Gas–Liquid Critical Properties of Ethylene + Hydrogen and Propylene + Hydrogen Binary Mixtures†

Zhen-hua Chen,‡ Zhen Yao,*,‡ Fang-jun Zhu,‡ Kun Cao,*,‡† Yan Li,‡ and Zhi-ming Huang‡

State Key Laboratory of Chemical Engineering and Institute of Polymerization and Polymer Engineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China

Introduction

Supercritical fluids (SCFs) have many favorable characteristics for applications in many processes, such as separation, material processing, chemical reactions, and so forth. The processes applying SCFs usually involve two or more components. To use the advantages of SCFs, the mixtures in many processes should be a single phase. Therefore, the locus of critical points is crucial to estimate the phase behavior of the mixtures. The common methods adopted for measuring critical properties of mixtures include the following: visual method,4,5 flow method,6 acoustic method,7 and pulsed heating method.8 Hicks and Young reviewed the critical properties of binary mixtures.2 Abdulagatov et al. published a review which summarized the experimental data of critical properties for the binary mixtures containing carbon dioxide.3 However, there are few reports with regard to the mixtures including hydrogen.

In this work, we build an apparatus to determine the critical properties of ethylene + hydrogen and propylene + hydrogen mixtures via the visual approach for the potential application of olefin industrialization, especially in the supercritical polymerization of ethylene or propylene where hydrogen is added as a chain-transfer agent. Furthermore, the understanding of critical properties of mixtures including hydrogen is important to the rational design of the supercritical hydrogenation process.

Experimental Section

Materials. Both ethylene (mass fraction: ≥ 0.999) and propylene (mass fraction: ≥ 0.9999) are purchased from Foshan Kodi Gas Chemical Industry Co., Ltd. (Foshan, China). Hydrogen (mass fraction: ≥ 0.9999) is supplied by Hangzhou Jingong Special Gas Co., Ltd. (Hangzhou, China).

Apparatus. A schematic diagram of the apparatus for measuring critical points is exhibited in Figure 1. The optical cell with two borosilicate glass windows shown in Figure 2 is similar to that described by Zhang et al.1

The maximum inner volume of the optical cell is carefully calibrated by high pure nitrogen when the magnetic stirring bar is in place. The volume of cell can be changed in the range of (25.17 to 72.50) cm³ by moving the piston. The cell is immersed in an oil or water bath. The temperature of oil or water is measured by a type K thermocouple (WRNK-191, Beijing Chaoyang Instrument Factory, China) and controlled using a temperature controller (XMTD-7000, Yuyao Temperature Instrument Factory Co., Ltd., China). The water bath can be cooled by a superthermostatic bath when measuring the critical properties of the ethylene + hydrogen system. Two agitators are used to ensure the temperature is uniform in the bath. The cell pressure is monitored with a pressure transducer (HQ1000, Baoji Huaiyang Sensor, China) equipped with a digital pressure indicator (HR-WP-C70, Hongrun Precision Instruments Co.,

† Part of the “Josef M. G. Barthel Festschrift”.
* Corresponding authors. E-mail: zhenyao@zju.edu.cn (Z.Y.) or kcao@che.zju.edu.cn (K.C.).
‡ Institute of Polymerization and Polymer Engineering, Department of Chemical and Biological Engineering, Zhejiang University.
§ State Key Laboratory of Chemical Engineering, Zhejiang University.
from literature. The mass of hydrogen is determined by the density of hydrogen at the given temperature and pressure is obtained from literature. The mass of ethylene in liquid state. The density of the liquid at the given temperature is maintained at the desired temperature by a superthermostatic bath. Its pressure is maintained at a specified value to keep it in liquid state. The density of the liquid at the given temperature and pressure is obtained from literature. The mass of hydrogen is determined by the density of hydrogen and the volume of cell. Before being added to the cell, ethylene or propylene existing in the pump is introduced into the cell. The uncertainty in mole fraction is estimated to be 0.0008.

After loading hydrogen and ethylene (or propylene), the temperature of the oil or water bath is increased gradually until the mixture in cell becomes a single phase. There are three different routes to reach the single-phase region. The position of the meniscus changes differently in the corresponding process. If the density of mixture is lower than the critical density, the meniscus falls slowly, and the liquid all evaporates eventually. If the density of mixture is greater than the critical density, the meniscus rises, and the liquid occupies the whole inner volume of cell eventually. If the density of mixture is close enough to the critical density, the location of meniscus still stays in the middle of cell and finally disappears in the middle of cell. After the one-phase region is reached, the cell is cooled by decreasing the bath temperature gradually, and the cooling rate is controlled to be less than 0.3 K/min. Before the meniscus reappears in the middle of the view cell, the color of fluid can change from colorless to yellow, orange red, and then black. The temperature and pressure readings are noted down at the moment when the complete darkness occurs.

During the measuring process, the density of mixture is adjusted to approximate the critical density by moving the piston. The temperature-increasing and decreasing processes are repeated at least three times for each measurement, and an average of the readings is offered as the experimental data reported in this work.

### Experimental Results

The reliability of the apparatus and the experimental procedure are checked by measuring the critical temperature and pressure of ethylene and propylene. As shown in Table 1, the experimental results agree well with the literature values.

As shown in Table 2 and Figures 3 to 4, the critical temperature of the ethylene + hydrogen system decreases slightly with the increasing concentration of hydrogen. On the other hand, the dependence of critical pressure on hydrogen concentration is more significant. The similar phenomena have been observed by Ke et al. and Gao et al. Heintz and Streett measured the vapor—liquid phase equilibrium of the ethylene + hydrogen mixture at the temperature range of (114.1 to 247.1) K and pressure range of (4.03 to 599.83) MPa and suggested that the phase behavior of this binary system belongs to the type III phase diagram proposed by van Konynenburg and Scott.

### Table 1. Critical Temperature and Pressure of Pure Substances

<table>
<thead>
<tr>
<th>Substance</th>
<th>$T_c$ (K)</th>
<th>$P_c$ (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethylene</td>
<td>282.3</td>
<td>5.02</td>
</tr>
<tr>
<td>propylene</td>
<td>365.1</td>
<td>4.63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.600</td>
</tr>
</tbody>
</table>

### Table 2. Critical Properties of Ethylene (1) + Hydrogen (2)

<table>
<thead>
<tr>
<th>$x_2$</th>
<th>$T_c$ (K)</th>
<th>$P_c$ (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>282.3</td>
<td>5.02</td>
</tr>
<tr>
<td>0.0207</td>
<td>281.7</td>
<td>5.31</td>
</tr>
<tr>
<td>0.0358</td>
<td>281.2</td>
<td>5.61</td>
</tr>
<tr>
<td>0.0466</td>
<td>280.8</td>
<td>5.78</td>
</tr>
<tr>
<td>0.0619</td>
<td>280.4</td>
<td>5.98</td>
</tr>
<tr>
<td>0.0769</td>
<td>279.9</td>
<td>6.32</td>
</tr>
<tr>
<td>0.0878</td>
<td>279.6</td>
<td>6.51</td>
</tr>
<tr>
<td>0.0952</td>
<td>279.4</td>
<td>6.63</td>
</tr>
<tr>
<td>0.0998</td>
<td>279.2</td>
<td>6.73</td>
</tr>
<tr>
<td>0.1029</td>
<td>279.0</td>
<td>6.87</td>
</tr>
<tr>
<td>0.1086</td>
<td>278.9</td>
<td>7.07</td>
</tr>
<tr>
<td>0.1213</td>
<td>278.5</td>
<td>7.23</td>
</tr>
<tr>
<td>0.1305</td>
<td>278.1</td>
<td>7.56</td>
</tr>
<tr>
<td>0.1508</td>
<td>277.5</td>
<td>7.85</td>
</tr>
<tr>
<td>0.1737</td>
<td>276.6</td>
<td>8.44</td>
</tr>
</tbody>
</table>

**Figure 3.** Critical temperature for ethylene (1) + hydrogen (2).
The critical data for the propylene + hydrogen system are shown in Table 3 and Figures 5 and 6. Similar to the ethylene + hydrogen system, the critical temperature decreases mildly, but the critical pressure increases remarkably with the increase in hydrogen concentration.

**Prediction of Critical Properties.** In this work, the method of calculating the gas–liquid critical points of mixture developed by Heidemann and Khalil is selected.\textsuperscript{15} Usually, the equation of state is the appropriate thermodynamic model adopted to calculate the gas–liquid critical properties. However, most equations of state cannot predict the high-pressure phase behavior because of the lack of interaction parameters for mixtures. The group contribution PSRK (predictive Soave–Redlich–Kwong) equation of state is developed to predict the vapor–liquid phase equilibrium at a large range of temperatures and pressures.\textsuperscript{16} Furthermore, PSRK equation of state is also used to predict critical properties of various systems.\textsuperscript{17–19} To check its capacity further, the PSRK equation is adopted. The PSRK model which combines the SRK equation of state with the group contribution model UNIFAC by the PSRK mixing rule can be expressed as follows:

\[ P = \frac{RT}{v - b} - \frac{a}{v(v + b)} \]  

\[ \frac{a}{bRT} = \sum x_i \frac{a_i}{b_iRT} + \frac{G_i^L}{RT} \sum x_i \ln \frac{b_i}{b_i} \]  

\[ b = \sum x_i b_i \]

The constant $C$ in eq 2 is $-0.64663$. The parameters of pure substances and the group interaction parameters used in the PSRK model are taken from the literature.\textsuperscript{20} The prediction results can be seen from Figures 3 and 6 and Table 4. It is obvious that the agreement between the prediction and the experiments is satisfactory except that the maximum deviation is 6.41% for the prediction of critical pressure of the ethylene + hydrogen system.

**Conclusions**

The critical properties of two binary mixtures (ethylene + hydrogen and propylene + hydrogen) are measured by using a high-pressure view cell with visual observation. For both of the
two binary mixtures, the critical temperature decreases slightly, and the critical pressure increase strikingly with increasing hydrogen concentration. The PSRK model is used to predict the critical properties. The agreement between the prediction results and the experimental data is satisfactory.

Literature Cited


Received for review November 2, 2009. Accepted December 15, 2009.

This study was supported by the National Natural Science Foundation of China (NSFC Major Project No. 50390097 and NSFC Project Nos. 20576115, 50773069, and 50873090) and 973 Program of China (No. 2009CB320603).

JE9009199