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Abstract

We consider the problem of optimal contest design in an environment where contestants
choose not only their effort, but also the distribution of shocks affecting their output.
We show that the presence of such strategic risk taking has a stark effect on contest
design: The winner-take-all contest, whereby the entire prize budget is allocated to the
top performer, maximizes the expected effort (or output) of the agents regardless of the
shape of their cost of effort.
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1. Introduction

Contests—allocation mechanisms based on ordinal performance comparisons—are
used extensively to motivate agents in organizations and other settings.1 A central
question in the theoretical literature on contests has been that of optimal contest design:
How should a fixed budget be distributed across performance ranks? In particular, how
does increasing prize inequality affect agents’ effort? In this paper, we address this
question in a novel environment where each player not only chooses costly effort, but
also engages in strategic risk taking.

A recent contribution by Fang, Noe, and Strack (2020) (henceforth, FNS) offers a
point of departure for this paper. Their results relevant to our analysis can be summarized
as follows.2

Theorem 0 (FNS). In the all-pay contest without risk taking, as prizes become more
unequal (in the majorisation order, defined below), the (symmetric) equilibrium expected
effort rises if effort costs are concave and falls if effort costs are convex.

In other words, FNS show that prize inequality encourages agents’ efforts if their
costs are concave but does precisely the opposite if costs are convex; for completeness,
we reproduce their key argument in Section 3. Among other things, this implies that the
equilibrium expected effort is maximised by the winner-take-all (WTA) contest if effort
costs are concave, and by the punish-the-bottom (PTB) contest—rewarding equally all
players except the worst performer—if effort costs are convex.3

We revisit the contest design problem in a novel environment where each player
not only exerts effort but also “chooses their own luck.” Specifically, as in the standard
all-pay contest (eg, Hillman and Riley, 1989; Siegel, 2009; Fang, Noe, and Strack, 2020),
each player selects his effort xi at cost cpxiq. Concurrently, he also chooses an arbitrary
unbiased random noise εi, so that the final (realised) output is a nonnegative random
variable Yi “ xi` εi ě 0. This latter element of the model is our main (sole) innovation
relative to the standard all-pay contest, but it is not entirely new to the literature. In
fact, that part is just as in the literature on pure risk-taking contests where each player
chooses a distribution with a fixed mean (eg, Myerson, 1993; Ray and Robson, 2012;

1Examples include promotions and bonuses (Bognanno, 2001; Baker, Jensen, and Murphy, 1988),
sales contests (Lim, Ahearne, and Ham, 2009), forced ranking systems (Bretz Jr., Milkovich, and Read,
1992), and R&D competition (Terwiesch and Ulrich, 2009).

2To our knowledge, FNS provide the most comprehensive results for complete-information contests
without noise.

3In their paper, FNS focus on the convex cost case and, therefore, argue that “turning up the heat” (ie,
increasing prize inequality) is detrimental to effort. It is also clear from their analysis that when costs are
neither (globally) concave nor convex, the result would be more nuanced and sensitive to the shape of
the cost function. Indeed, it is possible that the optimal allocation is neither WTA nor PTB.
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Ke et al., 2021; Fang and Noe, 2022). Our contribution in modelling is to bring together
two distinct contest models and study how strategic risk taking influences agents’ effort
choices.4

Our model of strategic risk taking can be interpreted in several ways. First, it arises
when each player can flexibly engage in fair gambling. Importantly, this interpretation
applies not only when both xi and Yi correspond to monetary values, but also when
they represent physical values of a good: xi captures the vertical/intrinsic quality of a
good, while εi represents the horizontal/design aspect of a good. Second, our model
captures a situation where an agent’s output depends not just on his effort, but also on
potentially many creative activities or decisions with uncertain outcomes. For example,
in an innovation contest researchers choose which directions to pursue, which methods
to use to pursue them, or when to stop experimenting. In an architectural contest, there is
a choice among a large number of possible styles and designs with many minute details
pertaining to each. In these settings, agents’ (rich) choices cannot be summarized by a
scalar value (effort). Our model captures such a situation in a simple manner. Yet another
interpretation of endogenous risk taking is signal jamming. Indeed, as in a standard
moral hazard environment, agents may be interested in obfuscating their true effort
with nonproductive activities such as self-promotion, engaging in a form of (reverse)
Bayesian persuasion. The assumption that noise is mean-preserving then serves as a
disciplining constraint similar to the one used in the information design literature.

Our main result is as follows.

Main Theorem. In our model of strategic risk taking, the equilibrium expected effort
(and output) is maximised when the prize schedule is winner-take-all, regardless of the
shape of the cost function c (satisfying mild technical assumptions).

The Main Theorem is a comparative static result regarding the equilibrium ex-
pected effort. As illustrated shortly, a few key equilibrium properties hold regardless of
the structure of the cost function, but some properties do depend on it. This makes it
unavoidable to consider several different cases and establish the results for each case.
Specifically, in the main text of the paper we consider in detail and prove the Main
Theorem for four representative cases, with c (i) globally concave, (ii) globally con-
vex, (iii) initially concave and then convex, and (iv) initially convex and then concave.
The existing literature has restricted attention to (i) and (ii), not only because of their
tractability but also because (i) and (ii) are enough for a nuanced result—namely, that
the optimal contest depends on the structure of c. Yet, cost structures (iii) and (iv) are
relevant for many applications, and the approach we develop in this paper allows us

4Hvide (2002) and Gilpatric (2009) also consider a model in which each player chooses both effort
and risk. However, unlike us, they make use of structural assumptions on risk taking, restricting the set
of possible distributions of Yi (ie, the set of possible joint distributions of pxi, εiq).
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to consider them in a unified manner. Moreover, these techniques can be extended to
more general cost functions with multiple inflexion points, whose analysis is relegated
to Appendix D.

The key observation for our equilibrium analysis, and in establishing the Main
Theorem, is that strategic risk taking reduces players’ effort costs to produce a stochastic
output Yi in a way that their virtual (effective) cost function of output, ξ˚, is concave,
regardless of the shape of the underlying effort cost function c. To see this, suppose a
player wishes to produce output y1 or y2 with equal probability. If c is concave then
randomising over efforts—exerting effort xi “ y1 and xi “ y2 each with probability
1{2—is more economical than deterministically choosing effort xi “ py1 ` y2q{2 and
then randomising over outputs by choosing εi “ ˘|y2 ´ y1|{2 with equal probability.
In this case, strategic risk taking is irrelevant, and ξ˚ “ c. Conversely, if c is convex
then randomising over outputs is more economical than randomising over effort, so the
player chooses a deterministic effort xi and then randomizes over outputs. In this case,
the resulting virtual cost ξ˚ is linear because at the risk-taking stage, the player faces
the mean constraint that ErYis “ xi and ξ˚ reflects the corresponding shadow cost. This
basic idea applies to the entire relevant region of c and also irrespective of the structure
of c. Therefore, the virtual cost function ξ˚ is always concave.5

The above observation provides a bridge between the existing result for the case
of concave costs—whereby an increase in prize inequality raises expected effort—and
our Main Theorem: The WTA contest maximises the expected effort regardless of the
shape of c because the virtual cost function ξ˚ is always concave. If ξ˚ were independent
of the prize allocation then the Main Theorem would follow immediately from the
concavity of ξ˚ and Theorem 0. However, ξ˚ is itself an equilibrium object that depends
on prize allocation; and how it does so is crucial for the comparative statics underlying
the Main Theorem. Our main technical challenge is, therefore, to characterize how ξ˚

depends on prize inequality and, in turn, how ξ˚ affects the equilibrium effort.
Finding the optimal (effort-maximising) prize allocation is a classical problem in

the literature on contests. The latest and most comprehensive treatments (using three
different contest models) are by Moldovanu and Sela (2001) for incomplete-information
contests with private types; by Drugov and Ryvkin (2020) for complete-information
contests with exogenous noise à la Lazear and Rosen (1981); and by FNS for complete-
information contests without noise. In all three environments, the results are nuanced;
the WTA contest can be optimal, but more equal prizes can also be optimal, including

5This result resembles a canonical result in the literature on risk-taking contests, namely, that in
equilibrium each player should face a weakly concave value function; otherwise, those players facing
convex value functions would take extreme risks, unraveling the equilibrium. The result still appears in
our model (see Section 3), but it is distinct from the reason why ξ˚ is concave. In our model, concavity
of ξ˚ follows from each player’s (individual) cost minimization, not because it is necessary to provide
proper risk-taking incentives for players.
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extreme prize sharing in the form of PTB. Importantly, in all these models the results
are sensitive to the shape of effort costs, and cost functions beyond globally concave or
convex have not been considered.

The two most closely related papers to ours are those on the effects of prize
allocation on flexible risk taking in the absence of effort (ie, with an exogenous mean
output). Fang and Noe (2022) consider a principal facing a selection problem: het-
erogeneous contestants compete for promotion by flexibly selecting stochastic output
as a mean-preserving spread of their ability. The authors show that less competitive
promotion policies—effectively, more equitable prize schedules—reduce risk taking
and lead to improved selection in equilibrium. These results are echoed by Ke et al.
(2021) who show, both theoretically and experimentally, that increasing prize inequality
leads to more dispersion in output.

Methodologically, we leverage the technical results by Dworczak and Martini
(2019). As illustrated in Section 4, the problem of finding the cost-minimising effort
distribution for a given distribution of output is mathematically identical to the Bayesian
persuasion problem with a continuous state space studied by Dworczak and Martini
(2019). We use their results to determine the structure of the virtual cost function ξ˚.

The rest of the paper is structured as follows. The model is formally set up in
Section 2. In Section 3, we reproduce, for completeness, the arguments from FNS
underlying Theorem 0 and heuristically establish the Main Theorem for two tractable
cases (either globally concave or globally convex). In Section 4, we provide the key
reformulation of the model as a virtual contest. In Section 5, we return to the special
case from Section 3 and show how the results for convex costs are obtained as a
straightforward corollary. In Sections 6 and 7, we discuss more complex representative
cases—concave-convex and convex-concave costs, relegating the analysis of more
general cost functions to Appendix D. Section 8 concludes.

2. The Model

We build upon the standard all-pay contest. There are n pě 2q players, each choosing
effort xi P R` according to the common cost function c P RR`

` . We assume that c is
strictly increasing and twice continuously differentiable, satisfies cp0q “ 0, and reaches
1 at a finite value of effort. Reflecting the possibility of mixing, we represent each player
i’s choice of effort as a non-negative random variable Xi. The associated expected cost
of effort is given by ErcpXiqs.

Strategic risk taking is modelled as follows: Concurrently with effort Xi, each
player i chooses a random variable εi leading to output Yi “ Xi ` εi, subject to two
constraints: (i) Erεi|Xis “ 0, and (ii) Yi ě 0 almost surely. In other words, each player
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can add any unbiased noise to Xi, as long as the resulting output Yi is non-negative. By
definition, Yi is feasible from Xi if, and only if, Yi is a non-negative mean-preserving
spread of Xi. Such a pair pXi, Yiq is said to admissible. As usual, we use X´i and Y´i to
denote strategy profiles excluding player i’s.

A contest is defined by a vector v “ pv1, ..., vnq P Rn
`, where vk represents the

prize to the player who produces the k-th highest output. We assume that prizes are
monotonically decreasing in rank, and the total prize budget is normalised to one. In
addition, because setting vn ą 0 (ie, giving surplus to the worst performer) is always
detrimental to players’ incentives, we restrict attention to the prize vectors such that
vn “ 0. Let V :“ tv P Rn

` : v1 ě . . . ě vn “ 0,
řn
k“1 vk “ 1u denote the set of all prize

vectors (contests) that satisfy these restrictions. The usual winner-take-all (WTA) contest
corresponds to vWTA “ p1, 0, ..., 0q, while the “punish-the-bottom” (PTB) contest has
vPTB “ p 1

n´1
, . . . , 1

n´1
, 0q.

Given v P V, a player’s payoff is given by

uipXi, Yi, X´i, Y´iq “
n
ÿ

k“1

vk ¨ PrYi “ Ypk:nqs ´ ErcpXiqs,

where Yp1:nq ě . . . ě Ypn:nq represent the order statistics of pY1, ..., Ynq. For notational
simplicity, we ignore ties, which will arise with probability 0 in equilibrium.

As usual, a Nash equilibrium is a profile of admissible effort-output combinations,
pX˚

i , Y
˚
i q

n
i“1, such that uipX˚

i , Y
˚
i , X

˚
´i, Y

˚
´iq ě uipXi, Yi, X

˚
´i, Y

˚
´iq for all admissible

pXi, Yiq and i “ 1, . . . , n. Following the literature, we focus on symmetric equilibria
and use pX˚, Y ˚q to denote a symmetric equilibrium strategy.

Inequality order. As in a few recent studies (Vojnović, 2015; Fang, Noe, and Strack,
2020; Drugov and Ryvkin, 2020), we adopt the majorisation order over V to compare
prize schedules in terms of the level of inequality.6 For v,w P V, w majorises v—or,
w is more unequal than v—if

řk
i“1pwi ´ viq ě 0 for all k “ 1, . . . , n. Clearly, vWTA

majorises any v P V, while vPTB is majorised by any v P V. Therefore, vWTA is the most
unequal contest, while vPTB is the most equal contest, in V. An elementary reduction in
inequality is known as a Pigou-Dalton (PD) transfer, whereby given a w P V, another
prize schedule v P V is formed such that vi “ wi ´ δ and vj “ wj ` δ for some i ă j

and δ ą 0, and vk “ wk for all k ‰ i, j. That is, a PD transfer reduces the prize to the
i-th place and raises the prize to the j-th place by δ, with i ă j. We will write this as
w ąδ

ij v (where i ă j is implied). Importantly, if w majorises v, then v can be obtained
from w via a finite sequence of such PD transfers. Therefore, in many instances, in
order to prove a comparative static result for the majorisation order it is sufficient to

6For a comprehensive discussion of the majorisation order and its applications, see, eg, Marshall,
Olkin, and Arnold (2011).
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prove it only for an arbitrary PD transfer.

3. First Pass: Prior Results and Elementary Analyses

In this section, we reproduce the main arguments of FNS pertaining to Theorem 0 and
prove the Main Theorem for two simplest cases via elementary analyses.

3.1. Contests Without Risk Taking

Consider the standard all-pay contest in which each player’s output is completely deter-
mined by his effort, ie, Yi “ Xi. As is well known, this contest has a unique symmetric
(mixed strategy) equilibrium in which the distribution of effort F is continuous and
supported on r0, c´1pv1qs, and all players earn zero rents (cf. Barut and Kovenock, 1998).
To characterize the equilibrium, suppose a player exerts effort x, while all other players
randomize according to F . The indicative player’s payoff is given by ΦpF pxq;vq ´ cpxq,
where ΦpF pxq;vq represents the player’s expected winnings from the contest. The
function Φp¨;vq : r0, 1s Ñ R` can be written explicitly as

Φpq;vq “
n
ÿ

i“1

ˆ

n´ 1

i´ 1

˙

qn´ip1´ qqi´1vi.[3.1]

To understand the structure of Φpq;vq, suppose a player outperforms every other con-
testant with probability q (which corresponds to F pxq). In order to be ranked i-th and
receive prize vi, the player must be above n ´ i players while also being below i ´ 1

players. For a given set of other players’ identities, the probability of this event is
qn´ip1 ´ qqi´1, and the binomial coefficient

`

n´1
i´1

˘

in [3.1] counts the number of ways
the other players’ identities can be selected. For any v P V, q ÞÑ Φpq;vq P r0, v1s is
a continuous and strictly increasing function; thus, Φ´1pt;vq is also a continuous and
strictly increasing function of t over r0, v1s.

That players earn zero rent in equilibrium implies that the symmetric equilibrium
distribution of effort is given by

F pxq “ Φ´1
pmintcpxq, v1u;vq, x P R`.[3.2]

In equilibrium, each player’s expected winnings is 1{n. The zero-rent condition now
implies that each individual contestant’s expected cost is equal to 1{n, that is,

1

n
“

ż

ΦpF pxq;vq dF pxq “

ż

cpxq dF pxq for all v P V.[3.3]
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It is clear from [3.2] that the equilibrium F depends on the prize distribution v. In
what follows, we will suppress this dependence unless different prize distributions are
explicitly compared.

Consider two prize schedules v1,v2 P Vsuch that v2 ąδ
ij v

1. For each i “ 1, 2, let
F p¨;viq denote the equilibrium distribution under vi and Xi denote the corresponding
random variable. It can be shown that Φpq;v2q crosses Φpq;v1q once from below:7
Intuitively, more prize inequality lowers (respectively, raises) the expected earnings
from low (respectively, high) efforts. Together with [3.2], this implies that F px;v2q

crosses F px;v1q once from above. If ErX1s ě ErX2s then X1 dominates X2 in the
increasing concave order (see, eg, Theorem 4.A.22 of Shaked and Shanthikumar, 2007).
Therefore, if c is strictly concave then ErcpX1qs “ 1{n ą ErcpX2qs, which contradicts
[3.3]; this means that it must be that ErX1s ă ErX2s. A similar argument shows that
under convex costs, we must have ErX1s ą ErX2s, thus implying Theorem 0.

Intuitively, if prizes becomemore unequal then players have an incentive to “swing
for the fences,” ie, take more risk, because higher values of effort—those more likely
earning them top prizes—become relatively more profitable. When c is convex, this
additional risk makes effort more costly. However, the expected cost of effort has to
stay fixed in equilibrium (cf. the zero-rent condition [3.3]); hence, the expected effort
goes down. By contrast, if c is concave then additional risk lowers overall effort costs,
in which case the expected effort increases.

3.2. Strategic Risk Taking for Concave or Convex Costs

Next, consider our model in which each player chooses effort Xi and noise εi, so her
output is given by Yi “ Xi ` εi with Erεi|Xis “ 0 a.s.

Concave costs. Suppose c is strictly concave. Then, by Jensen’s inequality, ErcpXiqs ě

ErcpYiqswhenever Yi is a mean-preserving spread ofXi. This implies that taking strategic
risk (ie, setting Xi ‰ Yi) only raises effort costs, so every player will choose Xi “ Yi.
Since strategic risk taking is irrelevant, the problem reduces to the standard case
summarized above, in which, by Theorem 0, the WTA contest delivers the greatest
expected effort.8

7See Lemma A2 in FNS for a formal proof. For illustration, suppose n “ 3, v1 “ pv1, 1´ v1, 0q, and
v2 “ pv1`δ, 1´v1´δ, 0q. Equation [3.1] then gives Φpq;v2q´Φpq;v1q “ rq2´2qp1´qqsδ “ qp3q´2qδ,
whose sign changes from negative to positive at q “ 2{3.

8If costs are only weakly convex, then there may exist equilibria with risk taking. However, all those
are outcome(output)-equivalent to those without risk taking. For example, if c is linear then there exist
both an equilibrium with no risk taking and an equilibrium with no effort randomization; in fact, all
mixtures between them, yielding the same output distribution, are also equilibria.
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Convex costs. A similar argument shows that if c is strictly convex, an equilibrium
necessarily entails a deterministic effort; that is, in equilibrium Xi is degenerate at
some xi. Let xd denote the symmetric deterministic equilibrium effort. Given xd, the
game reduces to the standard risk-taking contest where each player chooses Yi subject
to ErYis “ x d. Myerson (1993) provides a general characterization for the game and, in
particular, shows that the unique symmetric equilibrium distribution G (of Y ) satisfies

ΦpGpyq;vq “ min

"

y

nxd

, v1

*

ñ Gpyq “ Φ´1
pminty{pnxdq, v1u;vq.[3.4]

As with F , we explicitly indicate the dependence of the equilibrium G on v only as
needed.

To identify the equilibrium effort xd, suppose all other players select xd and the
distribution G in [3.4]. Then, an individual player’s problem is

max
xi,Gi

ż

ΦpGpyq;vq dGipyq ´ cpxiq s.t. xi “
ż

y dGipyq.[3.5]

As shown in [3.4], ΦpGpyq;vq is concave in y, and so given xi, player i has no incentive
to take strategic risk. Thus, one (but not the only) solution to his problem in [3.5] is to
take Gi to be degenerate at xi. This reduces the problem to

max
xi

„

min

"

xi
nxd

, v1

*

´ cpxiq



.

From here, it is straightforward that the symmetric equilibrium effort xd is such that
xdc

1pxdq “ 1{n.9 It is then clear that px d, Gq, with G given by [3.4], is the unique
symmetric equilibrium of the given contest with strategic risk taking.

This equilibrium has two important properties. First, the equilibrium effort xd is
independent of v. Thus, contest design does not affect players’ effort choices, implying
that the WTA contest performs as well as any other contest in V. This neutrality result
is in stark contrast with the corresponding finding by FNS, namely, that if c is convex
then more prize inequality disincentivises players and so the WTA contest minimises
the expected effort. Second, players earn positive rents. Indeed, using symmetry we
can write each player’s equilibrium payoff as

π “
1

n
´ cpx dq ą

1

n
´ xdc

1
px dq “ 0,

where the inequality follows from the strict convexity of c.

9There exists a unique value that satisfies xc1pxq “ 1{n—so a unique symmetric equilibrium—because
(i) xc1pxq is strictly increasing and (ii) xc1pxq ě cpxq ą 1{n at a finite x.
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4. General Characterisation

The two cases considered in the previous section look far apart—in fact, opposite—from
each other. However, they do share some important similarities. To see this, notice that
in the convex case, given xd, ξ̃pyq :“ y{pnxdq represents the shadow cost of producing
y.10 In the concave case, risk taking is irrelevant, so the shadow cost of producing y
coincides with the corresponding effort cost (ie, ξ̃pyq “ cpyq). In both cases, ξ̃pyq is
concave in y, and G is a symmetric equilibrium in a contest with cost ξ̃pyq (see [3.2]
and [3.4]). From this perspective, it is not surprising that the WTA contest maximises
the expected effort whether the underlying cost function c is concave or convex. In this
section, we show that a similar concave shadow cost ξ̃ arises for any cost function c.

4.1. Virtual Cost

Let Fi denote the distribution of effortXi and Gi of output Yi. In addition, we denote by
MPSpFiq the set of all non-negative mean-preserving spreads of Fi and by MPCpGiq

the set of all mean-preserving contractions of Gi. In what follows, we shall denote
strategies by the respective distributions over effort and output, and a pair pFi, Giq is
admissible if Fi PMPCpGiq, or equivalently, Gi PMPSpFiq.

By definition, pF ˚, G˚q constitutes a symmetric equilibrium for the contest v P V

if it solves

max
F,GP∆pR`q

ż

ΦpG˚pyq;vq dGpyq ´

ż

cpxq dF pxq s.t. F PMPCpGq.[4.1]

Notice that F affects only the second term in the objective function, so given G “ G˚,
[4.1] reduces to

min
FP∆pR`q

ż

cpxq dF pxq s.t. F PMPCpG˚q.[4.2]

This means that F ˚ must be a cost-minimising mean-preserving contraction of G˚. A
crucial observation is that this cost-minimisation problem is isomorphic to the Bayesian
persuasion problem studied by Dworczak and Martini (2019) (DM, hereafter).11 Their
results relevant to our analysis are translated and summarized in the following result.

Proposition 4.1. Let G˚ be a cdf with a compact and convex support in R`. If F ˚

solves [4.2], then there exists a concave function ξ˚ P RR` such that (i) ξ˚ ď c on R`,

10It can be shown that 1{pnx dq is the Lagrangian multiplier associated with the constraint in [3.5].
11Extending canonical arguments as in Myerson (1993, Theorem 2), it can be shown that G˚ has a

compact and convex support from 0. This allows us to directly apply DM’s results.
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c, ξ˚

x0

ξ˚ “ c

c, ξ˚

x0

c

ξ˚

m˚

c, ξ˚

x0

c

ξ˚

a˚ m˚

Figure 1: Cost functions (black, solid) and virtual cost functions (red, translucent).

(ii) supppF ˚q Ă tx : ξ˚pxq “ cpxqu, and (iii)
ş

c dF ˚ “
ş

ξ˚ dF ˚ “
ş

ξ˚ dG˚. In addition,
ξ˚ is a solution to the following dual problem of [4.2]:

max
ξ

ż

ξ dG˚ s.t. ξ P RR` concave and ξ ď c .[4.3]

In what follows, we refer to ξ˚ as the virtual cost function; the reason behind this
naming will be clarified in the following subsection. Roughly, ξ˚ is the highest concave
function that stays below c and satisfies

ş

ξ˚ dF ˚ “
ş

ξ˚ dG˚; this latter requirement
allows us to select one among potentially many “highest” concave functions below c.
As shown in Figure 1, ξ˚ coincides with c if, and only if, c is concave (the left panel).
If c is convex then ξ˚ is an affine function tangent to c at some point m˚ (the middle
panel). If c is initially concave and then convex, then there exist a˚ and m˚ such that
ξ˚ “ c below a˚ and ξ˚ is affine, and tangent to c at m˚, above a˚ (the right panel).12

4.2. Virtual Contest

For our subsequent results, it is useful to define the following virtual contest game.
• Each agent (contestant) now has an adversary.
• Each agent i chooses a distribution Gi over output (and not effort).
• Agent i’s adversary chooses a concave cost function ξi ď c to maximise

ş

ξi dGi.
A symmetric equilibrium of the virtual contest is a pair pG˚, ξ˚q such that given ξ˚,
Gi “ G˚ solves agent i’s problem

max
Gi

„
ż

ΦpG˚pyq;vq dGipyq ´

ż

ξ˚pyq dGipyq



,[4.4]

12More generally, if c has finitely many inflexion points, then ξ˚ consists of finitely many alternating
affine and strictly concave segments. The affine segments are tangent to c, while ξ˚ “ c along the strictly
concave segments.
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while, given G˚, agent i’s adversary’s choice of ξi “ ξ˚ solves

max
ξiPR

R`

ż

ξipyq dG˚pyq s.t. ξi ď c, ξi concave.[4.5]

The next result shows that there is an isomorphism between our original contest
with strategic risk taking and the above virtual contest.

Theorem 1. Consider the contest with prize schedule v P V. The distributions pF ˚, G˚q
constitute a symmetric equilibrium of this contest if, and only if, pG˚, ξ˚q is a symmetric
equilibrium of the corresponding virtual contest where ξ˚ solves the dual problem [4.3]
and satisfies all three properties in Proposition 4.1.

Although the virtual game involves virtual players (the adversaries), it is still an
all-pay contest once the virtual cost functions ξi have been chosen by the adversaries.
This fact allows us to explicitly characterise G˚ (given ξ˚) in the virtual contest, as in
Barut and Kovenock (1998).

Proposition 4.2. G˚ is an equilibrium in the virtual all-pay contest with virtual cost
ξ˚, ie, G˚pyq “ Φ´1 pmintξ˚pyq ´ ξ˚p0q, v1u;vq for all y ě 0.

Proof. Notice that [4.4] is linear in Gi. This implies that ΦpG˚pyqq ´ ξ˚pyq should be
constant in the support of G˚, that is, for any y P supppG˚q,

ΦpG˚pyq;vq ´ ξ˚pyq “ ΦpG˚p0q;vq ´ ξ˚p0q “ ´ξ˚p0q ô ΦpG˚pyq;vq “ ξ˚pyq ´ ξ˚p0q.

The desired result follows because globally ΦpG˚pyq;vq “ mintξ˚pyq ´ ξ˚p0q, v1u.

Two features distinguish the virtual contest from the standard all-pay contest.
First, as illustrated in the middle panel of Figure 1, ξ˚p0q—the virtual cost of zero
output—can be negative, even though cp0q “ 0. Thus, in equilibrium, each player enjoys
a surplus of ´ξ˚p0q, which is strictly positive if ξ˚p0q ă 0; as noted in Proposition 4.2,
the equilibrium strategy is still such that ΦpG˚pyq;vq “ ξ˚pyq ´ ξ˚p0q over supppG˚q. If
ξ˚p0q “ 0, as in the left and right panels of Figure 1, the usual rent-dissipation result
holds, so G˚pyq “ Φ´1pmintξ˚pxq, v1u;vq (cf, Proposition 4.2).

Second, the virtual cost function is not exogenously given, but determined endoge-
nously (by adversaries) in equilibrium; therefore, in general, it depends on the prize
schedule v. This suggests that the dependence of G˚ (and F ˚) on v is not restricted
to the explicit, or direct, effect of prizes on function Φpq;vq, but is also affected indi-
rectly by equilibrium adjustments in ξ˚. This point will become more transparent in the
subsequent sections where we discuss comparative statics with respect to v.

Even after completely characterising the equilibrium pG˚, ξ˚q of the virtual contest,
our task remains incomplete because our primary interest is in the “real” contest, and
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the distribution of “real” effort. The next result illustrates how one can recover the
equilibrium effort distribution F ˚ from pG˚, ξ˚q.

Proposition 4.3. Consider any interval ry1, y2s Ď supppG˚q.
(i) If ξ˚ is strictly concave on ry1, y2s then F ˚pyq “ G˚pyq for all y P ry1, y2s.
(ii) If ry1, y2s is the largest interval over which ξ˚ is affine, then F ˚pyiq “ G˚pyiq for

i “ 1, 2, and
şy2
y1
y dF ˚pyq “

şy2
y1
y dG˚pyq.

Proof. Given that supppG˚q is an interval, this is a direct application of Proposition 2
of Dworczak and Martini (2019).

To understand this result, recall property (iii) in Proposition 4.1, namely, that
ş

ξ˚ dF ˚ “
ş

ξ˚ dG˚. If ξ˚ is strictly concave (which is the case when c is strictly concave)
then this can hold only when F ˚ “ G˚; otherwise,

ş

ξ˚ dF ˚ ą
ş

ξ˚ dG˚ because ξ˚ is
strictly concave and F ˚ P MPCpG˚q. Now suppose ξ˚ is affine, which arises when c
is convex. In this case,

ş

ξ˚ dF ˚ “
ş

ξ˚ dG˚ holds as long as F ˚ has the same mean as
G˚ and, therefore, for any F ˚ PMPCpG˚q. Proposition 4.3 argues that these properties
hold locally over any largest interval on which ξ˚ is strictly concave or affine.

The results for concave costs follow as a corollary of Propositions 4.1, 4.2 and 4.3.

Corollary 4.1. If c is concave then there is a symmetric equilibrium without risk taking
(ie, F ˚ “ G˚), where F ˚ is determined by [3.2]. If c is strictly concave then this is the
unique symmetric equilibrium. In any symmetric equilibrium, the virtual cost is ξ˚ “ c

and more prize inequality raises the equilibrium expected effort.

5. Contest Design under Convex E�ort Costs

This section considers again the case where c is strictly convex, for which we derived
the equilibrium in Section 3 leveraging the result from Myerson (1993). In this case,
it is immediate that the equilibrium virtual cost ξ˚ is linear and touches c only once:
Any concave function uniformly below c can meet c at most once. The “highest” such
concave functions must be affine and tangent to c at a single point.

Let m˚pą 0q denote the unique point at which ξ˚ equals c. Given m˚, the results
in Section 4 imply the following: (i) m˚ represents the deterministic effort level all
players choose, that is, the equilibrium effort distribution F ˚ is degenerate at m˚; (ii)
each player’s expected payoff is equal to ´ξ˚p0q “ c1pm˚qm˚ ´ cpm˚q ą 0; (iii) the
equilibrium output distribution G˚ is such that ΦpG˚pyq;vq “ min tc1pm˚qy, v1u.

To determine the equilibrium value ofm˚, we define, for eachm P R`, a function
ξp¨;mq as

ξpy;mq “ cpmq ` c1pmqpy ´mq,
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and define a distribution Gp¨;m,vq by the identity

ΦpGpy;m,vq;vq “ min tξpy;mq ´ ξp0;mq, v1u “ min tc1pmqy, v1u .[5.1]

In other words, ξp¨;mq denotes an affine function that is tangent to c at m, while
Gp¨;m,vq denotes the equilibrium distribution in a virtual contest with virtual cost
ξpy;mq (ie, the equilibrium distribution in a standard all-pay contest under cost ξ̃pyq “
c1pmqy).

An equilibrium value of m is such that the output distribution Gp¨;m,vq is a
mean-preserving spread of the corresponding effort distribution. In the current case
where c is convex, the latter distribution is degenerate at m. It then follows that the
mean-preserving spread condition reduces to the mean condition, that is,

m “

ż

y dGpy;m,vq.

The following result identifies the unique (equilibrium) value of m that satisfies this
condition.

Proposition 5.1. If c is convex then for any v P V, there exists a unique symmet-
ric equilibrium in which the players choose a deterministic effort x dpą 0q such that
xdc

1pxdq “ 1{n.

Proof. The right-hand side of the above mean condition can be rewritten as
ż

y dGpy;m,vq “

ż

ΦpGpy;m,vq;vq

c1pmq
dGpy;m,vq “

1

nc1pmq
,

where the first equality is due to the definition of G, and the second one is due to a
property of Φ, namely,

ş1

0
Φpq;vqdq “ 1{n.13 This implies that the above equilibrium

mean condition reduces to mc1pmq “ 1{n. The desired result is then immediate from
the fact that when c is convex, mc1pmq is monotone increasing in m.

We note that, although all contests v P Vinduce the same deterministic effort (and
mean output) xd, different contests produce different output distributions. In particular,
the following result follows immediately once the arguments of FNS are combined with
the fact that the equilibrium virtual cost function ξ˚ is independent of v P V.

Corollary 5.1. If c is convex and w P V is more unequal than v P V, then the
equilibrium output distribution for w dominates that for v in the convex order.

13Since G is the symmetric equilibrium equilibrium in a virtual contest, each player’s expected benefit
is 1{n.
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6. Concave-Convex E�ort Costs

This section considers the case where c is initially concave and then convex (equivalently,
the marginal effort cost c1 is U-shaped). Note that, although convex costs are typically
assumed in applied work for their technical tractability, concave-convex costs are a
textbook example and, in fact, a common justification for (eventually) convex costs.

6.1. Preliminaries

For a clean analysis, we assume that the marginal cost c1 is strictly quasi-convex (ie,
c is first strictly concave and then strictly convex). Let xι denote the unique inflexion
point, and x̂ the point such that c1px̂qx̂ “ cpx̂q. Note that, by the structure of c, xι ă x̂;
see Figure 2.

If xι is sufficiently large then only the initial concave region is relevant. Then, the
equilibrium is just as in the standard all-pay contest without risk taking. By contrast, if
x̂ is sufficiently small then the equilibrium is fully determined by the convex region of c.
Then, the analysis in Section 5 applies effectively unchanged. To focus on novel effects
of concave-convex costs, we maintain the following assumption through this section.

Assumption 1. cpxιq ă v1 and cpx̂q ą 1{n.

Indeed, if cpxιq ě v1 then an equilibrium with no risk taking—in which the players
play as in the standard all-pay context—exists, while if cpx̂q ď 1{n then there exists a
deterministic-effort equilibrium, just as in Section 5. Therefore, Assumption 1 implies
that an equilibrium necessarily involves both risk taking over output and randomisation
over effort.

6.2. Equilibrium Characterization

Following the general characterization in Section 4, the equilibrium virtual cost function
ξ˚ takes the form depicted in Figure 2: There exists m˚ P pxι, x̂q such that

ξ˚pyq “

#

cpyq if y ď apm˚q

c1pm˚qpy ´m˚q ` cpm˚q if y ą apm˚q,

where apmq denotes the value below xι such that

c1pmq “
cpmq ´ cpapmqq

m´ apmq
for each m P rxι, x̂s.
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c, ξ

t0

c

xι x̂apmq m

ξp¨;mq

Figure 2: Concave-convex cost function (black, solid) and the corresponding virtual
cost function (red, translucent).

In other words, ξ˚ coincides with c for y ď apm˚q and then is affine and tangent to c at
m˚ P pxι, x̂q. Given ξ˚ (and ξ˚p0q “ 0), the equilibrium output distribution G˚ is given
by

G˚pyq “

#

Φ´1pξ˚pyq;vq if ξ˚pyq ă v1

1 if ξ˚pyq ě v1.

Finally, the equilibrium effort distribution F ˚ coincides with G˚ below apm˚q and
assigns the remaining probability mass 1´G˚papm˚qq to m˚.

As in Section 5, equilibrium characterisation boils down to identifying the value
of m˚. To that end, for each m P pxι, x̂q, we define ξp¨;mq as

ξpy;mq “

#

cpyq if y ď apmq

c1pmqpy ´mq ` cpmq if y ą apmq.

In addition, we define a distribution Gp¨;mq by the identity

ΦpGpy;mq;vq “ min tξpy;mq, v1u .[6.1]

The equilibrium m˚ is the value of m such that
ż

yěapmq

py ´mq dGpy;mq “ 0.

To understand this condition, recall that F ˚ PMPCpG˚q. Given the structure of F ˚ (or,
the way F ˚ is constructed given G˚ and ξ˚), the required relationship holds as long as
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they have the same mean, which, again due to the structure of F ˚, reduces to
ż

y dG˚pyq ´

ż

x dF ˚pxq “

ż

yěapmq

py ´mq dG˚pyq “ 0.

Utilizing this condition, we obtain the following result.

Proposition 6.1. If c is strictly concave-convex and satisfies Assumption 1 then there
exists a unique equilibrium in which for some m˚ P pxι, x̂q, the equilibrium effort
distribution F ˚ is continuously and strictly increasing until apm˚q and then assigns the
remaining probability to m˚.

Proof. We provide only a proof sketch here, relegating a complete proof to Appendix A.
We define a function H : rxι, x̂s Ñ R as

Hpmq :“

ż

yěapmq

py ´mq dGpy;mq.

We first show that under Assumption 1, Hpxιq ą 0, while Hpx̂q ă 0; since H is
continuous, this guarantees equilibrium existence. Then, we show that H 1pmq ă 0

whenever Hpmq “ 0; this is weaker than H 1 ă 0 everywhere (as in the case of convex
costs), but still sufficient for equilibrium uniqueness.

6.3. Effects of Increasing Prize Inequality

We now analyze how the equilibrium expected effort (and output) ErXs “ ErY s depends
on the prize allocation v P V. Specifically, we consider the effect of v becoming more
unequal. To make the dependence of the equilibrium on v explicit, we add it as an
argument for each relevant object. For example,X˚pvq and Y ˚pvq denote the equilibrium
random variables under v P V.

If the equilibrium virtual cost ξ˚ were independent of v then the effects of more
prize inequality would be straightforward from Theorem 0: Since ξ˚ is concave, the
equilibrium expected effort ErX˚pvqs necessarily rises as v becomes more unequal.
Therefore, the WTA contest would maximise the expected effort, while the PTB contest
would minimise it.

However, ξ˚ does depend on v, which makes the relevant comparative statics
non-trivial. In the current concave-convex case, nevertheless, the effects through ξ˚ are
negligible, as formally reported in the following result.

Lemma 6.1. Suppose c is strictly concave-convex and satisfies Assumption 1. Let
Y ˚pm,vq denote the equilibrium output random variable given virtual cost ξp¨;mq.
Then, d ErY ˚pm˚pvq,vqs{ dm “ 0.
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Proof. From the identityΦpGpy;m,vq;vq “ mintξpy;mq, v1u and the fact that ξpy;mq “

cpyq if y ă apmq and ξpy;mq “ c1pmqpy ´mq ` cpmq if y ą apmq, one can show that14

Gmpy;m,vq “

#

0 if y ă apmq
c2pmq
c1pmq

py ´mqgpy;m,vq if y P rapmq, ypmqs.

Meanwhile, applying integration by parts and direct differentiation, we obtain

ErY ˚pm,vqs “
ż

p1´Gpy;m,vqq dy ñ
d ErY ˚pm,vqs

dm
“ ´

ż

Gmpy;m,vq dy.

Combining the above two results, we arrive at

d ErY ˚pm,vqs
dm

“ ´

ż

Gmpy;m,vq dy “ ´
c2pmq

c1pmq
Hpmq.

The desired result then follows because Hpm˚q “ 0.

Thus, Lemma 6.1 establishes that in this case the indirect effect of changes in v

on the equilibrium expected output (and effort) is zero. It is important to recognize that
Lemma 6.1 is not a general result, nor is it a version of the envelope theorem. Among
other things, this result relies heavily on the structure of c (and Assumption 1). For
example, if c is convex then, as shown in the proof of Proposition 5.1, ErY ˚pm,vqs “
1{pnc1pmqq, which is monotone decreasing in m.

Given Lemma 6.1, the following result is straightforward.

Proposition 6.2. If c is strictly concave-convex and satisfies Assumption 1 then the
equilibrium expected effort ErY ˚pvqs increases as v becomes unequal.

Proposition 6.2 implies the Main Theorem for concave-convex costs. Note that
the result is obtained without knowing how the virtual cost ξpx;m˚pvqq changes with v;
in other words, to prove Proposition 6.2 we do not need to know how the equilibrium
location of the mass point,m˚pvq, is affected by changes in v. LemmaB.1 in Appendix B
establishes this comparative static for a restricted set of PD transfers.

7. Convex-Concave E�ort Costs

This section considers the case where—opposite to the previous section—c is initially
convex and then concave (equivalently, the marginal cost c1 is single-peaked).

14See the proof of Proposition 6.1 in Appendix A for a comprehensive argument.
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7.1. Preliminaries

Similar to Section 6, we assume that the marginal cost c1 is strictly quasi-concave. We
again use xι to denote the unique inflection point. If xι is sufficiently large then the
analysis in Section 5 applies effectively unchanged. However, no matter how small xι

is, there does not exist an equilibrium without risk taking, because the initial convex
region of c can never be ignored. For the current convex-concave case, we proceed
without making any assumption on xι.

7.2. Equilibrium Characterization

The general characterization in Section 4 can be applied to the current case, just as
in Section 6.2. The only difference is the structure of the virtual cost function ξ˚; see
Figure 3.

To be formal, for each m ď xι, let bpmq denote the point at which the tangent
line to c at pm, cpmqq meets c in the concave region. If the tangent line uniformly stays
below c (which happens, for example, if m “ 0 and c1pmq “ 0) then we let bpmq “ 8.
For each m ď xι, we define ξp¨;mq as

ξpy;mq “

#

c1pmqpy ´mq ` cpmq if y ă bpmq

cpyq if y ě bpmq.

and Gp¨;mq as

ΦpGpy;mq;vq “ min tξpy;mq ´ ξp0;mq, v1u “ min tc1pmqy, v1u .

Then, the equilibriumm˚—which yields the equilibrium virtual cost ξ˚pyq “ ξpy;m˚q—
is the value of m such that

ż bpmq

0

py ´mq dGpy;mq “ 0.

The existence of equilibrium can be established just as in Section 6.
Proposition 7.1. If c is strictly convex-concave then there exists an equilibrium in which
for some m˚ ă xι, the equilibrium effort distribution F ˚ assigns positive probability to
m˚ and then continuously increases afters bpm˚q.

Proof. Define a function Hpmq as follows:

Hpmq :“

ż bpmq

0

py ´mq dGpy;mq.
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Figure 3: Convex-concave cost function (black, solid) and the corresponding virtual
cost function (red, translucent).

If m “ xι then bpmq “ xι, so Hpxιq “
şxι

0
py ´ xιq dGpy;xιq ă 0. Therefore, it suf-

fices to show that Hpmq ą 0 for m sufficiently small. If bp0q is finite then Hp0q “
şbp0q

0
y dGpy; 0q ą 0; if bp0q “ 8 (e.g., when c1p0q “ 0) then pick ε sufficiently small that

εc1pεq ă 1{n and c1pεqbpεq ą v1. Then,

Hpεq “

ż

py ´ εq dGpy; εq “

ż

ΦpGpy; εq;vq

c1pεq
dGpy; εq ´ ε “

1

nc1pεq
´ ε ą 0.

Unlike in the previous cases, here equilibrium uniqueness does not hold in general.
In Appendix C, we provide a specific example in which there are multiple (symmetric)
equilibria.15 In what follows, we focus on the equilibrium with the smallest possible
value ofm˚ (ie, the equilibrium corresponding to the first value ofm such that Hpmq “
0). As shown in Appendix C, this equilibrium maximises the expected effort among all
equilibria, and we refer to it as the equilibrium of the convex-concave case in the next
section. Importantly, it follows from Lemma C.1 in Appendix C that the equilibrium is
unique in the WTA contest; therefore, if we can show that expected effort increases with
prize inequality in the equilibrium with the lowest m˚, it will imply the Main Theorem
in this case.

15In Appendix C, we also provide sufficient conditions under which equilibrium uniqueness holds,
one on prize allocation v and the other on the cost function c.

20



7.3. Effects of Increasing Prize Inequality

Now we analyze how the expected effort ErY ˚pvqs responds to prize inequality. The
result is obvious if nm˚v1 ă bpm˚q: In this case, the equilibrium effort is deterministic,
that is, F ˚ is degenerate at m˚ “ x d. Then, as in the convex case, a small change of v
has no impact on the expected effort. From now on, we restrict attention to the case
where nm˚v1 ě bpm˚q (so F ˚ is not degenerate).16

In the previous concave-convex case, we obtain a general comparative statics result,
namely, that the expected effort ErY ˚pvqs always rises as v becomes more unequal. It
holds because the change of m˚ (or ξ˚) has a negligible impact on the expected effort,
and so the result by FNS with concave costs applies unchanged. This approach no longer
works in the current convex-concave case. Following the same steps as in the proof of
Lemma 6.1, one can show that

d ErY ˚pm,vqs
dm

“ ´

ż

Gmpy;m,vq dy “ ´
c2pmq

c1pmq

ż bpmq

0

y dGpy;m,vq ă 0.

In other words, unlike in the concave-convex case, the effect through the change of m˚

is not negligible. This difference arises because ξp0;mq ă 0, that is, the players earn
positive surplus in the current case (as in the convex case).

Recall that the direct effect of increasing prize inequality always raises ErY ˚pvqs. If
m˚ falls then the indirect effect works in the same direction (because d ErY ˚pm,vqs{ddm ă

0 as shown above). This implies the following (intermediate) result.

Proposition 7.2. In the convex-concave case, as v becomes more unequal, if m˚ falls
then ErY ˚pvqs rises.

Lemma 7.2 would immediately imply our main result—that WTA maximises the
expected effort—ifm˚ always fell with increasing prize inequality. In fact, it is sufficient
to establish that m˚ decreases with prize inequality for a subset of reverse PD transfers
that eventually lead to the WTA prize schedule. One such subset is “bottom-reducing”
transfers defined as follows.

Definition 7.3. Fix v P V, and let k denote the last rank such that vk ą 0 (ie, the largest
k such that vk`1 “ 0). A bottom-reducing transfer is a reverse PD transfer that reduces
vk by δ P p0, vkq and raises vj by δ for some j ă k, while ensuring that the resulting
prize vector belongs to V.

16Because the relevant condition depends on v1, it is possible that the deterministic-effort equilibrium
exists when v is relatively equitable, but it does not exist once v becomes sufficiently unequal. This is in
contrast to the convex and concave-convex cases where if a deterministic-effort equilibrium exists for
some v P V then it does so—with the same F˚ but different G˚—for any other v P V.

21



Clearly, starting from any v P V, we can reach vWTA through a finite number of
bottom-reducing transfers. For example, we can sequentially remove the bottom prize
(ie, set vk to 0) and shift it to the top prize.

The following result shows that any bottom-reducing transfer lowers m˚. Com-
bining this with Proposition 7.2 implies that the WTA contest maximizes the expected
effort (also) when c is concave-convex.

Lemma 7.4. In the convex-concave case, any bottom-reducing transfer leads to a
reduction of m˚ (or to a reduction of the lowest m˚, if there are multiple equilibria).

To understand this result, parameterize all relevant objects with δ (the size of
reverse PD transfer). Since m˚ is the first point at which Hpm,vq crosses 0 from above,
we have Hmpm

˚,vq ď 0. This implies thatm˚ falls if Hδpm
˚,vq ă 0: In this case, δ and

m are substitutes forH—which should be equal to 0 in equilibrium. Therefore,m˚moves
in the opposite direction of δ. This suggests that the problem reduces to showing that
Hδpm

˚,vq ă 0, which is equivalent to showing that ErY ˚pm˚,vq|Y ˚pm˚,vq ď bpm˚qs

falls in δ. A sufficient condition for this is that the distribution Gp¨;m˚,vq stochastically
decreases conditional on Y being below bpm˚q, that is,

d

dδ

„

Gpy;m˚,vq

Gpbpm˚q;m˚,vq



ą 0 for all y ă bpm˚
q.

This latter condition is equivalent to

Gδpy;m˚,vq

Gpy;m˚,vq
ą
Gδpbpm

˚q;m˚,vq

Gpbpm˚q;m˚,vq
for all y ă bpm˚

q.

As formally shown in the proof of Lemma 7.4 in Appendix A, this condition holds for
all bottom-reducing transfers.

8. Conclusions

We conclude by discussing broader implications of our results for real-world contest
design, and a few potential extensions.

Our results are particularly relevant for contest environments where agents are
engaged in complex and creative tasks with uncertain outcomes, such as research and
innovation contests, architectural design contests, sales contests, or competition for
promotion or bonuses in suitable types of organisations. The Main Theorem suggests
that a principal interested in maximising expected effort or output would benefit from
using more unequal prizes; in particular, the winner-take-all contest maximises the
expected total output. Importantly, what allows us to make these broad claims is the
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unexpected robustness of the Main Theorem. Unlike the existing work on contest design
that relies substantially on assumptions about the shape of the agents’ cost function (and
cannot say anything conclusive for costs that are neither globally convex nor concave),
our approach suggests that in settings with flexible risk taking this shape is largely
irrelevant.

In many cases (eg, when costs are convex), a risk-averse principal who cares about
aggregate, or average, output, will also face a trade-off between risk and aggregate
efficiency and may prefer to use prize sharing to reduce the variance of effort. For
example, for a public research funding agency whose main mission is to support basic
research and grow a wide research ecosystem (such as the NSF), it would make sense
to fund many projects. The same applies to private foundations focusing on broad
agendas, such as the Russel Sage Foundation or the Bill and Melinda Gates Foundation.
A similar trade-off is faced by managers in organisations where stakeholders expect
stable revenue streams.

A natural extension of our approach is to consider agents with private heteroge-
neous abilities. In addition to the usual contest design problem, an important application
of such a setting is selection contests where the principal’s objective is to reward (eg,
promote) more able agents. Our techniques allow for a generalisation of Fang and Noe
(2022) to continuous distributions of prior abilities. Another application we can gener-
alise is to political competition, similar to Myerson (1993) where we can endogenise
politicians’ aggregate investments, ie, the “budgets” that politicians have to cultivate
minorities. The introduction of endogenous risk taking can also help us contribute to
better understanding the moral hazard problem, especially in the context of innovation
contests. For instance, in the model of Che and Gale (2003), agents compete in a contest
by first making costly investments to determine (private) output and then by partici-
pating in a mechanism chosen by the principal. A central assumption in Che and Gale
(2003) is that the private research investments completely determine research output.
A natural extension of our approach would be to consider such research contests, but
where the agents can choose effort as well as strategic risk. This clearly changes the
incentives for effort and may provide a more robust comparison of different mechanisms
and research contest formats.

23



References

Baker, George P., Michael C. Jensen, and Kevin J. Murphy (1988). “Compensation and
incentives: Practice vs. theory.” In: The Journal of Finance 43.3, pp. 593–616.

Barut, Yasar and Dan Kovenock (1998). “The symmetric multiple prize all-pay auction
with complete information.” In: European Journal of Political Economy 14.4,
pp. 627–644.

Bognanno, Michael L. (2001). “Corporate tournaments.” In: Journal of Labor Eco-
nomics 19.2, pp. 290–315.

Bretz Jr., Robert D., George T. Milkovich, and Walter Read (1992). “The current
state of performance appraisal research and practice: Concerns, directions, and
implications.” In: Journal of Management 18.2, pp. 321–352.

Che, Yeon-Koo and Ian Gale (2003). “Optimal Design of Research Contests.” In:
American Economic Review 93.3, pp. 646–671.

Drugov, Mikhail and Dmitry Ryvkin (2020). “Tournament rewards and heavy tails.” In:
Journal of Economic Theory 190, pp. 105–116.

Dworczak, Piotr and Giorgio Martini (2019). “The simple economics of optimal per-
suasion.” In: Journal of Political Economy 127.5, pp. 1993–2048.

Fang, Dawei and Thomas Noe (2022). “Less competition, more meritocracy?” In:
Journal of Labor Economics 40.3, pp. 669–701.

Fang, Dawei, Thomas Noe, and Philipp Strack (2020). “Turning up the heat: The
discouraging effect of competition in contests.” In: Journal of Political Economy
128.5, pp. 1940–1975.

Gilpatric, Scott M. (2009). “Risk taking in contests and the role of carrots and sticks.”
In: Economic Inquiry 47.2, pp. 266–277.

Hillman, Arye L. and John G. Riley (1989). “Politically contestable rents and transfers.”
In: Economics & Politics 1.1, pp. 17–39.

Hvide, Hans K. (2002). “Tournament rewards and risk taking.” In: Journal of Labor
Economics 20.4, pp. 877–898.

Ke, Changxia, Greg Kubitz, Yang Liu, and Lionel Page (2021). “How tournament
incentives shape risk-taking decisions.” In: Working Paper. https : / / www .
gskubitz.com/uploads/6/2/6/3/62634961/risk_taking_in_rank_
order_contest_paper_ii__1_.pdf.

Lazear, Edward P and Sherwin Rosen (1981). “Rank-order tournaments as optimum
labor contracts.” In: Journal of political Economy 89.5, pp. 841–864.

24

https://www.gskubitz.com/uploads/6/2/6/3/62634961/risk_taking_in_rank_order_contest_paper_ii__1_.pdf
https://www.gskubitz.com/uploads/6/2/6/3/62634961/risk_taking_in_rank_order_contest_paper_ii__1_.pdf
https://www.gskubitz.com/uploads/6/2/6/3/62634961/risk_taking_in_rank_order_contest_paper_ii__1_.pdf


Lim, Noah, Michael J. Ahearne, and Sung H. Ham (2009). “Designing sales contests:
Does the prize structure matter?” In: Journal of Marketing Research 46.3, pp. 356–
371.

Marshall, Albert W., Ingram Olkin, and Barry C. Arnold (2011). Inequalities: Theory
of majorization and its applications. Springer.

Moldovanu, Benny and Aner Sela (2001). “The optimal allocation of prizes in contests.”
In: American Economic Review 91.3, pp. 542–558.

Myerson, Roger B. (1993). “Incentives to cultivate favored minorities under alternative
electoral systems.” In: American Political Science Review 87.4, pp. 856–869.

Ray, Debraj and Arthur Robson (2012). “Status, Intertemporal Choice, and Risk-
Taking.” In: Econometrica 80.4, pp. 1505–1531.

Shaked, Moshe and J. George Shanthikumar (2007). Stochastic Orders. New York, NY:
Springer.

Siegel, Ron (2009). “All-pay contests.” In: Econometrica 77.1, pp. 71–92.
Terwiesch, Christian and Karl T. Ulrich (2009). Innovation tournaments: Creating and

selecting exceptional opportunities. Harvard Business Press.
Vojnović, Milan (2015). Contest Theory: Incentive Mechanisms and Ranking Methods.

Cambridge University Press. isbn: 9781316472903.

A. Proofs

Proof of Proposition 6.1. Define a function H : rxι, x̂s Ñ R as

Hpmq :“

ż

yěapmq

py ´mqdGpy;mq.

Note that ypmq :“ ξ´1pv1;mq is the upper bound of the support of Gp¨;mq.
For equilibrium existence, we prove that under Assumption 1, Hpxιq ą 0, while

Hpx̂q ă 0. If m “ xι then apmq “ xι. Combining this with Assumption 1 yields

ξpxι;mq “ cpxιq ă v1 “ ξpypm, vq;mq ñ xι ă ypmq,

which ensures Hpxιq ą 0. If m “ x̂ then apmq “ 0, so

Hpx̂q “

ż

py ´ x̂qdGpy; x̂q “

ż

ΦpGpy; x̂q;vq

c1px̂q
dGpy; x̂q ´ x̂ “

1

nc1px̂q
´ x̂.

This is negative because x̂c1px̂q “ cpx̂q ą 1{n where the equality is due to the definition
of x̂ and the inequality is due to Assumption 1.
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For uniqueness, we prove that H 1pmq ă 0 whenever Hpmq “ 0. Through integra-
tion by parts, H can be rewritten as

H 1
pmq “ ´p1´Gpapmq;mqq

` pm´ apmqqpgpapmq;mqa1pmq `Gmpapmq;mqq ´

ż ypmq

apmq

Gmpy;mqdy.

Since m ě apmq and a1pmq ă 0, it is sufficient for H 1pmq ă 0 that (i) Gmpapmq;mq ď 0

and (ii)
şypmq

apmq
Gmpy;mqdy “ 0.

For both (i) and (ii), recall that for all y P rapmq, ypmqs,

ΦpGpy;mq;vq “ cpmq ` c1pmqpy ´mq.

Differentiating this identity with respect to m and y, we obtain

Φ1pGpy;mq;vqGmpy;mq “ c2pmqpy ´mq and Φ1pGpy;mq;vqgpy;mq “ c1pmq,

leading to

Gmpy;mq “
c2pmq

c1pmq
py ´mqgpy;mq.

Since c1pmq, c2pmq ą 0 and apmq ď m, (i) Gmpapmq;mq ď 0. (ii) also holds whenever
Hpmq “ 0, because

ż ypmq

apmq

Gmpx;mqdx “
c2pmq

c1pmq

ż ypmq

apmq

py ´mqdGpy;mq “
c2pmq

c1pmq
Hpmq.

Proof of Lemma 7.4. Fix v P V, and let vδ denote the prize vector obtained from v via
a bottom-reducing transfer of size δ from k to some j ă k. We show that m˚ is strictly
decreasing in δ. Recall that we focus on the smallest value of m˚ such that Hpm˚q, in
which case Hmpm

˚,vq ď 0 (see the proof of Lemma 7.1). Since Hpm˚pδq,vδq “ 0 for
any δ, the desired result holds if Hδpm

˚p0q, v0q ă 0. We prove this inequality.
We first make a few useful observations. For all y ă bpm˚q, ΦpGpy;m˚,vq;vq “

c1pm˚qy. Differentiating both sides with δ and evaluating them at δ “ 0, we have

φjkpGpy;m˚,vqq ` Φ1pGpy;m˚,vq;vqGδpy;m˚,vq “ 0,[A.1]
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where

φjkpqq :“

ˆ

n´ 1

j ´ 1

˙

qn´jp1´ qqj´1
´

ˆ

n´ 1

k ´ 1

˙

qn´kp1´ qqk´1.[A.2]

Let q0 be the unique point at which φjkpq0q “ 0. Then, φjkpqq ă 0 if q ă q0, while
φjkpqq ą 0 if q ą q0. Combined with [A.1], this implies that Gδpy;m˚,vq ą 0 if q ă q0,
while Gδpy;m˚,vq ă 0 if q ą q0.

Via integration by parts,

Hpm,vq “

ż bpmq

0

py ´mqdGpy;m,vq “ pbpmq ´mqGpbpmq;m,vq ´

ż bpmq

0

Gpy;m,vqdy.

Differentiating this with respect to δ and evaluating it at pm, δq “ pm˚, 0q, we obtain

Hδpm
˚,vq “ pbpm˚

q ´m˚
qGδpbpm

˚
q;m˚,vq ´

ż bpm˚q

0

Gδpy;m˚,vqdy.

Combining [A.1] with the fact that Φ1pGpy;m˚,vq;vqgpy;m˚,vq “ c1pm˚q yields

´

ż bpm˚q

0

Gδpy;m˚,vqdy “
1

c1pm˚q

ż Gpbpm˚q;m˚,vq

0

φjkpqqdq ă
1

c1pm˚q

ż 1

0

φjkpqqdq “ 0,

where the inequality is because φjkpqq ą 0 for q ą q0. There are the following two
cases to consider: (i) Gδpbpm

˚q;m˚,vq ď 0 and (ii) Gδpbpm
˚q;m˚,vq ą 0. The result

(Hδpm
˚,vq ă 0) is straightforward in the former case.
Consider the case where Gδpbpm

˚q;m˚,vq ą 0, which, by the result above, is
equivalent to Gpbpm˚q;m˚,vq ă q0; we use the properties of bottom-reducing transfers
for this part of the proof. Using Hpm˚,vq “ 0, Hδpm

˚,vq can be rewritten as

Hδpm
˚,vq “

Gδpbpm
˚q;m˚,vq

Gpbpm˚q;m˚,vq

ż bpm˚q

0

Gpy;m˚,vqdy ´

ż bpm˚q

0

Gδpy;m˚,vqdy

“
Gδpbpm

˚q;m˚,vq

Gpbpm˚q;m˚,vq

ż bpm˚q

0

Gδpy;m˚,vq

„

Gpy;m˚,vq

Gδpy;m˚,vq
´

Gpbpm˚q;m˚,vq

Gδpbpm˚q;m˚,vq



dy.

For Hδpm
˚,vq ă 0, it is sufficient that G{Gδ is increasing in y—as it implies that

the braketed term is negative for any y ď bpm˚q—or equivalently, that Rpqq :“

´qΦ1vpqq{φjkpqq is increasing in q for q ă q0, where we have used [A.1] and set q “
Gpy;m˚,vq. Using their definitions, it can be shown that

qΦ1pq;vq “ pn´ 1qqn´kp1´ qqk´1
k
ÿ

i“1

ˆ

n´ 2

i´ 1

˙

zk´i∆vi[A.3]
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and

φjkpq;vq “

ˆ

n´ 1

j ´ 1

˙

qn´kp1´ qqk´1
pzk´j ´ zk´j0 q

where z “ q{p1´ qq and z0 “ q0{p1´ q0q. Now, Rpqq can be written as

Rpqq “ ´
qΦ1pq;vq

φjkpqq
“
pn´ 1q

řk
i“1

`

n´2
i´1

˘

zk´i∆vi
`

n´1
j´1

˘

pzk´j0 ´ zk´jq
.[A.4]

Clearly, the numerator is increasing in z and the denominator is decreasing in z; therefore,
Rpqq is increasing in z as required.

B. Further Comparative Statics Results for Concave-Convex Costs

Lemma B.1. Suppose c is concave-convex. Consider two prize schedules, v and w,
such that w is more unequal and is obtained from v via a transfer p1, jq, j ą 1. Then
m˚pwq ě m˚pvq.

Proof. Consider a family of prize schedules vδ, where v0 “ v and vδ is obtained from
v via a transfer p1, jq. It is sufficient to show that, for a fixed m˚ “ m˚pvq, Hpm˚,vδq is
increasing in δ at δ “ 0, i.e., that Hδpm

˚,vδq|δ“0 ą 0.
For brevity, let a˚ “ apm˚q. Differentiating Hpm, vq with respect to δ,

Hδpm
˚,v0

q “ x̄δpm
˚,vq ` pm˚

´ a˚qGδpa
˚;m˚,vq ´ x̄δpm

˚,vq ´

ż x̄pm˚,vq

a˚
Gδpx;m˚,vqdx

“ pm˚
´ a˚qGδpa

˚;m˚,vq ´

ż x̄pm˚,vq

a˚
Gδpx;m˚,vqdx.

[B.1]

From ΦpGpx;m,vq;vq “ cpmq ` c1pmqpx´mq, we obtain Gδ “ ´φ1jpGq{Φ
1
vpGq. Com-

bining this with Φ1pGpx;m,vq;vqgpx;m,vq “ c1pmq, we obtain

´

ż x̄pm˚,vq

a˚
Gδpx;m˚,vqdx “

ż x̄pm˚,vq

a˚

φ1jpGpx;m˚,vqq

c1pmq
gpx;m˚,vqdx

“
1

c1pmq

ż 1

Gpa˚;m˚,vq

φ1jpqqdq ą 0.

The inequality follows because φ1jpqq is a single-crossing function of q, first negative,
then positive, and integrates to zero on r0, 1s. Let q0 denote the crossing point. In order
to sign (B.1), there are two cases to consider: (i) Gδpa

˚;m˚,vq ě 0 or, equivalently,
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Gpa˚;m˚,vq ď q0, in which case the result follows immediately; and (ii)Gδpa
˚;m˚,vq ă

0 or, equivalently, Gpa˚;m˚,vq ą q0, in which case the first term in (B.1) is negative
and additional steps are needed.

We now consider case (ii), i.e., assume Gδpa
˚;m˚,vq ă 0 and Gpa˚;m˚,vq ą q0.

Hpm,vq can be rewritten as

Hpm,vq “ x̄´ apmq ` papmq ´mqp1´Gpapmq;m,vqq ´

ż x̄pm,vq

apmq

Gpx;m,vqdx

“

ż x̄pm,vq

apmq

r1´Gpx;m,vqsdx´ pm´ apmqqp1´Gpapmq;m,vqq.

The condition Hpm˚,vq “ 0 then gives

m˚
´ a˚ “

1

1´Gpa˚;m˚,vq

ż x̄pm˚,vq

a˚
r1´Gpx;m˚,vqsdx,

which allows us to write [B.1] in the form

Hδpm
˚,v0

q “
Gδpa

˚;m˚,vq

1´Gpa˚;m˚,vq

ż x̄pm˚,vq

a˚
r1´Gpx;m˚,vqsdx´

ż x̄pm˚,vq

a˚
Gδpx;m˚,vqdx

“

ż x̄pm˚,vq

a˚
r1´Gpx;m˚,vqs

„

Gδpa
˚;m˚,vq

1´Gpa˚;m˚,vq
´

Gδpx;m˚,vq

1´Gpx;m˚,vq



dx.

To show that Hδpm
˚,v0q ą 0 it is, therefore, sufficient to show that Gδpx;m˚vq{r1 ´

Gpx;m˚,vqs is decreasing in x forGpx;m˚,vq ą q0 or, equivalently,Rpqq “ φ1jpqq{rΦ
1
vpqqp1´

qqs is increasing in q for q ą q0.
From Φvpqq :“

řn
k“1

`

n´1
k´1

˘

p1´ qqk´1qn´kvk,

Φ1pq;vq “
n
ÿ

i“1

ˆ

n´ 1

i´ 1

˙

pn´ iqqn´i´1
p1´ qqi´1vi ´

n
ÿ

i“1

ˆ

n´ 1

i´ 1

˙

pi´ 1qqn´ip1´ qqi´2vi

“

n
ÿ

i“1

pn´ 1q!

pi´ 1q!pn´ 1´ iq!
qn´i´1

p1´ qqi´1vi ´
n
ÿ

i“2

pn´ 1q!

pi´ 2q!pn´ iq!
qn´ip1´ qqi´2vi

“ pn´ 1q
n´1
ÿ

i“1

ˆ

n´ 2

i´ 1

˙

qn´i´1
p1´ qqi´1vi ´ pn´ 1q

n´1
ÿ

i“1

ˆ

n´ 2

i´ 1

˙

qn´i´1
p1´ qqi´1vi`1

“ pn´ 1q
n´1
ÿ

i“1

ˆ

n´ 2

i´ 1

˙

qn´i´1
p1´ qqi´1∆vi,

[B.2]
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where ∆vi “ vi ´ vi`1 ě 0.17 Furthermore, from [A.2] for a transfer p1, jq we have

φ1jpqq “ qn´1
´

ˆ

n´ 1

j ´ 1

˙

qn´jp1´ qqj´1
“ qn´1

´

ˆ

q0

1´ q0

˙j´1

qn´jp1´ qqj´1,[B.3]

where q0 is such that φ1jpq0q “ 0. Letting z “ q{p1´ qq and z0 “ q0{p1´ q0q, obtain

Rpqq “
φ1jpqq

Φ1vpqqp1´ qq
“

qn´1 ´ zj´1
0 qn´jp1´ qqj´1

pn´ 1q
řn´1
i“1

`

n´2
i´1

˘

qn´i´1p1´ qqi∆vi

“
zn´1 ´ zj´1

0 zn´j

pn´ 1q
řn´1
i“1

`

n´2
i´1

˘

zn´i´1∆vi
.

The derivative of Rpqq with respect to z is, up to a positive multiplier,

BzRpqq9rpn´ 1qzn´2
´ pn´ jqzj´1

0 zn´j´1
s

n´1
ÿ

i“1

ˆ

n´ 2

i´ 1

˙

zn´i´1∆vi

´ pzn´1
´ zj´1

0 zn´jq
n´1
ÿ

i“1

ˆ

n´ 2

i´ 1

˙

pn´ i´ 1qzn´i´2∆vi

“

n´1
ÿ

i“1

ˆ

n´ 2

i´ 1

˙

zn´i´1∆viz
2n´i´j´2

rpn´ 1qzj´1
´ pn´ jqzj´1

0 ´ pn´ i´ 1qpzj´1
´ zj´1

0 qs

“

n´1
ÿ

i“1

ˆ

n´ 2

i´ 1

˙

zn´i´1∆viz
2n´i´j´2

rizj´1
` pj ´ i´ 1qzj´1

0 s

ą

n´1
ÿ

i“1

ˆ

n´ 2

i´ 1

˙

zn´i´1∆viz
2n´i´j´2

pj ´ 1qzj´1
0 ą 0,

where the first inequality is due to z ą z0. Thus, Rpqq is increasing in z for z ą z0 and
hence it is also increasing in q for q ą q0.

Lemma B.1 describes the equilibrium adjustment in the virtual cost function ξ˚pxq
in response to top-improving transfers p1, jq. It is easy to see that if the mass point shifts
up, m˚pwq ą m˚pvq, then F ˚p¨;wq crosses F ˚p¨;vq once from above. Since we already
know from Proposition 6.2 that the expected effort goes up as well, Theorem 4.A.22
from Shaked and Shanthikumar (2007) implies the following result.

Proposition B.2. Suppose c is concave-convex and prize schedules v, w P Vare such
that w is obtained from v via a sequence of top-improving transfers. Then F ˚w dominates
F ˚v in the increasing convex order.

17This representation shows that Φ1vpqq is proportional to the benefit of a player whose output quantile
is q in a contest with n´ 1 players and possibly nonmonotone prizes ∆vi. Therefore, Φ1vpqq is positive
but not necessarily monotone in q (its monotonicity depends on whether vi are convex or concave in i).
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C. Multiple equilibria for convex-concave costs

The following lemma provides sufficient conditions for the equilibrium uniqueness.

Lemma C.1. The equilibrium is unique in the convex-concave case if either of the
following conditions hold:

(a) Φvpqq is convex in q;
(b) c1pbpmqqbpmq ě c1pmqm for all m P p0, xIs.

Proof. It is convenient to define a modified version of function H:

H̃pm, vq “ c1pmq

ż bpmq

0

px´mqdGpx;m, vq.

Showing that H̃ is single-crossing from positive to negative inm is, of course, equivalent
to showing the same for H. It is also convenient to define B “ Gpbpmq;m, vq and
M “ Gpm;m, vq, both functions of m and v.

Recall that ΦvpGq “ c1pmqx for x P r0,mintbpmq, x̄us; therefore,

H̃pm, vq “

ż B

0

Φvpqqdq ´ c
1
pmqmB.[C.1]

Differentiating with respect to m, obtain

H̃mpm, vq “ rΦvpBq ´ c
1
pmqms

dB

dm
´ rc2pmqm` c1pmqsB.

If bpmq ą x̄pm, vq, we have B “ 1 and H̃m ă 0 as required. Suppose bpmq ď x̄pm, vq,
in which case ΦvpBq “ c1pmqbpmq and

dB

dm
“

1

Φ1vpBq
rc2pmqbpmq ` c1pmqb1pmqs.[C.2]

Part (a): From cpbq ´ cpmq “ c1pmqpb´mq, we can show that

c2pmqbpmq ` c1pmqb1pmq “ c2pmqm` c1pbpmqqb1pmq ď c2pmqm,[C.3]

implying dB{dm ď c2pmqm{Φ1vpBq. Note also that ΦvpMq “ c1pmqm. Thus,

H̃mpm, vq ď rΦvpBq ´ ΦvpMqs
c2pmqm

Φ1vpBq
´ rc2pmqm` c1pmqsB

ă
c2pmqm

Φ1vpBq
rΦvpBq ´ ΦvpMq ´ Φ1vpBqBs ă 0,
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where the last inequality follows from the convexity of Φvpqq in q.
Part (b): The condition in part (b) simply ensures that dB{dm ď 0. Indeed,

combining (C.2) and (C.3), obtain that the sign of dB{dm is the same as the sign of

c2pmqbpmq ` c1pmqb1pmq “ c2pmqbpmq `
c1pmqc2pmqpbpmq ´mq

c1pbpmqq ´ c1pmq

“
c2pmqrc1pbpmqqbpmq ´ c1pmqms

c1pbpmqq ´ c1pmq
ď 0.

The inequality follows from the condition in part (a), and the assumption that cpxq is
first convex then concave that ensures the denominator is negative.

The convexity of Φvpqq imposes a restriction on prize schedules. It is easy to show
that Φvpqq is convex provided prize differentials ∆vi are decreasing in i, i.e., the prize
schedule v itself is convex. The winner-take-all schedule satisfies this property.

The condition in part (b) of Lemma C.1 essentially states that costs are not too
flat beyond the inflexion point. If costs become flat, there may be multiple equilibria:
a “high m” equilibrium where the mass point is at a relatively high effort and there is
little (or no) effort mixing above xI , and a “low m” equilibrium where the mass point
is at a low effort and agents leverage the flatness of the cost function with mixing over
a wider range at high efforts. The existence of multiple equilibrium is demonstrated
with thew following example.

Example C.2 (Multiple equilibria). Consider a cost function of the form

cpxq “

#

xs, x P r0, µs

µs ` αpx´ µq, x ě µ

for some µ ą 0, α ą 0, s ą 1. This function, illustrated in the left panel of Figure 4, is
strictly convex for x P r0, µs and affine for x ě µ.18 The corresponding bpmq satisfies

sms´1
pb´mq “ µs ` αpb´ µq ´ms,

which gives

bpmq “

#

ps´1qms`µs´αµ
sms´1´α

, sms´1 ą α

8, otherwise

Further, we consider the punish-the-bottom prize schedule, v “ p 1
n´1

, . . . , 1
n´1

, 0q, with
Φvpqq “ r1´p1´qq

n´1s{pn´1q. This Φvpqq is strictly concave in q, which, in conjunction

18It is not differentiable at x “ µ, but this point can never be in the support of F , so it does not affect
the analysis.
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Figure 4: An example with multiple equilibria (Example C.2). Left: The cost function
cpxq, with the corresponding functions ξpx,mq and ξ̃px,mq illustrated by the thin and
thick red lines, respectively. Right: Function H̃pm, vq. Parameters: µ “ 0.315, α “ 0.06,
s “ 2, n “ 7, the punish-the-bottom prize schedule.

with a low enough α in the cost function, will produce large effects to counteract the
sufficient conditions in Lemma C.1.

Let Bpmq “ Gpbpmq;m, vq. For a givenm P p0, µs, we have B “ 1 if c1pmqbpmq ě
v1 “ 1{pn´ 1q; that is, B “ 1 whenever sms´1 ď α or

sms´1rps´ 1qms ` µs ´ αµs

sms´1 ´ α
ě

1

n´ 1
.

Otherwise, B satisfies the equation

sms´1rps´ 1qms ` µs ´ αµs

sms´1 ´ α
“

1

n´ 1
r1´ p1´Bqn´1

s,

which can be solved in a closed form.
We use the function H̃ defined in the proof of Lemma C.1. Equation (C.1) gives

H̃pm, vq “
1

n´ 1

ż Bpmq

0

r1´ p1´ qqn´1
sdq ´ smsBpmq

“
1

n´ 1

„

Bpmq ´
1´ p1´Bpmqqn

n



´ smsBpmq.

The resulting function H̃pm, vq for a specific combination of parameters is shown in
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the right panel of Figure 4. There are three points where H̃pm, vq “ 0.

Given the possibility of the multiplicity of equilibria, it is useful to be able to rank
equilibria in a natural way. The following result shows that they are ranked in terms of
output and the agents’ payoff by the location of the mass point m˚.

Lemma C.3. Multiple equilibria in the convex-concave case, if present, are ranked by
m˚. Output decreases withm˚ in the FOSD sense, and the agents’ payoff increases with
m˚.

Proof. It is easy to see that function ξ̃px,mq increases in m. Therefore, Gpx;m, vq is
increasing in m as well, and hence, output is decreasing in m˚ in the FOSD sense
across multiple equilibria. Furthermore, ´ξp0,mq “ c1pmqm ´ cpmq, which gives
´ξmp0,mq “ c2pmqm ą 0 for m P p0, xIq, implying that the agents’ equilibrium payoff
is increasing in m˚.

Lemma C.3 implies that, generically, the equilibrium with the highest expected
effort satisfies Hmpm

˚, vq ă 0.

D. General cost functions

In this section we show how the techniques developed for concave-convex and convex-
concave costs with one inflexion points can be extended to establish the Main Theorem
for more general cost functions.

Proposition D.1. Suppose c is differentiable, strictly increasing, and has finitely many
inflexion point. Then the expected equilibrium effort (and output) is maximised by the
winner-take-all contest.

Proof. Consider a v P Vand assume an equilibrium pG˚v , F ˚v q exists. Let ξ˚v denote the
corresponding virtual cost function. Since c has finitely many inflexion points, ξ˚pxq
consists of finitelymany alternating affine and strictly concave segments in the support of
G˚v . Suppose there are K ě 0 affine segments, and let rak, bks denote the corresponding
intervals in supppG˚vq. In each of the affine segments, letm˚

k denote a point where ξ˚pxq
is tangent, and equal, to cpxq.19 We, therefore, consider a parameterized family of local
perturbations of ξ˚v in the form

ξpx;mq “

#

cpmkq ` c
1pmkqpx´mkq, x P rak, bks

cpxq, otherwise

19If cpxq is affine in some intervals, it is possible that ξ˚pxq “ cpxq in an interval. In that case, let m˚k
be in the middle of the interval.
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where m “ pm1, . . . ,mKq is a vector of tangency points, and ξ˚v pxq “ ξpx;m˚q.20
Case 1: a1 ą 0, ie, the initial segment of ξ˚v is strictly concave. In this case

ξ˚v p0q “ 0, and G˚v satisfies the identity ΦvpG
˚
vpxqq “ mintξ˚v pxq, v1u. Let distribution

Gpx;m, vq be defined by the identity

ΦvpGpx;m, vqq “ mintξpx;mq, v1u,[D.1]

with G˚vpxq “ Gpx;m˚, vq. Let x̄pm˚, vq denote the upper bound of the support of G˚v ,
and write the equilibrium expected effort as

xv “

ż

xdG˚vpxq “ x̄pm˚, vq ´

ż x̄pm˚,vq

0

G˚vpxqdx.

Consider a P-D transfer pi, jq that makes v more unequal by transferring δ ą 0

from prize vj to prize vi, i ă j. As before, we can construct a family of prize schedules
vδ obtained from v “ v0 via such transfers. It is sufficient to consider the effect of an
infinitesimal transfer on xv, ie, rdxvδ{dδsδ“0.

We have

dxvδ

dδ

ˇ

ˇ

ˇ

ˇ

δ“0

“
dx̄

dδ
´
dx̄

dδ
G˚vpx̄q ´

ż x̄pm˚,vq

0

d

dδ
G˚vpxqdx[D.2]

“ ´

ż x̄pm˚,vq

0

«

K
ÿ

k“1

Gmkpx;m˚, vq
dm˚

k

dδ
`Gδpx;m˚, vq

ff

dx.[D.3]

Here, all derivatives are evaluated at δ “ 0 and m “m˚, ie, at the original equilibrium
point. Differentiating [D.1] with respect to x, mk, and δ, obtain, for x P supppG˚vq:

Φ1vpGpx;m˚, vqqgpx;m˚, vqq “ ξxpx;m˚
q “

#

c1pm˚
kq, x P rak, bks

c1pxq, otherwise
[D.4]

Φ1vpGpx;m˚, vqqGmkpx;m˚, vq “ ξmkpx;m˚
q “

#

c2pm˚
kqpx´m

˚
kq, x P rak, bks

0, otherwise

[D.5]

20For m deviating sufficiently far from m˚, the structure of ξpx;mq may become very different from
that of ξ˚v pxq; in particular, because ak and bk shift with mk, the number of intervals where ξpx;mq is
affine may change. However, for our purposes it is sufficient to consider local perturbations of m around
m˚ such that the structure of ξ˚v pxq is preserved.
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φijpGpx;m˚, vqq ` Φ1vpGpx;m˚, vqqGδpx;m˚, vq “ 0[D.6]

Combining [D.4] and [D.5], we can write

ż x̄pm˚,vq

0

K
ÿ

k“1

Gmkpx;m˚, vq
dm˚

k

dδ
dx “

K
ÿ

k“1

c2pm˚
kq

c1pm˚
kq

dm˚
k

dδ

ż bk

ak

px´m˚
kq dGpx;m˚, vq “ 0.

Each term in the last sum is equal to zero. Indeed, if c is affine atm˚
k, we have c2pm˚

kq “ 0.
Otherwise, each m˚

k is chosen optimally such that ξpx;m˚q solves the dual problem
[??], whose first-order conditions,

”

B

Bmk

ş

ξpx;mq dG˚vpxq
ı

m“m˚
“ 0, are equivalent to

şbk
ak
px´m˚

kq dGpx;m˚, vq “ 0.
Furthermore, combining [D.4] and [D.6], we can write

´

ż x̄pm˚,vq

0

Gδpx;m˚, vq dx “

ż x̄pm˚,vq

0

φijpGpx;m˚, vqq

ξxpx;m˚q
dGpx;m˚, vqq ě 0,

following the same argument as in the proof of Proposition 6.2. Thus, rdxvδ{dδsδ“0 ě 0

as required. The inequality is strict with if ξpx;m˚q is nonlinear, ie, whenever effort
mixing is involved. The overall result is, therefore, a generalization of Proposition 6.2,
and implies the Main Theorem.

Case 2: a1 “ 0, ie, the initial segment of ξ˚v is affine. In this case ξ˚v p0q ď 0

(generically, ă 0), and G˚v satisfies the identity ΦvpG
˚
vpxqq “ mintξ̃˚v pxq, v1u, where

ξ̃˚v pxq “ ξ˚v pxq´ ξ
˚
v p0q. Defining ξpx;mq as above, and ξ̃px;mq “ ξpx;mq´ ξp0;mq, we

have

ξ̃px;mq “

#

cpmkq ` c
1pmkqpx´mkq ` c

1pm1qm1 ´ cpm1q, x P rak, bks

cpxq ` c1pm1qm1 ´ cpm1q, otherwise

Distribution Gpx;m, vq is now defined by ΦvpGpx;m, vqq “ mintξ̃px;mq, v1u and sat-
isfies the identities [D.4] and [D.6], as well as [D.5] for k ą 1. For the derivative with
respect to m1, the identity takes the form

Φ1vpGpx;m˚, vqqGm1px;m˚, vq “ ξ̃m1px;m˚
q “

#

c2pm˚
1qx, x P r0, b1s

c2pm˚
1qm

˚
1 , otherwise

[D.7]

With these modifications, the first term in the sum over k in [D.2] no longer
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integrates to zero. Instead, we have

´

ż x̄pm˚,vq

0

K
ÿ

k“1

Gmkpx;m˚, vq
dm˚

k

dδ
dx

“ ´c2pm˚
1q

dm˚
1

dδ

«

ż b1

0

x

c1pm˚
1q

dGpx;m˚, vq `

ż x̄pm˚,vq

b1

m˚
1

c1pxq
dGpx;m˚, vq

ff

.

The sign of this term is determined by the sign of the derivative dm˚
1{ dδ, ie, by the

direction of the equilibrium adjustment of the first mass point. The location of this mass
point determines the equilibrium rent π˚ “ c1pm˚

1qm
˚
1 ´ cpm˚

1q. Recall that in Case 1
where ξ˚v p0q “ 0 and the agents earn zero rents these adjustments did not matter because
all derivatives Gmk integrate to zero.

The integral of ´Gδ in [D.2] has the same structure as in Case 1 and is, therefore,
positive. Thus, in order to show that the equilibrium expected effort increases, it is
sufficient to show that dm˚

1{ dδ ď 0. This is shown in Lemma 7.4 for bottom-reducing
transfers in any equilibrium such that H1mpm

˚
1 , vq ă 0, where Hkpmk, vq “

şbk
ak
px ´

mkq dGpx;m, vq. As we know, there is a possibility for multiple equilibria, ie, multiple
values of m˚

1 ; however, these equilibria are ranked by the FOSD order in output in the
same way as in the convex-concave case. Indeed, ξ̃px;mq increases in m1. Sufficient
conditions for the uniqueness of the equilibrium value of m˚

1 are the same as well.
We conclude that bottom-reducing transfers always raise the equilibrium effort in the
equilibrium with the lowest value of m˚

1 , which ultimately becomes a unique value.
This implies the Main Theorem.
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