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Abstract

We review the multiple frequency Gegenbauer autoregressive moving average model,
which is able to reproduce a wide range of autocorrelation functions. Extending the
result of Chung (1996a), we propose the asymptotic distributions for a conditional sum
of squares estimator of the model parameters. The parameters that determine the cycle
lengths are asymptotically independent, converging at rate T for finite cycles. This result
does not hold generally, most notably for the differencing parameters associated with the
cycle lengths. Remaining parameters are typically not independent and converge at the
standard rate of T 1/2. We present simulation results to explore small sample properties of
the estimator, which strongly support most distributional results while also highlighting
areas that merit additional exploration. We demonstrate the applicability of the theory
and estimator with an application to IBM trading volume.
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1. Introduction

Multiple frequency, or k-factor, Gegenbauer autoregressive moving average models
(GARMA) include ARIMA, fractionally integrated ARMA (ARFIMA), seasonal ARFIMA,
and single frequency GARMA models as special cases and may simultaneously include
features of all of these methods. These methods are especially useful because they can
capture complex but commonly observed patterns in the spectral density and autocor-
relation functions (ACF) of a stochastic process using only a few parameters. In this
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paper, we present a conditional sum of squares (CSS) estimator along with proposed joint
asymptotic distributions for all parameters in the multiple frequency model. Simulation
experiments generally validate the theoretical distributions. As an application, we model
the trading volume of IBM equities, which follows a very complex stochastic process.

Long memory models were popularized by Granger and Joyeux (1980) and Hosk-
ing (1981) who introduced fractional differencing as a means of capturing complicated
stochastic properties of data in both the time and frequency domains. These models have
proven especially useful in economics and finance by bridging the gap between infinite
variance unit root processes and finite variance short memory processes. One shortcom-
ing of fractionally differenced models, however, is that they are not capable of capturing
long memory processes with persistent cycles in the autocorrelation function. Gray et al.
(1989) and Woodward et al. (1998) addressed this issue with the k-factor Gegenbauer
autoregressive moving average model (k-GARMA). This model is capable of generating
many complex patterns in the ACF that have previously been very difficult to capture.
One particularly interesting case is a process that contains both ARFIMA and GARMA
components, such that the ACF decays non-monotonically at a hyperbolic rate and is
asymmetric about zero such as shown in Figure 1.

Figure 1: ACF of a process with both an ARFIMA and a GARMA component.

Due to its flexibility, the multiple frequency GARMA approach has proven very use-
ful for modeling many physical, economic, and financial time series that exhibit complex
long memory features. Chung (1996b) estimates a single factor model for sunspots and
Woodward et al. (1998) and Diongue and Ndongo (2016) provide evidence supporting
the existence of multiple sources of long memory in atmospheric CO2 and river flows.
In economics and finance, these methods have been used to study interest rates (Ra-
machandran and Beaumont 2001; Gil-Alanaa 2007; Asai et al. 2018), exchange rates
(Smallwood and Norrbin 2006), inflation (Caporale and Gil-Alana 2011; Peiris and Asai
2016), equity prices (Lu and Guegan 2011; Caporale and Gil-Alana 2014) and unem-
ployment (Gil-Alanaa 2007) among many others. The possibility of multiple sources of
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long memory was illustrated recently by Leschinski and Sibbertsen (2019) who modeled
California electricity load data using 14 independent long memory components.

Despite the increasing interest in the multi-factor GARMA model, a unifying esti-
mation approach does not appear to exist. Only a handful of studies have attempted to
simultaneously estimate all model parameters, including the relevant differencing param-
eters and the positions of the spectral poles, known as Gegenbauer frequencies. Almost
all studies assume the positions of the singularities are known (see, for example, and Ca-
porale and Gil-Alana (2011)) or they employ two-step procedures where the Gegenbauer
frequencies are typically first estimated by inspection of the periodogram (see, for exam-
ple, Lu and Guegan (2011) and Asai et al. (2018), amongst others). A major difficulty
lies in the fact that estimation of the parameters dictating the positions of the spectral
poles appears to be non-standard. Perhaps more importantly, the relevant parameter
space is closed for these Gegenbauer frequencies, and there may exist a discontinuity
in the distribution at the zero frequency (see, Chung (1996a)). Additionally, maximum
likelihood based estimators in the frequency domain use a discrete set of parameters for
the associated singularities. For these estimators, as argued by Giraitis et al. (2001), a
full set of distributional results may not exist.

For inference for the models considered here, we are unaware of any study proposing
a full set of distributional results for any estimator. For a single factor model, Giraitis
et al. (2001) establish consistency for the Whittle estimator of the Gegenbauer frequency
and provide normality results for the differencing parameter. Hidalgo and Soulier (2004)
discuss the properties of the log-periodogram based semi-parametric estimates of the
memory parameters for a multi-factor model where the Gegenbauer frequencies are ob-
tained from inspection of the periodogram. For time domain maximum likelihood-based
estimators, Chung (1996a) provided promising results for a constrained sum of squares
(CSS) method for a single factor model based on the observation that, for the true param-
eter values, the expectation of the approximate likelihood function is zero. Regrettably,
given the difficulties involved with the distributions of the estimates of the spectal poles,
Chung (1996a) was unable to provide a rigorous initial proof establishing consistency,
causing his results to be questioned by Giraitis et al. (2001).

Notwithstanding the concerns regarding the results of Chung (1996a), the CSS esti-
mator provides a feasible and relatively simple method to obtain joint estimation results
for the GARMA parameters. Recently, Beaumont and Smallwood (2019) provided a
comprehensive simulation study that generally supports the results of Chung (1996a)
excepting the case of parameter estimation of the Gegenbauer frequency when the true
value is 0. Additionally, as the CSS estimator admits a continuous set of possible Gegen-
bauer frequencies, Beaumont and Smallwood (2019) show that the CSS method generally
obtains a smaller bias for this parameter relative to the Whittle based counterpart. In
comparison to an MCMC Whittle estimator, Diongue and Ndongo (2016) further demon-
strate that the CSS method is relatively efficient in estimating differencing parameters
for k-factor GARMA processes with infinite variance disturbances. Given these promis-
ing simulation results, it is worthwhile to consider the properties of the CSS estimator
when applied to models with multiple Gegenbauer frequencies.

In this paper, we review the mulit-factor GARMA model and present the CSS es-
timator for all model parameters. Further, we extend the proofs of Chung (1996b) to
obtain proposed distributional results, which show that the estimates of the Gegenbauer
frequencies are asymptotically independent of each other and all other model parame-
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ters. Since we are unable to provide a rigorous consistency proof for the estimators of
the sprectral poles, we provide simulation evidence to help validate the results. The
simulation evidence, including additional results in Beaumont and Smallwood (2019),
demonstrates that the theory can typically be reliably used to provide inference for the
estimated parameters.

The rest of the paper is organized as follows. In the next section, we present the
details of the multi-factor GARMA model. We present the CSS estimator and derive
its properties in Section 3. In Section 4, we present Monte Carlo evidence for the finite
sample precision of the iterative CSS estimation method that we propose. In Section
5, we show that the weekly trading volume of IBM stocks is best modelled with a five-
frequency GARMA process. We summarize and draw conclusions in Section 6, and an
appendix contains technical details.

2. Multiple Frequency Long Memory Processes

The multiple frequency GARMA model was originally discussed by Gray et al. (1989)
and presented in greater detail by Woodward et al. (1998) who refer to the model as a
k-factor GARMA model. The model is

φ(L)

k∏
i=1

(
1− 2ηiL+ L2

)λi
(xt − µ) = θ(L) εt, (1)

where φ(L) and θ(L) are polynomials in the lag operator L such that φ (z) = 0 and
θ (z) = 0 have roots outside the unit circle, {εt} is a white noise disturbance sequence,
λi are differencing parameters, and the ηi are the parameters describing the periodic
features of the process. The Gegenbauer polynomials (1 − 2ηiL + L2)λi have a pair of
complex roots with modulus one and expand to an infinite order polynomial in L. When
k = 1, we get the single frequency GARMA model (Hosking 1981; Gray et al. 1989),
and when, in addition, η = 1 the model further reduces to an ARFIMA(p, d, q) model
(Granger and Joyeux 1980; Hosking 1981) where, in this context, d = 2λ. Finally, we
get an ARIMA model when η = 1 and λ = 0.5, and an ARMA process when λ = 0.

Assuming that each ηi is distinct, the k-factor GARMA model is stationary if λi < 0.5
whenever |ηi| < 1, and λi < 0.25 when |ηi| = 1. The model is invertible if λi > −0.5
whenever |ηi| < 1, and λi > −0.25 when |ηi| = 1. Proofs for these results are available
in Woodward et al. (1998).

For stationary cases, the moving average representation is,

(xt − µ) =
θ(L)

φ(L)

k∏
i=1

(
1− 2ηiL+ L2

)−λi
εt, (2)

from which the spectral density function is obtained as

f(ω) =
σ2

2π

∣∣∣∣ θ(e−iω)

φ(e−iω)

∣∣∣∣2 k∏
j=1

{2 |cos(ω)− cos(υj)|}−2λj , ω ∈ [0, π] (3)

where υj = cos−1(ηj) are the Gegenbauer frequencies. The spectral density function is
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unbounded at all υj if λj > 0 and vanishes there if λj < 0.
The autocovariances for a k-factor GARMA model can be computed as

γj = 2

∫ π

0

f(ω) cos(ωj) dω, (4)

where special attention must be given to the singularities in f (ω) as recently discussed
by McElroy and Holan (2016). Convenient expressions for γj are largely available for
single frequency models only. For example, when η = 1 and λ < 0.25, the autocor-
relations exhibit hyperbolic decay as demonstrated by Granger and Joyeux (1980) for
fractional processes. For GARMA models, Chung (1996a) shows that for large j, the
autocorrelation function with |η| < 1 and λ < 0.5, λ 6= 0, can be approximated as
ρj ≈ J cos(j υ) j2λ−1, where J does not depend upon j. This expression makes clear the
hyperbolically damped sinusoidal pattern of the autocorrelation function of a stationary
GARMA process with |η| < 1.

In Figure 1, we illustrated a model that combines ARFIMA and GARMA models,
which is of particular interest for economic and financial applications. This example used
a two frequency model with parameters (η1, λ1) = (1, 0.15) and (η2, λ2) = (0.992, 0.25).
Note that the first frequency corresponds to an unbounded spike at the origin of the
spectrum, and the second frequency corresponds to an unbounded spike at the frequency
υ2 = cos−1 (0.992) = 0.1266 radians, or 0.0201Hz, which is very close to the origin.
The ACF clearly demonstrates long cycles about the hyperbolic decay characteristic of
fractional processes.

3. Estimation

Several estimation procedures have been proposed for the k-factor model. A likelihood-
based Whittle method was studied by Giraitis et al. (2001), while Hidalgo and Soulier
(2004) advocate a semi-parametric method for λi after the Gegenbauer frequencies have
been selected via maximization of the periodogram. In the frequency domain, wavelet
procedures have been analyzed by Lu and Guegan (2011), while Dissanayake et al. (2018)
use a state-space approach that uses associated Gegenbauer polynomials and the Kalman
filter to obtain likelihood based estimates. Within this literature, there is no study that
offers complete distributional results for estimation of both νi and associated differenc-
ing parameters.1 Our approach is to estimate the k-factor GARMA model using a time
domain parametric estimator that is asymptotically equivalent to maximum likelihood
estimation. Specifically, we generalize the CSS estimator described by Chung and Bail-
lie (1993) for fractional models and by Chung (1996a,b) for single frequency GARMA
models. The procedure simultaneously estimates all parameters, including the ARMA
components. Furthermore, we propose an analytic asymptotic distribution for all of the
parameters of the model.

1For the single factor case, Giraitis et al. (2001) provide normality results for λ, but are only able to
establish consistency for the Whittle estimator of ν.
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Rewriting the MA representation of the model (2) in its AR form yields,

φp(L)

θq(L)

k∏
i=1

(
1− 2ηiL+ L2

)λi
(xt − µ) = εt, (5)

where p and q indicate the orders of the ARMA terms. If we assume that the initializ-
ing disturbances are zero, then the maximization of the CSS function is asymptotically
equivalent to maximum likelihood estimation. Under the additional assumption that the
disturbances, εt, are iid normal with variance σ2, then the p + q + 2 + 2k parameters,
Ψ = φ1,, . . . , φp,θ1, . . . , θq, µ, σ

2, η1, λ1, . . . , ηk, λk, can be estimated by maximizing the
CSS function

L∗(Ψ) = −T
2

log(2π)− T

2
log(σ2)− 1

2σ2

T∑
t=1

ε2t . (6)

Note that the normality assumption is used here only to justify the construction of the
CSS function, and is not necessary for the asymptotic theory proposed below. We require
only that the {εt} are martingale differences with respect to an increasing sequence of
sigma-fields, Ft, such that, for some β > 0, suptE(|εt|2+β‖Ft−1) < ∞, almost surely,
and E(ε2t‖Ft−1) = σ2, almost surely.2

3.1. Asymptotic Distributions

We extend the proofs of Chung (1996 a,b) to propose distributional theory for the
CSS estimator in (6). Our proofs use the observation that the expectation of the score
for the CSS function achieves a zero value for the true parameter set. We argue that an
initial consistency proof for our full set of estimators may not be available. In particular,
we argue that the distributional results for ηi are non-standard with a discontinuity
occurring at ηi = 1. In this specific case, it is not possible to constrain all parameters to
lie in the interior of the parameter space, an assumption that would typically be employed
in consistency proofs (see, for example, Andrews and Sun (2004)). Consequently, we use
an extensive set of simulations to help validate results.

To extend Chung (1996a) and Chung (1996b), we consider four cases. The first case is
for those models for which |ηi| < 1 for all i = 1, . . . , k. The second case is for those models
for which there exists a single ηi = 1, and |ηj | < 1 for all other frequencies. The third
case is for those models for which there exists a value ηi = −1, and |ηj | < 1 otherwise.
The fourth case is for those models for which there exists two values ηi and ηj such that
ηi = 1 and ηj = −1, with |ηm| < 1 otherwise. The first theorem establishes that the
asymptotic information matrix for the k-factor GARMA model is block diagonal.

Theorem 1 (Independence of δ and η∗). Let δ = (λ1, ..., λk, φ
′, θ′)′ and η∗ = (η1, ...., ηk)′

be the parameters associated with the CSS function for the k-factor GARMA model. The
asymptotic distribution of δ is independent of η∗.

The proof of this theorem is given in the Appendix. The essential idea is to establish
the different rates of stochastic convergence for the elements of δ and η∗. Note that no

2As recently discussed by Peiris and Asai (2016), an additional advantage of the CSS estimator is
that it is easily generalized to handle GARCH residuals and other types of non-normal distributional
assumptions that often arise in financial and economic applications.
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conditions are placed on the value of ηi relative to ηj , i 6= j, so this theorem holds for
all four cases described above. Consequently, the asymptotic distribution of δ can be
considered independently of η∗.

Theorem 2 yields the asymptotic distribution of the estimators of δ and µ.

Theorem 2 (Asymptotic distributions of δ and µ). Let δ̂ be the CSS estimator of δ for
the stationary and invertible k-factor GARMA model. (If µ is unknown, we add the
restriction that ηi 6= 1 for all i = 1, . . . , k.) Then,

√
T (δ̂ − δ) N(0, I−1δ ), (7)

where  denotes the weak convergence of the random vectors δ̂, and where

Iδ
(k+p+q)×(k+p+q)

=


Iλ1

· · · Iλ1λk Iλ1,φ Iλ1,θ

...
. . .

...
...

...
Iλ1λk · · · Iλk Iλk,φ Iλk,θ
Iλ1,φ · · · Iλk,φ Iφ Iφ,θ
Iλ1,θ · · · Iλk,θ Iφ,θ Iθ

 . (8)

The elements of Iδ are defined as follows,

Iλi = 2

[
π2

3
− πυi + υ2i

]
, i = 1, . . . , k (9a)

Iλiλj = 2

[
π2

3
− πυi +

υ2i + υ2j
2

]
, υi > υj , (9b)

Iλiφj = 2

∞∑
l=0

φ∗l
cos[(l + j)υi]

(l + j)
, i = 1, . . . , k, j = 1, . . . , p (9c)

Iλiθm = 2

∞∑
l=0

θ∗l
cos[(l +m)υi]

(l +m)
, i = 1, . . . , k, m = 1, . . . , q (9d)

where φ∗l and θ∗l denote the lth coefficients in the infinite order expansions of φ−1(L)
and θ−1(L), respectively. The submatrices Iφ, Iφ,θ and Iθ consist of elements that are
the same as the corresponding submatrices of the usual information matrix of an ARMA
model. Finally, let ηi < 1, i=1,....,k. For the CSS estimator of the mean, µ̂, with |ηi| < 1
for all i, we have, √

T (µ̂− µ) N(0, 2πf(0)), (10)

where f(0) denotes the spectral density function evaluated at frequency ω = 0. Further,
the distribution of µ̂ is equivalent to the sample mean x̄.

The proof of this theorem is given in the Appendix. Theorem 3 is the central result
and proposes the asymptotic distribution of η∗ for all of our four cases.

Theorem 3 (Aysymptotic distribution of η∗). Let η̂1, . . . , η̂k be the CSS estimators of
η1, . . . , ηk, for a stationary and invertible k-factor GARMA model based on a sample
{Xt}, t = 1, . . . , T, with ηi 6= ηj , i 6= j. Without loss of generality, order the elements of
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η∗ from smallest to largest. Then let Iη1 denote the indicator function, that takes on the
value 1 if η1 = −1 and 0 otherwise, and let Iηk denote the indicator function that takes
on the value 1 if ηk = 1 and 0 otherwise. If λi 6= 0, i = 1, . . . , k, then,

T (η̂i − ηi) 
sin(υi)

λi

[∫ 1

0
W2i−1−Iη1 dW2i−Iη1 −

∫ 1

0
W2i−Iη1 dW2i−1−Iη1

]
[∫ 1

0
W 2

2i−1−Iη1
(r) dr +

∫ 1

0
W 2

2i−Iη1
(r) dr

] (11)

with |ηi| < 1, where i = 1 + Iη1 , . . . , k − Iηk and,

T 2(η̂1 + 1) − 1

2λ1

∫ 1

0

[∫ r
0
W1(s)ds

]
dW1(r)∫ 1

0

[∫ r
0
W1(s) ds

]2
dr

, if η̂1 = −1 (12)

T 2(η̂k − 1) 
1

2λk

∫ 1

0

[∫ r
0
W2k−1−Iη1 (s)ds

]
dW2k−1−Iη1 (r)∫ 1

0

[∫ r
0
W2k−1−Iη1 (s)ds

]2
dr

, if η̂k = 1, (13)

where W1,W2, ....,W2k−Iη1−Iηk , are 2k − Iη1 − Iηk independent Brownian motions.

The proof is given in the Appendix. An important result of this theorem is the
asymptotic independence of the values in the vector η∗. In addition, for each η̂i, the
values of λi and υi enter the equation for the asymptotic distribution proportionally, so
one only needs the values of the stochastic integrals depicted in Theorem 3 to calculate
asymptotic confidence intervals. The values for these integrals are reported in Chung
(1996a).

3.2. Estimation Algorithm

These theorems provide important practical information for designing an efficient
estimator. We know that the asymptotic distributions of the λ̂i’s are not independent of
ARMA parameters. Also, the asymptotic distribution of δ̂ and η̂∗ are independent, but
the elements of δ̂ are Op(T

−1/2), whereas η̂i is Op(T
−1) if |ηi| < 1 and Op(T

−2) if |ηi| = 1.
These results suggest that the algorithm of Woodward et al. (1998), which estimates
ARMA parameters independently of (ηi, λi), will produce inconsistent estimates. It
would be more appropriate to use an extension of Chung’s method (Chung 1996a,b) by
conducting a grid search over η∗ combined with a gradient method over δ.However, Monte
Carlo simulations indicate that the grid over the η’s must be very fine, since the likelihood
function has many local minima. A k-dimensional line search for ηi coupled with a
gradient based search for δ would be computationally infeasible, unless the parameter
space is bounded in some way or a very coarse grid is used.

The computational complexity of an estimator for a k-factor GARMA model can be
better appreciated when we consider the step of recursively computing the residuals for
the CSS estimator. The ith Gegenbauer polynomial in the k-factor GARMA model can
be expanded as (Gray et al. 1989)

(1− 2ηiz + z2)−λi =

∞∑
j=0

C
(λi)
j (ηi) z

j , C
(λi)
j (ηi) =

[j/2]∑
l=0

(−1)
l
(2ηi)

j−2l
Γ (λi − l + j)

l! (j − 2l)! Γ (λi)
,

(14)
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where [j/2] is the integer part of j/2. As Chung (1996a) notes, the best way to calculate

the coefficients C
(λi)
j is via the following recursion,

C
(λi)
j (ηi) = 2ηi

(
λi − 1

j
+ 1

)
C

(λi)
j−1 (ηi)−

(
2
λi − 1

j
+ 1

)
C

(λi)
j−2 (ηi), (15)

where C
(λi)
0 (ηi) = 1 and C

(λi)
1 (ηi) = 2λi ηi. Under the assumption that ε0 = ε−1 = . . . =

0, the residuals can be calculated recursively from the expression

φ(L)(xt − µ) =

k∏
i=1

t−1∑
j=0

C
(λi)
j (ηi)L

j

 θ(L) εt. (16)

The combination of the k-dimensional product over the above sums create most of the
computational burden.

To overcome computational issues, coupled with different rates of convergence of
various model parameters, we employ an extension of the algorithm developed by Ra-
machandran and Beaumont (2001). First, through inspection of the periodogram and
estimation of individual GARMA models, we choose k and obtain a grid of starting
values for each element of η∗. We use each set of starting values in this grid to obtain
estimates for the δ. Conditional on the estimated value, δ̂, we then estimate the elements
of η∗ using an unconstrained gradient based search.3 Using the updated estimates of η∗,
new estimates of δ are obtained, which are then used to update the estimates of η∗. This
procedure continues for all combinations of starting values for ηi. The final model results
from the set of parameters that produce the smallest sum of squared errors. Although
computationally intensive, the use of this multi-step gradient based iterative algorithm
provides large gains in computational time relative to the full k-dimensional line search
for ηi, while also guaranteeing a continuous parameter space.

4. Finite Sample Performance

In this section, we report simulation results that examine the finite sample properties
of the CSS estimation. We are interested in examining the bias in the parameter estimates
and in comparing the finite sample standard errors of the parameter estimates with the
asymptotic standard errors. Chung (1996a,b) and Ramachandran and Beaumont (2001)
have done extensive simulations for the single frequency GARMA model, with the latter
paying particular attention to the parametric region where η is close to one and λ is
close to one-half. Based upon those results, we will use a sample size of 300, and we
will concentrate on two frequency models with parameter ranges that we believe are
most relevant for economic and financial applications. We pay particular attention to
the mixed ARFIMA/GARMA case.

The simulation results are presented in Tables 1–4. The columns of each table list
the parameters of the simulated model and each block in the tables gives the results for

3The search occurs over all theoretically plausible values of ηi, only imposing a constraint to insure
ηi 6= ηj , i 6= j. All elements of ηi are estimated jointly, unless it suspected that there exists a value
|ηi| = 1, in which case this parameter is estimated separately at each iteration.
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a specific parameterization. Throughout, we report the true parameter values (TRUE),
the mean and median biases (MEAN BIAS; MED. BIAS), along with the root mean
squared error, mean of the numerical standard errors, and mean absolute deviations
(RMSE, MNSE, MAD) based on 1000 replications. For computational purposes, we use
an iterative procedure to generate a large amount of data before discarding all but the
last 300 observations. On rare occasions, the generated data do not take on the properties
of a multiple frequency GARMA model. For the 17000 generated series below, it was
necessary to discard three.

Table 1 presents the results for six different two frequency GARMA(0,0) models with
η values of − 1

2 , 0,
1
2 and λ values of 0.2 and 0.4. The estimation biases are all quite

small, especially for the η’s that converge at a faster rate than the λ’s. For λi, there is
not much difference between the mean bias and the median bias or the RMSE and the
MAD, indicating that the distribution of these parameters is quite robust. Generally
speaking, a larger value of λi mitigates the already small bias in ηi, which appears to
be marginally more sensitive to estimation outliers. This is likely due to the fact that
an estimate of λi near zero can lead to wildly wrong estimates of the corresponding ηi,
since that Gegenbauer polynomial will have very little impact on the likelihood function
no matter what the value of ηi is. In these cases, the mean, µ, is estimated with the
sample mean, which is again asymptotically equivalent to the CSS estimator of µ provided
ηi < 1, i = 1, ..., k. As noted above, the estimator for the mean is Op(T

−1/2), the same
rate of convergence as the other parameters in δ, so its bias is also quite small.

To further validate the estimator, we compare the mean numerical standard errors
calculated from the estimated Hessian matrix in the last iteration with the true asymp-
totic standard errors calculated with the aid of Theorem 2. In particular, for the six
cases of Table 1, the true asymptotic standard errors of the corresponding values of λ1
are 0.0394, 0.0450, 0.0394, 0.0455, 0.0450, and 0.0455, respectively. These values are
quite comparable to the MNSE and RMSE of the corresponding numbers in Table 1.
The true asymptotic standard errors for λ2 are 0.0455, 0.0450, 0.0455, 0.0394, 0.0450,
and 0.0394, which again are very close to their numerical counterparts. The true asymp-
totic standard errors for the values of µ are 0.0438, 0.0372, 0.0503, 0.0324, 0.0463, and
0.0351. Here, the RMSE is comparable to the true asymptotic standard error, although
it is interesting to note that the RMSE slightly underestimates the standard deviation
of the mean in small samples. Finally, in light of the results of Theorem 3, it is not
surprising to see that the MNSE and RMSE for the η’s are quite different, since the
RMSE assumes convergence at the rate T 1/2.

To examine the influence of the ARMA parameters, φ and θ, we choose a partic-
ular parameterization (second case from Table 1) and estimate various two frequency
GARMA(p, q) models with p and q being either zero or one. The results are reported
in Table 2 and are similar to those in Table 1. Interestingly, the main consequence of
the inclusion of ARMA parameters is a relatively wide distribution for the sample mean
when a positive autoregressive parameter exists. Again, for all of the cases considered in
Table 2, the median and mean biases are quite small, and the RMSE compares favorably
with the MNSE.
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Table 1: Simulations for the 2-factor GARMA(0,0) processes

η1 η2 λ1 λ2 µ
True 0.5 0 0.2 0.4 0
Mean Bias 0.0017 -0.0011 -0.0033 0.0029 0.0006
Med. Bias 0.0003 -0.0004 -0.0035 0.0041 0.0004
RMSE 0.0473 0.0155 0.0507 0.0463 0.0356
MNSE 0.0080 0.0133 0.0461 0.0396 N/A
MAD 0.0296 0.0091 0.0329 0.0395 0.0289
True 0.5 -0.5 0.2 0.4 0
Mean Bias 0.0007 -0.0000 -0.0002 0.0061 -0.0008
Med. Bias 0.0004 -0.0000 0.0004 0.0076 -0.0004
RMSE 0.0428 0.0136 0.0448 0.0484 0.0314
MNSE 0.0134 0.0069 0.0454 0.0457 N/A
MAD 0.0267 0.0081 0.0363 0.0388 0.0253
True 0 0.5 0.2 0.4 0
Mean Bias -0.0028 0.0001 -0.0016 0.0025 -0.0008
Me. Bias -0.0014 -0.0002 -0.0037 0.0033 0.0007
RMSE 0.0495 0.0146 0.0457 0.0442 0.0422
MNSE 0.0154 0.0070 0.0459 0.0399 N/A
MAD 0.0317 0.0086 0.0365 0.0348 0.0340
True 0 -0.5 0.2 0.4 0
Mean Bias 0.0025 0.0003 -0.0009 0.0046 -0.0006
Med. Bias 0.0005 0.0002 -0.0032 0.0073 -0.0015
RMSE 0.0500 0.0135 0.0458 0.0448 0.0274
MNSE 0.0155 0.0067 0.0460 0.0399 N/A
MAD 0.0318 0.0080 0.0366 0.0360 0.0219
True -0.5 0.5 0.2 0.4 0
Mean Bias -0.0018 0.0004 -0.0011 0.0025 0.0002
Med. Bias -0.0004 0.0001 -0.0007 0.0023 0.0008
RMSE 0.0446 0.0140 0.0442 0.0487 0.0383
MNSE 0.0134 0.0070 0.0454 0.0457 N/A
MAD 0.0274 0.0080 0.0352 0.0388 0.0308
True -0.5 0 0.2 0.4 0
Mean Bias -0.0010 0.0012 0.0004 0.0039 0.0002
Med. Bias 0.0001 0.0003 0.0019 0.0055 0.0003
RMSE 0.0447 0.0160 0.0381 0.0490 0.0285
MNSE 0.0131 0.0080 0.0397 0.0461 N/A
MAD 0.0283 0.0098 0.0299 0.0395 0.0228

Table 2: Simulation on the estimation of 2-factor GARMA processes with ARMA parameters

η1 η2 λ1 λ2 φ θ µ
True 0.5 -0.5 0.2 0.4 0.8 N/A 0
Mean Bias -0.0010 -0.0003 -0.0015 -0.0025 -0.0114 - -0.0101
Med. Bias 0.0003 -0.0002 -0.0016 0.0003 -0.0099 - -0.0107
RMSE 0.0444 0.0138 0.0456 0.0547 0.0429 - 0.1507
MNSE 0.0134 0.0070 0.0462 0.0519 0.0409 - N/A
MAD 0.0275 0.0082 0.0363 0.0441 0.0335 - 0.1212
True 0.5 -0.5 0.2 0.4 N/A 0.8 0
Mean Bias 0.0014 0.0003 -0.0011 0.0054 - -0.0099 -0.0007
Med. Bias 0.0005 -0.0001 -0.0011 0.0062 - -0.0086 -0.0023
RMSE 0.0488 0.0125 0.0480 0.0463 - 0.0459 0.0567
MNSE 0.0137 0.0068 0.0518 0.0463 - 0.0407 N/A
MAD 0.0295 0.0077 0.0389 0.0368 - 0.0362 0.0454
True 0.5 -0.5 0.2 0.4 -0.8 N/A 0
Mean Bias 0.0020 0.0016 0.0013 0.0078 0.0042 - 0.0004
Med. Bias 0.0009 0.0001 0.0011 0.0109 -0.0003 - -0.0000
RMSE 0.0461 0.0344 0.0516 0.0513 0.0431 - 0.0177
MNSE 0.0137 0.0068 0.0517 0.0464 0.0401 - N/A
MAD 0.0283 0.0089 0.0398 0.0381 0.0323 - 0.0141
True 0.5 -0.5 0.2 0.4 N/A -0.8 0
Mean Bias -0.0009 0.0009 -0.0026 0.0031 - 0.0167 -0.0001
Med. Bias 0.0000 0.0003 -0.0018 0.0058 - 0.0142 0.0001
RMSE 0.0526 0.0128 0.0457 0.0538 - 0.0539 0.0080
MNSE 0.0137 0.0070 0.0461 0.0521 - 0.0413 N/A
MAD 0.0299 0.0078 0.0364 0.0432 - 0.0413 0.0064
True 0.5 -0.5 0.2 0.4 0.8 0.8 0
Mean Bias 0.0002 0.0015 -0.0011 -0.0013 -0.0112 -0.0380 0.0045
Med. Bias 0.0003 0.0002 -0.0002 0.0016 -0.0041 -0.0281 0.0009
RMSE 0.0458 0.0221 0.0524 0.0578 0.0488 0.0739 0.2663
MNSE 0.0137 0.0069 0.0557 0.0548 0.0438 0.0467 N/A
MAD 0.0292 0.0083 0.0407 0.0442 0.0371 0.0546 0.2112
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Table 3 examines the particularly interesting case where η1=1 and η2 < 1, so that
we get a combination ARFIMA and GARMA model. Compared to η2, the estimator for
η1 = 1 has very little bias and extremely small RMSE and MNSE, reflecting the fact
that this parameter may be Op(T

−2). The results for |η2| < 1 are similar to those in
Tables 1 and 2, as are the results for the λ’s. When ηi = 1, however, the sample mean
and CSS estimate of µ are no longer asymptotically equivalent. Thus, we use the CSS
estimator for the mean in these cases. The computational difficulties of time domain
estimators for ARFIMA models when the mean is unknown have been well documented
(Adenstedt 1974; Yajima 1991; Chung and Baillie 1993; Cheung and Diebold 1994). In
spite of these difficulties, the mean is fairly unbiased, albeit with a wide distribution.
Again, the remaining parameters suffer from very little distortion.

Table 3: Estimation of simulated ARFIMA/GARMA processes

η1 η2 λ1 λ2 µ
True 1 0.75 0.2 0.3 0
Mean Bias -0.0016 0.0026 -0.0127 0.0059 0.0417
Med. Bias -0.0000 0.0010 -0.0121 0.0080 0.0612
RMSE 0.0062 0.0195 0.0345 0.0420 0.4345
MNSE 0.0005 0.0069 0.0288 0.0410 0.3679
MAD 0.0016 0.0109 0.0275 0.0338 0.3543
True 1 0.5 0.2 0.3 0
Mean Bias -0.0023 0.0048 -0.0100 0.0041 0.0399
Med Bias -0.0001 0.0014 -0.0085 0.0049 0.0539
RMSE 0.0085 0.0274 0.0283 0.0437 0.3486
MNSE 0.0006 0.0092 0.0245 0.0413 0.2812
MAD 0.0023 0.0150 0.0222 0.0348 0.2756
True 1 0 0.2 0.3 0
Mean Bias -0.0040 0.0070 -0.0097 -0.0034 0.0023
Med. Bias -0.0005 0.0019 -0.0096 -0.0016 0.0002
RMSE 0.0116 0.0393 0.0269 0.0498 0.2574
MNSE 0.0010 0.0108 0.0242 0.470 0.1859
MAD 0.0040 0.0176 0.0214 0.0387 0.2022
True 1 -0.5 0.2 0.3 0
Mean Bias -0.0015 0.0041 -0.0079 -0.0032 -0.0074
Med. Bias 0.0000 0.0010 -0.0077 0.0002 -0.0203
RMSE 0.0085 0.0232 0.0316 0.0486 0.2797
MNSE 0.0004 0.0091 0.0287 0.0486 0.2365
MAD 0.0015 0.0132 0.0251 0.0386 0.2267

As noted above, the computational burden of the CSS estimator grows rapidly with
the number of frequencies due to the grid search over each ηi. Thus, if we could narrow
the range of the grid search, we could greatly improve the efficiency of the algorithm.
With i 6= j, since ηi is independent of both ηj and the parameters in δ, it may be
possible to first estimate each value of ηi sequentially to get good starting values. We
could then re-estimate the entire model using fairly tight grids over each ηi. In Table
4, we investigate this possibility. First, we estimate a single frequency GARMA model
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and then filter the data with the resulting Gegenbauer polynomial before estimating
the second frequency using a single frequency model on this filtered data. This process
should produce good starting values for the η’s as long as the biases are not too large.

Table 4: Estimation of simulated ARFIMA/GARMA processes with single frequency models

η1 η2 λ1 λ2 φ θ µ
True 0.5 0.0 0.2 0.4 N/A N/A 0
Mean Bias 0.0099 0.0265 -0.0274 0.0487 - - 0.0006
Med. Bias 0.0023 0.0087 -0.0276 0.0535 - - 0.0007
RMSE 0.0603 0.0486 0.0468 0.0656 - - 0.0356
MNSE 0.0141 0.0473 0.0257 0.0103 - - N/A
MAD 0.0319 0.0279 0.0379 0.0566 - - 0.0285
True 0.5 -0.5 0.2 0.4 0.8 0.8 0
Mean Bias -0.0103 0.0027 -0.0975 -0.1278 -0.0796 0.0466 0.0045
Med. Bias 0.0159 0.0007 0.0971 -0.1256 -0.0752 0.0514 0.0009
RMSE 0.0787 0.0155 0.1010 0.1376 0.0955 0.0620 0.2663
MNSE 0.0202 0.0074 0.0374 0.0429 0.0481 0.0316 N/A
MAD 0.0406 0.0084 0.0975 0.1278 0.0814 0.0542 0.2112
True 1.0 0.75 -0.2 0.3 N/A N/A 0
Mean Bias -0.0019 -0.0151 0.0631 -0.1266 - - -0.0006
Med. Bias 0.0000 -0.0024 0.0611 -0.1254 - - -0.0008
RMSE 0.0336 0.0463 0.0689 0.1325 - - 0.0130
MNSE 0.0007 0.0085 0.0243 0.0302 - - N/A
MAD 0.0019 0.0143 0.0631 0.1275 - - 0.0105

The first two models in Table 4 are cases from the previous simulations, and the third
case represents a mixed ARFIMA/GARMA model in which the ARFIMA component is
short memory (λ < 0). The latter process may result from differencing a non-stationary
ARFIMA process. For each of the cases considered in Table 4, the sample mean is used
to estimate µ. We find that the single frequency estimator generally first selects the
frequency with the largest corresponding value of λ, thus capturing the most dominate
feature of the autocorrelation function. The results in Table 4 indicate that the small
sample biases in η1 and η2 are quite reasonable, suggesting that the method of choosing a
tight grid around these point estimates may work quite well. The relatively large biases
in the values of the vector δ, however, confirm the results of Theorem 2 that a consistent
estimator is obtained only through joint estimation of all parameters.

For a fixed sample size, these results strongly support the use of the estimation
algorithm, while largely validating the proposed distribution theory. Notably, the dis-
tribution of ηi is independent of ηj , i 6= j, and the distribution of these parameters
is largely unaffected by the inclusion of ARMA dynamics. Additionally, the proposed
distribution theory for λi is confirmed. Finally, as shown below, and in numerous other
simulations that are available upon request, the estimator achieves the proposed rates of
convergence, even when we estimate multiple GARMA components. This implies that
confidence bands for ηi will be calculated in precisely the same way they are for the single
frequency case, as in Chung (1996a). As such, any concerns that may exist regarding the
proposed distribution theory of Chung (1996a) will be inherited by the results here.
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For the single frequency case, Chung (1996a) uses a line grid search to estimate η,
along with a gradient based method for δ. This implies that the parameter space being
searched over is a countable finite set that requires the use of boundary constraints, given
that a fine grid would be needed to capture an estimate of η in the neighborhood of the
true value. Based on the limited algorithm, Chung (1996a) provides strong support for
the proposed theory and associated confidence bands for η for all cases except when
η = 1. Here, it would appear that the associated empirical sizes of tests for η = 1
under the null are too large to be of practical use. Beaumont and Smallwood (2019)
consider the consequences of using a two-dimensional grid search over both η and λ
without the use of boundary constraints for η, and shows that the exact distributional
results of Chung (1996a) are generally supported, with two exceptions. First, similar to
Chung (1996a), Beaumont and Smallwood (2019) show the theory under the hypothesis
η = 1 is inappropriate for testing purposes. Confidence bands tend to be much too wide,
and empirical sizes are often much higher than their associated theoretical counterparts.
Secondly, it is shown that with the use of the proposed algorithm, the resulting empirical
distribution has slightly fatter tails and a more peaked density relative to the proposed
theory. In terms of calculating confidence bands, the issue appears to be very minor and
disappears as the sample size increases. Nonetheless, small biases in confidence bands
can result, especially as λ approaches 0. We now consider more complete simulation
evidence to analyze the extent to which these previous results carry over when k > 1.

For varying sample sizes, we considered a variety of parameterizations, including
models where there exists a value of ηi = 1. For brevity, the full set of results are not
reported here, but are available upon request. Here, we report only the results for three
fairly complicated 2-frequency parameterizations. Model 1 is a GARMA(0,0) model with
{η1, λ1} = {0.5, 0.4}, and {η2, λ2} = {0, 0.2}. Given the distributional results above, this
parameterization represents a case where the process is expected to be especially volatile.4

Model 2 is also a GARMA(0,0) model but with parameters {η1, λ1} = {0.98, 0.45}, and
{η2, λ2} = {−0.4, 0.3}. This parameterization approaches the region of the discontinuity
in our theoretical distribution for η∗ and is also a strongly persistent process with λ1
only marginally less than 0.50. Model 3 is the same as Model 1 except we add an AR(1)
term with parameter φ = 0.80.

First, we compare the theoretical and simulated distributions of ηi. Figure 2 shows
the empirical and theoretical normalized cumulative distribution functions (cdf) for η1
from Model 1 for sample sizes of 500 and 2000. For the empirical distributions we plot
T (η̂− 0.50) where the η̂’s are computed using the estimation algorithm described above,
and the theoretical quantities have been calculated using equation (11) from Theorem
3. The horizontal differences between the theoretical and empirical curves show the
disagreements between the theoretically and empirically derived critical values for each
percentile. The two horizontal shaded regions show areas below the 0.025 and above
the 0.975 percentiles, which would be relevant for the construction of a 95% confidence
interval.

The first observation is that the empirical and theoretical distributions are in fairly
close agreement, and this agreement is consistent as the sample size increases. This

4Note that the scaling factor in equation (11) of Theorem 3 is
sin(νi)
λi

so that, given a small value for

λ2 coupled with ν2 = π/2, the estimated value of η2 is expected to be quite volatile.
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Figure 2: Percentiles of theoretical and empirical CDFs for T=500 and T=2000.

suggests that the proposed convergence rate of T in Theorem 3 is strongly supported.
Second, there is some evidence that the empirical tails are larger than implied by the
theory, so we will now explore the consequences of any such differences.

When estimating a multiple frequency GARMA model, the calculation of confidence
bands for ηi is likely the most important application of the theory. To get a sense of
how applicable our proposed distribution theory and algorithm are, Table 5 provides the
estimated biases in calculating the upper and lower 68%, 90%, 95%, and 99% confidence
bands for the three models described above. As a reference point, the theoretical bands
for each value of ηi with a sample size of 500 are provided in bold font. Below the
theoretical bands, we show the empirical bands for η1 for each sample size, followed by
the empirical bands for η2.

For Model 1, and with relatively small sample sizes of 500 observations, the 99%
confidence bands are quite unreliable for η2 = 0. The theoretical confidence band for
η2 = 0 when T = 500 is [−0.0423, 0.0423], whereas, amongst the 5050 simulations, 99%
of the estimated values of η2 were within a range from −0.0423 − 0.0487 = −0.091 to
0.0423+0.026 = 0.068. In general, with small sample sizes, there are small but potentially
non-negligible biases when using the 99% confidence bands. Otherwise, the results in
Table 5 support the use of the proposed distribution theory in calculating these intervals.
First, we note that the differences between the estimated and theoretical bands decrease
sharply as the sample size increases, and become negligible in most cases when T = 2000.
Throughout, 68% and 90% bands are surprisingly accurate, such that multiple confidence
bands could be presented for researchers wishing to take a conservative approach. Finally,
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Table 5: Theoretical and empirical confidence intervals of the η’s

68%L 68%U 90%L 90%U 95%L 95%U 99%L 99%U
Model 1: η1 = 0.50, λ1 = 0.40; η2 = 0.00, λ2 = 0.20

η1 : 500 0.4950 0.5050 0.4906 0.5094 0.4879 0.5120 0.4817 0.5183

η̂1 : 500 -0.0011 0.0011 0.0013 -0.0017 0.0030 -0.0037 0.0069 -0.0110

η̂1 : 1000 -0.0004 0.0007 0.0007 -0.0003 0.0017 -0.0013 0.0054 -0.0030

η̂1 : 2000 -0.0003 0.0002 0.0001 -0.0003 0.0005 -0.0008 0.0017 -0.0016

η2 : 500 -0.0116 0.0116 -0.0217 0.0217 -0.0279 0.0279 -0.0423 0.0423

η̂2 : 500 0.0044 -0.0030 0.0157 -0.0111 0.0224 -0.0150 0.0487 -0.0260

η̂2 : 1000 0.0020 -0.0015 0.0069 -0.0053 0.0113 -0.0077 0.0203 -0.0128

η̂2 : 2000 0.0010 -0.0009 0.0034 -0.0030 0.0049 -0.0045 0.0103 -0.0076

Model 2: η1 = 0.98, λ1 = 0.45; η2 = −0.40, λ2 = 0.30
η1 : 500 0.9790 0.9810 0.9781 0.9819 0.9775 0.9825 0.9763 0.9837

η̂1 : 500 -0.0003 0.0004 0.0000 0.0003 0.0003 0.0001 0.0011 -0.0004

η̂1 : 1000 -0.0001 0.0001 0.0000 0.0000 0.0001 -0.0001 0.0007 -0.0003

η̂1 : 2000 -0.0000 0.0000 0.0001 -0.0000 0.0001 -0.0001 0.0005 -0.0002

η2 : 500 -0.4071 -0.3929 -0.4133 -0.3867 -0.4170 -0.3830 -0.4258 -0.3742

η̂2 : 500 -0.0004 -0.0002 0.0039 -0.0059 0.0072 -0.0092 0.0165 -0.0175

η̂2 : 1000 0.0001 -0.0002 0.0025 -0.0024 0.0047 -0.0042 0.0079 -0.0086

η̂2 : 2000 -0.0001 0.0000 0.0008 -0.0010 0.0019 -0.0018 -0.0048 -0.0042

Model 3: η1 = 0.98, λ1 = 0.45; η2 = −0.40, λ2 = 0.30, φ = 0.80
η1 : 500 0.9790 0.9810 0.9781 0.9819 0.9775 0.9825 0.9763 0.9837

η̂1 : 500 -0.0002 0.0004 0.0003 0.0002 0.0009 -0.0001 0.0026 -0.0008

η̂1 : 1000 -0.0001 0.0001 0.0001 0.0001 0.0002 -0.0001 0.0010 -0.0004

η̂1 : 2000 -0.0001 0.0001 0.0001 -0.0000 0.0002 -0.0001 0.0004 -0.0004

η2 : 500 -0.4071 -0.3929 -0.4133 -0.3867 -0.4170 -0.3830 -0.4258 -0.3742

η̂2 : 500 0.0008 0.0008 0.0060 -0.0045 0.0104 -0.0081 0.0250 -0.0158

η̂2 : 1000 0.0004 0.0001 0.0028 -0.0020 0.0049 -0.0032 0.0108 -0.0075

η̂2 : 2000 0.0002 0.0001 0.0013 -0.0010 0.0023 -0.0017 0.0048 -0.0038

Notes: Quantities in bold font are theoretical confidence bands for T = 500 calculated using Theorem 3. Remain-
ing values denote the difference between the theoretical quantity for a given confidence band and the associated
percentiles from simulations from Model 1, Model 2, and Model 3.
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we observe that there are no qualitative differences between the estimated bands from the
GARMA(0,0) and GARMA(1,0) models, represented as Model 2 and Model 3, suggesting
that the values of ηi are independent of ARMA components as implied by the proposed
theory.

We also ran numerous simulations with η1 = 1, with results available upon request,
that match the findings in Chung (1996a) and Beaumont and Smallwood (2019). The
results show that the distribution theory under the null η1 = 1 are quite unreliable. In
these cases, however, Beaumont and Smallwood (2019) argue that more reliable results
can likely be obtained by using the confidence bands and testing procedures under the
alternative η < 1, a suggestion we echo here.

5. Application

Emerging research has demonstrated that cyclical long memory is an important char-
acteristic of many financial time series.5 To demonstrate the applicability of the CSS
estimator and the proposed theory, we consider the weekly trading volume of IBM eq-
uities measured in thousands from January 1, 1962 through July 1, 2019. Sequential
estimation of single frequency models suggests the strong possibility of at least 3 sources
of long memory, and inspection of the periodogram of the differenced series, which is
depicted in Figure 3, suggests up to two more long memory frequencies.

We consider all combinations of k-factor GARMA(p,q) models with k ≤ 5 and p, q ≤
2. Ultimately, a 5-factor GARMA(2,2) model was selected on the basis of the Akaike
information criteria, and the theory outlined above, where all parameters are found to be
statistically significant. Results are presented in Table 6. Based on the simulation results
as discussed above, we show confidence bands for the 68% and 95% quantities under the
assumption that |ηi| < 1.6 Unambiguously, the results indicate that there potentially
exists a singularity at the origin, as all confidence bands contain the value 1 for η1.7

Given that the estimated values of the associated Gegenbauer frequencies, νi, range
from 0.0009 to 2.8898, we detect cycle lengths of 13.05, 6.52, 4.35, and 2.17 weeks, in
addition to the extremely long, potentially infinite cycle associated with a value of η1
that cannot be distinguished from unity. To our knowledge, we are the first to document
the potential for multiple sources of long memory in equity trading volumes, a finding
that could be important in better understanding stock market behavior.

6. Conclusions

In this paper we review the properties of a model that captures very diverse patterns
in the autocorrelation functions of data. The multiple frequency, or k-factor, GARMA

5See, Lu and Guegan (2011) and Caporale and Gil-Alana (2014) for recent applications to the Nikkei-
based forward premia and price dividend ratios associated with the S&P index. Also, see Asai et al.
(2018) who provide evidence of multiple sources of cyclical long memory in differenced interest rates for
the US and Australia at various maturities.

6Recall that simulation results show that when ηi = 1, the confidence bands under the alternative
are more conservative and potentially more reliable than those under the null.

7Estimation results applied to the first difference of volume yield similar results. The estimated value
of λ1 is equal to -0.2114, which implies a value of 0.2886 for the series in levels. All other parameter
estimates, which are available upon request, indicate no tangible disparities, including, most notably,
the position of the spectral poles.
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Figure 3: Periodogram of the first difference of IBM trading volume.

model generalizes existing long memory models and has the particular advantage that
the autocorrelations can decay at a non-monotonic rate that is not necessarily symmet-
ric about zero. In addition, the k-factor GARMA model can accommodate multiple
singularities in the spectral density function.

Providing a full set of distributional results for estimators of k-factor GARMA models
has proven elusive. Building on the results in Chung (1996a) and Chung (1996b), we
study a conditional sum of squares estimator and propose its asymptotic properties. The
key feature of our results is that, for all possible values, the asymptotic distribution of
ηi is independent of all other parameters, including ηj whenever i 6= j. It is important
to note, however, that remaining parameters, notably differencing parameters, are not
asymptotically independent of each other, and therefore methods that sequentially esti-
mate these values will likely suffer from severe bias. Finally, the model parameters are
shown to converge at differing rates. This greatly complicates attempts to establish rig-
orous initial consistency proofs, especially given discontinuities in the distribution theory
for ηi. We attempt to overcome this shortcoming by conducting extensive simulations
and drawing on the recent work of Beaumont and Smallwood (2019) to show that the
estimator performs in precisely the way our theory predicts in nearly all cases.

The simulation results show that the estimator performs well and that the finite sam-
ple standard errors are close to the asymptotic calculations. In addition, the simulation
results suggest that the computational complexity associated with a k-dimensional grid
search can be greatly reduced via repeated estimation of a single frequency GARMA
model to obtain starting values. Further, the proposed theory can be used to accurately
obtain confidence bands for estimated values of ηi. Finally, an application demonstrates
the practical value of the k-factor GARMA model. The trading volume of IBM is shown
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Table 6: Estimation of 5-frequency GARMA(2,2) model for IBM volume

η1 η2 η3 η4 η5
Estimated values 1.0000 0.8863 0.5707 0.1276 -0.9685
Lower 68% Bands 0.999999 0.8853 0.5696 0.1241 -0.9695
Upper 68% Bands 1.0000 0.8872 0.5719 0.1275 -0.9675
Lower 95% Bands 0.999997 0.8840 0.5680 0.1217 -0.9708
Upper 95% Bands 1.0000 0.8885 0.5735 0.1298 -0.9661

λ1 λ2 λ3 λ4 λ5
Estimated values 0.3151 0.1926 0.2779 0.2246 0.0986
Asymp. Std Errors [0.0176] [0.0298] [0.0300] [0.0318] [0.0284]
Num. Std Errors [0.0165] [0.0269] [0.0282] [0.0282] [0.0252]

φ1 φ2 θ1 θ2 µ
Estimated values -0.5855 -0.3808 -0.2198 0.1847 8409.4
Asymp. Std Errors [0.0893] [0.0537] [0.1442] [0.0862] [7462.5]
Num. Std Errors [0.0866] [0.0499] [0.1343] [0.0809] [4431.7]

Notes: Confidence bands are constructed assuming ηi < 1. Values in brackets are asymptotic
standard errors based on the estimated model, with η̂i < 1, for all i using Theorem 2. Numerical
standard errors are based on the outer product of the estimated score.

to be well modeled by a five-frequency GARMA model with a spectral singularity at the
origin.

Given the early success of multiple frequency GARMA models as discussed in the
introduction, our proposed estimator should find a number of important applications in
a myriad of fields. Further, the proposed distribution theory will likely be useful in a
number of contexts. For example, in instances where full model selection is not needed
or desired, our distribution theory and simulation results suggest that single factor mod-
els can be used to robustly select Gegenbauer frequencies, thus complementing the use
of methods based on maximization of the periodogram. Several challenges still remain.
First, we are unable to provide a rigorous initial consistency proof for our asymptotic
results, which we believe may prove quite elusive for the full model. However, it may be
possible to consider a subset of Gegenbauer frequencies in this context. Perhaps related,
there appears to be some concern with the use of the proposed theory when ηi = 1.
Finally, computational difficulties may arise as the number of frequencies, k, becomes
large. Although our estimation procedures can limit this problem by refining the grid for
each ηi, recent research by Leschinski and Sibbertsen (2019) has identified cases where
k could be as large as 14. It remains to be seen if the resulting complexity would limit
the practical implementation of the CSS estimator for models that have a high number
of spectral singularities.

Appendix

Proof of Theorem 1:
Consider the first order Taylor series expansion of the CSS estimators of the invertible
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and stationary k-factor GARMA model of the process {xt}Tt=1 about the true parameter
values δ = (λ1, . . . , λk, φ1, . . . , φp, θ1, . . . , θq) and η∗ = (η1, . . . , ηk) :

[
1√
T
∂L∗
∂δ

1
fT
� ∂L∗

∂η∗

]
+

 1
T
∂2L∗
∂δ ∂δ′

1√
T

1
FT
� ∂2L∗

∂δ ∂η∗′

1√
T

1
FT
� ∂2L∗

∂δ ∂η∗′

(
1
fT

)(
1
fT

)′
� ∂2L∗

∂η∗ ∂η∗′


×

[ √
T
(
δ̂ − δ

)
fT �

(
η̂∗ − η∗

) ] = op (1) (A.1)

where � denotes element by element multiplication, fT and 1
fT

denote k×1 vectors whose

jth elements are T and 1
T when |ηj | < 1 and T 2 and 1

T 2 when |ηj | = 1. 1
FT

denotes the

matrix formed by stacking the vector, 1
fT

′
, on top of itself k times.

We will show that 1
T
∂2L∗
∂δ ∂δ′ and

(
1
fT

)(
1
fT

)′
� ∂2L∗
∂η∗ ∂η∗′ , are Op(1), while 1√

T
1
FT
� ∂2L∗
∂δ ∂η∗′

possesses elements that are all op(1). Below, we show that the remaining elements are
bounded and find their proposed distribution. For large T, we get[

1√
T σ2

∑T
t=1 εt

∂εt
∂δ

1
σ2

1
fT
�
∑T
t=1 εt

∂εt
∂η∗

]
+

[
Iδ

√
T 1
FT
� Iδη∗

√
T 1
FT
� Iδη∗

1
σ2

(
1
fT

)(
1
fT

)′
�
∑T
t=1

∂2εt
∂η∗ ∂η∗′

]

×

[ √
T
(
δ̂ − δ

)
fT �

(
η̂∗ − η∗

) ]= op (1) . (A.2)

The cases for Iφi,ηj , Iθi,ηj , and Iλi,ηj when |ηj | = 1 follow from Chung (1996a,b).
Using Gradshteyn and Ryzhik (1980) equations 1.514 and 8.937.1, we find that the
information matrix elements of Iλi,ηj are

− E
[

1

T

∂2L∗

∂λi ∂ηj

]
= E

[
4λj
σ2T

T∑
t=1

( ∞∑
l=1

cos(lυi)

l
εt−l

)( ∞∑
l=1

sin(lυj)

sin(υj)
εt−l

)]
. (A.3)

Under the assumptions governing εt, if υj > υi, and υi 6= υj , Gradshteyn and Ryzhik
(1980) equation 1.441.1 yields

Iλi ηj =
2λj

sin(υj)

( ∞∑
l=1

sin[l(υi + υj)]

l
+

∞∑
l=1

sin[l(υj − υi)]
l

)
=

2λj(π − υj)
sin(υj)

. (A.4)

Thus, Iλi ηj <∞. If υj < υi, then the infinite sums in (A.4) are equal to
∑∞
l=1

sin[l(υj−υi)+2πl]
l .

From Gradshteyn and Ryzhik (1980) equation 1.444.1, we see that the infinite sum con-
verges. The same is true if υi = υj .

If the remaining terms of all of the elements in (A.2) are Op(1) as shown below, then

the matrix in (A.2) is asymptotically block diagonal, and the distribution of
√
T (δ̂ − δ)

can be considered independently of fT (η̂ − η) as claimed.
Proof of Theorem 2:.
From (A.2), the assumption that the remaining elements involving η∗ in (A.2) are
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bounded, and the central limit theorem of Chan and Wei (1988),

√
T (δ̂ − δ) = −I−1δ

[
1√
Tσ2

T∑
t=1

εt
∂εt
∂δ

]
+ op(1) N(0, I−1δ ). (A.5)

Information numbers for the diagonal terms of Iδ are given in Chung (1996a) (page 251).
The off diagonal terms, Iλi λj , which for large T and i 6= j are,

− E
(
T−1

∂2L∗

∂λi∂λj

)
= E

1

Tσ2

T∑
t=1

[
log(1− 2ηiL+ L2)εt log(1− 2ηjL+ L2)εt

]
. (A.6)

Using Gradshteyn and Ryzhik (1980) equations 1.514 and 1.443.3 yields,

Iλiλj = 2

∞∑
l=1

cos(l(υi + υj)) + cos(l(υi − υj))
l2

= 2

(
π2

3
− πυi +

υ2i + υ2j
2

)
, (A.7)

For the CSS estimator for µ̂, the information number is:

Iµ = −E
(
T−1

∂2L∗

∂d2µ

)
=

1

σ2

∣∣∣∣φ(1)

θ(1)

∣∣∣∣2 k∏
i=1

(2− 2ηi)
2λi =

1

2π
f(0)−1, (A.8)

where f(0) denotes the spectral density function evaluated at ω = 0. Now consider the
variance for x̄. We have:

var
[√

T (x̄− µ)
]

=
σ2

T

[
T

{∣∣∣∣ θ(1)

φ(1)

∣∣∣∣2 k∏
i=1

(2− 2ηi)
−λi

}]
= 2πf(0). (A.9)

By the central limit theorem of Chan and Wei, we also have
√
T (x̄−µ) N(0, 2πf(0)).

The proof of the results for Iλ1φj , Iλ1θm , . . . , Iλkφj , and Iλkθm follows directly from Chung
(1996b) in the single frequency case.

Proof of theorem 3:
Before proving Theorem 3 we state and prove the following useful lemma.

Lemma 1. Let η̂1, . . . , η̂k be the CSS estimators for η∗ = (η1, . . . , ηk) in a stationary
and invertible k-factor GARMA model. Then, with i 6= j,

1

Tα
∂2L∗

∂ηi∂ηj
= op(1),

where α = 2 if |ηi|, |ηj | < 1, {i, j ∈ [1, k] : i 6= j} (case 1), α = 3 if ηi = ±1 and |ηj | < 1
(cases 2 and 3), and α = 4 if ηi = −1 and ηj = 1 (case 4).

Proof of the Lemma:
Case 1: |ηi|, |ηj | < 1, {i, j ∈ [1, k] : i 6= j}. Without loss of generality, and for ease
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of notation, rearrange the terms in η∗ such that ηi = η1, ηj = η2. Let,

Zat = − 1

2λa

∂εt+1

∂ηa
=

εt
(1− 2ηaL+ L2)

, a = 1, 2. (A.10)

Applying Gradshteyn and Ryzhik (1980) equation 8.937.1,

Zat =
1

sin(υa)

t∑
j=1

sin[(t+ 1)υa − jυa]εj , a = 1, 2 (A.11)

which follows if ε0 = ε−1 = .... = 0. Now, define the random elements

ST (υa, r) =

√
2√
Tσ2

[Tr]∑
j=1

cos(jυa)εj , a = 1, 2 (A.12a)

TT (υa, r) =

√
2√
Tσ2

[Tr]∑
j=1

sin(jυa)εj , a = 1, 2 (A.12b)

where r ∈ [0, 1] and [Tr] is the integer part. Finally, from the expressions in (A.12) and
using ω1 = υ1 + υ2, ω2 = υ1 − υ2, ω3 = υ2 − υ1 along with a few rules of trigonometry,
we get the following expression,

4 sin(υ1) sin(υ2)

σ2

1

T 2

T−1∑
t=1

Z1t Z2t

=
1

T

T−1∑
t=1

(cos[(t+ 1)ω2]− cos[(t+ 1)ω1])ST (υ1, t/T )ST (υ2, t/T )

− 1

T

T−1∑
t=1

(sin[(t+ 1)ω1] + sin[(t+ 1)ω3])ST (υ2, t/T )TT (υ1, t/T )

− 1

T

T−1∑
t=1

(sin[(t+ 1)ω1] + sin[(t+ 1)ω2])ST (υ1, t/T )TT (υ2, t/T )

+
1

T

T−1∑
t=1

(cos[(t+ 1)ω1] + cos[(t+ 1)ω2])TT (υ1, t/T )TT (υ2, t/T ). (A.13)

Consider the random elements

S∗n(υ1) =

n∑
j=1

cos(jυ1) εj and T ∗n(υ1) =

n∑
j=1

sin(jυ1) εj , (A.14)

and similarly for S∗n(υ2) and T ∗n(υ2). Let {Xn} = {S∗n(υ1)S∗n(υ2)}, and consider the
first term in (A.13). It is clear from the definition of ST (υ1,

t
T ) and ST (υ2,

t
T ) that
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1
T

∑T−1
t=1 cos[(t+ 1)ω2]ST (υ1, t/T )ST (υ2, t/T ) = op(1) if

sup
1≤j≤T

∣∣∣∣∣
j∑

n=1

einθXn

∣∣∣∣∣ = op(T
2). (A.15)

First, observe that

E|S∗n(υ1)S∗n(υ2)| ≤ {ES∗2n (υ1)}1/2{ES∗2n (υ2)}1/2 ≤ σ2n (A.16)

so that E|S∗n(υ1)S∗n(υ2)| = O(n). Now let n ≥ m and consider

|Xn −Xm| ≤ |S∗n(υ1)||S∗n(υ2)− S∗m(υ2)|+ |S∗m(υ2)||S∗n(υ1)− S∗m(υ1)|. (A.17)

Noting that

E|S∗n(υ1)|2 = E(S∗n(υ1))2 = σ2

 n∑
j=1

cos(jυ1)

2

≤ σ2n (A.18)

yields E|S∗n(υ1)|2 = O(n). Given m ≤ n, this also implies E|S∗m(υ2)|2 ≤ σ2n.
Next consider the expression

E|S∗n(υ2)− S∗m(υ2)|2 = σ2

 n∑
j=m+1

cos2(jυ2)

 ≤ σ2(n−m). (A.19)

Thus, E|S∗n(υ2) − S∗m(υ2)|2 = O(n − m). Similar reasoning implies that E|S∗n(υ1) −
S∗m(υ1)|2 = O(n−m). If υ1 6= υ2, by Theorem 2.1 in Chan and Wei (1988), we see that
the first term in (A.13) is op(1). By similar reasoning, the remaining terms in (A.13) are
also seen to be op(1). Thus, we have established that

4 sin(υ1) sin(υ2)

σ2

1

T 2

T−1∑
t=1

Z1tZ2t = op(1). (A.20)

This expression is asymptotically equivalent to

− 4λ1λ2
4 sin(υ1) sin(υ2)

4 sin(υ1) sin(υ2)

σ2

1

T 2

T−1∑
t=1

Z1tZ2t, (A.21)

which is op(1). So this completes the proof of Case 1 in the Lemma.
Case 2: Without loss of generality, let ηk = 1, |ηj | < 1, and j 6= k. Rearrange the

polynomials in η∗ such that ηj = η1, and define the following elements,

Z1t = − 1

2λ1

∂εt+1

∂η1
=

εt
(1− 2η1L+ L2)

, Z2t = − 1

2λk

∂εt+1

∂ηk
=

εt
(1− L)2

. (A.22)
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Define the auxiliary process and its associated truncation.

Yt = (1− L)Z2t =

t∑
j=1

εj . (A.23)

This gives the following truncated series forZ2t,

Z2t =

t∑
j=1

Yt =

t∑
j=1

j εt−j+1. (A.24)

For ease of exposition, define the random process

XT (r) =
1

T

1√
Tσ

[Tr]∑
j=1

Yj , (A.25)

and define ST (υ1, t/T ) and TT (υ1, t/T ) precisely as in (A.12). We then get,

√
2 sin(υ1)

σ2

1

T 3

T−1∑
t=1

Z1tZ2t =
1

T

T−1∑
t=1

sin[(t+ 1)υ1]ST (υ1, t/T )XT (t/T )

− 1

T

T−1∑
t=1

cos[(t+ 1)υ1]TT (υ1, t/T )XT (t/T ). (A.26)

Note that the expression

− 4λ1λk√
2 sin(υ1)

√
2 sin(υ1)

σ2

1

T 3

T−1∑
t=1

Z1tZ2t, (A.27)

is asymptotically equivalent to 1
T 3

∂2L∗
∂η1∂ηk

. Define the processes

S∗n(υ1) =

n∑
j=1

cos(jυ1)εj , T
∗
n(υ1) =

n∑
j=1

sin(jυ1)εj , and X∗n =

n∑
j=1

Yj , (A.28)

to facilitate the analysis. It is easy to verify that

1

T

T−1∑
t=1

sin[(t+ 1)υ1]ST (υ1, t/T )XT (t/T ) = op(1) (A.29)

if
T−1∑
n=1

sin[(n+ 1)υ1]S∗n(υ1)X∗n = op(n
3). (A.30)

The same is true for the second term in (A.26). From (A.18) ES∗n(υ1)2 ≤ σ2n. From
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Gradshteyn and Ryzhik (1980) equation 0.121.2, we have

EX∗2n = E

 n∑
j=1

j εt−j+1

2

= σ2
n∑
j=1

j2 = σ2 2n3 + 3n2 + n

6
≤ σ2n3. (A.31)

Given, E|S∗n(υ1)X∗n| ≤ {ES∗n(υ1)2}1/2{EX∗2n }1/2, we see that E|S∗n(υ1)X∗n| is O(n2).
Now let n ≥ m and consider

|S∗n(υ1)X∗n − S∗m(υ1)X∗m| ≤ |S∗n(υ1)||X∗n −X∗m|+ |X∗m||S∗n(υ1)− S∗m(υ1)|. (A.32)

Clearly, E|S∗n(υ1)|2 ≤ σ2n, and from (A.19), E|S∗n(υ1) − S∗m(υ1)|2 ≤ σ2(n −m). From
(A.31) we have, E|X∗m|2 ≤ σ3m3 ≤ σ2n3. Finally, given Yj from (A.23),

E|X∗n −X∗m|2 = E

 n∑
j=m+1

Yj

2

(A.33)

= (n−m)2
m∑
j=1

σ2 + σ2
n−m∑
j=1

j2 ≤ σ2(n3 − 2n2m+ n2m) = σ2{n2(n−m)}. (A.34)

Thus, from Theorem 2.1 in Chan and Wei (1988),

sup
1≤j≤n

∣∣∣∣∣
j∑
t=1

eitθS∗tX
∗
t

∣∣∣∣∣ = op(n
3) (A.35)

which implies that the first term in (A.26) is op(1). Following the same reasoning, the
second term in (A.26) is also op(1) and this proves Case 2 of the Lemma.

Case 3: Without loss of generality, let η1 = −1 and |ηj | < 1, j 6= 1. Rearrange the
polynomials in η∗ such that η2 = ηj . Then,

Z1t = − 1

2λ1

∂εt+1

∂η1
=

εt
(1 + L)2

=

t∑
j=1

(−1)j+1j εt−j+1. (A.36)

Define the process

XT (t/T ) =

{
1
T

1√
Tσ

∑t
j=1(−1)j+1j εt−j+1 if t is odd

1
T

1√
Tσ

∑t
j=1(−1)jj εt−j+1 if t is even

. (A.37)

Let ω1 = (υ2 + π) and ω2 = (υ2 − π). Noting that T 3/2σXT (t/T ) cos[(t + 1)π] = Z1t,
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and defining Z2t as in (A.10), we get

2
√

2 sin(υ2)

σ2

1

T 3

T−1∑
t=1

Z1tZ2t

=
1

T

T−1∑
t=1

(sin[(t+ 1)ω1] + sin[(t+ 1)ω2])ST (υ2, t/T )XT (t/T )

− 1

T

T−1∑
t=1

(cos[(t+ 1)ω1] + sin[(t+ 1)ω2])ST (υ2, t/T )XT (t/T ) (A.38)

Construct the variable S∗n(υ2) as above and the auxiliary variable X∗n as

X∗n =


n∑
j=1

(−1)j+1jεn−j+1 if n is odd

n∑
j=1

(−1)jjεn−j+1 if n is even.
. (A.39)

Using these definitions we get

1

T

T−1∑
t=1

sin[(t+ 1)ω1]ST (υ2, t/T )XT (t/T ) = op(1) (A.40)

if
∑T−1
n=1 sin[(n+1)ω1]S∗n(υ2)X∗n = op(n

3). Again, {ES∗n(υ2)2}1/2 ≤ σ
√
n and E|S∗n(υ2)X∗n| ≤

{ES∗n(υ2)2}1/2{EX∗n2}1/2. Now, if n is odd, we have

E (X∗n)
2

= E

 n∑
j=1

(−1)j+1j εt−j+1

2

= σ2
n∑
j=1

j2 ≤ σ2n3, (A.41)

and precisely the same reasoning holds if n is even. This implies that E|S∗n(υ2)X∗n| is
O(n2). We know that

|S∗n(υ2)X∗n − S∗m(υ2)X∗m| ≤ |S∗n(υ2)||X∗n −X∗m|+ |X∗m||S∗n(υ2)− S∗m(υ2)| (A.42)

where the bounds on |S∗n(υ2)| and |S∗n(υ2) − S∗m(υ2)| were established in (A.18) and
(A.19), respectively, and the bound on |X∗m| was established in the discussion above
(A.33). Now, choosing n ≥ m for n odd and m even, gives

E|X∗n−X∗m|2 = E[(n−m)

m∑
j=1

(−1)j+1εj+

n−m∑
j=1

(−1)j+1jεn−j+1]2 ≤ σ2[n2(n−m)]. (A.43)

The result holds for any permutations of n and m. By Theorem 2.1 of Chan and Wei
(1988), the first term in (A.38) is op(1) and, by exactly the same reasoning, the remaining
terms are also op(1). This completes the proof of Case 3.

Case 4: Without loss of generality, let η1 = −1, ηk = 1, with |ηj | < 1, for j 6= 1, k.
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Define the following elements:

Z1t = − 1

2λ1

∂εt+1

∂η1
=

εt
(1 + L)2

=

t∑
j=1

(−1)j+1j εt−j+1 (A.44)

Zkt = − 1

2λk

∂εt+1

∂ηk
=

εt
(1− L)2

=

t∑
j=1

j εt−j+1 (A.45)

X∗1t =

{ ∑t
j=1(−1)j+1jεt−j+1 if t is odd∑t
j=1(−1)jjεt−j+1 if t is even

. (A.46)

Then,

4λ1λk
T 4

T−1∑
t=1

Z1t Zkt =
4λ1λk
T 4

T−1∑
t=1

cos[(t+ 1)π]X∗1tX
∗
kt (A.47)

where X∗kt is defined similarly to X∗n in (A.28). This allows us to apply Theorem 2.1 in
Chan and Wei (1988) to show that the last expression is op(1) if

sup
1≤j≤n

∣∣∣∣∣
j∑
t=1

eitθX∗1tX
∗
kt

∣∣∣∣∣ = op(n
4). (A.48)

Now let X∗1n and X∗kn be defined equivalently to X∗1t and X∗kt with the sequence of partial
sums running to n rather than t. From the definition of X∗1n we have

EX∗21n = σ2
n∑
j=1

j2 ≤ σ2n3. (A.49)

From (A.31)

E|X∗1nX∗kn| ≤ {EX∗21n}1/2{EX∗2kn}1/2 ≤ σ2{n3/2}{n3/2}. (A.50)

Choose n and m as integers greater than 0 with n ≥ m. Then,

|X∗1nX∗kn −X∗1mX∗km| ≤ |X∗1n||X∗kn −X∗km|+ |X∗km||X∗1n −X∗1m|. (A.51)

From (A.31) and (A.49), we know that E|X∗km|2 and E|X∗1n|2 are both O(n3), while from
(A.34) and (A.43), E|X∗kn−X∗km|2 and E|X∗1n−X∗1m|2 are O(n2(n−m)). By Theorem
2.1 in Chan and Wei (1988), the sequence in (A.48) is op(n

4) and thus the sequence in
(A.47) is op(1). This completes the proof of the Lemma.

Theorem 3 follows from the lemma, Theorem 2.2 in Chan and Wei (1988), and The-
orem 1 in Chung (1996a). Note that for the jth element of η∗, we get

T a(η̂j − ηj) = −[
1

T 2a

T∑
t=1

(
∂εt
∂ηj

)2]−1[
1

T a

T∑
t=1

εt
∂εt
∂ηj

] + op(1), (A.52)

where a = 1 if |η̂j | < 1, and a = 2 if |η̂j | = 1. The theorem is complete as this is precisely
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the k-factor version of equation (A.5) in Chung (1996a).
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