DESIGNING ADAPTIVE, DIAGNOSTIC MATH ASSESSMENTS FOR SIGHTED AND VISUALLY DISABLED STUDENTS

Valerie J. Shute, Edith Aurora Graf, and Eric G. Hansen
Educational Testing Service, Princeton, New Jersey

ABSTRACT

This chapter summarizes the design and development of an adaptive e-learning prototype system for middle school mathematics for use with both sighted and visually disabled students. Adaptation refers to the system's ability to adjust itself to suit particular characteristics of the learner. Two types of adaptation are employed in this research and development effort: microadaptation and macroadaptation, addressing the "what to teach" and "how to teach it" aspects of e-learning, respectively. The main parts of the chapter describe the system's theoretical foundation, architecture, underlying models, and adaptive algorithm. We also review approaches for making assessment systems accessible to students with visual disabilities. Finally, we conclude with a summary of upcoming studies in relation to important research questions.
concerning micro- and macroadaptation. Using a design approach like the one described in this chapter may set a new precedent for environments that adapt to support student learning based on larger sets of incoming abilities and disabilities than have been considered previously.

_We cannot direct the wind but we can adjust the sails._
—Anonymous

The broad purpose of the research described in this chapter is to provide a foundation and framework for the design of adaptive programs that will be accessible to students with disabilities and will help all students learn better. We chose middle school mathematics as the initial content area for the research because of its particular challenges. Starting in middle school, U.S. students are less likely to master the material, and the content becomes both more visual (as students learn to interpret and construct graphs) and more abstract (as students learn to interpret and represent algebraic expressions). The increased visual nature of the content provides a distinct disadvantage for students who are interested in math but have visual disabilities. New technologies provide opportunities to improve accommodations in instruction and assessment for students with visual disabilities.

This chapter begins with an overview of our National Science Foundation (NSF) funded project, which focuses on ways to improve mathematics understanding and performance for middle school students, especially those with visual disabilities. The overview includes the motivation and theoretical foundation of our research, along with a brief description of two kinds of adaptation. Next, we describe the general architecture, or assessment design framework, underlying our prototype system. This is followed by a more detailed description of the various models in the system, which includes student, evidence, and task models. We conclude the system description with a summary of an adaptive algorithm we are using to select content to present to a particular learner, as appropriate. Following the system description, we review approaches for making assessment systems accessible to students with visual disabilities, focusing on a particular technology solution. Finally, we end with a summary of our upcoming studies in relation to important research questions.

**PROJECT OVERVIEW**

We have just completed the first year of a 3-year NSF research grant that will evaluate the benefits of adaptation\(^1\) on learning outcome, efficiency, and enjoyment. The culmination of our first-year efforts is an e-learning\(^2\)
Designing Adaptive, Diagnostic Math Assessments

A prototype system called ACED (Adaptive Content for Evidence-based Diagnosis). ACED is a diagnostic system that applies an evidence-centered design (ECD) approach for task development. It also uses an adaptive algorithm for task selection. This system provides assessment services, adaptive e-learning, and diagnostic reports at various levels, from general/coarse to more specific/refined in terms of the construct under examination. For example, a more general (coarse-grain) construct is, “understands sequences as patterns,” and a more specific (finer-grain) one is, “can generate a recursive rule for a geometric sequence.”

Currently, ACED delivers eighth-grade mathematics content related to sequences as patterns. The content covers arithmetic, geometric, and other simple progressions, and includes a large pool of diagnostic assessment tasks that are designed to target student misconceptions. We envision that teachers will use the system in the classroom to assess student understanding of this portion of the eighth-grade mathematics curriculum. For instance, teachers might use the system in the middle of the unit to gauge student progress, and/or at the conclusion of instruction for summative purposes. Students will eventually be able to use the system at home to further support learning.

During the past year, we focused our design and development efforts on building the system—its architecture, assessments, and adaptive capabilities. In addition, our efforts have sought to ensure that alteration of the system to accommodate visual limitations neither invalidates nor renders ineffective the assessment and learning of the content. Before going into detail about the ACED system, we first provide the motivation for choosing middle school mathematics as the subject area and grade level, followed by the theoretical foundation of the prototype system.

**Motivation for Focusing on Mathematics**

In the United States, student difficulties in mathematics seem to emerge in middle school. For example, the Trends in International Mathematics and Science Study (TIMSS) results indicate that U.S. fourth graders perform above the international average in mathematics (National Center for Educational Statistics, 2001; Office of Educational Research and Improvement, 2001). However, U.S. eighth-grade students perform at or below the international average; by the end of high school, U.S. students perform far below the international average (International Study Center at Boston College, 1998; Office of Educational Research and Improvement, 2001). This downward trend suggests that once they have covered arithmetic, U.S. students are not progressing as quickly in math as students in many other industrialized nations. In order to address the difficulties where they
appear to begin, we decided to develop the ACED content around eighth-grade level mathematics material. We now turn our attention to the theoretical foundation of the research and how it informed the system design.

**Theoretical Foundation of the Research**

Our ACED prototype was built on the premise that actively solving problems and receiving timely, diagnostic feedback enhances student learning. We also believe that presenting alternative representations of the same concept (in tasks, examples, and so forth) can often augment comprehension as well as accommodate various disabilities. Finally, we believe that adjusting learning environments and/or content to suit student needs can substantially improve learning. Each of these will now be discussed in more detail.

**Timely, diagnostic feedback.** By the time the results of high-stakes accountability tests are disseminated, it is often too late to effect change in the classroom to address weak areas or misconceptions. ACED tasks have been constructed to not only provide feedback about the correctness of the response, but also to provide guidance on areas of misconception. Consider the following ACED-like task, which asks the student to find the common difference in an arithmetic sequence: 4, 7, 10, 13. Suppose the student types in 16 as the answer. The diagnostic feedback says, “Nice try, but incorrect. You typed the next number in the sequence, but you should have typed in the common difference, which is 3.” This kind of feedback across multiple tasks can help students overcome procedural errors and areas of misconceptions. Furthermore, summary data provided to the teacher can allow him/her to modify the instructional approach and suggest further work for the student based on problem areas. The feedback can thus be used by students to guide self-study, and by teachers to guide instruction. Over the long term, such an approach should help students understand the material better and improve their performance on high-stakes tests (Mory, 2004).

**Content transformation and meaning equivalence.** When transforming content from one format (e.g., pictorial) to another (e.g., auditory), it is important to provide representations that convey the same meaning. This is to ensure that no student is unfairly advantaged or disadvantaged because of the format of the assessment task. The notion of providing equivalent representations is central to the requirement of the World Wide Web Consortium’s (W3C) *Web Content Accessibility Guidelines* that Web content authors provide *text equivalents*, sometimes called “text descriptions,” for non-text content (images, audio, video, animations) (Chisholm, Vanderheiden, & Jacobs, 1999; see also IMS Global Learning Consortium, 2002).
Text equivalents are important because they can be rendered in several different ways, including as visually-displayed text, audio, and braille. Furthermore, audio presentation may be carried out by having the text description read aloud via a live reader, prerecorded audio, or synthesized speech. Consider the use of a text description rendered in audio to convey the meaning of a graph (visual) for a person who is blind. It has been noted that, “A picture is worth a thousand words” (attributed to Napoleon Bonaparte). However, this can pose a real problem for individuals who are blind. For example, an extended audio stream interpretation of a complex graphic may exceed certain of the test taker’s cognitive capacities. See Figure 9.1, which shows a simple linear graph from Recording for the Blind and Dyslexic (2004). The text equivalent of this graph is as follows:

This figure shows a straight line drawn on a two-axis system, with a horizontal axis labeled X and a vertical axis labeled Y. All four quadrants are shown. The line begins in the third quadrant and moves upward and to the right; it crosses the negative X-axis, passes through the second quadrant, crosses the positive Y-axis, and ends in the first quadrant. Three points are shown, two on the line and one in the fourth quadrant. The point on the line in the first quadrant is labeled X, Y; the point on the line in the third quadrant is labeled X-sub-one, Y-sub-one. The point in the fourth quadrant is labeled X, Y-sub-one. In addition, two dashed line segments are shown, one that drops vertically from the point X, Y and connects it to the point X, Y-sub-one, and one that moves horizontally to the right from the point X-sub-one, Y-sub-one and connects it to the point X, Y-sub-one. This forms a right triangle with the solid line as a hypotenuse, the horizontal dashed line as base, and the vertical dashed line as side. (p. 11)

Figure 9.1. Example of a simple linear graph. From Guidelines for Reading Mathematics (p. 11) by Recording for the Blind & Dyslexic, 2004, Princeton, New Jersey: Recording for the Blind & Dyslexic, Copyright 2004. Adapted with permission.
Imagine how many words would be needed if axes were numbered, and it was a non-linear relationship. Such complicating factors would make the graph all the more difficult to communicate.

Navigating back and forth within the audio presentation can be cumbersome, whether the student must ask a live reader to repeat portions of the presentation, or navigate a prerecorded audio presentation from an audiocassette. Some improvements might be obtained through a synthesized speech rendition of the text description, and by allowing the student to control the rate of speech and to navigate through the content in different ways (e.g., sentence by sentence, or word by word). A prerecorded audio presentation might similarly be improved over audiocassette by providing similar navigation capabilities, such as through digital talking book technology (DAISY Consortium, 2004). If the student reads braille, then the text description of the graphic might be conveyed via braille (either hard copy or refreshable). Yet a limitation of all these approaches is that they provide access to the text description of the graphic rather than to the graphic itself. Thus, in addition to providing audio or braille access to a text description of the graphic, the graphic may be presented as a tactile graphic, sometimes called a “raised-line” graphic. A tactile graphic may thus serve as a supplement to an audio or braille description of the visual graphic. Nevertheless, it can still be unwieldy to mentally and physically coordinate what is felt on the tactile graphic with the text description, which is either heard via audio or received via braille.

Clearly, there are many opportunities to make graphical mathematics content more accessible and more usable to individuals who are blind. As discussed later, this project will explore a promising avenue for enhancing the accessibility and usability of graphical content.

Aptitude-treatment interactions (ATI). The third theoretical premise underlying ACED emphasizes our general quest, which is to explore innovative ways to improve mathematics learning for all students—sighted and visually impaired. However, it is unlikely that a “one size fits all” approach will optimize learning for all students, since the pictures that are so useful for sighted students may not even be perceptible to the visually impaired. Thus, aptitude-treatment interaction (ATI) research is relevant. In this research, aptitude is broadly defined as any individual characteristic that accounts for the level of student performance in a given environment; and treatment refers to the variations in the pace, format, or style of instruction (see Cronbach & Snow, 1977). This research suggests that different treatments may be more or less suited to different combinations of student characteristics. For example, if we know a person has visual problems but can hear adequately, and we have equivalent content in both visual and auditory formats, the ATI recommendation would be to deliver the content in the auditory format for that person. Again, the general purpose of
our research is to customize instructional content to match different learner characteristics.

There are basically two main ways to customize content—in terms of what to present (microadaptation), and how to best present it (macroadaptation). As previously noted, in broad terms, adaptation refers to the customization of instructional material (e.g., content selection, sequencing, format) to suit different student characteristics. This has been a fairly elusive goal among educators for some time (e.g., Bloom, 1968; 1984; Cronbach & Snow, 1977; Tobias, 1994). Recent advances in cognitive science and technology are making it more attainable, however (e.g., Shute, Lajoie, & Gluck, 2000). For example, technology has advanced to the point where we can begin to implement laboratory-based adaptive instructional techniques on the Internet (e.g., differential sequencing of content depending on learners’ needs).

The power of e-learning comes from the wide range of capabilities that technologies afford. One capability is the design and development of assessments and instructional content that adapts to learners’ needs and/or preferences. Other effective technology interventions include simulations of dynamic events, extra practice opportunities on emergent skills, and alternative multimedia options—particularly those that allow greater access to individuals with disabilities. More details on customization via micro- and macroadaptation are provided next.

**Microadaptation**

One way in which content can be customized is through what is called microadaptation, the real-time selection of content in response to a learner’s inferred knowledge and skill state. Microadaptation occurs during the learning process and is sometimes referred to as domain-dependent adaptation. According to the theoretical perspective that supports the use of microadaptation (see Table 9.1), decisions about content selection should be made based on performance and subsequent inferences of students’ knowledge and skill states, compared with the level they should have achieved when instruction is complete. For instance, suppose a student incorrectly solved a rather difficult assessment task relating to a particular concept or skill. Several options may be indicated, such as presenting new instructional material on the concept, or administering a slightly easier assessment task tapping the same proficiency, to see the extent of the problem. Alternatively, additional practice or remedial instruction may be warranted. When the student is believed to have mastered a given topic, he or she is guided to a new part of the curriculum.
Another approach to adapting content is through **macroadaptation**—the customization of content in line with more stable learner qualities, such as cognitive or perceptual abilities. In contrast with microadaptation, macroadaptive decisions are domain-independent and based on learner information that is usually, but not always, collected before instruction begins (see Shute, 1993; Snow, 1992 for more on this topic). Macroadaptation relates to decisions about the format and/or sequence of the content presented to the learner. Relevant learner information (e.g., cognitive, perceptual, personality or learning style) is initially collected from the student. Subsequently, these data are used to make informed decisions regarding the type of content or instructional environment best suited to the individual. For a review of some specific macroadaptive examples from the literature, see Shute, Lajoie, and Gluck (2000).

The two forms of adaptation are not necessarily incompatible and may, in fact, improve learning even more when combined. Microadaptation is typically applied to the problem of **what** to present and when to present it, while macroadaptation is applied to the issue of **how** it should be presented. Regarding the former, we use a microadaptive algorithm that is intended to select the assessment task that provides the most information

### Table 9.1. Alignment of Adaptation Type by Learner/System Feature

<table>
<thead>
<tr>
<th>Feature</th>
<th>Microadaptation (i.e., domain-dependent)</th>
<th>Macroadaptation (i.e., domain-independent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person characteristic</td>
<td>System adapts to fairly malleable person characteristics such as knowledge, skills, and abilities that are the focus of instruction and assessment.</td>
<td>System adapts to fairly stable person characteristics such as cognitive variables, perceptual abilities, personality variables, and learning style.</td>
</tr>
<tr>
<td>Adaptive decision</td>
<td>Microadaptive decisions occur during instruction (through diagnostic assessment).</td>
<td>Macroadaptive decisions occur mainly prior to instruction (based on pre-existing data sources or pre-instruction assessment).</td>
</tr>
<tr>
<td>Consequence of adaptation</td>
<td>Decision affects what content is presented (e.g., determination of when the student is ready to proceed to the next part of the curriculum).</td>
<td>Decision affects how content is presented (e.g., differential sequencing or alternative presentation format).</td>
</tr>
<tr>
<td>Theoretical underpinnings</td>
<td>Adaptation is based on theoretical and empirical information relating to learning and pedagogical principles that provide information about what to instruct or assess, and why.</td>
<td>Adaptation is based on theory and research on aptitude-treatment interactions (ATIs) and, more recently, assessment validity, and other information from the individual differences literature.</td>
</tr>
</tbody>
</table>
about a particular learner at any point in time. Regarding the latter, we have identified a promising assistive technology (macroadaptation) to present math content to students with visual disabilities. Both will be discussed in more detail later in this chapter. Table 9.1 summarizes the general differences between micro- and macroadaptive approaches.

**GENERAL ACED ARCHITECTURE**

With the motivation and theoretical foundation of the research project described above, we now present the basic architecture of our prototype system focusing on the development of well-founded diagnostic assessments of proficiencies relating to *sequences as patterns*. Good assessments are the key to obtaining relevant information to make inferences about students’ knowledge and skill states. Moreover, accurate inferences of current knowledge and skill states support microadaptive decisions that can promote learning.

This section begins with an overview of evidence-centered design (ECD) (e.g., Mislevy, Steinberg, & Almond, 2003), a framework that consists of three theoretical models that work in concert. The models represent inferences about what a student knows and does not know, based on evidence or performance data resulting from interactions with assessment tasks. Later in the chapter, we will present the models as they have been developed for ACED.

**Evidence-Centered Design (ECD)**

The architecture underlying the ACED diagnostic assessment system is ECD, developed by Mislevy and colleagues (e.g., Mislevy, Almond, Yan, & Steinberg, 1999; Mislevy, Steinberg, & Almond, 2003). In general, ECD is an attempt to obtain clear answers to three basic assessment questions: (a) What do you want to say about persons taking the assessment? (b) What observations (behaviors or work products) would provide the best evidence for what you want to say? (c) What kinds of tasks allow you to make the necessary observations or collect pertinent evidence? For a simple illustration, suppose you wanted to measure your students’ knowledge of U.S. state capitals. Evidence of high proficiency would be a given student correctly listing the names of all capital cities, per state. This evidence could be obtained orally, on paper, or via computer, using free recall or matching tasks. The ensuing score on this assessment would be interpreted in relation to pre-established scoring rules.
To apply the ECD framework in the design of assessment tasks, a subject matter expert (e.g., a teacher or test developer) begins by creating three models: (a) the student model, defining the range and relationships of the knowledge and skills to be measured, (b) the evidence model, specifying the performance data associated with these knowledge and skills, for varying levels of mastery, and (c) the task model, spelling out the features of task performance situations that will elicit relevant evidence.

Figure 9.2 shows the relationships among ECD’s main models. Assessment design flows conceptually from left to right, although in practice it is less linear and more iterative. Conversely, diagnosis (or inference) flows in the opposite direction; that is, a diagnostic assessment task is administered, and the action(s) that a student takes during the solution process provides the evidence that is analyzed by the evidence model. The results of this analysis are data (e.g., scores) that are communicated to the student model, which in turn update the relevant proficiencies. In ACED, an adaptive algorithm (not shown in Figure 9.2) is invoked to select a new task to present based on the updated student model values. The cycle repeats until the tasks are completed, time has run out, mastery has been achieved, or some other termination criterion has been met.

The theoretical and structural parts of our research seek to provide a psychometrically sound approach for designing assessments and modeling student performance. The ECD approach provides a framework for developing assessment tasks that are explicitly linked to claims about learner proficiencies via an evidentiary chain and therefore more likely to be valid for their intended purposes. We now discuss each of the main ECD models in more detail.
Student Model

A student model typically refers to a record of what a student is believed to know and not know, in relation to some referent knowledge and skill map, sometimes referred to as a proficiency model. It is an essential component in any adaptive e-learning system. A variety of student modeling approaches exist, but we will focus on a particular approach that has been successfully implemented in some adaptive prototype systems using Bayesian inference networks (BINs). BINs are employed to represent, monitor, and update the student model. The main outcome of this approach is to compute probabilistic estimates of proficiency (e.g., The probability that Student X has a “very strong” grasp of Concept Y is .95) at various points in time. ETS has a growing theoretical and empirical research history in this area (e.g., Mislevy & Gitomer, 1996; Mislevy, Almond, Yan, & Steinberg, 1999; Mislevy, Steinberg, & Almond, 2003). A Bayesian approach to student modeling can be used in an e-learning system to inform microadaptive decisions—enabling the system to choose the best piece of content to present next. In the ACED case, this is the most helpful and informative assessment task.

Evidence Models

We next describe the evidence model in relation to the observable features of students’ work products (or behaviors) that constitute evidence about proficiencies, which are represented as nodes or variables in the student model. According to Mislevy, Steinberg, & Almond (1999a, p. 4), evidence models attempt to answer two questions: (a) “What behaviors or performances reveal targeted proficiencies?” and (b) “What is the connection between those behaviors and the student model variable(s)?” Basically, an evidence model lays out the argument about why and how the observations in a given task situation (i.e., student performance data) constitute evidence about student model variables. For instance, what do we know about a student’s “knowledge of U.S. state capitals” if she can freely recall 40 of the 50 state capitals? Is that performance better or worse than matching 48 capitals to their appropriate state? Evidence models help to shed light on questions like these.

There are two parts to the evidence model: (a) evidence rules, which spell out how the results of a given performance should be extracted from (or identified in) a given work product, and the (b) statistical sub-model, expressing how the observable variables (squares in Figure 9.2) depend on, or link to, student model variables (circles in Figure 9.2). Evidence rules emphasize how the student performs or responds, while statistical sub-
models link the extracted data back to targeted proficiencies denoting what the student knows, and how well she is believed to know it.

A given work product may yield one, or potentially several observable variables. For instance, suppose a student wrote a short essay. The essay becomes the work product for a writing assessment task and could be evaluated in terms of various proficiencies, such as spelling, grammar, syntax, or semantics. These proficiencies could be assessed and updated individually, or considered as a more general “writing skills” proficiency. The evidence rules, then, would differ—to focus on individual or holistic rubrics. An example of a holistic evidence rule for “highly proficient” writing could be something like, “The essay is clear and concise, with perfect spelling; and no grammar, syntax, or semantic errors present” (see Dempsey, et al., this volume, for information on holistic writing assessment).

Evidence models thus represent the conceptual glue, or evidentiary chain, between tasks and proficiencies. Furthermore, a necessary condition for an evidence model is that it shares the same work-product specifications as the task model. That is, what the student produces in the task situation and what the evidence rules examine must be the same thing. We now turn our attention to the task model.

**Tasks and Task Models**

Tasks are the most obvious part of an assessment, and their main purpose is to elicit evidence (observables) about proficiencies (unobservables) (see Mislevy, Steinberg, & Almond, 1999b, for more on this topic). A *task model* provides a framework for describing the situations in which students act, in terms of (a) the variables used to describe key features of tasks (e.g., content, difficulty), (b) the presentation format (e.g., directions, stimuli, prompts), and (c) the specific work or response products (e.g., answers, work samples). As such, task specifications establish what the student will be asked to do, what kinds of responses are permitted, what types of formats are available, and other considerations, such as whether the student will be timed, allowed to use tools (e.g., calculators, dictionaries, word processors), and so forth. Multiple task models can be employed in a given assessment.

Different task models produce different tasks, which can vary along a number of dimensions (e.g., media type and difficulty level). For example, following are three levels of difficulty, defining three tasks, in the student model variable: “Find the common difference in an arithmetic sequence.”
**EASY**—Find the common difference for the following arithmetic sequence:
1, 7, 13, 19, 25, . . . Enter your answer here ______

**INTERMEDIATE**—Find the common difference for the following arithmetic sequence:
0.00, 0.49, 0.98, 1.47, 1.96, . . . Enter your answer here ______

**DIFFICULT**—Find the common difference for the following arithmetic sequence:
0.03, 0.95, 1.87, 2.79, 3.71, . . . Enter your answer here ______

Note that the relationship between student model variables and tasks such as those listed above is as follows: Student model variables represent the concepts or skills currently under focus. The online manifestations of those variables are the assessment tasks with which students interact and that elicit evidence about the variables. Thus student model variables are assessed (and their states inferred) in relation to learners’ performance on relevant tasks.

**Adaptive Algorithm**

Having summarized the different models making up ECD, we now focus on accomplishing adaptivity in the ACED system. As mentioned, our student model is represented as a Bayesian inference network (BIN), and in our application all student model variables have probabilities for each of three states of proficiency level: low, medium, and high. For example, consider a student who is struggling with a specific concept or skill (e.g., knows U.S. state capitals). She may have the following probability distribution assigned to this variable: low \( (p = .85) \), medium \( (p = .10) \), high \( (p = .05) \). Furthermore, if knowing each state and its capital were targeted as important, there would be 50 more nodes represented (i.e., one per state, residing under the parent node: knows U.S. state capitals). Each variable has its own probability distribution. In the more general case, we can interpret the example distribution as, “It is likely this student currently does not know all of the U.S. state capitals.”

Such probability distributions are dynamic—they are a function of the current, specific, performance data (evidence) that feeds back to update the student model. Maintaining an updated record of proficiency levels can help determine proper interventions. For example, students performing lower than expectations (low) may benefit from remedial instruction; students performing consistently with expectations (medium) may need to continue practicing the current skill/concept; and those performing higher than expectations (high) may be ready to move to more advanced...
material. But this is still rather vague, so we sought a more concrete way for the system to select the next, most suitable task to present to a learner at a given point in time.

Currently, the task that is selected is the task for which the expected weight of evidence is maximized (D. Williamson, personal communication, March 15, 2003). The expected weight of evidence (e.g., Good & Card, 1971; Madigan & Almond, 1996) (WE) is defined as:

\[
WE(H : T) = \sum_{j=1}^{n} \log \left[ \frac{P(t_j|h)}{P(t_j|\bar{h})} \right] P(t_j|h)
\]

Here, \(T\) refers to task performance and \(H\) refers to the main hypothesis; either the main hypothesis is true (\(h\)) or the alternative hypothesis is true (\(\bar{h}\)). The variable \(n\) refers to the number of possible outcomes for each task. In ACED, there are two possible outcomes for each task: correct or incorrect. The variable \(j\) represents the outcome index for a particular task, and the variable \(t_j\) is the value of the outcome.

The weight of evidence for a particular task outcome is the log-odds ratio of the probability that a particular outcome will occur given that the hypothesis is true, to the probability that the same outcome will occur given that the alternative hypothesis is true. Thus, the expected weight of evidence, \(WE(H : T)\), for a particular task is the average weight of evidence across possible task outcomes (Madigan, Mosurski, & Almond, 1997).

Going back to the earlier example, suppose you are a teacher at a school in New Jersey, and just finished a short instructional unit on U.S. state capitals. You believe that you did a good job, and that most of the students should demonstrate high levels of proficiency on tasks assessing relevant content. You are ready to move on, and thus your hypothesis of interest (\(h\)) is that your students are high on their state capital proficiencies, and the alternative hypothesis (\(\bar{h}\)) is that they are not high. Teachers specify their hypothesis of interest in advance, via a pull-down menu in ACED, as it pertains to their students who will be using the system. The alternative hypothesis is simply the inverse of the main hypothesis.

Now suppose that you have an assessment consisting of tasks covering the material you want your students to have acquired. Each student takes the assessment, one task at a time. At the end of each task, there are just two possible outcomes—either the student solved it correctly or incorrectly (\(t_j = 1\) or \(0\)). Imagine also that you have a rank-ordered list of difficulty levels for all of the tasks, based on familiarity, frequency, and/or saliency data. Suppose that for your population of students, an easy item would be to identify Trenton as New Jersey’s state capital. Some difficult items may be to identify the capitals of South Dakota and Kentucky. If you really wanted
to know if it was time to move on to another topic or stay with state capitals a little longer, would you administer the, “What is the state capital of New Jersey?” question first, or something harder? Clearly, asking a really easy question that everyone answers correctly does not shed new light on a student’s proficiency level. But what is the best level of difficulty? And if you administer a difficult item and a student solves it incorrectly, should you give another difficult item, or an easier one? Our adaptive algorithm helps to answer these types of questions.

On the basis of each outcome event, and in conjunction with the difficulty of the current task and the current values in the student model (unique, per student), the WE is calculated for the remaining set of assessment tasks. The next task selected is that which has the highest WE value, providing the most information in relation to a specific hypothesis (Madigan & Almond, 1996).

Because our first year focused primarily on building the system, we do not yet have any data as to its efficacy at this time. However, we do have some preliminary data suggesting that our adaptive algorithm is, indeed, functioning as intended. To test its functionality, we created a variety of simulated (but realistic) student profiles with different patterns of response histories to see what task the system would select based on various performances. To illustrate, one simulation consisted of the hypothesis that “the student is high” in relation to a set of proficiencies. We created a simulated student who was characterized as having had problems acquiring the material, evidenced by poor performance. For instance, the simulated student received a difficult item in relation to a particular proficiency, and failed to solve it correctly. The next task that was selected (via the WE calculation) was one representing the same proficiency, but represented by an easier task. Using our earlier illustration, this would be similar to a student being asked to recall the capital of South Dakota in response to an open-ended prompt. Upon failing to do so, the student would then be asked an easier, forced-choice variant, such as, “Which of the three cities is the capital of South Dakota: (a) San Francisco, (b) Pierre, (c) Baltimore?” Our simulated data, in conjunction with other profiles across 10–20 trials, indicate that the algorithm appears to be working as intended. The system will be pilot tested on real students in the second year of the project.

In summary, the WE approach is appealing because it is multidimensional, dynamic, and flexible. That is, this approach works with multidimensional Bayes nets, allowing estimation of a variety of student model variables (rather than being limited to a single, general proficiency). Also, the model evolves over time, updating its variable estimates in response to actual performance data. Finally, this approach allows one to specify a hypothesis of interest as opposed to requiring a default or fixed hypothesis. All this is accomplished by the following WE cycle: Calculate WE, select
184  V.J. SHUTE, E.A. GRAF, and E.G. HANSEN

Having set up the infrastructure for the ACED system, we now focus our attention on populating it with content. Two preliminary and important stages characterize the design of an ECD-based assessment: domain analysis and domain modeling (Mislevy, Steinberg, and Almond 1999a). Domain analysis is the process of identifying, collecting, organizing, and representing the relevant information in a domain, based on knowledge captured from domain experts, underlying theory, supplementary material, and so on. During domain modeling, the designers establish relationships among the student proficiencies, the evidence for the proficiencies, and the kinds of tasks that elicit relevant evidence. Graphic representations and schema are typically used to convey complex relationships. These are discussed in more detail, below—specifically in relation to the ACED prototype.

**Domain Analysis**

As mentioned above, during the domain analysis phase, designers consider the range of constructs that may be measured by the assessment (Mis-
Designing Adaptive, Diagnostic Math Assessments

levy, Steinberg, & Almond, 1999b). In order to identify the relevant constructs, designers consult with expert practitioners and refer to supporting materials. Furthermore, research articles and state and national testing standards are often valuable sources. Practical requirements and constraints are also considered in this phase. During the domain analysis phase of the ACED project, we first consulted with a small team of four eighth-grade mathematics teachers (the expert practitioners). We told the team that we intended to build an assessment for the purpose of diagnostic instruction, and needed their expertise in order to select some appropriate content from eighth-grade mathematics. One practical constraint was that since we were designing the unit for a prototype system, we planned to limit the scope of the assessment to 2–3 weeks of material. This amount of material also corresponds to the approximate length of time that most teachers will spend on a classroom unit of instruction.

After proposing several options, the team selected sequences as patterns, as a topic for the assessment. Most of the teachers on the team were working in the state of New Jersey, and they indicated that there are several New Jersey state standards that address sequences, and that the material works well as part of a 2–3 week classroom unit of instruction. Subsequent discussion focused on prerequisites for the unit, as well as the organization of the requisite skills. We discussed pedagogical approaches, sample tasks, and the use of supplementary materials in designing such a unit. Further, we discussed what kinds of proficiencies would be appropriate to include on a pretest or an interim test designed for a unit on sequences. The teachers mentioned that, in designing a unit, they use the textbook as a resource, and they gather material from the Web.

During the domain analysis phase, and following this phase as we were reviewing the model, we consulted a number of sources, including national standards (National Assessment Governing Board, 2002; National Council of Teachers of Mathematics, 2000), the New Jersey state standards (New Jersey Department of Education, 2004), and a number of algebra and pre-algebra textbooks (Bellman, et al., 2001; Brown, Dolciani, Sorgenfrey, & Cole, 2000; Burton, et al., 1999; Collins, et al., 2001; Lappan, Fey, Fitzgerald, Friel, & Phillips, 2002; Price, Rath, Leschensky, Malloy, & Alban, 1997).7

**DOMAIN MODELING**

After we were satisfied with the breadth and depth of proficiencies pulled from the various sources, we began the next phase—domain modeling. According to Mislevy, Steinberg, and Almond (1999a): 
In the domain modeling phase, the designers use information from the domain analyses to establish relationships among proficiencies, tasks, and evidence. They explore different approaches and develop high-level sketches that are consistent with what they have learned about the domain so far. They can create graphic representations and schema to convey these complex relationships, and may develop prototypes to test their assumptions. (p. 3)

During the first part of the domain modeling phase for the sequences unit, we focused on developing schema to approximate what would later become the student model. Following our discussions with teachers and our reviews of the standards and textbooks, we began to identify the key proficiencies and how they should be linked and organized. At first, we only listed the proficiencies; later we organized them into an outline. Finally, we created graphic representations in Microsoft Word, Microsoft Visio, and ETS's Portal (e.g., Mislevy, Steinberg, & Almond, 2000), where we could easily move, add, or delete proficiencies (nodes in our graph), and change the links among them. We considered different options for global as well as local structures. After many revisions, we defined the student model that we would ultimately use in our ACED prototype system.

Once the student model was established, defining the evidence and task models was straightforward, albeit time-consuming given the number of proficiencies specified. Figure 9.4 shows the student model that is used in ACED. Three features of the student model shown in Figure 9.4 are immediately apparent. First, the model is hierarchical; each child node has only one parent node. Second, the root node that represents the proficiency,
sequences as patterns, has three child nodes, each corresponding to a different sequence type. Third, the proficiencies under each sequence type are identical, with the exception that there is no analog for common difference (arithmetic) or common ratio (geometric) in other recursive sequences. This is because the other recursive sequences proficiency is more broadly defined; it pertains to sequences taught at the eighth-grade level that may be recursively defined but are neither arithmetic nor geometric. Examples include the Fibonacci numbers, triangular numbers, and simple repeating patterns.

Brief descriptions of some of the student proficiencies are given in Table 9.2. As part of the development of the student model, claims were also specified. Three levels of mastery (low, medium, and high) are associated with each student variable. For each level of each student model variable.

<table>
<thead>
<tr>
<th>Tree level</th>
<th>Name in tree</th>
<th>Full name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Arithmetic</td>
<td>Solve problems with arithmetic sequences</td>
<td>A student with this set of proficiencies can work with arithmetic sequences at the eighth-grade level. An arithmetic sequence is defined by a starting term ( a_1 ) and a common difference, ( d ). The terms of an arithmetic sequence are as follows: ( a_1, a_1 + d, a_1 + 2d, a_1 + 3d, \ldots, a_1 + (n-1)d ) (e.g., see Beyer, 1984, p. 8).</td>
</tr>
<tr>
<td>2</td>
<td>Pictorial</td>
<td>Represent pictorial patterns as sequences (arithmetic, geometric, other recursive)</td>
<td>A student with this set of proficiencies can interpret a graphic (e.g., a succession of patterns of dots) as a sequence of a particular type.</td>
</tr>
<tr>
<td>3</td>
<td>Algebra rule</td>
<td>Generate a rule for a sequence as a function or expression (arithmetic, geometric, other recursive)</td>
<td>A student who has this skill can express rules of generating terms in a sequence algebraically; the rule in this case takes the form of an algebraic expression.</td>
</tr>
<tr>
<td>4</td>
<td>Explicit</td>
<td>Generate a formula for the ( n )th term of a sequence (arithmetic, geometric, other recursive)</td>
<td>A student with this proficiency can use an algebraic expression to represent the ( n )th term of a sequence. For example, ( 5 + 2(n-1) ) is an explicit rule for the ( n )th term of an arithmetic sequence with an initial term of 5 and a common difference of 2. In general, an explicit rule for the ( n )th term of an arithmetic sequence is: ( a_n = a_1 + (n-1)d ) (( d ) is the common difference) and an explicit rule for the ( n )th term of a geometric sequence is: ( a_n = a_1r^{n-1} ) (( r ) is the common ratio) (e.g., see Beyer, 1984, p. 8).</td>
</tr>
</tbody>
</table>
able, there is a claim that describes what the student should know and be able to do. Because the set of claims is extensive, we do not show all of the claims here, but the following is an example of a claim for a student with a high level of proficiency at finding explicit formulas for geometric sequences (i.e., the node labeled explicit in the geometric branch of the student model, Figure 9.4): “The student can correctly generate or recognize the explicit formula for the $n$th term in a geometric sequence. The student can do this in more challenging situations, for example, when the signs of the terms in the sequence are alternating, or when the starting term and the common ratio are unequal.”

**ACED Evidence Model**

As described earlier, the evidence model specifies the behaviors that indicate the level of mastery associated with a particular proficiency (Mislevy, et al., 1999a; 1999b; 2000). The evidence model consists of two parts: the evidence rules and the statistical sub-model. The evidence rules developed for the ACED system are extensive, and evidence is characterized at each of the three levels, per proficiency. For brevity, we present the evidence associated with each level for two proficiencies in Table 9.3.

The statistical sub-model defines the set of probabilistic relationships among the student model variables (nodes) and observables (Mislevy, et al., 2003). First, we estimated the prior probabilities (priors) for the parent node (sequences as patterns). The priors specify the probabilities that a student is in the low, medium, and high states, respectively, for the parent proficiency. For each of the other nodes in the model, two values were entered. One value was an indicator of the relative difficulty of the tasks associated with that particular node, and the other was a correlation that indicated the strength of the relationship between the node and its parent (R. Almond, personal communication, October 4, 2004). These judgments were transformed to produce a set of conditional probability tables, one table for each node except for the root node. Since each node had three levels associated with it, each conditional probability table had nine probability estimates (3 parent node levels multiplied by 3 child node levels). A probability estimate was in each cell. For example, a cell in the table associated with the model node under arithmetic sequences would indicate the probability (expressed as a value between 0 and 1.0) for high-level proficiency for model given medium-level proficiency for arithmetic. Generally speaking, students with high proficiency levels were considered most likely to be able to solve both hard and easy tasks, while students with low proficiency levels were considered most likely to be able to solve only easy tasks.
Table 9.3. Evidence Rules Specified for Two Sample Proficiencies, at each Level of Mastery

<table>
<thead>
<tr>
<th>Proficiency</th>
<th>High</th>
<th>Medium</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Represent pictorial patterns as</td>
<td>The student can produce a pattern that represents an arithmetic</td>
<td>The student recognizes that the pictorial patterns have</td>
<td>The student does not infer any mathematical</td>
</tr>
<tr>
<td>arithmetic sequences</td>
<td>sequence, can recognize arithmetic sequences represented as</td>
<td>mathematical significance, but cannot consistently explain</td>
<td>significance from the pictorial patterns.</td>
</tr>
<tr>
<td></td>
<td>pictorial patterns, and can recognize the equivalence between</td>
<td>how or why.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>numeric and pictorial representations.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generate and justify examples of</td>
<td>The student can generate geometric sequences. If a list of terms is</td>
<td>The student generates something that may be a sequence but not</td>
<td>The student generates something that does not</td>
</tr>
<tr>
<td>geometric sequences</td>
<td>given, all terms in the sequence are correct. If a formula is given,</td>
<td>necessarily a geometric sequence, or generates a sequence that is</td>
<td>necessarily a sequence at all, or generates a</td>
</tr>
<tr>
<td></td>
<td>it is well formed and correctly specifies an appropriate example.</td>
<td>geometric but has some incorrect terms due to arithmetic errors, or</td>
<td>sequence that does not include a multiplicative</td>
</tr>
<tr>
<td></td>
<td></td>
<td>generates a formula that is close to expressing the correct</td>
<td>operation as at least part of the rule.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sequence.</td>
<td></td>
</tr>
</tbody>
</table>

ACED Task Model

The task model provides a specification of the kinds of tasks that measure the behaviors described in the evidence model (Mislevy et al., 1999a; 1999b). The task model describes the features for each kind of task included in an assessment. For example, it might describe different item types included in an assessment, the nature of the stimulus (if present), the stem, and the options (if any). The task model also describes how the student will respond to each type of task. For example, a multiple choice item requires the student to select an option, while a numeric entry item requires a student to enter a number. The following is an example item from ACED: “Find the missing terms in the following arithmetic sequence: 4.68, ___, ___, 13.74, 16.76, 19.78.” The item type, the nature of the stem, and the number of responses are all examples of task model variables that are included in the ACED task model specification. The example item
above is a numeric entry item, since the student enters numbers rather than selecting an option. Two responses are required, one for each blank. The stem consists of both numbers and text, but no graphics. All of the items in ACED are either numeric entry or multiple choice formats. The stem always includes at least words, but might also include numbers, pictures, and tables.

**Item Models and Automatic Item Generation in ACED**

To populate the framework for the sequences, many different tasks are required. For the prototype, we decided to include two tasks per proficiency at each level of difficulty, yielding almost 200 items altogether (i.e., 32 proficiencies,9 multiplied by 3 levels and 2 tasks per level). Approximately half of the total number of items were selected from the following sources and modified as necessary: ETS’ Algebridge program (1990), TIMSS released items, state assessment items obtained via the Web (e.g., Florida, Massachusetts, Georgia), released NAEP items, and ETS’ Algebra End of Course Assessment items (2003). Project staff developed a small number of original items in a discrete fashion. The rest of the items were developed using quantitative item models (described next) and project staff designed the item models. Items were automatically generated and formatted from the item models, using software designed for this purpose. Since the items were not rendered in HTML, however, they were reformatted by hand for entry into the ACED system.

As cited in Bejar (2002), the term *item model* was introduced by LaDuca, Templeton, Holtzman, and Staples, and refers to classes of content equivalent items. A quantitative item model is a specification for a set of items that share a common mathematical structure. Ideally an item model captures an underlying problem structure, or schema (Singley & Bennett, 2002). Items in a model may also share formats, variables, and mathematical constraints. A set of item models may be used to define the task model for an assessment. The *variables* in a quantitative item model specify the range of permissible values that may replace the variable in an individual item. The *constraints* in a quantitative item model define and restrict the mathematical relationships among the variables. The number of items described by an item model may vary, depending on how the variables and constraints have been defined.

Once an item model is defined, it is possible to automatically generate the instances that it describes (Bejar, 1993). An item model may be programmed into software that generates the instances (Singley & Bennett, 2002). In addition to providing an organized structure for item development, an automatic approach to item generation confers considerable
practical advantages (Bejar, Lawless, Morley, Wagner, Bennett, & Revuelta, 2002), because the generating software can perform the necessary computations and can format the items automatically. For ACED, we used ECD as the guiding framework to inform the structure of item models.

Table 9.4 shows a simplified example of an item model developed for ACED, together with two items that might be generated from the model. This item model would generate easy items that link to the extend node under arithmetic sequences. A more detailed account of how models were used to generate instances for the ACED program will be presented in Graf and Shute (in preparation).

<table>
<thead>
<tr>
<th>Model template</th>
<th>Variables and constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Extend the arithmetic sequence by finding the next term:</td>
</tr>
<tr>
<td>Example item 1</td>
<td>A1, A2, A3, . . .</td>
</tr>
<tr>
<td>Example item 2</td>
<td>Extend the arithmetic sequence by finding the next term:</td>
</tr>
<tr>
<td>Example item 3</td>
<td>A1 is an integer between 1 and 9, inclusive</td>
</tr>
<tr>
<td>Example item 4</td>
<td>D is an integer between 2 and 9, inclusive</td>
</tr>
<tr>
<td>Example item 5</td>
<td>A2 = A1 + D</td>
</tr>
<tr>
<td>Example item 6</td>
<td>A3 = A2 + D</td>
</tr>
<tr>
<td>Example item 7</td>
<td>Key = A3 + D</td>
</tr>
<tr>
<td>Example item 8</td>
<td>A1 = 1</td>
</tr>
<tr>
<td>Example item 9</td>
<td>D = 3</td>
</tr>
<tr>
<td>Example item 10</td>
<td>4 = 1 + 3</td>
</tr>
<tr>
<td>Example item 11</td>
<td>7 = 4 + 3</td>
</tr>
<tr>
<td>Example item 12</td>
<td>10 = 7 + 3</td>
</tr>
<tr>
<td>Example item 13</td>
<td>A1 = 5</td>
</tr>
<tr>
<td>Example item 14</td>
<td>D = 9</td>
</tr>
<tr>
<td>Example item 15</td>
<td>14 = 5 + 9</td>
</tr>
<tr>
<td>Example item 16</td>
<td>23 = 14 + 9</td>
</tr>
<tr>
<td>Example item 17</td>
<td>32 = 23 + 9</td>
</tr>
</tbody>
</table>

This concludes the part of the chapter concerning the design and development of the ACED prototype, focusing on microadaptation. We now turn our attention to the macroadaptive part of the system that will be developed and tested over the next two years. Our initial focus is on visual disabilities and the accommodations thereof. We begin the section with a discussion of the importance of validity in the design of an assessment system, especially one that includes macroadaptation. We also review some of the more important accessibility features, as they relate to different disabilities. Finally, we describe one particular accommodation that we plan to
use in the next phase of ACED research—the Talking Tactile Tablet (TTT) (www.touchgraphics.com).

MACROADAPTATION IN ACED

The ACED project’s exploration of macroadaptation is focused on accommodations for individuals with visual disabilities, i.e., blindness and low vision. Under ordinary (standard) conditions, ACED content is presented visually and requires students to use a mouse to answer the single selection multiple-choice items, and the keyboard to answer a smaller number of numeric entry items. A variety of means will be explored for making test content accessible to individuals with visual disabilities. For example, individuals with low vision will be able to use screen enlargement software (e.g., Zoomtext; see www.aisquared.com/index.htm), which allows users to enlarge a portion of the ACED screen, thereby making it easier to see. Moreover, individuals who are completely blind or who are otherwise unable to benefit from screen enlargement software will be able to use an audio rendering of content plus tactile graphics (e.g., raised-line drawings).

This exploration focuses primarily on the usability of specific accommodations. It should be noted that usability is but one important issue bearing on the validity of the scores obtained under accommodated conditions.\footnote{For example, it is clearly important to ensure that an accommodation is usable and overcomes one or more accessibility barriers. But it is also important to ensure that an accommodation does not provide an unfair advantage for the person that receives the accommodation (Bennett, 1995; Heath & Hansen, 2002; IMS Global Learning Consortium, 2002; Thompson, Johnstone, & Thurlow, 2002; Thompson, Thurlow, Quenemoen, & Lehr, 2002). For example, allowing a person with a math-related disability (e.g., dyscalculia) to use an electronic calculator on a math test may make the test accessible and usable, yet if the test is intended to measure mental computation, then the electronic calculator accommodation will tend to provide an unfair advantage for that person, thereby potentially invalidating the results. The relatively low number of individuals with disabilities involved in this study does not permit us to directly examine certain aspects of validity (e.g., relationships between assessment scores and external criteria). However, we seek to place our exploration of accommodation within a validity framework that can be helpful in later studies without this limitation. Specifically, we use an ECD-based validity framework that pays close attention to evidentiary argument; careful attention to one’s definition of the construct (e.g., skills or abilities that are or not part of what one intends to measure) is a key aspect of this approach.}
Our intention with the ACED *sequences as patterns* assessment is to measure cognitive abilities (e.g., reasoning and knowledge of various sequences) rather than assessing the senses of sight, hearing, or touch. This suggests that it is not unreasonable, for example, to provide accommodations that reduce or eliminate the requirements for sight (imposed by the visually displayed text and graphics under standard testing conditions) and instead rely on other capabilities (e.g., hearing and touch) when delivering test content.\(^\text{12, 13}\)

**Audio and Tactile Accommodations**

Typical audio rendering of content is often termed a *read-aloud accommodation*, because it involves reading the content aloud to the student. The audio method may be implemented via a live human reader, prerecorded human audio, or synthesized speech. In any case, the audio rendering typically reads aloud text content (i.e., straight text), but can also read aloud non-text content, such as images, audio, and video/animations. As discussed earlier, non-text content is translated into text equivalents, which seek to convey the same meaning as the non-text content, but through text (Chisholm, Vanderheiden, & Jacobs, 1999; see also IMS Global Learning Consortium, 2002). An audio rendering of a math test may also include specially scripted descriptions of math expressions and tables. If the audio rendering has been crafted to convey all necessary content, a person who is blind could use it without relying on tactile graphics. However, it is often easier to understand graphical material (pictures, graphs, etc.) when the audio descriptions are supplemented with tactile graphics. Ordinary tactile graphics are typically printed or pressed onto paper or plastic and can be felt with the fingertips. The tactile graphics may include braille labels.\(^\text{14}\)

Currently, we are planning to use a hybrid method of access that combines both tactile graphics and audio in a single interactive system. This method, which may be termed *audio-tactile graphics*,\(^\text{15}\) allows the student to touch a specific location on the tactile graphic and then to hear a description of that location.\(^\text{16}\) The student can quickly navigate from location to location, hearing as much or as little of the description as desired. Such audio-tactile graphics may facilitate access to graphics-intensive content. Following is a description of the Talking Tactile Tablet (Touch Graphics) system for audio-tactile graphics.

**The Talking Tactile Tablet**

The Talking Tactile Tablet (TTT) (TouchGraphics), provides a mix of audio (read-aloud), tactile, and visual modification capabilities, which may
be particularly useful for test content that uses graphics, tables, and math expressions, which are often difficult to convey via words alone. To develop a TTT application, one develops a tactile graphic, a sheet of hard plastic that uses raised lines and textures to represent points, lines, and regions of a graphic (see Figure 9.5). A special printing process is also used to print in ink the graphical material on the tactile graphic, which can help individuals with some sight. Some features of the graphic may be labeled with braille. The tactile graphic is then placed on a touch-sensitive tablet that is controlled by an external personal computer. A content author then specifies in software the active regions on the graphic and maps each active region to one or more prerecorded audio segments. For example, when using the TTT, the student could press on the angle depicted in the lower-right corner of Figure 9.5 and hear the words “110 degrees” in prerecorded audio. This allows a person who has a visual impairment (or another disability that impairs processing of visually-rendered content) to receive specific and interactive audio descriptions of content that would ordinarily be presented only visually. The TTT system allows the student to navigate through the test and to select their answer using tactile (raised-line) controls on the tablet. The keyboard on the laptop is necessary only when answering short, constructed-response items.

**A Recent Study of the Talking Tactile Tablet**

In a recent application of TTT technology (e.g., Landau, Russell, Gourgey, Erin, & Cowan, 2003), the basic audio-tactile capabilities were augmented with capabilities designed to make the system suitable for
achievement testing. For example, the system provided the means for receiving test and item directions, navigating between and within items, typing in short responses (if applicable) and confirming one’s answers. Synthesized speech allowed students to hear short responses as they typed them in. A study examined the usability of the system with 23 students in grades 7 through 12 (aged 15 to 20) who had visual impairments. Eighty-three percent of the students indicated that they use braille and learn mainly through hearing and touching while 13% indicated that they use enlarged print or magnification to read print. After 3 weeks of research time, 91% of the students agreed that they had used the system between 1 and 5 hours. The study found that 62% of the students found the system “very easy” to use and most students felt that after 2–3 weeks of exposure they would be able to use the approach in taking an actual test. The feature cited most often as a “most useful” feature was “descriptions of every item [object] in the sheet,” cited by 52% of participants. We consider this audio-tactile approach as a very promising avenue to explore in this project.

**SUMMARY AND FUTURE DIRECTIONS**

The general goal of the research described in this chapter is to create an intervention that supports and enhances middle school students learning math concepts and skills. In designing the ACED system, one important challenge we faced was how to effectively present mathematics content to students who are blind or who have low vision. Sixty-seven percent of students with blindness or low vision are placed in inclusive classrooms (Rothberg & Wlodkowski, 2000). Ideally, these students should be participating in lessons and activities alongside their non-disabled peers. But, as noted earlier, math content can be difficult to convey without using visual representations. Beginning in middle school, students are increasingly exposed to more complex mathematical elements, including expressions and equations, diagrams, tables, and graphs. As the complexity of visual content increases, so does the challenge of presenting it to students with visual disabilities. While auditory descriptions may suffice for simple graphs and diagrams, tactile media, perhaps in the form of audio-tactile graphics, may be better for more complicated mathematical elements.17

We have accomplished our first year goals for the ACED project. Some of the main activities included: meeting with teachers for input on content, completing the design and development of the prototype infrastructure, designing and testing the adaptive algorithm, designing and fleshing out the various ECD-based models (student, evidence, and task), creating and/or modifying the full set of diagnostic assessment tasks (about 180 tasks representing about 30 different proficiencies), and reviewing the various
assistive technology options and literature on accommodations, specifically for low visual and blind students, although others (e.g., deaf and learning disabled) may also be accommodated with ACED.

In years 2 and 3 of this grant, we plan to analyze the general contribution of microadaptation on learning as well as continue to test, refine, and combine macroadaptations (e.g., text-to-speech, screen magnification, tactile graphics) to improve the accessibility and usability of ACED for students with visual disabilities. Thus our upcoming plans include two related strands of research. One strand will examine the relative contribution of microadaptation on about 100 sighted and low-vision students, in terms of learning variables. The other strand, involving students who are blind or otherwise visually disabled, will test and refine adaptations (e.g., text-to-speech, screen magnification, tactile graphics) to improve the accessibility and usability of the ACED system for students with disabilities.

In conclusion, we are committed to pursuing policies of inclusion to the highest degree possible that are consistent with the purposes and resources of the research. Findings from both studies (experimental and usability) are expected to highlight important information, such as the progress of the project in making the content accessible. We also expect to be able to address issues regarding the feasibility and limitations of this approach in the future as we implement and test in larger trials. We hope that the approach described in this chapter for designing, developing, and interpreting assessments will provide a useful precedent for environments that adapt to support student learning based on larger sets of incoming abilities and disabilities.

NOTES

1. In general, adaptation (or adaptive capability) refers to the system’s ability to adjust itself to suit particular characteristics of the learner while adaptable (not the focus here) refers to applications that can be configured by a user.
2. The term e-learning used in this chapter stands for electronic learning and refers to the delivery of any instructional or training program by means of interactive computer-based technologies, especially where networking or distance communications are involved (e.g., distance learning or Web-based learning).
3. The term task refers to the question, which elicits or prompts an answer or response. The terms task and item are often used interchangeably in this chapter.
4. The graph and text were adapted with permission from Recording for the Blind and Dyslexic, Incorporated, National Headquarters, Princeton, NJ 08533, © 2004. All Rights Reserved®, (tm), “Recording for the Blind & Dyslexic,” “RFB&D,” “Learning Through Listening,” the Heart and Headphones
Designing Adaptive, Diagnostic Math Assessments

5. In Figure 9.2, within the Evidence Models box, there are two smaller boxes: Stat Model (on the left) and Evid. Rules (on the right). In the small box labeled Evid. Rules, the squiggly figures represent actual behaviors, which are linked to specific observables denoted as shaded boxes.

6. In addition, there can be other levels in between the individual states and the global (parent) node. For example, theoretically, one could be interested in assessing students’ knowledge of state capitals by region (e.g., “mid-Atlantic states,” “New England states”). The student model would reflect this hierarchy, and evidence would be collected and “rolled up” to answer questions at different levels.

7. The organizational structure and vocabulary used in the texts varies. Some texts cover arithmetic sequences in chapters on addition and subtraction and geometric sequences in chapters on multiplication and division, while other texts include distinct chapters on arithmetic sequences, geometric sequences, and other common types of sequences. Glencoe’s Pre-Algebra text (Price et al., 1997) and the Math Advantage text (Burton et al., 1999) fall into the latter category. Furthermore, the term sequence is not used in all the texts. Some texts refer to patterns, while others discuss arithmetic sequences in the context of linear growth and decay, and geometric sequences in the context of exponential growth and decay.

8. In cases where we do not know in advance the prior distribution, we assign values of about 1/3 for each of the 3 possible states (.33, .33, .34).

9. In Figure 9.4, the 32 proficiencies represent the children of the following main nodes of: Sequences as Patterns, Arithmetic, Geometric, and Other Recursive sequences.

10. Validity is arguably the preeminent technical consideration in the development of assessments of any kind. The Standards for Educational and Psychological Testing, which were developed by the American Educational Research Association (AERA), the American Psychological Association (APA), and the National Council on Measurement in Education (NCME) have defined validity as the “degree to which accumulated evidence and theory support specific interpretations of test scores entailed by proposed uses of a test” (AERA, APA, & NCME, 1999, p. 184).

11. For a more in-depth ECD-based analysis of the impact of accessibility features on validity, see work by Hansen, Mislevy, and Steinberg (Hansen, Mislevy, & Steinberg, 2003; Hansen & Mislevy, in press; Hansen, Mislevy, & Steinberg, in press; Hansen, Mislevy, Steinberg, Lee, & Forer, in press; see also National Research Council, 2004, pp. 103–122).

12. Another relevant piece of evidence for this assertion is the fact that we do not consider the ability to decode (decipher words from characters) to be part of “knowledge of sequences.” If decoding were defined as being an essential part of that construct, then use of an audio accommodation would threaten the validity of the assessment; specifically, the audio presentation reads whole words at a time thereby reducing or eliminating need for the student to demonstrate their decoding ability.

13. Of course, ensuring valid assessment result depends on many other factors as well, such as having adequate practice and familiarization materials and adequate time. We do not view the ability to work quickly as an essential...
part of the construct of “understand[ing] sequences as patterns.” Furthermore, we recognize that a person who is blind and using tactile or audio-tactile graphics is likely to require more testing time than a nondisabled person receiving the test under standard conditions. Thus, we believe extra testing time to be an appropriate testing accommodation.

14. Hard copy braille versions of all test content is another access method. Yet many individuals who are blind do not read braille, or have very limited braille literacy.

15. Generally, an audio-tactile graphic system may be programmed to invoke any other system event at the touch of the user.

16. ETS developed an early prototype audio-tactile graphic system (Baird, 1997).

17. Tactile graphics and braille are critical in making such content accessible to deaf-blind students (Rothberg & Wlodkowski, 2000).

AUTHOR NOTES

This material is based upon work supported by the National Science Foundation under Grant No. 0313202. The authors would like to sincerely thank the various and substantial contributions to the ACED project by Larry Casey, Russell Almond, David Williamson, Steve Landau, Jody Underwood, Peggy Redman, Malcolm Bauer, Robert Mislevy, Daniel Eignor, Buz Hunt, Christy Lyon, Sarah Ohls, and Richard Holborow. Also we are grateful for the contributions from the New Jersey middle school math teachers who assisted us with content issues.

Correspondence concerning this chapter should be addressed to Valerie J. Shute at Educational Testing Service, Rosedale Road, MS 13E, Princeton, NJ 08541, or by email to vshute@ets.org.

REFERENCES


Designing Adaptive, Diagnostic Math Assessments


Shute, V. J. (1993). A comparison of learning environments: All that glitters... In S. P. Lajoie & S. J. Derry (Eds.), Computers as cognitive tools (pp. 47–74), Hillsdale, NJ: Lawrence Erlbaum Associates.


