Game-based formative assessment: Newton’s Playground

Valerie Shute, Matthew Ventura, & Yoon Jeon Kim
(Florida State University), NCME, April 30, 2013
Fun & Games vs Assessment Needs
Game-based stealth assessment
Games
(fun)

- Feedback
- Interactivity
- Goals/rules
- Control

Assessment
(rigor)

- Efficiency
- Fairness
- Reliability
- Validity
Control & Assessment

Difficulty

Time

Student A

Student B
QUESTION: When students are given good feedback on their task solutions, does their learning render the assessment less valid, reliable, or efficient?

ANSWER: No

Stealth Assessment Features

Seamless & Ubiquitous Assessment

Formative & Diagnostic

Accurate & Rich Learner Models

When the cook tastes the soup, that’s formative; when the guests taste the soup, that’s summative.

Invisible assessment, transparent support!
ECD
(e.g., Mislevy, Steinberg, & Almond, 2003)

Assessment Models & Metrics

Monitor & Diagnose Success
Newton’s Playground

✓ Goal: guide a 🔴 to a 🔴. Everything obeys basic rules of physics (e.g., gravity, Newton's three laws of motion).

✓ Player draws physical objects that "come to life" when drawn (e.g., levers, ramps, pendulums) to get ball to balloon.

✓ Players can solve problems in many different ways, striving for the awesomest one.
Qualitative Physics
(Ploetzner, VanLehn, 1997)

Nonverbal understanding of:
1. Newton’s three laws of motion
2. Balance
3. Mass
4. Gravity
Agents of Force/Motion

- **Ramp**: Used to change the direction of the motion of the ball (or another object).

- **Lever**: Rotates around a fixed point usually called a fulcrum or pivot point.

- **Pendulum**: Directs an impulse tangent to its direction of motion. Secured at the top by a pin.

- **Springboard**: Stores elastic potential energy from falling weight; becomes kinetic as weight is released.
Difficulty Indices

- **Relative location of ball to balloon.** If balloon is above ball, forces player to use lever, springboard, or pendulum to solve the problem (0-1).

- **Obstacles.** If pathway between ball and balloon is obstructed, player must project ball in specific trajectory (0-2).

- **Distinct agents of force/motion.** A problem may require one or more agents to get ball to the balloon (0-1).

- **Novelty.** A problem is not like any other problems played so solution is not easily determined from prior experiences (0-2).
Game design choices in NP

• **Control**: Freedom to play any problem anytime (set up in playgrounds of increasing difficulty)

• **Interactivity**: Create their own responses; multiple valid solutions

• **Feedback**: Gold vs. silver trophies.

• **Goals/rules**: super clear (get ball to balloon)
Task-level design choices

• Balance evidence elicitation
 » All agents used
 » Playgrounds balanced

• Focus evidence
 » Some levels target just 1 agent (e.g., pendulum only)

• Increase difficulty (Playgrounds 1-7)
 » Discrimination

• Don’t suck out the fun
 » Construction of colorful responses
 » Variation of challenges
Springboard: Difficulty

Sunny Day: Easy SB

Jurassic Park: Medium SB
Pendulum problem

Used features of the game task to (subtly) constrain players’ choice of agent
How did our game-design decisions affect the quality of the assessment, learning, and enjoyment?
Construct Validity: External & In-game Physics ($N = 166$)

External measure of **physics knowledge** (pretest) correlated with in-game measures of mastery (number **gold trophies per agent**).

<table>
<thead>
<tr>
<th></th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Posttest**</td>
<td>0.60</td>
</tr>
<tr>
<td>Ramp-silver</td>
<td>0.09</td>
</tr>
<tr>
<td>Lever-silver</td>
<td>-0.04</td>
</tr>
<tr>
<td>Pendulum-silver</td>
<td>-0.02</td>
</tr>
<tr>
<td>Springboard-silver</td>
<td>0.15</td>
</tr>
<tr>
<td>Ramp-gold**</td>
<td>0.24</td>
</tr>
<tr>
<td>Lever-gold**</td>
<td>0.23</td>
</tr>
<tr>
<td>Pendulum-gold**</td>
<td>0.34</td>
</tr>
<tr>
<td>Springboard-gold**</td>
<td>0.41</td>
</tr>
</tbody>
</table>

$N = 166; \; ** p < .01$
1. CFA – Gold trophies by four agents: $X^2/df < 3$, CFI > .95, RMSEA < .05, SRMR < .05

2. Intraclass correlation = .85 (Ramp, Level, Pendulum, Springboard gold trophies)

3. Pairwise correlations: RxL = .67; RxP = .64; RxS = .66; LxP = .64; LxS = .63; PxS = .65
Results: Construct Consistency

1. Intraclass correlation = \textbf{.82} (Easy, Medium, Hard gold trophies)

2. Cronbach’s alpha = \textbf{.87}

Data: gold trophy info (NA, 0, 1)
Valid Cases: 110 (out of 169)
Levels: 29 (out of 74)
How did the decisions work out?

- **Learning**: Significant difference between pretest & posttest scores: $F(1, 153) = 4.24; p < .05$ simply after 4 hr gameplay.

- **Enjoyment**: Kids enjoyed the game (1=dislike; 5=like; $M=4, SD = 1$). Males & females enjoyed equally (after controlling for pretest).
Next Steps: Formative Assessment

- Info on competencies used by (a) teachers (to adjust instruction & give good feedback), (b) students (to reflect on how they’re doing), and (c) system (to select new gaming experiences), such as:
 - Present problem requiring agents not mastered
 - Provide hints re: agent solutions
 - Give rewards for novel agent use
 - Include formalizations (and values) in simulation (e.g., level editor)
 - Display current estimates of competency levels in NP (progress indicators) so students act to improve them.

- Develop curriculum to wrap around game—lesson plans, activities (e.g., student levels demo’ed and discussed in class), etc.
Thank you!

Questions?

Email: vshute@fsu.edu
Website: http://www.myweb.fsu.edu/vshute
Download NP: http://www.gameassesslearn.org/newton/
The pendulums are swinging down to hit gray balls. The pendulums each have the same length, but they start their swings from different angles and they have different masses. In which figure will the gray ball travel the fastest after being hit by the pendulum?

a) A
b) B
c) The gray balls in A and B will move at the same speed after being hit
d) I do not know
Persistence Test

Feedback in AfL System

![Graph showing test scores for Pretest and Posttest with C/I FB and Elab FB.]
Jackknife Variance Estimation (Consistency of assessment)

- Jackknife resampling: Compared variance of full sample (74 levels) with variance caused by different task formats (i.e., levels)
- Used gold trophy information (NA, 0, and 1)
- JK variance (1.1) divided by full sample variance (77.57) = 0.015; reliability = .985!
Convergent Validity: Persistence

Persistence (external measure)

Time Unsolved (NP measure)

\[r = .28^{**} \]

Time Silver (NP measure)

\[r = .35^{**} \]

Time on Gold Trophies \((r=.07) \)
Convergent Validity: Persistence (just low performers)

Persistence (external measure)

- Time Unsolved (NP measure) \(r = .47** \)
- Time Silver (NP measure) \(r = .42** \)

Time on Gold Trophies \(r = .004 \)
“Although the focus here is on reliability (consistency among independent measures intended as interchangeable), it should be clear that reliability is an aspect of construct validity (consonance among multiple lines of evidence supporting the intended interpretation over alternative interpretations). And as assessment becomes less standardized, distinctions between reliability and validity blur. “