we assume the geography of a circle. The
agents are now officials, who choose to either solicit a bribe
(A) or not (B). The payoffs imply that officials are more likely
to solicit bribes if their neighbors do so (perhaps because this
lowers the risk of getting caught or reduces the stigma asso-
ciated with corruption). A signal is now associated with the
arrival of a private individual with some business transaction.
This person has some observable characteristic that can take
one of two values, α or β, such as rich or poor, doctor or lawyer,
member of one ethnic group or another. A given individual’s
corruptibility, that is, his willingness to pay the bribe rather
than report the official, cannot be observed in advance, but
it is correlated with the observable characteristic. For exam-
ple, suppose that 70% of α’s are corruptible (pay the bribes),
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FIGURE 1

“Diagonal” and “Square” choice distribution—unstable in the long-run.

but only 30% of β types are. The payoffs to the bribe solicitor,
conditional on the corruptibility of the citizen, are denoted by
π̂(di , bk , n), where bk ∈ {c, ¬c} indicates whether the citizen
is corruptible or not. Let π̂(A, c, n) = n, π̂(A, ¬c, n) = n − 2,
and let π̂(B, bk , n) = 0 for either value of bk . Given these
payoffs and the conditional probabilities of corruptibility, the
expected payoff for an official that solicits a bribe from an α

type is thus

π(A, α, n) = 0.7n + 0.3(n − 2) = n − 0.6.

Similarly, the expected payoff from soliciting a bribe from a
β type is π(A, β, n) = n − 1.4. Assuming N = 2, it can read-
ily be confirmed that Assumptions 1 and 2 hold. We assume
regions differ in their proportions of observable types, and
so regions also differ in their rates of corruptibility. Again we
want to know whether the emergent patterns of corruption
among officials display regional variation, as well as which
circumstances lead to a noncorrupt governance norm.

3. RESULTS
We focus our results discussion on the case of the torus model.
Because the stochastic dynamical systems described above
are Markov chains, long-run behavior in the “zero noise” (no
decision error) case is fairly easy to establish analytically.
We record these results below for reference and thereafter
describe the results of our computational simulations of the
zero noise model and of its corresponding variants involving
noise. The simulations not only lend insight into behavior
when analytical results are unavailable, but they also serve
as a selection device when the theory indicates multiple
long-run outcomes. Further, the simulations reveal interest-
ing phenomena that would be missed in an analysis of only
long-run behavior.

3.1. Long-run Outcomes in the “Zero Noise” Case
We use a somewhat informal (simulation-based) definition of
long-run outcome. Let T denote the length of the simulation
of a dynamical system. A state is a possible long-run outcome
if, starting from some set of initial conditions, it arises for a
strictly positive fraction of time as T → ∞. Such a state is
also said to be stable in the long-run. In our model, the per-
fectly uniform states A and B are clearly long-run outcomes.
Once the system is in one of these states, it never leaves. In the
next proposition we examine other distributions of choices—
some that are long-run outcomes and others that are not.
These configurations will play an important role in our sim-
ulations and are depicted in Figures 1–4 for M = 6. Each
circle specifies a location, with the neighborhood relation as
defined in section 2. A black dot denotes choice of A, whereas
a white dot denotes a choice of B.

FIGURE 2

Choices conforming with the “East-West” signal distribution—stable in
the long-run.
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FIGURE 3

The “blinking” cycle.

Proposition 1. Suppose Assumptions 1–4 are satisfied for the
torus model and there is no error in decisionmaking (ε = 0)

Then,

1. A, B, “East-West,” the “blinking” cycle, and mixed cycles as
in Figure 4 are possible long-run outcomes.

2. “Diagonal” and “Square” cannot be long-run outcomes.

The proof is immediate. For A, B and choices conforming
(refer to the prior definition following Assumption 4) to the
“East-West” distribution of signals we note that each agent
has at least three neighbors matching his own choice. So,
regardless of the signal received, each individual will con-
tinue with this choice. In fact, any horizontal (vertical) band
of length (height) six and width at least two will be stable
in the long-run. For the “blinking” and mixed cycles, each
arrow in the figure denotes a transition from one state to

the other. Inspection of each location in Figure 3 shows that
in either state, all four neighbors of an agent are people
making the opposite choice. Thus each individual alternates
between his two choices, and each transition between the
depicted states will occur with probability one. A similar argu-
ment shows that each transition in Figure 4 also occurs with
probability one.

Now consider the “diagonal” distribution of choices. We
show that this must be a transient state. Each location at the
boundary of the diagonal band has two neighbors whose last
choice was A, and two neighbors whose last choice was B.
So the choice at these locations depends on the value of the
signal. There is positive probability that signals will be such
that agents on the boundary change their choice from A to B.
The boundary now recedes, and again there is positive proba-
bility of its receding yet further. Because the diagonal band is
finite, the probability of its disappearing (leaving the system

FIGURE 4

A stable mixed cycle.
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FIGURE 5

Convergence in the zero noise case from a random initial configuration.

in state B) is strictly positive. Once the system is in state B,
it never leaves B. The time to reach B (unless it reaches A, or
some other absorbing set of states first) may be large, but is
finite. As the length of the simulation T → ∞ the fraction
of time in the diagonal state must approach zero. A similar
argument applies for the “square” choice distribution. This
completes the proof.

3.2. Computational Results
The general format for each experiment is to begin with a
particular distribution of signals (such as East-West). Then,
starting from a random initial configuration of choices, we
examine the evolution of the system. To illustrate, consider
the following example. The signal distribution is East-West,
the error probability is zero, and M = 40. In addition,
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FIGURE 6

An alternative simulation in the zero noise case leads to a mixed state.

p = 0.7, q = 0.3. In Figure 5, we illustrate convergence,
starting from a random initial assignment of choices.7 A is
depicted in red, and B in blue. In this instance, we happen

7All figures were generated using Matlab. Each location is
represented as a diamond, which will be either red or blue
depending on the choice. The background is light blue. How-
ever, when adjacent cells are of the same color, Matlab fills in
the background using that same color. The Matlab programs
are available from the authors. The iteration in which we take
a snapshot appears at the top of the frame.

to get convergence to regional variation of choices (a distri-
bution of choices that conforms to the signal distribution).
The choice is A at locations where the signal α has probability
0.7; it is B in locations where the probability of α is 0.3. Peo-
ple make different (signal-independent) choices in the two
regions.

As one would expect from Proposition 1, there are other
possibilities. Another simulation, starting once again from
random initial conditions, arrived in iteration 200 to the state
in Figure 6.

Broad inferences about the properties of the system
require a more thorough investigation, involving repetitions
and variations in parameters. Our overall design involves a
very large number of simulations, and Table 1 provides a sum-
mary and guide to the experiments and reported results. An
“experiment” is a fixed number of repetitions (always taken
to be 50) with the same set of parameter values. Each repeti-
tion involves 1000 iterations (in every iteration a decision is
made by each individual, after observing their signal). So, for
instance, we conduct an experiment where the signal proba-
bility distribution is East-West, where M = 20, ε = 0.01, initial
choices are randomly generated, and (p, q) = (0.7, 0.3). The
parameters we choose to vary are not arbitrary. The qualita-
tive nature of results depend in significant ways upon the
values of M , ε, and (p, q), and our experiments illustrate
this. In addition to East-West, we consider three other sig-
nal probability distributions: Diagonal, Square, and Random.
In Diagonal (Square) the probability of α is p along a central
diagonal band (square region) and q elsewhere. We want to
determine if a conforming choice distribution (as in Figure 1)
will arise. In the Random distribution, signal probability p or
q is assigned to each location according to some probability
distribution.

TABLE 1

Guide to Results for the Torus Geography

Signal Probability Distribution

East-West Diagonal Square Random

Number of agents is M × M M = 20, 40 M = 20 M = 20 M = 20, 40, 100
Error probability ε = 0, 0.01, 0.05 ε = 0, 0.01 ε = 0, 0.01 ε = 0, 0.01, 0.05*
Starting choice configuration Random A, B, “Blinking” Random Random Random
No. of repetitions (in each experiment) 50 50 50 50
No. of iterations (in each simulation) 1000 1000 1000 1000

5000* 5000*
Probability values (p, q) (0.7, 0.3), (0.7, 0.4) (0.7, 0.3) (0.7, 0.3) (0.7, 0.3)

(0.7, 0.3), (0.7, 0.4)
(0.7, 0.5), (0.7, 0.7)
(0.5, 0.7), (0.4, 0.7)
(0.3, 0.7)

Simulations with an asterisk are discussed, but not reported in the article.
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3.2.1. East-West
The results for the East-West distribution of signals are pre-
sented in Figure 7 for M = 20 and M = 40 when (p, q) =
(0.7, 0.3) for random initial choices. The top panel is for
M = 20, with the results for noisy decision-making (ε = 0.01)

on the right. Each graph shows the average fraction of A’s in
the two regions (where the average is across 50 repetitions
of the simulation). There is clear evidence that a conform-
ing segregation of choices by region occurs. A is used at a
very high proportion of the 200 locations in the East, and a
low proportion of locations in the West. Despite the fact that
A and B are theoretically possible when ε = 0, they never
occur. In the zero noise case mixed states, as in Figure 4 and
6, often occur; this is what explains the departure from full
segregation in the top left graph. There also appears to be a
tendency for the blinking regions to increase with time. The
effect of the introduction of small noise is striking. Even a
one in hundred chance of error (top right graph) leads to

a much sharper segregation of choices. The noise tends to
make blinking cycles unstable, as they are invaded by uni-
form regions. The lower set of graphs display results from
a repetition of the experiment for M = 40. There is now
complete (conforming) segregation, even in the zero noise
case (use of A in the East is close to 100%, in the West close
to 0). This persists for the higher values of M that we have
tested (the opposite is true when M is smaller than 20). The
reason, pieced together from an examination of initial con-
ditions, appears to be as follows. The stability of a blinking
segment requires that it span across a region. When regions
are large, it is unlikely for such a pattern (or one leading to
it) to arise purely by chance when the random assignment of
initial choices is made.

3.2.2. Diagonal and Square
Suppose that the signal probability distribution is Diago-
nal (the case of Square is very similar and so will not be

FIGURE 7

The “East-West” configuration for M = 20 and 40 (with noise on the right).
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FIGURE 8

The “Diagonal” with noise (bottom panel) and without (top panel).

discussed separately). In other words, all locations along a
diagonal region have signal probability p > 0.5, whereas all
off-diagonal locations have probability q < 0.5. In a con-
forming set of choices, all agents on the diagonal would
choose A, and all others would choose B. From Proposi-
tion 1, we know that such a pattern of choices cannot be
long-run stable when ε = 0. But we run an experiment,
for M = 20, (p, q) = (0.7, 0.3) and starting with random
initial choices. There are 190 locations in the diagonal, and
210 locations are off-diagonal (in the case of the square,
M = 20 and the square is 10 × 10). The top panel of Figure 8
depicts the results without noise, and results for ε = 0.01
are in the bottom panel. The left graph depicts the average
fraction of A’s in each region. In the graph on the right we
classify behavior at each location as being uniform, blink-
ing, or something else using the following procedure. For
every location, we determine whether the individual makes
the same choice as all of his neighbors. If so, he is classified

in the uniform category.8 If the individual makes a choice
that is the opposite of all neighbors’ choices he is classified
as blinking. Everyone else is classified in a residual “other”
category. For an individual simulation, such a graph gives
us a fairly accurate picture of the extent to which there are
regional norms. A difficulty arises when averaging these num-
bers across simulations. We can get the same averages either
through a sequence of all uniform and all blinking config-
urations or through a sequence of mixed distributions. The
variance of these percentages is computed and can be useful
in distinguishing the two types of situations.

8This measure is quite conservative, especially when noise is
present. A single discordant choice in the middle of a uni-
form region causes four neighbors to be classified in the “other”
category.
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FIGURE 9

The “Square” with noise (bottom panel) and without (top panel).

From Figure 8 we see that, in very few iterations, the sys-
tem organizes into a conforming regional variation pattern.
In the noiseless case the pattern then decays slowly, but it is
quite a while before the two regions become indistinguish-
able. We observe either an invasion of the diagonal by the
surrounding uniform region or by a blinking pattern. In the
simulation of the diagonal the latter is more often the case.
But for the square (Figure 9) we are more likely to get invasion
by surrounding uniform regions. The introduction of small
noise has a very marked effect. Choices conforming to the
regional distribution of signal probabilities are much more
persistent (this is also seen when we separate the percentage
of uniform states in the right-hand graph by choice). Another
difference between the diagonal and square distributions is
that in the former the average fraction of A’s in the diago-
nal region shows a very slight decline, which is not true for
the square. In both cases we extended the simulation to 5000
iterations—and find that our results hold.

3.2.3. Random Regions
In this section we allow for heterogeneity of signal proba-
bility within a region. We continue with two possible values,
p and q, but no longer require all locations within an exoge-
nously defined region to have the same probability. The signal
probability distribution can be specified as follows: let θ be
the probability that the α-probability at a location within a
region is q(= 0.3). In the first instance, there is a single value
of θ for the whole network.

Let θ = 0.5. At each location the probability of arrival of
signal α is chosen from {p, q}, with each choice being given
equal probability. We then run a simulation, starting from a
random initial configuration of choices. Three sets of simu-
lations are run, for M = 20, 40, 100 and ε ∈ {0, 0.01}. The
results are presented in Figures 10 and 11. Quite surprisingly,
large regions with uniform behavior patterns form, coexist-
ing with large regions where the blinking cycle is present.
Both these regions persist even when there is noise in the
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FIGURE 10

The “random” configuration for, from top to bottom, M = 20, 40, 100. Simulations with noise (ε = 0.01) shown on the right.

environment. A typical outcome (for M = 100 and ε = 0.01)
is displayed in Figure 12. In general, the average of the per-
centage of uniform cells gets close to 50%. Every individual
simulation is more likely to end up in a mixed pattern with a

similar percentage of uniform cells when M is larger (simula-
tions with small M are more likely to be of the “all or nothing”
variety). This is apparent by looking at Figure 11, where the
standard deviation of the fraction of space that is uniform is
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FIGURE 11

Mean and standard deviation of the fraction of space that was uniform for top to bottom; M = 20, 40, and 100. Simulation with noise (ε = 0.01) shown on
the right.

also plotted. This is seen to be a much smaller number when
M = 100.

Since noise has been seen to be inimical to the existence of
blinking regions, we repeated our experiment (for N = 100)

with the noise level raised to ε = 0.05. The results are largely
unchanged (and so the corresponding graphs are not pre-
sented here). We did find an increase in the “Other” category
(as expected), and a slight decline in the “Blinking” category.
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FIGURES 12 AND 13

Final state in a simulation with a random signal probability distribution.

Signal probabilities are randomly chosen from {0.3, 0.7} at each
location. In the top frame the event (q = 0.3) has probability θ = 0.4
and in the bottom frame θ = 0.6.

FIGURE 14

East and West differ in θ . Top, θ = 0.6 in the West and θ = 0.4 in the
East; bottom, these probabilities are 0.55 and 0.45, respectively.

However, regions with the blinking cycle do appear to be quite
stable.9

We now change the probability with which a location gets
assigned a signal probability (from {p,q}). First, let the prob-
ability, θ , of choosing “q = 0.3” be 0.4. In other words, at
roughly 40% of the locations there is a 0.3 probability that the
signal will be α; at about 60% of the locations the α-probability
is 0.7. Clearly, circumstances favor the use of A. This is what
we find in the top panel of Figure 13: about 95% of the loca-
tions can be classified as using A. In the lower panel, we repeat
the experiment with θ = 0.6. Now choices are uniformly B.

9There is some danger that our randomly generated signal
probability distribution is exceptional. Consequently, as a
robustness check, we did 50 simulations generating new sig-
nal probability distributions (results not reported).We find our
results to be quite representative.
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FIGURE 15

East and West differ in θ . Left column, θ = 0.6 in the West and θ = 0.4 in the East; right column, these probabilities are 0.55 and 0.45, respectively.

In Figures 14 and 15, we again consider East and West.
Only now, in the West the probability θ is greater than 0.5,
whereas in the East it is less than 0.5. We find that regional
variation arises again as a robust phenomenon, with A cho-
sen in regions where θ < 0.5, and B chosen in regions with
θ > 0.5. Even a small majority of locations with α-probability
p > 0.5 > q leads to the emergence of a regional norm where
A is used exclusively. Figure 14 shows a typical snapshot, after
starting from random initial conditions. Figure 15 presents
statistics. We report, in the right-hand column, the effect of
taking the regional θ values closer to 0.5. Even when the value
only mildly favors an action (e.g. θ = 0.45, favoring A in
the East), this action arises as the local norm. Of course, the
results are much sharper when θ is further away from 0.5. We
appear to have a “critical threshold” result, with θ = 0.5 being
the critical value. Coexistence of different norms occurs at
θ = 0.5, but otherwise requires regions that differ in θ (with
values on either side of the critical threshold).

3.2.4. Robustness and Criticality
In Figure 16 we return to the East-West distribution, and show
that possible long-run outcomes of the noiseless process
other than regional variation (i.e., uniform and blinking)
are unstable when small error is present. The simulations
begin, respectively, in (1) the uniform state with everyone
playing B, (2) everyone playing A, and (3) in the blinking
cycle. Results for ε = 0.01 are displayed on the left; those
for ε = 0.05 are on the right. In the ε = 0.05 case we get
fairly quick convergence to the regional variation state. How-
ever, smaller noise (ε = 0.01) was not enough to upset the
uniform and blinking states (at least during the length of the
simulation).

Figure 17 is a robustness check on the value of probabil-
ities (in the context of the East-West distribution). It also
illustrates the “criticality” phenomenon: the existence of crit-
ical parameter thresholds that, when crossed, effect precip-
itous change in the behavior of the system. However, on
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FIGURE 16

Starting from stable states B (top), A (middle), and “blinking” (bottom). Simulations for ε = 0.01 are on the left and for ε = 0.05 are on the right.

either side of the critical point variation in fundamentals
is largely irrelevant. The parameters that exhibit threshold
effects in this model are p and q. In the West, the pre-
vailing norm depends on whether q is greater than or less
than 1/2. We start, in the top left-hand frame of Figure 17,

where the value of q is changed from 0.3 (used in all previ-
ous simulations) to 0.4 (with p = 0.7). The move closer to
1/2 has some effect as there are now more A’s in the West.
This number increases as we change q to 0.5 (top right).
At q = 0.7 the graphs for East and West are virtually
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FIGURE 17

Changing the probability of signals.

identical (middle left). Thereafter, we reduce p to 0.5, and
then to 0.4, and 0.3 (for symmetric effects). Changes fur-
ther away from the 0.5 boundary do not have perceptible
effects.

3.2.5. The Circle Model
In the circle model, unlike the torus, regional variation (East-
West) is not a long-run steady-state of the noiseless process.
In contrast to the East-West choice distribution for the torus,
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a boundary point of a choice region must have an equal
number of neighbors making either choice. So choices at
the boundary are always signal-dependent, and a judiciously
chosen sequence of signals will lead to complete uniformity.
A uniform state can be reached with nonzero probability, and
once reached, will persist forever.

Although this is a bit like the diagonal case above, the
results for the noiseless case point to an interesting differ-
ence. Despite the fact that regional variation is not a long-
run outcome, we find that it arises and persist for multiple
time periods (results not reported here). For large M (e.g.,
M = 100) we have found it almost impossible to get to total
uniformity once we are in the regional variation state. Conver-
gence to one of the long-run steady states appears to be very
slow. In the circle model as well, globally uniform choices are
easily upset by the introduction of small noise and regional
variation arises as the stable phenomenon.

4. CONCLUSION
The model tells us that alternative norms may coexist in
close proximity to each other for indefinite periods of time.
Despite a tendency toward local conformity, globally uni-
form states almost never occur and are unstable in the pres-
ence of small noise. There are several interesting details to
this coexistence result. First, even when regional variation
is not a long-run outcome of the dynamic process the sys-
tem quickly organizes itself into this state, and any decay
of the pattern is very slow. Second, we find that errors in
decisionmaking, even when they are very small, can have
important effects. For instance, the square distribution of
choice appears to be stable when there is just a 1 in 100
chance of error. By contrast, there is fairly steady decay in the
zero-noise case. Noise also decreases the likelihood of finding
a blinking cycle. An exception is when the signal probabil-
ity distribution is random—here mixed patterns that include
the blinking cycle are typical. Third, the size of the network
matters in a number of ways. Larger networks make regions
with blinking patterns less likely for the East-West distribu-
tion, although not for the random distribution. They can also
facilitate the survival of (long-run unstable) regional varia-
tion by making a transition to a uniform state a more remote
possibility.

Our results show that the distribution of signals deter-
mines what the local norm will be. Specifically, the majority
signal within a region will dictate the content of the norm.
When the dominant signal differs across regions, local norms
respond accordingly, and we witness global diversity as a sta-
ble phenomenon. The concept of “lock-in” has been very
influential in the study of institutions and organizations, and
our results in the noiseless case illustrate how it could arise.
But small noise, as in the theory of Kandori et al. [22], Young
[1], and Ellison [26], allows us to refine predictions consider-
ably. New patterns of behavior, although they arise by error,

can spread contagiously until they become locally prevalent.
Lock-in does not have quite as tenacious a hold as in the
noiseless case.

The locality of interactions is crucial for our results. In
such settings, global majorities need not dictate global norms.
Alternative norms will survive as long as there exist regions (or
subgroups) within which the globally dominant signal or type
forms a minority, even though interactions straddle regional
boundaries. As informal evidence, we observe that minority
languages are sustained by the presence of ethnic residential
enclaves. We also observe ethnically and regionally specific
slang and dress codes, as well as pockets of dedicated Mac
users in a Windows-dominated world. Furthermore, as our
criticality results indicate, stable coexistence does not require
extreme differences in the composition of the population
across regions or groups. The criticality of the 50% threshold
means that norms can shift rapidly within a region with even
a small change in demographics around the threshold. The
results caution against making inferences about preferences,
both within and across regions, based on observed behavior.
A single norm can accommodate a diversity of types, just as
relatively small changes in group characteristics may cause a
discrete shift in the dominant behavior.

The condition of regional variation, involving local unifor-
mity and global diversity, embeds certain social tensions. We
have shown that within any region or group there may be a
large number of agents (i.e., the minority type) who would
be better off (a) living in a different region, in which their
preferred norm prevails or (b) living in the same region but
being a member of the majority type. In the signal interpreta-
tion, any given individual will face inferior payoffs whenever
she receives the locally less common signal type. We have
treated location and characteristics as exogenous. However,
if geographic location or social network were made endoge-
nous, we would expect self-selection into locations or net-
works by type, i.e., spontaneous physical or social segrega-
tion. Alternatively if locations remain fixed but type could
change, preferences might adapt to surroundings.

Depending on the application under consideration, the
degree to which location or characteristics are in fact endoge-
nous will vary, as will the welfare implications. Although
the prospect of spontaneous segregation echoes Schelling
[27], in the context of our model, segregation by charac-
teristics (i.e., the signal) may be socially preferred to an
outcome in which regions or groups have a mix of types.
Luckily, the implications need not be politically unsavory.
For example, ignoring transport costs, it is desirable that
medical patients be transferred to the treatment location
that specializes in the treatment that best suits her type. In
the case of corruption or corporate malfeasance, however,
endogeneity may have negative consequences. We might
expect, for example, that initially honest types, witness-
ing rampant corruption or receiving frequent invitations
to embezzle, might eventually suffer moral decay. If so,
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replacing dishonest workers with honest workers on a piece-
meal basis would be futile. Segregation and assimilation are
not inevitable in every application, however. For example,
graphics and text processing may be complements within
a firm. If so the firm faces a tradeoff between compatibil-
ity across workers or tasks and supplying the best tool for
each task. In our model the benefits of compatibility produce
local uniformity, but an alternative outcome might involve

innovations which render the opposing technologies more
compatible.
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